
Machine Learning, 21, 11-33 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Genetic Algorithms, Operators, and DNA
Fragment Assembly

REBECCA J. PARSONS

Los Alamos National Laboratory

Current Address." University of Central Florida, Department of Computer Science,
Orlando, FL 32816-0362

rebecca@cs.ucf.edu

STEPHANIE FORREST

University of New Mexico, Department of Computer Science,
Albuquerque, NM 87131-1386

CHRISTIAN BURKS

Los Alamos National Laboratory, Theoretical Biology and Biophysics Group,

MS K710, Los Alamos, NM 87545

forrest @cs.unm.edu

cb@t 10.1anl.gov

Received October 1, 1993; Revised October 19, 1994

Editors: David Searls, Jude Shavlik, and Lawrence Hunter

Abstract. We study different genetic algorithm operators for one permutation problem associated with the
Human Genome Project--the assembly of DNA sequence fragments from a parent clone whose sequence is
unknown into a consensus sequence corresponding to the parent sequence. The sorted-order representation,
which does not require specialized operators, is compared with a more traditional permutation representation,
which does require specialized operators. The two representations and their associated operators are compared
on problems ranging from 2K to 34K base pairs (KB). Edge-recombination crossover used in conjunction with
several specialized operators is found to perform best in these experiments; these operators solved a 10KB
sequence, consisting of 177 fragments, with no manual intervention. Natural building blocks in the problem are
exploited at progressively higher levels through "macro-operators." This significantly improves performance.

Keywords: genetic algorithms, DNA fragment assembly, human genome project, ordering problems, edge-
recombination crossover, building blocks

1. Introduct ion

The computat ional problems posed by the H u m a n G e n o m e Project are chal lenging both

because they are complex and because they involve large quanti t ies of data. The H u m a n

Genome Project plans to identify the exact sequence of base pairs, called a map, for

the entire human genome which consists of approximately 3 bi l l ion base pairs. There

are many different components to this project; our problem involves combin ing partial

informat ion about the sequences of D N A fragments into a consistent map that accounts

for the known pieces.

We explore the application of a genetic a lgori thm to the problem of D N A fragment

assembly. We draw parallels to a more famil iar permutat ion problem, the Travel ing

Salesman Problem (Lawler, et al., 1985), both to explicate interesting features of our

12 R.J. PARSONS, S. FORREST AND C. BURKS

problem and as a source for possibly useful heuristics. Specifically, we find that the use

of specialized operators provides good performance on data sets up to about 10KB in

size. Two of these specialized operators, transposition and inversion, are macro-operators

in that they transform the individual based on groups of fragments as opposed to single

fragments. These groups of fragments, called contigs, are the natural building blocks for

the fragment assembly problem. We found adding these macro-operators, which operate

directly on the building blocks, significantly increased the performance of the genetic

algorithm. Throughout the course of a run, the genetic algorithm assembles larger and

larger building blocks (contigs), and the macro-operators thus operate at a higher and

higher level. This progression is an explicit example of the implicit behavior described

by the building-blocks hypothesis.

The accuracy of the various sequencing processes constrain laboratory approaches to

DNA sequencing (Howe & Ward, 1989; Hunkapiller et al, 1991; Hunkapiller, 1991;

Churchill, et al., 1993). Currently, strands of DNA longer than approximately 500 base

pairs cannot routinely be sequenced accurately. Consequently, large strands of DNA are

broken into smaller pieces for sequencing. In the shotgun sequencing method, to which

this work applies, DNA is first replicated many times, and then individual strands of

the double helix are broken randomly into smaller fragments. This produces a set of

fragments short enough to sequence. However, this process does not retain either the

ordering of the fragments on the parent strand of DNA or the strand of the double helix

from which a particular fragment came. This paper addresses the first of these problems,

hereafter referred to as the fragment assembly problem, relying on previously developed

methods for addressing the alignment and strand assignment problems (Staden, 1980;

Kececioglu, 1991; Huang, 1992; Churchill, 1993).

Large-scale shotgun sequencing projects require automated solutions that do more than

re-create the manual processes, because the complexity of the assembly process grows ex-

ponentially with the size of the project. There are several complicating factors to be con-

sidered in designing computational solutions. First, there is a large amount of experimen-

tal error. Frequently quoted rates are between 0.1% and 10% (Chen& Hunkapiller, 1992).

Further, repeated DNA sequences can be much longer than individual sequence frag-

ments. Finally, the reagents and the experimentalists' time are valuable resources, so

an important objective of any computational system is to monitor the progress of the

sequencing to determine if other strategies need to be applied. The target parent size

of many upcoming sequencing projects is cosmid size (about 40,000 base pairs, denoted

as 40KB). Most experimentalists use coverage (sequencing redundancy at a particular

point along the parent DNA) of at least 5 or 7 to compensate for some of the effects of

sequencing errors. Using these figures (and an assumed average fragment length of 500

base pairs) leaves an ordering problem of approximately 600 fragments. As the ordering

problem is NP-hard 1, an approximate method is required to determine a reasonable

layout.

Most fragment assembly packages use a greedy algorithm to form the candidate. Typi-

cally in a greedy algorithm, a candidate solution is presented to the researcher who must

then massage it to obtain a biologically plausible final result. Simulated annealing has

been applied to the ordering step of the fragment assembly problem (Churchill, et al,

GENETIC ALGORITHMS, OPERATORS, AND DNA 13

1993; Burks, et al, 1994), and genetic algorithms have been applied to this problem bY

the authors (Parsons, et al., 1993) and to a related ordering problem, map assembly, by

others (Fickett & Cinkosky, 1993; Ceden & Vemuri, 1993).

The next section of this paper contains a detailed explanation of the flow of information

in the fragment assembly problem and the general computational approach we follow.

Section 3' details the genetic algorithm explored in this paper, with the results appearing

in Section 4. We explore the answers to some of our questions, and pose additional

questions in the final section.

2. The Fragment Assembly Problem

Fragment assembly is only one step in the overall process of building a base-pair map

for an unknown segment of DNA. The other steps in the process influence fragment

assembly in several ways: they affect the overall quality of the information used by the

assembly; they influence the quality of the final solution; and they introduce conflicting

information and errors into the process. An overview of the process is shown in Figure

1 (see also (Churchill, et al, 1993; Burks, et al., 1994) for a more detailed explanation

of the sequencing process).

The laboratory sequencing process provides a set of fragments and, for each fragment,

the base-pair sequence for that fragment. 2 Because the fragments can come from either

of the anti-parallel strands of the parent DNA, the orientation of the fragment relative

to the parent is not known. At the assembly stage, the only information available is

the sequence of bases, and thus the ordering of the fragments must rely primarily on

the similarity of fragments and how they overlap. A particularly important aspect of

the general sequencing problem is the precise determination of the relationship and

orientation of the fragments. A complicating factor in the overlap computation is the

frequent occurrence of repeated sequences, ranging in length from several bases to several

thousand bases. 3 Any DNA fragment assembly method based on sequence similarity is

bound to be misled by DNA repeats, confusing fragments which are similar because they

originate from the same location in the parent sequence with fragments that are similar

because they share a repeat pattern.

