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Abstract. Genetic algorithms (GAs) are perhaps the oldest and most frequently used search techniques for

dealing with complex and intricate real-life problems that are otherwise difficult to solve by the traditional

methods. The present article provides an extensive literature review of the application of GA on supply chain

management (SCM). SCM consists of several intricate processes and each process is equally important for

maintaining a successful supply chain. In this paper, eight processes (where each process has a set of sub-

processes) as given by Council of SCM Professionals (CSCMF) are considered. The idea is to review the

application of GA on these aspects and to provide the readers a detailed study in this area. The authors have

considered more than 220 papers covering a span of nearly two decades for this study. The analysis is shown in

detail with the help of graphs and tables. It is expected that such an extensive study will encourage and motivate

the fellow researchers working in related area; to identify the gaps and to come up with innovative ideas.
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1. Introduction

Maintaining an efficient supply chain has always been a

focus of attention of scientists and researchers since decades.

In fact, the entire economy of a country more or less depends

on an efficient and well-managed supply chain processes.

However, with the growing competition all round the world;

the SCM models are also becoming more complex day by

day. Consequently, researchers are focusing on efficient and

robust techniques for dealing with SCM. In this article, a

review on the application of GA, one of the most popular

techniques, for dealing with different aspects of SCM is

presented. The popularity of GAs for solution of SCM can be

attributed to its capability to evolve solutions, handle

ambiguity, and execute optimization [1]; its competence to

tolerate imprecision, uncertainty, and partial truth to attain

tractability and robustness on simulating human decision-

making behavior with low cost [2, 3].

Moreover, GA has been applied quite successfully to a

wide range of problems occurring in diverse SCM domains,

for example, forecasting [4], job-shop scheduling [5],

economic lot-size scheduling [6], economic lot-size model

[7], vendor-managed replenishment system [8]. Therefore,

it is quite natural to assume that for SCM processes and

sub-processes, GA has always been an option for dealing

with SCM models.

The present study is an extension of paper presented by

authors [9] that focuses on GA applications to SCM. Here

the authors have provided a much more detailed analysis

including figures, charts, and graphs. The articles reviewed

for this study cover almost two decades; from the late 1990s

until the present time. Through this review the reader can

easily visualize how GA has evolved for solving the dif-

ferent aspects of SCM.

The rest of the research article is prepared as follows:

Subsequent to the introduction in section 1, the genetic

algorithms and supply chain management are briefly

described in sections 2 and 3 respectively. The methodol-

ogy, section 4, describes the critical analysis of the litera-

ture and reviews of existing studies and section 5 briefed

discussion part and future trends of the study. Finally,

Summary drawn from the present study is provided in the

last section 6.

2. Genetic algorithms

GA is an evolutionary algorithm first proposed by John

Holland and his colleagues in 1975. Based on Darwin’s

theory of survival of the fittest, it is one of the most popular

search technique used for solving optimization problems. It

is a derivative free, direct search algorithm used to find true

or approximate solutions to optimization and search prob-

lems [10]. Some pioneering work in GA can be found in*For correspondence
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[11–19]. The working of GA begins by initialization of the

population of n chromosomes within the given range. The

second step is to decide a fitness function that helps in

assessing the fitness of every single chromosome in the

population. After this phase, GA operators (crossover plus

mutation) are activated, which help in generating the new

population. The procedure is repeated iteratively till a

stopping criterion is met. An interconnection of GA phases

is shown in figure 1.

2.1 Computational steps of GA

(1) Build initial population of randomly generated

solutions.

(2) Evaluation of the fitness function of individual solutions

in the population.

(3) Generate new population by repetition of subsequent

phases as follows:

• Selection: Pick a pair of parent solutions from a

population corresponding to their fitness. The one

having a superior fitness value is more likely to be

selected.

• Crossover: Perform crossover with the help of a

predefined crossover probability to produce new

child solution.

• Mutation: Perform mutation by means of a prede-

fined mutation probability.

(4) Adopt newly build population for an additional run of

the algorithm.

(5) Check whether the stopping criterion has been reached.

If yes, then terminate; otherwise go to step 2.

Several variants of GA are available in literature, including

binary and real encoded; unconstrained and constrained;

and single objective and multiobjective, depending on the

type of problem being dealt with, the suitable variant may

be applied.

3. Supply chain management

SCM is a set of approaches of managing upstream and

downstream interrelationship with suppliers and its clients

to deliver high-quality customer value at lowest possible

price as a whole supply chain [20, 21]. Its aim is to man-

ufacture as well as allocate the products and services in the

right amount, to the right location, also at the right time so

as to reduce cost while retaining customer satisfaction [4],

figure 2 shows the SCM linkages.

4. Methodology

In the present study, 220 articles are considered where GA

has been applied for dealing with different aspects of SCM.

The authors have mainly concentrated on refereed articles.

The main keywords; ‘‘Genetic algorithms’’ and ‘‘Supply

chain management’’ are searched for in major databases.

The other keywords include the GAs applications to SCM

process and sub-processes ‘‘Inventory Management,

Material Planning’’, ‘‘Supply Chain Planning, Production

Planning’’, ‘‘Logistics Network Design/Planning, Vehicle

Routing/Assignment’’, ‘‘Sales Forecasting, Bullwhip

Effect’’, ‘‘Supplier relationship management’’, ‘‘Product

development and commercialization’’, ‘‘Returns manage-

ment’’, ‘‘Customer service management’’, and ‘‘Customer

relationship management’’. The papers are segregated as

per the area, and analysis is done to find out where and how

GAs are applied. Graphs and charts are drawn so that the

reader can easily visualize in which areas of SCM have

GAs been used most frequently and in which areas some

more work is to be done.

The present study is inspired by [22], main difference

being that in the present paper the authors have focused on

GA, while in [22], besides GA, the soft computing

approaches such as fuzzy logic and neural network are also

considered. The main similarity between [22] and the pre-

sent study is that in both the studies eight processes of SCM

as given by Council of SCM Professionals (CSCMF) are

considered. These processes are given as follows:

4:1 Manufacturing flow management (MFM)

4:1a Inventory management/material planning

4:1b Supply chain planning

4:1c Production planning

4:2 Order fulfillment (OF)

4:2a Logistics network design/planning

4:2b Vehicle routing/assignment

4:2c Other issues

4:3 Demand management (DM)

4:3a Sales forecasting

4:3b Bullwhip effect

Build initial 
possible solution 

End 

Evolution fitness function 

Stopping 
criteria 

Genetic operators: 
Crossover/mutation 

Initialization 

Decode string 

Offspring 

Reproduction 

Yes 

No 

Figure 1. Interconnection of GA stages.
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4:4 Supplier relationship management (SRM)

4:5 Product development and commercialization (PDC)

4:6 Returns management (RM)

4:7 Customer service management (CSM)

4:8 Customer relationship management (CRM)

These processes are explained one by one in a sequential

order in the following subsections.

4.1 Manufacturing flow management (MFM)

Manufacturing flow management (MFM) is the SCM pro-

cess comprising all actions required to transport merchan-

dises over the company in addition to attaining, employing,

and bringing about manufacturing flexibility in the supply

chain [23]. A framework on manufacturing flow in SCM is

shown in figure 3. Figure 4(a), (b), and (c) shows the

number of research articles breakup yearwise of MFM

process, which includes Inventory management/Material

planning, Supply chain planning, and Production planning,

respectively.

As shown in figure 5, the first research article in relation

to application of GA in MFM was presented in 1991 [5].

Till 2003, there are only a few studies, with less than two

publications per year. This scenario however changed after

2004, where we can see a firm increase in the quantity of

research articles, touching a highest in 2014. This indicates

that additional work can be expected in the coming years.

The researcher’s curiosity can be acknowledged by means

of the distribution of these research articles dealing with

sub-processes. As shown in figure 6, Production planning

has gained scholars’ foremost interest. Predominantly, there

are 55 numbers of studies pointing on Production planning

that constitute 59% of total number of research papers in

the MFM.

4.1a Inventory management/material planning: In SCM,

Inventory management is a combined method for the

planned controlling of inventories, over the whole inter-

connection of cooperating enterprise, starting with the

supply source to the end worker [24]. The order distribution

studies were solved by [25, 26] with the help of a heuristic

methodology and a multicriteria GA in a demand-driven

collaborative supply chain; afterward, the economic lot-size

scheduling issues were dealt by GA heuristic approach

[6, 7]. In [6], GA is used for determining a fuzzy economic

lot-size scheduling issue and in [7] GA is used to solve a

joint economic lot-size model for integrated inventory

control of a four-stage supply network in view of back-

logged shortage. Vendor-managed inventory (VMI) issues

are also discussed in various papers. In [8], GA and

machine learning technique is used for modeling in addi-

tion to optimizing a vendor-managed replenishment sys-

tem, while in [27] a two-echelon supply chain is studied for

optimum operational parameters of VMI system using

GAs; furthermore, in [28], a GA-neural network technique

is suggested to lessen spare parts logistics overhead to deal

the bill of material (BOM) configuration design issue.

Reference [29] presents a parameter-tuned GA to deal

with multiproduct economic production quantity model,

including space constraint, discrete delivery orders as well

as shortages. Afterward, [30] used GA to optimize the

emission inventory for a chemical transport model. In [31],

GA is used with fuzzy arithmetic operations for simulation

of VMI problems; in [32], a GA for VMI control system of

two-level supply chain composed of a single vendor and a

single retailer economic order quantity model is proposed;

and in [33], a parameter-tuned GA is presented to optimize

two-echelon continuous review inventory practices effi-

ciently. In [34], authors proposed hybrid metaheuristics

algorithms (HMHAs), which included GA, harmony search

Suppliers Procurement Processing Distribution Customers

Supplier 
partnership

Material planning

Material schedule

Production scheduling

Just-in time inventory 
system

Flexibility

Demand planning 

Quick response

Postponement

Figure 2. Supply chain management linkages.
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Parts 
management Assembly

Inspection Shipment

Figure 3. Manufacturing flow in SCM.
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(HS), particle swarm optimization (PSO), simulated

annealing (SA), variable neighborhood search (VNS), and

bees colony optimization (BCO) methods to solve the

three-inventory problem, joint replenishment economic

order quantity (EOQ) problem, newsboy problem, and

stochastic review problem, in certain and uncertain
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Figure 4. (a) Number of articles in inventory management/material planning sub-process of MFM, (b) number of articles in Supply

chain planning sub-process of MFM, and (c) number of articles in production planning sub-process of MFM.
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environments such as stochastic, rough, and fuzzy envi-

ronments with six different applications. In [35], authors

offered a hybrid method of GA and fuzzy simulation (FS)

to deal with inventory management issues alongside

stochastic replenishments plus fuzzy demand. In [36],

authors designed GA with varying population size method

for a deteriorating item with time-varying demand and

shortages of two-warehouse production inventory model; in

[37], GA is proposed for supply chain inventory opti-

mization with the best possible surplus stock level. In [38],

the authors used GA to analyze a bi-objective inventory

routing problem where the transportation cost along with

the delivery cost is measured independently.

In [39], authors proposed a modified multicriteria opti-

mization GA (MCOGA) established on the procedure for

order distribution in collaborative supply chain. In [40] GA

is used to optimized the two-stage collection distribution

(TSCD) model with capacity constraints at both stages and

results are compared with the standard operations research

software LINDO for small problems. In [41], GA method

including fuzzy simulation via contractive mapping is

proposed to a vague production inventory model under

volume flexibility; in [42], GA is used for optimization of

VMI of multiproduct economic production quantity (EPQ)

model with multiple constraints; in [43], an adaptive GA is

proposed that produces good-quality solutions to the time-

dependent inventory routing problem (TDIRP). In [44],

emphasis is laid on developing a fuzzy-rough (Fu–Ro)

multi-objective decision-making imperfect production

inventory model with GA.

Reference [45] presents a research on multiproduct,

multiperiod continuous review inventory models based on a

GA approach; [46] proposed a GA for an EOQ model of an

item with imprecise seasonal time; [47] used GA for opti-

mizing VMI of multiproduct EPQ model with multiple

constraints. Authors in [48] used soft computing techniques

in fuzzy-rough environment for a multi-objective multi-

item inventory control problem. In [49], GA is used to solve

a VMI system in a two-echelon supply chain used hybrid

algorithm. Later in [50], a nondominated sorting genetic

algorithm-II (NSGA-II) with tuned parameters is used for

optimizing a hybrid VMI and redundancy allocation prob-

lem in SCM.