Once the fragments have been ordered, the final consensus sequence is generated from

the ordering. This process includes a detailed alignment step that must account for the

insertion and deletion errors potentMly present in the data. As shown in Figure 2, the

steps from raw sequence data from a random sequencing project to a consensus sequence

are as follows (Churchill, et al., 1993; Burks, et al, 1994):

1. Compute pairwise relationships. Compare each pair of fragments and determine

their similarity, resulting in an overlap strength, alignment and relative orientation

of the two fragments. Each possible orientation is tried for the two fragments, and

the overlap, orientation, and alignment are chosen to maximize the similarity of the

fragments.

2. Totally order the fragments. The ordering algorithm computes the fitness, or figure of

merit, for a candidate ordering by examining the overlap information. In addition to

14 R.J. PARSONS, S. FORREST AND C. BURKS

DNA

I
Replication

Shotgun

produces
fragments

1
Sequence
Fragments

l
Reassemble

l
Consensus
Sequence

CGT CTGATAC CGTA
GCAT AT

ATC

CGTA TGC ATGATC

G GTCA

ATA GATATA

ATGA GTAGTAC
CG

ATACGTG GATGA ATCGTA CGTA

AT GTCATCA CGTAGTCATGC TGCG

GAT~A

ATCGTA

AT ATACGTG

CGTAGTCATGC TGCG

i TATCCAGTATCAT...

Figure 1. Overview of DNA Mapping Process

.

.

.

the fragment ordering, a particular layout results in contigs (Staden, 1980). A contig

is a layout with no gaps; gaps occur when neighboring fragments do not overlap.

Determine initial alignment. Use the alignment, offset and orientation information

from the first step and the ordering from the second step to determine an initial

alignment of the fragments.

Determine the detailed alignment of the fragments, also known as multiple sequence

alignment. Starting with the initial alignment, the bases within the fragments are

examined to determine places where insertion or deletion errors likely occurred. To

account for these errors, gaps are inserted into the fragments to bring correspond-

ing bases back into alignment. See Waterman (1989) for a discussion of multiple

sequence alignment.

Generate the consensus sequence. Each column in the detailed alignment is examined

to determine the "consensus" base for this position, yielding the consensus sequence

for the contig.

GENETIC ALGORITHMS, OPERATORS: AND DNA 15

On,hal ~agme~ Set Pm~ise Comparison
(A C T G) For ~edao Stre~ths

ACA~ CATA~ ACAGTC~

~GCTAC ~CTGACA

~AGAT, cTGATA~ GTCACTA~
ATAACTG~

GTCA~

G~ ATAT~ ~ATCTAG
~CGGAT ATGTCT~

Candidate
Ordering

Multiple Sequence
Alignment

CAGTCA~
~TCAGAT

TAGACT~
~GACTCT

Figure 2. Overview of Sequence Assembly Process

The ordering step must find a total ordering of the given fragments that results in a

consensus sequence accurately reflecting the parent sequence. Each fragment must be

accounted for in the ordering, and each fragment can only appear in one place in the

ordering. With previously solved sequences, the parent sequence is known, and we can

judge the quality of an ordering by how closely the final consensus sequence corresponds

to the known parent. In practice, however, the fragment sets are being generated to find

the parent sequence. Thus, some other criteria must be used to evaluate an ordering.

Although a small number of contigs is one goal of the orderings, this metric is not usable

as an objective function. Many individuals with vastly different orderings have the same

fitness value using this metric, preventing the genetic algorithm from distinguishing them

and exploiting the building blocks. We examine two other objective functions, described

in Section 3.1, which both use the pairwise-overlap information as the basis for evaluating

the fitness of the layout.

2.1. Fragment Assembly and the Traveling Salesman Problem

The relationship between the ordering step and the general class of permutation order-

ing problems is clear. Probably the best known problem in this class is the Traveling

Salesman Problem (TSP) (Lawler, et al., 1985), but there are many others. The fragment

assembly problem is quite similar to TSP, with notable differences. First, the solution

to TSP is a circular tour of the cities; the endpoints of the tour are therefore irrelevant.

In the fragment assembly problem, however, the endpoints represent fragments on op-

posite ends of the parent sequence. Many solutions which are equivalent for TSP are

thus inequivalent in our context. Second, the cities in the TSP are not assumed to have

any relationship other than the distances, and the ordering is the final solution to the

problem. In the fragment assembly problem, the ordering, referred to as "beads on a

string", is only an intermediate step in the solution process; the layout process uses the

overlap data to position the bases within the fragments relative to each other. Because

there are frequently more than two fragments overlapping each other in the layout, sev-

16 R.J. PARSONS, S. FORREST AND C. BURKS

eral different orderings of those fragments produce equivalent results after the layout

phase, as shown in Figure 3. Additionally, many algorithms for TSP rely on the triangle

inequality holding for the distance relation; no such assumption can be made about the

overlap strengths. The errors in the overlap strength computation due to sequencing

errors, chimeric fragments and DNA repeat sequences tend to invalidate any simplifying

assumptions made about the relationships between fragments. Another distinguishing

feature of the fragment assembly problem is that the fragments are drawn from both

strands of the DNA, and the orientation of the fragment relative to the parent is lost

during the sequencing process.

I I
a

I

I b

I c

I d

I e I

I

I

I

.I

I- f ~I

abcdef ~ bacedf ~ cbaedf

Figure 3. Different Fragment Orders Can Produce Equivalent Consensus Sequence

Genetic algorithms for permutation problems have not been universally successful, but

there are successful examples. The primary problem faced by genetic algorithms in

this context is representing the solutions in some way that allows the genetic operators

to produce legal solutions. The simple representation for a solution is the permutation,

represented as a list of the fragments (labeled with unique numbers) in the order in which

they should appear. However, the standard genetic operators are then not closed over the

space of legal solutions. As the space of illegal solutions is quite large, the probability

of the operator forming a legal solution is relatively small.

There are three obvious approaches to this representation problem: (1) choose a rep-

resentation such that the standard operators are closed over legal solutions; (2) choose

specialized operators that guarantee legal solutions; (3) penalize illegal solutions in the

fitness function. We chose not to explore the third approach. The search space is so

sparsely populated with legal solutions that too much time would be wasted generating

and recognizing illegal solutions. In addition, the fitness functions are already costly

to compute, and it is not clear what kind of penalty function to apply or whether legal

blocks within these individuals would be useful building blocks. We studied the remain-

ing two approaches, first trying the sorted-order representation, in which all solutions

map to a legal permutation order (Syswerda, 1989; Bean, 1992). We then studied.the

performance of the simple permutation representation in combination with two special-

purpose recombination operators, edge-recombination (Starkweather, et al., 1991) and

order crossover (Davis, 1985). In addition to recombination, we explore both bit and

position mutation for the sorted-order representation, and for the permutation representa-

GENETIC ALGORITHMS, OPERATORS, AND DNA 17

tion, we study position swaps, block moves (transpositions) and block inversions. These

operators and representations are described in the next section, along with the data sets

used for testing.