In [51], problem of green VMI of multi-item multi-

constraint EOQ model under shortage solved by a hybrid

genetic and imperialist competitive algorithm is consid-

ered; [52] deals with the problem on inventory-based multi-

item lot sizing by using a biased random key GA approach.

In [53], a bi-objective VMI model with trapezoidal fuzzy

demand is solved by two parameter-tuned multi-objective

evolutionary algorithms, NSGA-II and nondominated

ranking genetic algorithm (NRGA). In [54], an evolution-

ary algorithm (NSGA-II) for a new multi-objective loca-

tion-inventory model is proposed.

4.1b Supply chain planning: Supply chain planning, in most

enterprises, is the management of supply-facing and

demand-facing activities to lessen disparities in a complete

supply chain [55]. A supply chain planning framework is

shown in figure 7. Reference [56] used GA to develop

optimum resolutions through a two-stage optimization

method for collaborative supply chain planning; afterwards,

[57] showed that GA approach can be applied in multi-

plants supply chain, an optimum or near-optimum result

with very high probability for integrated process planning

and scheduling by means of decreasing total tardiness; in

[58], the authors recommended that the evolutionary search

method can be a noble substitute for the same problem

discussed in [57]; furthermore, [59] presented a knowledge-

based model for resource planning with several strategic as

well as operational requirements of regional M-SMEs, later

[60] considered a GA-based supply chain model to incor-

porate production as well as supply sourcing decisions.

4.1c Production planning: Production planning is an

essential apprehension that together directly and indirectly

makes a difference to the performance of the facility [61].

A classification framework on production planning in SCM

is shown in figure 8. The first article in relation to appli-

cation of GA in SCM was presented in 1991 [5], where a

GA that can deal with the optimization of the job-shop

problems is proposed; later, in [62], multi-objective GA

(MOGA) is used for more convincing job-shop scheduling

problems. The study in [63] shows that constrained GAs

can also be used in scheduling problem. This GA uses a

novel chromosome representation that takes into account

machine as well as worker’s assignments to jobs; subse-

quently, in [64], the general capacitated lot-sizing problem

was resolved by at first using GA. The study in [65] sug-

gested an adequate heuristic for optimizing sequence of

customer orders.

Reference [66] presents an approach to solve a production

and distribution problem based on a hybrid GA; the study in

[67] shows a methodology to resolve distributed scheduling

problems based on an adaptive GAwith dominated genes. In

[68], an approach is proposed to solve a due date-assigned

distribution network problems based on multicriteria

Inventory 
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material 
planning

36%

Supply chain 
planning

5%

Production 
planning

59%

Figure 6. Distribution of articles in sub-processes of MFM.
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genetic optimization. In [69], machine assignment problem

is solved by a GA-based method. In [70], work is dedicated

to simulation-based sequencing along with lot-size opti-

mization, which shows that the GA is a dominant technique

to determine good results for a production and inventory

system. In [71], a GA-based approach is proposed, which

solved iteratively a resource-constrained operations machi-

nes assignment problem and flexible job-shop scheduling

problem; [72] presents optimization of a distributed

scheduling problem in flexible manufacturing systems

(FMS) based on GAs with dominant genes and [73] presents

a GA-based approach for solving distributed FMS

scheduling problems subject to maintenance; [74] proposed

a GA with an mixed-integer linear programming (MILP)

solver to studied the influence of flexible lead times on a

paper producer, [75] applied GA for effective search of

solutions for economic lot-scheduling problems; in [76], the

authors analyzed batch manufacturing problems, where GA

has been suggested to deal with job-shop problems; in [77],

an efficient algorithm for a job-shop environment using GA

is proposed to optimize lot streaming for product assembly;

[78] proposed a study for distributed production scheduling

environment using a modified GA-based approach; [79]

solved lot streaming in a job-shop scheduling problem

through GA and in [80] a hybrid chaos-based fast genetic

tabu SA (CFGTSA) algorithm-based approach is proposed

for performance optimization of a legality-inspired supply

chain model, and in [81] GA approach is proposed to solve

assembly job shop with part sharing.

The hybrid flow-shop scheduling solved by an adequate

GA on the value of an optimum schedule, including mul-

tiprocessor task problems is shown in [82], while in [83] a

modified GA (MGA) is presented where the objective is to

minimize the total make span; [84] presented a GA-EDD

algorithm using the earliest due date (EDD) dispatching

rule for scheduling dual flow shops; while in [85], a mod-

ified GA is proposed for making manufacturing process

plans in multiple parts manufacturing lines; [86] presented

GA as well as Tabu search for solving the aggregate pro-

duction planning (APP) model aimed at a two-phase pro-

duction systems problem; [87] deals with the combinatorial

explosion of alternatives associated with the consideration

of different production scenarios as a computing efficient

alternative using GA.

In [88], research on production scheduling with mold

maintenance consideration based on a GA approach is

presented. In [89], multi-objective GA is used for multi-

criteria study of the production scheduling of a Brazilian

garment company. Afterward, in [90], planning algorithms

for automatic job allocations is proposed based on group

technology and GA.

Reference [91] addresses in the first part of the article

modeling of the problems and discusses how the chromo-

some illustration of the real-coded GA (RCGA) can man-

age much flexibility of operations in the FMS and the

second part of the article discusses the effectiveness of this

hybrid approach to solve several test-bed problems. In [92],

a method for optimizing the process planning with GA in

enterprise resource planning (ERP) analyzed the factors

relating to production planning decisions in ERP, where

GA played undoubtedly a role of enhancing system

performance.

Reference [93] demonstrates an interactive fuzzy-based

genetic algorithm (FBGA) approach for solving a two

products and two periods APP with some vulnerable

managerial constraints such as imprecise demands, variable

manufacturing costs, and in [94] a hybrid variant consisting

of linear search, GA, and SA is proposed to capture the

optimal solutions with respect to the vagueness factor and

level of satisfaction for industrial production planning

problems. Reference [95] presents an interactive MOGA
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SellShipCustomer

Figure 7. Supply chain planning framework.

Demand management
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Master production schedule
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Figure 8. Productions planning in SCM.
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method for solving the multiproduct, multi-period APP

with forecasted demand, related operating costs, and

capacity; in [96], a GA is developed to deal with the

capacitated lot sizing in addition to scheduling problem

with sequence-dependent setups, setup carryover, together

with backlogging.

Reference [97] presents greedy rolling horizon search

(GHRS) technique for solving production planning

problem in supply chain networks. Although this paper

does not use GA as the main algorithm, comparative

analysis of GHRS is done with GA. Results show that

GHRS performs better than GA. In [98], an alternant

iterative GA is proposed to integrate production planning

and scheduling for a mixed batch job-shop environment;

in [99], a two-level soft drink production problem is

solved using GA and mathematical programming

approach, while in [100], a controlled elitist nondomi-

nated sorting GA (NSGA) and NSGA-II is used for

multiobjective process planning and scheduling (PPS); in

[101], PPS problem is solved using hybrid multiobjective

algorithm combining the properties of vector-evaluated

genetic algorithm (VEGA) and pareto-dominating and

-dominated relationship-based fitness function (PDDR-

FF). Reference [102] presents a literature survey, clas-

sification, and analysis to solve scheduling problems on

FMS by using GAs; in [103], job process planning and

scheduling (PPS) in batch production is solved using a

GA-based approach.

Reference [104] presents an improved GA approach for

joint optimization of production planning and supplier

selection incorporating customer flexibility; reference [105]

demonstrates the application of hybrid GA on test bed

scheduling problems, and reference [106] presents a pro-

cess plan modeling framework for multiple parts process

planning in serial–parallel flexible flow lines using GA.

Reference [107] presents a solution method based on GA

with fixed and variable length chromosomes for multiple

parts process planning in serial–parallel flexible flow lines.

In reference [108], a multiobjective job-shop scheduling

problem is solved using a dispatching rule-based GA with

fuzzy satisfaction levels.

In reference [109], reentrant flow-shop scheduling

problem with time windows is solved using hybrid GA-

based on auto-tuning strategy. Reference [110] presents

a GA approach for coordinated scheduling of the

transfer lots in an assembly-type supply chain, while in

reference [111] an integrated discrete PSO and extended

priority-based hybrid GA is proposed for multistage

production distribution under uncertain demands. In

reference [112], unequal individual GA with intelligent

diversification is used for lot-scheduling problem in

integrated mills using multiple-paper machines; in

[113], integrated PPS is optimized by an object-coding

GA. In [114], a flow-shop sequence-dependent group

scheduling problem is solved by minimizing make span

using a hybrid GA combining features of random

sampling search with GA.

4.2 Order fulfillment

An order that completely fulfills customer requirements

within its completion is termed as a ‘‘perfect order’’ [115].

Order fulfillment (OF) is one of the vital parameters to

reflect client service performance. A pictorial cycle on OF

in SCM is shown in figure 9. Figure 10(a), (b), and

(c) shows the number of research articles breakup yearwise

for a process that includes logistics and networks planning,

vehicle routing, and other issues, respectively.

As shown in figure 11, the quantity of research papers

relating to OF increase gradually, through some rise and

fall, between 1998 and 2009. By contrast, a histrionic

growth can be observed from 2010 to 2014. As shown in

figure 12, out of the 90 papers on OF in SCM, 52% of the

studies concentrated on logistics network design/planning

problem; however, the other studies focused on vehicle

routing and other issues.

4.2a Logistics network design/planning: To improve a long-

standing optimal supply chain, one of the best compre-

hensive tactical decisions has been recognized as the net-

work design problems [116]. Reference [117] proposed GA

to solve network design problem that can be relatively

common in nature; references [118–124] proposed to solve

dynamic logistics network design as well as planning

problem, such as multistage logistic network design and

optimization.

Reference [118] discussed a spanning tree-based GA (st-

GA) approach to find the best production/distribution

design in multistage logistic network. Reference [119] used

Receiving

Assembly

Quality assurance

Packaging

Warehouse

Shipping

Figure 9. Order fulfillment cycle.
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an enhanced GA based on the Prüfer number in addition to

the adequate capacity coding to optimized unbalanced

multistage logistics systems. In [120], st-GA is used in

random fuzzy environment for multiobjective supply chain

networks optimum model and its applications to the Chi-

nese liquor industry; in [121], researchers determine the

optimum solution of the continuous network design prob-

lem (CNDP) using two global approaches composed of GA

as well as SA; and in [122] researchers applied a hybrid

nondominated sorting GA (NSGA) to optimize the total

cost along with service level aimed at just-in-time (JIT)

distribution in a supply chain. In [123], researchers solved

single-source, multiproduct, multistage supply chain net-

work (SCN) design with steady-state GA (ssGA); later, in

[124], researchers proposed a GA-based heuristic method

for a two-stage supply chain distribution problem related

with a fixed charge.

Authors in [125] solved distribution network problems

by multi-criteria genetic optimization; in [126], authors

used GA in distribution network problems for optimization

of OF. References [127, 128] show freight transportation

planning; [127] use GA and probability theory, which

affects the determination of the tactical model, and in [128],

authors solved nonlinear fixed charge transportation issue

using the spanning tree-based GA method; afterwards, in

[129], authors solved multitime period production/distri-

bution planning problem with the application of a novel

method named hybrid spanning tree-based GA (hst-GA);

and in [130], the authors suggested a fuzzy-GA that solved

integrated production/distribution planning model in the

SCM; references [131, 132] deal with logistic process

optimization. In [131] weighted fuzzy optimization is used

for logistic systems and in [132] the online reoptimization

of a logistic scheduling problem is solved with the help of

GA along with ant colony optimization (ACO). In [133],

the authors suggested vehicle transshipment planning in

seaport terminal. References [134, 135] present a study on

network design problems; whereas in [134], the authors

suggest a knowledge-based method that assists in pro-

curement decision making, and in [135], the authors
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Figure 10. (a) Number of articles in logistics and network design sub-process of OF, (b) number of articles in vehicle routing sub-

process of OF, and (c) number of articles in other issues sub-process of OF.
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determined the set of pareto-optimal solutions for multi-

objective supply chain network (MO-SCN) design problem

using a GA-based approach.