3. Genetic Algorithms Applied to Fragment Assembly

Genetic algorithms operate on a population of candidate solutions, called individuals

(Holland, 1975; Goldberg, 1989; Forrest, 1993). Typically, the population is initialized

with random individuals. After that, individuals are deleted from or reproduced in the

population on the basis of their relative fitness. New individuals are formed by applying

various operators to the existing population of individuals (see below). Each successive

population of individuals is called a generation. Processing within the genetic algorithm

typically follows these steps:

Selection: Each individual is evaluated to determine its fitness. Individuals are re-

produced (copied) differentially based on this fitness. Different genetic algorithms

use different methods to implement the idea of differential reproduction. In the

"generational GA," which we used, a new population is created at each generation,

completely replacing the previous population. Individuals with below average fitness

for the population have a low probability of being copied into the next generation,

while individuals with high fitness have a high probability of having multiple copies

in the next generation. 4

Crossover: Two individuals are selected from the population and substrings from cor-

responding positions within the individuals are exchanged. One or both of the new

individuals are inserted into the population at the next generation. The purpose of

this operator is to allow partial solutions to evolve on different individuals, and then

to combine them to produce, sometimes, a better solution. For all of the crossover

operators described in this report, the crossover rate specifies, on average, the fraction

of new individuals formed each generation through crossover.

Mutation: Mutation alters one individual by changing a primitive element of that indi-

vidual (e.g., flipping one bit). The mutation rate controls the probability with which

each component in an individual is changed. The resulting individual replaces the

parent of the mutation. Mutation is believed to be effective for two reasons: it

explores the search space near existing individuals (local search) and it prevents so-

lution components which have been completely eliminated from the population by

selection (fixation) from being lost for all successive generations.

The genetic algorithm begins with a random population, and the cycle of selec-

tion, crossover, and mutation is repeated for many generations. The genetic algorithm

used to produce the results reported here was implemented by modifying the Gene-

sis (Grefenstette, 1984) software package.

Although there is some controversy over how well genetic algorithms actually perform

and about why they perform as well as they do, the most common explanation is that

18 R.J. PARSONS, S. FORREST AND C. BURKS

the average fitness of the population is likely to increase in successive generations, as

good partial solutions combine to form even better composite solutions. The process

of creating good solutions is described in terms of the combination of building blocks,

which are portions of solutions that have high fitness. In the context of the fragment

assembly problem, a building block is a portion of the ordering representing several

fragments that form a contig. When considering different representations for genetic

algorithms, it is important to consider what the likely building blocks are and how they

might be combined to form a complete solution.

3.1. Fitness Functions

The choice of fitness function is crucial to the success of a genetic algorithm on a

particular problem. In the fragment assembly problem the choice of an efficient and

reliable measure of fitness is complicated by several factors, including errors in the

sequence information (insertions, deletions, etc.), repeated sequences, and the "beads on

a string" model. We studied two closely related fitness functions. The first is a natural

analog to the fitness function for TSP. Let I = f[0], f[1], ..., f[n - 1] be an ordering of

fragments, where f[i] = j denotes that fragment j appears in position i of the ordering.

The fitness of the individual under the first fitness function F1 is

n-2

FI(I) = E wytqJ[i+ll
i=0

where wi,j is the pairwise overlap strength of fragments i and j . This fitness function

only examines the overlap strengths of directly adjacent fragments in the ordering and

takes O(n) time to compute for each individual. The optimization process attempts to

find a layout that maximizes this function.

The second fitness function accounts for the additional information that is exploited in

the subsequent passes of the assembly processing (Churchill, et al., 1993). In addition to

examining the overlap strengths for adjacent fragments, it considers the overlap strengths

among all pairs of fragments, penalizing layouts in which fragments with strong overlap

are far apart. The specific fitness function F2

n - - l n - - 1

F2(1) = E Eli- Jl * wf[i],f[j]
i=o j=o

uses the absolute value of the distance of the fragments in the layout as a weight on

the overlap strength of the pair of fragments in those layout positions. The optimization

process searches for layouts that minimize this function. This function has complexity

O(n 2) because all pairs of fragments must be considered.

GENETIC ALGORITHMS, OPERATORS, AND DNA 19

3.2. Representations

Genetic algorithms are appealing because they are largely domain independent--the prob-

lem specifics are isolated in the fitness function and in the mapping from the individual

to the problem-level solution. From this perspective, the first solution to the problem

of representing permutation problems--a representation guaranteeing legal solutions--is

more appealing than the second. Using this type of representation provides the isolation

of problem-specific information from which the genetic algorithm derives its general-

ity. For this reason, we chose to try the sorted-order representation (Schaffer, 1989;

Syswerda, 1989), also referred to as the random-key representation (Bean, 1992).

The sorted-order representation provides a rather complex mapping from the individual

to the permutation ordering. The two requisite properties for a legal ordering are that

all fragments be present in the ordering and that there be no duplication in the ordering.

These properties are ensured through the use of a sort (hence the name '"sorted-order").

Specifically, consider a fragment set f l , • . . , fn and an individual B = b l , . . . , bm where

each bi is a bit, and m = 2 k > n. To find the permutation specified by B, first convert

the bit string into n key values, k l , . . . , kn, each of k bits, and then sort the key values.

If the key value in position j of the individual appears in position i of the sorted list,

then fragment fj is in the ith position in the permutation specified by the individual B. 5

Because a fragment (f j) is identified by a position in the individual (j), and a fragment

is placed in the permutation based on the position in the sort order (i) of its key (j), any

bit string represents a legal permutation.

To represent the fragment assembly problem more closely (as opposed to TSP, with its

circular solution), we introduced a modification to the sorted-order representation. In each

individual, add k bits to the end, which designates the starting point of the permutation

order. This value does not participate in the sort or in the mapping described above;

instead, it allows the shifting of the ordering to allow alternate starting positions. Figure 4

illustrates the mapping.

We also studied the straightforward permutation representation, together with a suite

of specialized operators. In this representation, the bit string is again rn = 2 k > n long.

Each k bits represents one fragment (labeled 0 to 2 k - 1); the position of a fragment in

the individual designates the position that fragment occupies in the layout.. Although this

representation vastly simplifies the mapping from bit strings to permutations, the operators

must be more complex to ensure that only legal individuals enter the population.

3.3. Recombination operators

We used both uniform and two-point crossover methods with the sorted-order representa-

tion. We found that uniform crossover did not perform well on our problem, so we report

only results based on the more standard two-point crossover, in which two points are

randomly selected, and the bits between those positions are exchanged (Goldberg, 1989).

Because the sorted-order representation is closed under the standard genetic operators,

no additional processing is required to find a legal permutation.

20 R.J. PARSONS, S. FORREST AND C. BURKS

0 1 0 Q i ~ 0 0 1 1 0 1 0 1 1 QI 0 BitString

\1/ \ 1 / \ l / \ 1 / I/
~ ~ ~ 2 Key Values

(start position)

3 1 5 4 2 Intermediate Layout

Start Position

Figure 4. Sorted-order Representation for the Fragment Assembly Problem. Consider a bit string which

produces the following integers (k = 3): 2 7 1 5 3 2. The fragment layout represented by this individual is

1 5 4 2 3 with an intermediate (before shifting) ordering of 3 1 5 4 2. Because the lowest key value in the

individual, 1, appears in the third position of the individual, the first fragment in the intermediate layout is

3. The next lowest value, 2, is in the first position of the individual, and therefore, the second fragment in

this layout is 1. The last key, which represents the starting position, is 2, so the first key in the permutation

ordering is 1 (because 1 appears in the second position of the intermediate layout). The final layout continues

from this position and then wraps to the beginning.

Two special-purpose crossover operators that have been successful in permutation prob-

lems are edge recombination (Starkweather, et al., 1991) and order crossover (Davis, 1985)

Different crossover operators emphasize the preservation of different kinds of informa-

tion from the parents. Thus, the success of different operators for different permutation

problems is likely tied to the ability of the crossover operator to preserve the high-value

information from the parents under crossover. There are at least three kinds of infor-

mation that might be important in a permutation ordering: absolute position, relative

ordering (e.g., precedence relations as in scheduling applications), and adjacency. In

the TSP, particularly due to its circular nature, the only relevant information is probably

adjacency information. For the fragment assembly problem, the issue is less clear. Ad-

jacency information in the total ordering is important. However, given the linear nature

of the layout, with the definite end points, and the overlapping nature of the fragments

in the ordering, relative position may also be important. We chose to experiment with

two crossover operators, order crossover and edge recombination. Order crossover pre-

serves relative ordering (and in some cases absolute position and ordering), while edge

recombination emphasizes adjacency information. For simplicity of explanation, these

crossover operators will be described in terms of integer, not bit values.

In order crossover, as in two-point crossover, two random points are selected. However,

instead of exchanging the information between these points, the information from the

first parent is copied into those same positions in the offspring, as shown in Figure 5.

Then, starting from the beginning of the second parent and the beginning of the offspring,

the fragments from the second parent are placed into the offspring, with any fragment

already placed in the offspring being skipped in the second parent. Thus, the fragments

from the first parent retain their position and relative ordering while the fragments from

the second parent retain their relative ordering.

GENETIC ALGORITHMS, OPERATORS, AND DNA 21

Ofigin~ individuNs

17 8364

641 ~ 3 8 ~
I

17 8364 295

64 5381 972

> [~ I ~ 8 3 6 4 ~

> 1 8 3 6 4 2 9 7 5

Order-based crossover

Edge recombination

Adjacency list
(for edge-recombination)

Key Adiacent keys

1 7,8,9
2 4,9,7
3 8,6,5, 8
4 3,4,4
5 9,4,3
6 3,4,4
7 1,8,9,2
8 7,3,3,1
9 2,5,1,7

Figure 5. Order Crossover and Edge Recombination. Illustrates order crossover on the individuals 1 7 8 3
6 4 2 9 5 and 6 4 5 3 8 1 9 7 2. For edge recombination, The offspring begins with the first fragment in

the first parent, 1. In examining l's adjacencies, we select 8 because it has a shared adjacency in its list and

the others do not. This shared adjacency is 3, and so it is placed next. Because it has a shared adjacency,
6 is chosen next, followed by 4. At 4, the next fragment 2 is placed in the individual because it has more

remaining adjacencies. This process continues until the end, where 5 is placed because it has not yet been
placed, yielding the individual 1 8 3 6 4 2 9 7.

Edge recombinat ion is a more compl ica ted operator. A detai led explanat ion o f the op-

erator implemented here appears in Starkweather, et al. (1991). In general, this c rossover

attempts to preserve adjacencies in the parents, and in particular, those adjacencies that

are c o m m o n to both parents. W h e n nei ther o f those options is possible, a random se-

lection made. An example o f how the edge- recombina t ion operator works is shown in

Figure 5. Whi t ley reported addit ional modif icat ions to the edge- recombina t ion operator,

which give even better results on T S P (Whitley, 1993), but we have not yet tested these

modifications.

3.4. Other Operators

The sorted-order representat ion a l lows the use o f the s imple bi t -mutat ion operator

(Goldberg, 1989). With some (small) probabili ty, each bit in each individual is altered.

However , in the permutat ion representat ion, point mutat ion is guaranteed to produce

an illegal solution. Consequent ly , we did not use point mutat ion with the permutat ion

representation. However , we tried a suite of other mutat ion- l ike operators.

22 R.J. PARSONS, S. FORREST AND C. BURKS

The simplest of these is the swap. Two positions in the ordering are selected at

random, and the fragments in those positions are swapped to create the new individ-

ual (Churchill, et al., 1993). This operator is a restricted form of a 4-opt transforma-

tion (Lin & Kernighan, 1973), using TSP terminology.

We used two other operators, each of which rely on some domain-specific information.

These two operators, inversion and transposition, move blocks of fragments, specifi-

cally contigs, in the ordering. Although random locations are selected in the individ-

ual for these operators, a location simply indicates to which contig(s) the operation

wilt be applied. Inversion reverses the order of the fragments in the selected con-

tig (Goldberg, 1989). This operator is useful since fragments come from both strands of

DNA, but the total ordering forces an orientation to the data. By inverting a contig, it

may be extended, since the contig may be oriented in the opposite direction from that of

the adjacent fragments in the ordering. We restrict inversion to operate only on contigs

within the layout, instead of the more general inversion operator which randomly selects

an area to invert.

Transposition moves a contig to a position between two adjacent contigs which may

allow the extension of a contig. This operator allows smaller contigs to form anywhere

along the individual; transpositions can correct the relative positions of these clusters,

yielding an improved solution. Transposition is also a restricted form of 4-opt, with the

restriction focusing on the selection of the edges to break and with what edges to replace

them.

Contigs are the natural building blocks of our problem. Transposition and inversion,

by design, do not disrupt these building blocks. Instead, they allow for the evolution of

larger contigs by treating the smaller contigs as primitive elements.

The meaning of the rates for the mutation and specialized operators are different. For

the mutation used with the sorted-order representation, the rate specifies the probability

of a bit in an individual being selected for mutation in a given generation. Thus, to find

the probability that an individual is altered, this rate must be multiplied by the length

of the individual. For the specialized operator, the rate quoted is the probability that an

individual will be affected. Thus, a rate of 0.2 implies that there is a 20% probability

for each individual that it will be selected for alteration by that operator.

3.5. Data Sets and Implementation Environment

Most of the fragment data sets for which we report results were artificially generated

from actual DNA sequences. The parent DNA sequence is replicated by the pro-

gram and then fragmented, at random locations, to derive a fragment set that is rep-

resentative of the data sets produced in sequencing laboratories. The generator, Gen-

Frag (Engle & Burks, 1993), allows fragment sets of different sizes, error content, and

coverage to be generated. This approach allowed us to study how these different fac-

tors affect the performance of the genetic algorithm. This baseline testing proved useful

in identifying particularly successful and unsuccessful configurations of representations,

operators, population sizes, etc. Having completed these control experiments, we are

beginning to tackle experimentally derived DNA fragment sets.