Reference [136] presents a GA method for freight

transportation planning to reduce overall shipment costs.

Subsequently, authors in [137] employed GA for solving

the problem of container shipping and repositioning. In

[138], the authors unite GA and a set of constructive

heuristics for the distribution of ready-mixed concrete.

References [139, 140] provide a study on third-party

logistics (3PLs) services integration; researchers in [139]

proposed a hybrid GA-based heuristic optimization/simu-

lation modeling method for the design of a delivery setup of

3PLs; researchers in [140] suggested a GA-based heuristic

that involves genetic operations along with simplex trans-

shipment algorithm 3PLs.

In [141], the authors applied GA to attain improved

cooperation, together with superior collaborative work in a

collaborative SCN. Authors in [142] suggested interval

hierarchical OD demand based on an interval GA, which is

for discrete logistics network design model; in [143], authors

provided a continuous equilibrium network design model of

stochastic demand and supply solved by Monte Carlo simu-

lation-based GA. In [144], the authors employed a multi-

objective GA (MOGA) for the resolution of the consequen-

tial NP-hard combinatorial optimization problems. In [145],

the authors customized Pareto-based multi-objective evolu-

tionary algorithm andNSGA-II to determine the compromise

solutions for a readily adapted three-level logistic network

design. Later in [146], the authors used priority-based GA for

combined closed-loop logistics network design along a

fuzzy-random programming.

In reference [147] transportation problem is solved using

fuzzy guided multi-objective evolutionary algorithm

model, and in [148] two-way approximation GA is pre-

sented for supply chain distribution network of bi-level

programming model. In [149], the authors have used a

hybrid PSO and GA for closed-loop SCN design in large-

scale networks; in [150], optimization of closed-loop SCN

is presented with crisp and fuzzy objectives by a GA

approach; in [151], a fuzzy reverse SCN design is presented

using hybrid algorithms; and in [152], authors optimize the

green agricultural products SCN using a transforming

quantum-inspired GA. Reference [153] presents optimiza-

tion of defective goods supply chain costs using GA.

In reference [154], authors used GA for design of SCNs

with supply disruptions; in [155], the authors used GA for

optimization of a multistage SCN. In reference [156],

response surface method (RSM) and GA are used for

optimization of logistics cost and inventory design of an

organizations logistics network. In [157], GA is used for

presenting an optimization model for reverse logistics

network under stochastic environment. Authors in [158]

solved emergency logistics scheduling using greedy-

search-based MOGA; reference [159] presents a case study

of automotive wiring harnesses based on optimization of

reverse logistics network by GA. In [160], authors have

applied GA on reverse logistics for optimization of network

site for e-commerce; authors in [161] proposed GA for

optimization of logistics network of import crude oil in

China, and in [162], GA is used for design of multipro-

duct/multiperiod closed-loop reverse logistics network. In

[163], NSGA-II and NRGA are proposed for bi-objective

optimization of a problem of multiproduct, multiperiod,

three-echelon supply chain under uncertain environments.

4.2b Vehicle routing/assignment: The vehicle routing

problem (VRP) is made up of a number of customers, each

needing a fixed mass of goods to be transported. Vehicles

dispatched from a single work shop must transport the
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merchandises required, and then come back to the work

shop. The problem is to fix distribution routes and give

nominal cost [164]. Vital VRP have picked logistics

administrators and researchers’ consideration after 2000. A

pictorial route of vehicle in a depot is shown in figure 13.

Many GA-based papers are available in literature for

dealing with VRP. In [164], the authors used GA for the

first time in 2003 for VRP; in [165], the authors proved that

a GA-based methodology is competent to determine supe-

rior solution to fulfill the growing pressures on readily

adapted and speedy transportation services. References

[166–168] show that, in a simple supply chain, a hybrid GA

(HGA) is extra encouraging in reducing transportation

charge; in [166], the authors proposed an HGA for the finite

horizon economic lot along with delivery scheduling; in

[167], authors offered a critical literature review on dif-

ferent heuristic shortest-path algorithms, and in [168], for

logistics distribution centers, location problem authors used

integrated GA, FS algorithm, and Tabu search algorithm to

seek better approximate solution.

References [169, 170] presented promising results on

VRP along with pickup and delivery sequence constraints;

in [169], the authors proposed a cluster along with search

heuristic to deal with the VRP with delivery as well as

pickup, and in [170], the authors developed a simple GA to

solve multidepot VRP (MDVRP) by integrating three hard

optimization problems; in [171], authors offered a novel

kind of geometric shape-based genetic clustering algorithm

for multi-depot VRP, and in [172], an improved savings

heuristics along with GA for bi-objective VRP with forced

bi-backhauls (BVFB) is proposed. References [173, 174]

present a hybrid approach that merge a GA with an iterated

local search (ILS) to deal with the location-routing problem

(LRP) efficiently. In [175], authors proposed an effective

hybrid GA, including progressive diversity control method

for a large class of time-constrained VRP.

Reference [176] presents a new niche cellular GA algo-

rithm to solve the VRP with time window, and in [177], a

hybrid GA is applied to the capacitated VRP (CVRP); in

[178], the authors suggested improved GA to solve the VRP

along time window by applying an optimized crossover

operator; in [179], the authors recommended a hybrid genetic

and immune algorithm to deal with the VRP along with

limited capacity. Authors in [180] introduced an adaptive

evolutionary approach that apply a GA in an adaptive tactic

for real-time VRP with dispatching; in [181], the pre-

dictability of GA performance is examined on the VRP using

information-theoretic fitness landscape measures; in [182],

authors propose a new way to calculate the adaptive proba-

bility in the cross operator with an improved GA.

In [183], authors proposed a hybrid GA for the multi-

depot open VRP, and in [184] the authors worked on

enhancing localized GA for large-scale capacitated VRP

solution by introducing selective search version of the

automated problem decomposition strategy, a faster geno-

type-to-phenotype translation scheme, and various search

reduction techniques; reference [185] presented a work on

traffic volume and vehicle utilization, which are closely

related to the cost of vehicle traffic, a vehicle scheduling

model with the minimum fuel cost, and fixed cost is

established. According to the requirement of real-time and

complicacy of the vehicle scheduling, a cloud-adaptive GA

is proposed by combining cloud model theory with GA.