GENETIC ALGORITHMS, OPERATORS, AND DNA 23

Three DNA sequences served as the basis for most of the experiments: a human

brain DNA sequence, HUMATPK01 (Sverdlov, 1987), accession number Ivi55090 which

is 2026 base pairs long; a human MHC class III region DNA with fibronectin type-

II repeats HUMMHCFIB (Matsumoto, 1991), with accession number X60189, which

is 3835 bases long; and a human apolopoprotein H U M A P O B F (Carlsson, et al., 1986),

with accession number M15421 which is 10089 bases long. We are also working with

two longer sequences. The 20KB sequence, AMCG, is the initial 40% of the bases from

LAMCG, the complete genome of bacteriophage lambda, accession numbers J02459 and

M17233 (Sanger, 1982). The data set designated SETO is the experimental data set made

available for the testing of sequencing algorithms (Seto, et al., 1993).

Most of our results were obtained using fragment sets from the first three parent

sequences. We experimented with coverages ranging from three to seven and mean

fragment length between 300 and 500 bases. In addition, fragment sets with experimental

errors at a rate of 10% mismatch errors and 5% insertion and deletion errors have been

used to determine how robust the algorithm is. Table 1 presents some information about

the specific fragment sets on which we tested our algorithm.

Table 1. Information on Data Sets: Names: ATPK - HUMATPK01, CFIB - HUMMHCFIB, POBF -
HUMAPOBP data set, AMCG - LAMCG and SETO - experimental data set. Bases: number of base pairs
in the known consensus sequence. Coverage: the average number of fragments covering any base of the
parent. Gaps: areas of the parent with no coverage. CFIB-5% and CFIB-10% have errors introduced into
the fragment sets at the specified rate.

5% 10%

ATPK CFIB CFIB CFIB POBF AMCG SETO

Bases 2026 3835 3835 3835 10089 20100 34475

Coverage 5 7 3 4 5 7 7 5 5 7 7 11

Fragments 26 36 24 39 48 68 68 48 127 177 352 829

Gaps 0 0 1 0 0 0 1 0 1 0 0 0

The overlap computation uses a technique that allows the setting of a cutoff value, such

that overlap scores below this value are considered to be zero (Churchill, et al., 1993) The

cutoff, which we have set to twenty, provides one filter for spurious overlaps introduced

by experimental error.

4. Results

As described earlier, it is difficult to identify a single best measure of performance for this

problem. In the case where the consensus sequence for the data is known, the correctness

of an ordering can be determined by performing the final steps of the assembly process

and comparing the resulting sequence with the known consensus sequence; the goal is a

complete match. It is also important to consider the time to reach a solution. Table 2

summarizes the results using the match with the parents, the number of contigs in the

24 R.J. PARSONS, S. FORREST AND C. BURKS

solution and the number of function evaluations and generations used by the genetic

algorithm. The remainder of this section explores the overall performance achieved

by the genetic algorithm and the experiments we performed to analyze the different

components of the genetic algorithm: the fitness function, the representation, and the

operators. The final section draws conclusions from these data and discusses future

directions for research.

Table 2. Genetic Algorithm Performance on Fragment Assembly Problem. Data set name
includes coverage in parentheses. Num Gens: Number of Generations. Num Trials:
Number of Fitness Function Evaluations (Gen*Pop > Trials because not all individuals
change in a generation). Num Contigs: Number of contigs in GA solution, Num Greedy:
Number of Contigs in the Greedy Solution. Num Sorted: previous results using sorted
order representation (* indicates that this experiment was not performed on sorted order).
Other parameter settings: Crossover Rate: 0.3, Specialized Operator Rate: 0.7, Pointswap
rate: 0.2, Inversion Rate: 0.4, Transposition Rate: 0.4, Scaling Factor: 2.0. Parent match
computed for single contig solutions and computed over entire region of parent.

Data Set Pop Num Num Num Parent Num Num

Name Size Gens Trials Contigs Match Greedy Sorted

ATPK(5) 100 135 4K 1 1.0 3 *

ATPK(7) 500 64 10K 1 1.0 3 *

CFIB(3) 200 167 10K 2 3 4

CFIB(4) 600 193 35K 1 1.0 4 *

CFIB(5) 600 304 55K 1 1.0 3 5

CFIB(5)- 10% 600 668 120K 1 .97 6 *

CFIB(7) 500 1200 180K 1 1.0 3 7

CFIB(7)-5% 500 5635 855K 2 5 7

POBF(5) 1000 19K 5.7M 6 10 23

POBF(7) 1500 13K 5.9M 1 1.0 7 43

AMCG(7) 2500 5.6K 2.3M 13 15 *

SETO(11) 2500 137 302K 89 65 *

The genetic algorithm performs quite well with the appropriate representation and

operator set, both in terms of speed and solution quality. Figure 6 shows how the

mean and best fitness improves for the CFIB data set. The genetic algorithm solves the

smaller two data sets, finding a single-contig solution representing a consensus sequence

that completely matches the parent sequence. This result, however, is not all that startling

as the fragment sets are relatively small. Most fragment assembly systems can, for data

sets of this size with no errors, produce results that are close enough to correct that a

small amount of manual intervention produces the correct solution. Even for the smaller

data sets, however, the correct representation is crucial to the performance of the genetic

algorithm. By using a representation and a suite of operators that exploit the conceptual

building blocks of the problem, we were able to construct a genetic algorithm with good

performance on our problem.

The results for the POBF data set, with the 10KB parent, are more interesting than

those for the smaller data sets. There are 177 fragments in the seven-fold coverage data

GENETIC ALGORITHMS, OPERATORS, AND DNA 25

10 4.4

10 4.2

10 4.0

LL
10 3'6

10 3.6

103.4

- - best indiv, in population

- - - population mean

i q i r

150 300 450 600

Generation

Figure 6. Population mean and best fitness plots. Typical run for CFIB(7) data set.

set. With no manual intervention, the genetic algorithm produces a single-contig solution

whose consensus sequence completely matches the parent. We have yet to solve fully

the remaining two large data sets, the AMCG data set with a 20KB parent, and the Seto

data set, with the consensus sequence of 34KB. Table 2 presents the results on those data

sets to date.

The most exhaustive testing involved the CFIB data set, as seen in Table 2. Our

fragment sets included some with significant amounts of error; some of the data sets

contained a gap. The GA found the correct single-contig solution for all the data sets

without gaps and errors. In the case of the data set with 10% mismatch errors, the GA

finds a single-contig solution with a 97% match to the parent. Although there were mis-

match errors in 10% of the base pairs in the fragment set, the five-fold coverage and the

post-processing of the multiple sequence alignment and consensus generation algorithms

correctly reproduced 97% of the bases. For the CFIB data set with the gap but with no

errors, the solution found, while consisting of two contigs, matched on all the base pairs

covered in the solution.

4.1. Comparison to a Greedy Approach

Many of the standard assembly packages use some form of greedy algorithm to find

the appropriate ordering (Staden, 1980; Huang, 1992). To evaluate the performance of

the genetic algorithm, we compare our results to those found by a greedy algorithm.

The greedy algorithm we use, which is similar to that used in Huang (1992), examines

overlap strengths and picks the strongest overlap that connects some as yet unplaced

fragment to the contig being constructed. Table 2 includes the solutions found by our

26 R.J. PARSONS, S. FORREST AND C. BURKS

greedy algorithm. The greedy algorithm never uncovers the best solution, except for the

small CFIB data set with the gap, where it does find the optimal solution.

For the POBF data set, we looked at the solution found by the greedy algorithm. The

fitness values for this data set are shown in Table 3. The results from the F2 function,

which penalizes solutions that ignore significant overlap, is particularly informative. The

large difference between the F2 scores for the greedy solution and the genetic algorithm

solution provides an indication of how much manual editing would be required to convert

the greedy solution into a workable solution. The work is even greater than the difference

between 1 and 7 contigs initially indicates.

Table 3. Comparison of Greedy Algorithm and
Genetic Algorithm on POBF Seven-Fold Cover-
age Data Set.

E l Score F2 Score Contigs

Greedy 54 ,049 6,940,730 7

GA 55,683 1,705,272 1

4.2. Fitness Functions

A critical part of the design of any genetic algorithm is the selection of the appropriate

fitness function. For fragment assembly, this selection is complicated by the processing

required after the fragment-ordering step. In previous work (Parsons, et al., 1993), we

compare in detail the two fitness functions described in Section 3.1. These results are

reproduced in Table 4. The experiments with the sorted-order representation showed

the quadratic fitness function, F2, to be marginally superior in performance to the linear

function, El. We ran a small set of experiments on these two functions using the

permutation representation and the edge-recombination operator. In this case the linear

function performs better. The results appear in Table 4 for the ATPK data set. Although it

can be argued that this objective function is not ideal for the fragment assembly problem,

the computational results show that the function is adequate, when compared with F2

and based on the results we have achieved so far. Nevertheless, we consider the design

of a more appropriate fitness function to be an important area for continued research.

4.3. Comparison of the Representations

The results of our experiments show that, for our application, the edge-recombination

operator in conjunction with the permutation representation and the full suite of other

operators is quite successful. The final column in Table 2, reproduced from Parsons, et

al. (1993), gives the results for the sorted-order representation. Summarizing our prior

results, the sorted-order representation is too disruptive of the building blocks of the

fragment assembly problem to be useful in this context. The permutation representation

GENETIC ALGORITHMS, OPERATORS, AND DNA 27

Table 4. GA Test Results for Two Fitness Functions. Best: score for the best individual, followed
by the score for this individual under the other function. Contigs: the number of contigs in the
layout specified by the best individual. For data set ATPK with coverage 7. Parameters: 10 runs,
different random seeds, Crossover rate of 0.85, 0.7 point swap, 0.03 transposition, 0.27 inversion.

F1 (O(N), Maximize) Function F2 (O(N2), Minimize) Function

Parent Best F1 F2 Score Contigs Best F2 F1 Score Contigs

CFIB(5) 13,900 570,627 5 422,049 13,304 4

CFIB(3) 7,534 488,198 4 73,755 7539 3

CFIB(6) 15,809 1,936,597 11 852,087 13,274 8

CFIB(7) 19,513 2,679,743 7 1,243,338 20,163 3

CFIB(5)-10% 3,873 162,581 7 100,179 3,333 8

POBF(5) 31,372 4,773,694 23 1,331,745 24,040 23

POBF(3) 17,989 551,698 13 179,950 18,092 7

POBF(6) 27,029 19,224,270 48 5,776,555 8,305 36

POBF(7) 33,823 22,285,703 43 7,128,031 13,582 28

ATPK(7) 11,284 286,118 1 355,478 9,671 2

with the edge-recombination operators and the other specialized operators are able to

exploit the building blocks in a powerful way.

4.4. Comparison of Operators Using the Permutation Representation

This section describes several experiments we performed to analyze the effectiveness of

the various operators and to examine the way in which they interact with each other.

First, we compared the two crossover operators: order crossover and edge recombination,

described in Section 3.3. Table 5 summarizes the results obtained using order crossover.

Comparing the results from Table 5 with those in Table 2 clearly demonstrates that,

when we attempted to tune the genetic algorithm parameters for order crossover, edge

recombination is superior to order crossover.

Next, we ran several experiments applying the operators at various rates. Some of

the particular results are worth noting. The genetic algorithm was relatively successful

in solving the smaller data sets with traditional parameter settings: (crossover rate of

0.7-0.85 and rates for the specialized operators of 0.05-0.1). However, significantly

better performance occurs at much lower crossover rates and much higher rates for the

specialized operators. These rates increased the efficiency of the genetic algorithm on

the small data set and allowed the genetic algorithm to solve the larger data set. Most

of the runs reported here used a crossover rate of 0.2-0.3 and a special operator rate of

0.7-0.85.

Eliminating any one of the operators (either crossover or one of the specialized op-

erators) tended to give poorer results. There is a synergistic effect among the various

operators in finding appropriate solutions. The results of these experiments are summa-

28 R.J. PARSONS, S. FORREST AND C. BURK~ ¢

Table 5. Genetic Algorithm Performance Using the Order Crossover Operator. Trials:
Number of F1 Fitness Function Evaluations. Num Contigs: Number of Contigs found
in the Best Solution Over 5 Runs.

Population Num Xover Swap Inversion Transposition Num

Size Trials Rate Rate Rate Rate Contigs

600 100K 0.3 0.14 0.28 0.28 6

600 200K 0.3 0.14 0.28 0.28 6

600 100K 0.6 0.14 0.28 0.28 9

600 100K 0.8 0.06 0.12 0.12 12

1000 200K 0.8 0.02 0.04 0.04 15

1000 400K 0.8 0.02 0.04 0.04 13

300 400K 0.8 0.02 0.04 0.04 7

300 400K 0.5 0.14 0.28 0.28 8

rized in Table 6. We tracked the change in the fitness values for each application of each

Table 6. GA performace for CFIB data set
with five-fold coverage, population of 300 and
250,000 trials. * This run completely converged
at 50,000 iterations.

Xover Swap Trans Inv Contigs

0.1 0.14 0.28 0.28 1

0.2 0.14 0.28 0.28 2

0.3 0.14 0.28 0.28 1

0.4 0.14 0.28 0.28 2

0.5 0.14 0.28 0.28 3

0.0 0.3 0.28 0.28 4

0.0 0.3 0.56 0.14 1

0.85 0.0 0.0 0.0 4

0.0 0.0 0.45 0.45 6

0.0 0.1 0.75 0.0 5

0.0 0.1 0.0 0.75 9*

operator over the course of several runs. Figure 7 shows the efficacy of the different op-

erators over the life of twenty different runs. A low-pass filter was applied to smooth out

the variations in the data. The graph shows that the utility of pointwise swap decreases

as the run progresses, and inversion and transposition remain useful throughout.