In [186], a GA is proposed to deal with the bi-objective

VRP with time windows simultaneously, considering total

distance and distance balance of active vehicle fleet. A new

complex chromosome is used to present the active vehicle

route. In [187] GA is used for solving the dynamic VRP,

while in [188] authors solved the periodic VRP with time

windows by a hybrid generational GA and in [189] VRP is

solved with the help of a new MOGA: called fitness-ag-

gregated GA (FAGA).

In [190], the authors solved a multi-depot open VRP

using a hybrid GA; in [191], authors solved multi-objective

VRP with time windows, with the help of partially opti-

mized cyclic shift crossover for MOGA. Reference [192]

presents optimization of warehouse order-picking routes

using vehicle routing model and GA. Reference [193]

proposed FAGA for the solution of multi-objective VRP

with time windows; in [194], authors used fuzzy cost

coefficients and hybrid GA to solve VRP; in [195], authors

present a parallel multi-start NSGA-II algorithm for multi-

Figure 13. Route of vehicle in a depot (source: http://people.brunel.ac.uk/*mastjjb/jeb/or/vrp.html).
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objective energy reduction VRP; in [196], authors solved

multi-depot heterogeneous VRP with simultaneous pickup

and delivery time windows using an improved GA. Ref-

erence [197] presents a survey of GAs for solving multi-

depot VRP. In [198], authors present a GA approach for

two-level vehicle routing with cross-docking in a three-

echelon supply chain.

4.2c Other issues: Authors in [199] developed a new bal-

anced star spanning forest formulation including GA to deal

with the balance allocation problem, which is known to be

NP-hard, and in [200], authors employ a GA aimed to

determine pareto-optimal solution for dealing with prob-

lems in a small portion of interval; reference [201] regu-

lates the optimum arrangement of shipping choices to

reduce overall logistics costs using a genetic or evolution-

ary algorithm (GA-EA).

Reference [202] used GA for optimizing replenish-

ment policies of single-warehouse multiretailer system;

reference [203] proposed GA for solving and modeling

supply chain facility location problem; in [204], authors

solved the economic manpower shift planning problem

with the help of GA, and in [205], the capacitated

facility location problem is solved using hybrid firefly-

GA.

4.3 Demand management

Demand management (DM) comprises all the demand

activities, including market sensing, market creating,

marketing, and demand capturing. It has two major sub-

practices: sales forecasting and bullwhip effect [206]. Fig-

ure 14(a) and (b) show graphically the number of articles

corresponding to sub-practices of DM, namely, sales fore-

casting (9 articles) and bullwhip effect (7 articles). Fig-

ure 14(c) shows total number of research articles in sub-

processes of DM and figure 15 shows the distribution of

articles in sub-processes of DM.

4.3a Sales forecasting: Sales forecasting models perform a

substantial part in marketing of goods and services planning

[1] and it is one of the main tactical exercises in managerial

decision-making practices for DM [207]. In [4], the authors

used GA in SCM for computerized causal forecasting

system, while in [208], authors presented a forecasting

algorithm made up of two loops: the genetic forecasting

loop and the pattern learning loop. Reference [209] presents

a combination of two techniques, fuzzy theory and GA for

the solution of forecasting problems. In [210], authors

proposed genetic fuzzy predictor ensemble for forecasting a

time series problem. In [206], authors solved sales fore-

casting system based on fuzzy neural network problem with

generated initial weights by GA; in [1], authors extracted

the rule base of the fuzzy expert system and K-means

genetic fuzzy system (KGFS) in building a sales forecasting

expert system using GA.

In [211], GA is used for optimizing neural network for

coal sales prediction in some large coal enterprise; refer-

ence [212] established a novel forecasting model integrat-

ing decision tree (DT) algorithms and GA to construct a
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Figure 14. (a) Number of articles in sales forecasting sub-process of DM, (b) number of articles in bullwhip effect sub-process of DM,

and (c) total numbers of articles in sub-processes of DM.
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sales predictions system based on historical data and the

most optimized decision tree. In [213], authors proposed a

GA to optimize backpropagation (BP) neural network

structure on car sales forecasts.

4.3b Bullwhip effect: A phenomenon through which a slight

discrepancy in the demand from end customer effects mas-

sive deviations as it drives upstream is called bullwhip effect

[214]. Reference [215] suggests that theGAcanminimize the

bullwhip effect with random customer demand, combined

with deterministic and random lead times.

Authors in [216] showed that GAs can minimize the

bullwhip effect with the optimal ordering policy of difficult

supply chains. Reference [217] investigates whether GAs

can adequately minimize the bullwhip effect in an efficient-

responsive supply chain.

In [218], GA and control engineering (PI and PID con-

trollers) are used as tools for the bullwhip minimization in

supply chains; in [219], GA is used to minimize the bull-

whip effect and to find optimal ordering quantity in a

multistage supply chain. In [220], a parallel GA is proposed

to reduce the bullwhip effect and cost in an automotive

supply chain. In [221], evolutionary multi-objective meta-

heuristics is used for optimizing of bullwhip effect and net

stock amplification.

4.4 Supplier relationship management

SRM is an exercise involved in dealing with finest vendors

and finding new ones, at the same time as minimizing costs,

accomplishing procurement predictable along with

repeatable, bring together buyer understanding, and take

out the profits of supplier partnerships [222]. Some

pioneering work in SRM can be found in [223–226]. A

pictorial classification of the different steps of supplier

relationship management in SCM is shown in figure 16,

and figure 17 shows the number of articles in SRM.

Reference [227] used for optimization of incentive sys-

tem to achieve competence of supply chain allies to make

sure the long-standing tactical relations with a GA tech-

nique, whereas in [228] GA is applied with budget con-

straints for a stochastic demand multiproduct vendor

selection model; in [229] two MOGA are applied to find a

set of pareto-optimal solutions that can develop additional

solutions for the green partner selection using weighted

sum tactic. In [230], authors solved a stochastic demand

multiproduct supplier selection model along with budget

constraints applying GA. In [231], authors applied GA-

based gray goal programming model for evaluation and

selection of the suppliers, and in [232], authors selected GA

parameters for solution. The authors also analyzed the

sensitivity of the multiple supplier–multiple buyer collab-

orative supply chain model parameters to understand how

variations in the model parameters affect the related total

costs. Reference [233] presents a case study using a GA for

supplier selection decision enhancement.

4.5 Product development and commercialization

The product development and commercialization (PDC)

practices need adequate planning along with execution all

through the supply chain, and if managed in the approved

manner can deliver a sustainable competitive benefit

[234]. A pictorial classification framework on product

development and commercialization in SCM is shown in

figure 18 and figure 19 shows the number of articles in

PDC.

In [235], a hybrid multi-objective (GA-MCDM)

approach is presented for selecting the best portfolio

alternative for new product development in the pharma

industry. Reference [236] presents an adaptive GA for task

allocation optimization in collaborative customized product

development. In [237], authors proposed an approach for

optimal affective product design using mined rules based
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on guided-search GA. It seems that there are very few

research papers addressing this process.

4.6 Returns management

Returns management (RM) is the SCM practice by which

activities associated with returns; reverse logistics, gate

keeping, and avoidance are managed within the enterprise

through crucial associates of the supply chain [238]. The

number of articles in PDC is shown in figure 20.

References [239, 240] give GA-based method to deal

with reverse logistics problem of handling reverted

goods, where [239] presented a mixed-integer, nonlinear

programming model along with a GA that can deal with

these problems containing equally spatial plus temporal

consolidation of reverted produces; reference [240] pre-

sents a mixed-integer, nonlinear programming model

including GA that can settle the reverse logistics prob-

lem; in [241], the authors established an optimum solu-

tion to deal with the reverse logistics network design

problems, in order to search for the optimal solution of

this a mixed-integer nonlinear programming model

(MINLP); in [242], authors proposes a mixed-integer

programming model and a GA to solve the similar issues

from third-party logistics service providers’ viewpoint.

In reference [243], authors proposed a hybrid qualita-

tive and quantitative methodology by means of fuzzy

cognitive maps along with GA to model as well as

estimate the competence of radio frequency identification

(RFID)-enabled reverse logistic activities; in [244],

authors presented a GA that can deal with the stochastic

network design problem in a closed-loop supply chain;

subsequently, [245] used GA and artificial immune sys-

tem to present an optimization model for product returns;

in [246], a competent hybrid genetic-simulated annealing

algorithm (HGSAA) is proposed to deal with the NP-hard

problem, of a location-inventory-routing problem; in

reference [247], authors researched on spare part returns

in stochastic deteriorating manufacturing system under a

condition-based maintenance policy using simulation-

based GA approach; and in [248], the authors proposed

an improved adaptive GA (IAGA) to solve optimization

of location inventory routing problems (LIRPs) consid-

ering the cost of the returned products and the retailers’

time-satisfaction degree into account; in [249], an opti-

mization model for product returns is solved using GA

and SA.
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4.7 Customer service management

CSM deals with a service-focused process of managing tie

up between clients and service provider [250]. We could

not find any relevant paper in this area.

4.8 Customer relationship management

CRM is a widely practiced model for managing a firm’s

relations with customers, consumers, in addition to sales

scenarios [251]. Here also the authors could not find any

paper on CRM where GA is used.

5. Discussions

• Distribution of articles as per main processes and sub-

processes of SCM

• As shown in table 1, several research papers have

contributed to seven broad categories of SCM

processes. The MFM is the most popular process

targeted by GA applications. The research papers

about OF are slightly more common than the papers

regarding DM. It is clear therefore that papers for

those three major SCM processes are considerably

more than those in other SCM processes.

• Pie diagram given in figure 21 shows the percent-

age of papers concentrating on the major processes

of SCM. It shows that out of total research papers

reviewed for this study, MFM contributes 42% of

the total distribution and is themost popular process

in SCMwhereGA is used.MFM is closely followed

by OF, having 41% papers with GA application.

Remaining 17%papers consist of papers focused on

DM (7%) and other issues such as SRM, PDC, RM

contributes 10% to this distribution.
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Table 1. Annual distribution of number of papers in respective subject processes.

Years MFM OF DM SRM PDC RM CSM CRM Total

1991 1 1

1997 3 3

1998 1 1 2

2000 1 1

2001 1 1

2002 2 2 1 5

2003 1 2 3

2004 2 1 3

2005 7 6 13

2006 5 7 1 1 2 16

2007 6 8 1 1 16

2008 3 5 1 9

2009 4 4 1 9

2010 3 1 4

2011 5 1 2 3 1 1 13

2012 4 4 1 1 10

2013 18 15 2 1 3 39

2014 21 29 2 1 2 2 57

2015 9 5 1 15

Total 93 90 16 7 3 11 220
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• Table 2 provides a break up in detail for the

connection between researchers and respective

SCM research area on yearly basis. The number of

research articles and the researchers working for

GAs applications in SCM-related areas has

steadily increased since 2000.

• As shown in table 3, out of the surveyed 220

papers, 93 are concerned with the MFM, in which

sub-processes include inventory management/

material planning (33), supply chain planning (5)

and production planning (55). While 90 out of

remaining 127 papers concerned with the OF,

based on available practices from the literature,

include sub-processes logistics & network design

(47), vehicle routing (36) and others issues (7), for

tackling the problem. Subsequently, 16 papers

utilize DM practices, which include sales fore-

casting (9) and bullwhip effect (7). Finally, the

remaining 21 papers are based on the processes

concerned with SRM (7), PDC (3), and RM (11).

• The graph in figure 22 shows that there has been a

considerable increase in the number of articles

since 1991, where GA is applied for dealing with

different aspects of SCM. In 2014, the number of

articles with GA application in SCM touched 57.

• Publication of articles in leading journals

• As presented in table 4, 23 papers were published

by Expert Systems with Applications, while 15 of

total papers were published by Computers and

Industrial Engineering, and 12 articles by Inter-

national Journal of Production Economics. Euro-

pean Journal of Operational Research, Journal of

Intelligent Manufacturing, Computers & Opera-

tions Research. Journal of Advanced Manufactur-

ing Technology and Journal of Intelligent

Manufacturing as well the key journals acknowl-

edged by scholars.