We computed the genealogy of the best individuals in the population to determine

which operators contribute to the creation of good individuals and if the mix changes

as the population changes. Specifically, every 100 generations, we examined the history

of the five best individuals and recorded how often each operator occurred in its history

during the last 100 generations. Crossover is consistently contributing to the creation of

the best individuals, over the course of the run.

GENETIC ALGORITHMS, OPERATORS, AND DNA 29

c
o
E

=
O

=5
UL

10
¢=

,=

800,0

700.0

600,0

500.0

400.0

300.0

200.0

100.0

0.0
0.0

- - c r o s s o v e r
...... swap
- - - invemion
- - - - tmnspos iUon

"',..

........ -. ,,, .._.. ,

~.o I~O.O ~5'o.0 2000 2~o.o
Generation

Figure 7. Average change in fitness by operator, smoothed using a low pass filter. Only operations which
improved fitness considered.

5. Discussion and Conclusions

One of the interesting questions raised by this work relates to the way in which the

specialized operators exploit the building blocks in our problem and the way the full

operator suite interacts to improve the genetic algorithm's performance. Performance

suffers when any operator is removed from the suite, although a high enough rate of

transposition reduces the impact of the loss of the crossover operator. However, if

one examines the mechanics of the crossover operator between two individuals that are

similar, this result is not that surprising as transposition mimics this kind of crossover

operation.

The genealogy for the best individuals, shown in Figure 8, highlights the importance

of the crossover operator in the creation of good solutions, even at the low' rate at which

it is applied. As described earlier, this low rate of crossover was the best we found

while tuning the genetic algorithm parameters. One should not conclude, however, that

this low rate indicates that crossover is unimportant to the solution power; the genealogy

information tells a very different story. Although the average fitness improvement of

the operator declines during the run, it remains an active participant in the creation of

improved individuals.

The behavior of crossover, transposition and inversion change during the run, while

that of the swap operator remains the same. Transposition and inversion affect contigs.

Early in the run, contigs are likely to be quite small and frequently contain only one

fragment. Thus, in these early generations, the specialized operators act similarly. The

decrease of effectiveness of pointwise swap in later generations is consistent with the

building-block hypothesis. Late in the run, the changes required to improve an individual

tend to be on a larger scale than can be obtained by a single swap, i.e. improvements

30 R.J. PARSONS, S. FORREST AND C. BURKS

10 3.6

403.5

109,3 .

E

~ crossover
swap.
iRve rs loR
t r a n s p o s ~ i o n

103.0 _

0 . 0 1 0 , ~ . , ~ , , m r , , , , , , ~ ,
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

G e n e r a t i o n

Figure 8. Operator frequency in 100 generation intervals for five best individuals in population for the CFIB

seven-fold data set. The operators are displayed in the order in which they appear in the legend.

tend to require the movement of contigs, the conceptual building blocks in this problem,

rather than movement of individual fragments.

For many genetic algorithms, a significant problem is premature convergence. Our

operator suite tends to prevent this convergence. After the 668 generations of the CFIB

seven-fold coverage run, the population was not close to being converged in the traditional

sense. Although almost all of the positions in this data set had 50% or more of the

individuals with the same fragment in that position, none of those positions had more

than 60% of the individuals with the same fragment value. Thus, the GA is still searching

for improved solutions. Two factors contribute significantly to this effect. First, in the

permutation representation, the alphabet at each position is much larger than the binary

alphabet traditionally used in genetic algorithms. Second, and more importantly, the

operators used in this genetic algorithm tend to be quite disruptive in terms of the values

in a particular position towards the end of the run. Consider an inversion operation,

which inverts a contig. An entire block of positions within the individual is changed by

this operation, and the operator, at worst, creates an individual with equal fitness to itself.

Towards the end of the run when convergence is an issue, the contigs are quite large,

meaning many fragment positions are altered. The effects of the operators, coupled with

the high rates at which they are applied, counterbalances the strong convergence seen in

most genetic algorithm applications.

Some features of the fragment assembly process aid the performance of the genetic

algorithm. The results shown in Table 2 for the POBF data set are from runs with the

same number of iterations, which represents one-third fewer generations for the larger

data set when the size of the population is taken into account. One would expect that

increasing the problem by size 35% from the perspective of the optimizer - - it must

now order 177 fragments instead of 127 - - would make the problem more difficult.

However, for the 177 fragment problem, the genetic algorithm in that time finds a one-

contig solution while the solution for the 127 fragment problem appears stuck at a

GENETIC ALGORITHMS, OPERATORS, AND DNA 31

six-contig solution. With the increase in coverage from five-fold to seven-fold, there

is a corresponding increase in the number of essentially equivalent solutions, and the

precise ordering becomes less critical. This characteristic of the search space for the

higher-coverage problem is another indication that a genetic algorithm is an appropriate

approach, because genetic algorithms tend to find near-optimal solutions relatively easily,

but have difficulty refining those solutions.

A high degree of redundancy in the search space is also present in the sorted-order

representation, as many different combinations of numbers would map to the same per-

mutation ordering. However, the redundancy in the search space is not sufficient to

overcome the disruption of the solution building blocks caused by the operators (see

Parsons, et al. (1993) for further details).

The work so far demonstrates the feasibility of using genetic algorithms in sequencing

problems when the parent sequence is on the order of 10KB and when coverage is

sufficient (seven-fold). Since most sequencing labs use coverages at this level or higher,

the coverage range is not a restriction. We are still working with parents in the range

of 20KB - 35KB. In this range, however, problems in the other phases of the analysis,

on which the ordering depends, become more pronounced, in addition to the dramatic

increase in the size of the search space. The most obvious problem is that of DNA

repeats. Longer parent sequences tend to have more repeat sequences. The regions of

these repeats will have high overlap, since the repeat sequences are generally quite similar

(> 90% homology is not uncommon) and can be lengthly. Thus, fragments from different

sections of the DNA that have repeats will show overlaps that are, from examination of

the sequence and overlap information, indistinguishable from overlaps that result from

fragments being drawn from the same section of DNA using only overlap information.

Additional information must be provided to any program attempting to sequence DNA

with these repeated segments to allow repeat-induced overlaps to be distinguished from

true overlaps. Some auxiliary data, such as mapping information, is available, but the

objective function will have to be redesigned to take this new information into account.

The success of the specialized operators and representations which exploit the concep-

tual building blocks may influence the solution of permutation problems using techniques

other than genetic algorithms. As an example, Burks et al. (1993) have successfully

incorporated the inversion and transposition operators into a simulated annealer with im-

pressive performance improvements. More generally, there are many other interesting

questions raised by these experiments, particularly relating to the role of the solution

space redundancy and to the synergistic effects among the various operators.

Acknowledgments

The authors wish to thank L. Davis, M. Engle, R. Hightower, D. Mathews, J. Sims, C.

Soderlund, E Stolorz, and D. Whitley for their assistance on this project. This project

was initiated during a map assembly workshop at the Santa Fe Institute sponsored by

the Santa Fe Institute and the Theoretical Division of Los Alamos National Laboratory.