• From the publication point of view, we see that

almost all the major journals have covered articles

belonging to SCM. As shown in table 4, the top

contributor is a journal focused on computer science

(Expert Systems with Applications), on computer

science and industrial engineering/operations

research (Computers and Industrial Engineering,

Computers & Operations Research), and well-

established journals in the Operations Management

and Manufacturing areas (International Journal of

Production Research, European Journal of Oper-

ational Research, International Journal of Produc-

tion Economics, Journal of Intelligent

Manufacturing, Journal of Advanced Manufactur-

ing Technology); contributions can be also retrieved

in more traditional journals from several disci-

plinary areas, such as Informatics and Computer

Science Intelligent Systems Applications

Manufacturing flow 
management

42%
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41%

Demand 
management

7%

Others issues
10%

Figure 21. Proportion of articles in SCM major processes.

Table 2. Annual summaries of articles in respective subject processes.

Years MFM OF DM SRM PDC RM CSM CRM

1991 [5]

1997 [208–210]

1998 [62] [117]

2000 [63]

2001 [206]

2002 [57, 64] [118, 199] [4]

2003 [59] [164, 200]

2004 [25, 26] [125]

2005 [56–69] [127, 129, 133, 134, 165, 201]

2006 [6, 70–73] [119, 126, 135, 136, 139, 166, 167] [215] [227] [239, 240]

2007 [7, 8, 27, 74, 75, 76] [128, 130, 131, 137, 138, 140, 168, 169] [216] [241]

2008 [28, 58, 77] [120, 122, 132, 141, 170] [242]

2009 [78–81] [121, 123, 124, 147] [217]

2010 [29–31] [243]

2011 [32, 33, 82, 83, 85] [171] [1, 218] [228–230] [235] [244]

2012 [84, 86–88] [172–174, 202] [219] [231]

2013 [34–44, 89–95] [142, 144–146, 175–178, 180–186] [212, 220] [232] [245–247]

2014 [45–50, 96–109] [143, 148–162, 179, 187–194, 203–205] [211, 221] [233] [236, 237] [248, 249]

2015 [51–54, 110–114] [163, 180, 195–198] [213]
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(Information Sciences), Industrial engineering (In-

dustrial Management and Data Systems), Soft

computing (Applied Soft Computing,AppliedMath-

ematical Modelling, (Applied Mathematics and

Computation), Mechanics and Materials (Applied

Mechanics and Materials), Artificial Intelligence

(Engineering Applications of Artificial Intelli-

gence), Operations Management (International

Journal of Physical Distribution & Logistics Man-

agement), Manufacturing Technology (Journal of

Manufacturing Technology Management.

• Types of GA variants used

Depending on the nature of the problem formulated,

different variants of GA have been used. It is observed

that in most of the papers a hybrid variant of GA is used,

where hybridization is done with fuzzy logic, support

vector machine, machine learning, local search methods,

etc.; besides, GA has also been hybridized with other

algorithms such as Tabu Search and SA. Since several

SCM problems can be modeled as multi-objective opti-

mization problems, multi-objective GA has been used for

solving such cases. Parallel variants of GA have been

used in two cases; while in some other cases, new

operators are proposed or a study is done on the effect of

change of parameters.

• Future trend

With the growing competition in today’s environment, the

mathematical models of SCM are becoming more and more

complex. For example, in order to make the problem more

realistic, problems are being formulated as multi-objective.

This trend can be seen in the recent papers where the

researchers have considered bi-objective or multi-objective

models. Consequently, researchers are concentrating on

developing multi-objective variants of GA. Secondly, the

focus is alsoondeveloping efficientGAs for integer andmixed

programming problems that may be linear or nonlinear.

6. Summary

Since its development in 1975, GAs have emerged as a pow-

erful tool for dealing with problems arising in various fields. It

is remarkable that despite the presence of several other soft

computing techniques [252–255], GAs have maintained their

Table 3. GAs applied to respective subject processes.

Processes Genetic algorithm

MFM 93

OF 90

DM 16

SRM 07

PDC 03

RM 11

CSM 0

CRM 0

Total 220

Table 4. Research articles published by main journals.

Journals title

No. of

articles

Expert Systems with Applications 23

Computers and Industrial engineering 15

International Journal of Production Research 12

European Journal of Operational Research 10

Journal of Intelligent Manufacturing 12

Computers & Operations Research 7

International Journal of Production Economics 7

Journal of Advanced Manufacturing Technology 6

Information Sciences 5

Industrial Management and Data Systems 3

Applied Soft Computing 3

Applied Mathematical Modelling 3

Applied Mechanics and Materials 3

Engineering Applications of Artificial Intelligence 3

Applied Mathematics and Computation 2

International Journal of Physical Distribution &

Logistics Management

2

Journal of Manufacturing Technology

Management

2

Others 100

Total 220
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Figure 22. Number of articles in SCM using GA.
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own fan following and are widely used scientists and

researchers in various fields [256–259]. GAs has particularly

shown their efficiency in case of optimization models. This is

one of the reasons why GAs has frequently been used for in

SCM as many of the problems here can be formulated as

optimization problems. The popularity of GA can also be

attributed to the availability of fast computers and freely

available GA tool boxes. The purpose of this paper is to

familiarize the reader with the application of GA on the eight

processes of SCM as given by Council of SCM Professionals

(CSCMF), namely,Manufacturing flowmanagement (MFM),

which includes Inventory Management/Material Planning,

Supply Chain Planning and Production Planning; Order ful-

fillment (OF), which has Logistics Network Design/Planning,

Vehicle Routing/Assignment and Other issues as sub-pro-

cesses; Demand management (DM) having Sales Forecasting

and Bullwhip Effect as sub-processes; Supplier relationship

management (SRM); Product development and commercial-

ization (PDC); Returns management (RM); Customer service

management (CSM); Customer relationship management

(CRM). It is seen that in all the areas except CSM and CRM,

GA has been applied successfully. The authors have tried to

cover as many papers as possible; however, there is a possi-

bility that some useful paper might have been overlooked.
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