This work was performed in part under the auspices of the United States Department

of Energy under contract #W-7405-ENG-36. C.B. was supported by the DOE/OHER

32 R.J. PARSONS, S. FORREST AND C. BURKS

Genome Project (ERW-F137; R. Moyzis, RI.); R.E was supported in part by a Los

Alamos Director's Fellowship; and S.F. was supported by National Science Foundation

(grant IRI-9157644), and Sandia University Research Program (grant AE-1679).

Notes

1. NP-hardness follows from a straightforward reduction from Hamiltonian Path.

2. DNA is a double helix comprised of two complementary strands of polynucleotides. Each nucleotide

consists of a purine or pyrimidine base attached to a sugar-phosphate moiety. The sugar-phosphate is

constant throughout the entire strand, but the bases vary. There are four bases found in DNA: adenine (A),

guanine (G), cytosine (C), and thymine (T). From a computational viewpoint, each strand of DNA can be

viewed as a character string over an alphabet of four letters. The two strands are complementary in the

sense that at corresponding positions A's are always paired with T's and C's with G's, although any of the

letters can appear in either strand. These pairs of complementary bases are referred to as "base pairs."

3. There are different families of repeat sequences, each with different characteristic lengths and degree of

conservation among the family members. Some repeat sequences arise due to duplicated genes, as an

example.

4. We used an elitist policy and sigma scaling with a cutoff value of 2.

5. Ties in the sort are broken arbitrarily. We use a left-to-right ordering.

References

Bean, J. C. (1992). Genetics and random keys for sequencing and optimization. Technical Report 92-43, The

University of Michigan.

Burks, C., Engle, M., Lowenstein, M., Parsons, R., & Soderlund, C. (1993). Stochastic optimization tools for

DNA assembly: integration of physical map and sequence data. Poster presented at Genome Sequencing

and Analysis Conference V.

Burks, C., Engle, M., Forrest, S., Parsons, R., Soderlund, C., & Stolorz, P. (1994). Stochastic optimization

tools for genomic sequence assembly. In Adams, M.O., Fields, C., & Venter, J. C., eds., Automated DNA

Sequencing and Analysis Techniques. Academic Press.

Carlsson, P., Darnfors, C., Olofsson, S.-O., & Bjursell, G. (1986). Analysis of the human apolipoprotein B

gene, complete structure of the B-74 region. Gene 49:29-51.

Cedeno, W., & Vemuri, V. (1993). An investigation of DNA mapping with genetic algorithms: preliminary

results. In Proc. of the Fifth Workshop on Neural Networks, volume 2204 of SPIE.

Chen, W. Q., & Hunkapiller, T. (1992). Sequence accuracy of large DNA sequencing projects. Z DNA Seq.

Map 2:335-342.

Churchill, G., Burks, C., Eggert, M., Engle, M., & Waterman, M. (1993). Assembling DNA sequence

fragments by shuffling and simulated annealing. Technical Report LAUR 93-2287, Los Alamos National

Lab., Los Alamos, NM.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In Proc. of the 1985 Joint Conference

on Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann.

Engle, M., & Burks, C. (1993). Artificially generated data sets for testing DNA fragment assembly algorithms.

Genomics 286-288.

Fickett, J., & Cinkosky, M. (1993). A genetic algorithm for assembling chromosome physical maps. Proc.

of the Second International Conference on Bioinformatics, Supercomputing, and Complex Genome Analysis.

St. Petersburg, FL: World Scientific. 272-285.

Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computation. Science

261:872-878.

Goldberg, D. E. (t989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley

Publishing Company.

GENETIC ALGORITHMS, OPERATORS, AND DNA 33

Grefenstette, J. J. (1984). Genesis: A system for using genetic search procedures. In Proceedings of a

Conference on Intelligent Systems and Machines, 161-165.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of

Michigan Press.

Howe, C., & Ward, E., eds. (1989). Nucleic Acids Sequencing: A Practical Approach. IRL Press.

Huang, X. (1992). A contig assembly program based on sensitive detection of fragment overlaps. Genomics

14:18-25.

Hunkapiller, T., Kaiser, R., Koop, B., & Hood, L. (1991). Large-scale and automated DNA sequence

determination. Science 254:59-67.

Hunkapiller, T., Kaiser, R., & Hood, L. (1991). Large-scale DNA sequencing. Curr. Opin. Biotech. 2:92-101.

Kececioglu, J. (1991). Exact and approximation algorithms for DNA sequence reconstruction. Ph.D.

Dissertation, University of Arizona, Tucson, AZ. TR 91-26, Department of Computer Science.

Lawler, E., Rinnooy Kan, A., & Shmoys, D., eds. (1985). The Traveling Salesman Problem. New York:

John Wiley and Sons.

Lin, S., & Kernighan, H. W. (1973). An effective heuristic algorithm for the traveling-salesman problem.

Operations Research 21:498-516.

Matsumoto, K., Aral, M., Ishihara, N., Ando, A., Inoko, H., & Ikemura, T. (1991). Cluster of fibronectin type-

III repeats found in the human major histocompatibility complex class III region shows highest homology

with repeats in an extracellular matrix protein, tenascin. Genomics 12:485~,91.

Parsons, R, Forrest, S., & Burks, C. (1993). Genetic algorithms for DNA sequence assembly. In Proceedings

of the 1st International Conference on Intelligent Systems in Molecular Biology, 310-318;. Bethesda, MD:

AAAI Press.

Sanger, E, Coulson, A., Hill, D., & Petersen, G. (1982). Nucleotide sequence of bacteriophage lambda DNA.

J. Mol. Biol. 162:729-773.

Schaffer, J. D., Caruana, R., L.J.Eshelman, & R.Das. (1989). A study of control parameters affecting online

performance of genetic algorithms for function optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, 51-60. San Mateo, CA: Morgan Kaufmann.

Seto, D., Koop, B., & Hood, L. (1993). An experimentally-derived data set constructed for testing large-scale

DNA sequence assembly algorithms. Genomics 15:673-676.

Staden, R. (1980). A new computer method for the storage and manipulation of DNA gel reading data. Nucl.

Acids Res. 8:3673-3694.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C. (1991). A comparison of genetic

sequencing operators. In Fourth International Conference on Genetic Algorithms, 69-76.

Sverdlov, E., Monastyrskaya, G., Broude, N., Ushkarev, Y., Melkov, A., Smirnov, Y., Malyshev, I., Allikmets,

R., Kostina, M., Dulubova, I., Kiyatkin, N., Grishin, A., Modyanov, N., and Ovcbinnikov, Y. (1987). Family

of human Na+, K+-ATPase genes. Structure of the gene of isoform alpha-III. Cokl. Biochem. 297:426-431.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedgins of the Third International

Conference on Genetic Algorithms, 2-9. San Mateo, CA: Morgan Kaufmann.

Waterman, M. S., ed. (1989). Mathematical Methods for DNA Sequences. CRC Press.

Whitley, D. (1993). Personal Communication, August 30.

Received October 26, 1993

Accepted July 5, 1994

Final Manuscript October 19, 1994

