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Abstract. We study different genetic algorithm operators for one permutation problem associated with the 
Human Genome Project--the assembly of DNA sequence fragments from a parent clone whose sequence is 
unknown into a consensus sequence corresponding to the parent sequence. The sorted-order representation, 
which does not require specialized operators, is compared with a more traditional permutation representation, 
which does require specialized operators. The two representations and their associated operators are compared 
on problems ranging from 2K to 34K base pairs (KB). Edge-recombination crossover used in conjunction with 
several specialized operators is found to perform best in these experiments; these operators solved a 10KB 
sequence, consisting of 177 fragments, with no manual intervention. Natural building blocks in the problem are 
exploited at progressively higher levels through "macro-operators." This significantly improves performance. 
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1. Introduct ion 

The computat ional  problems posed by the H u m a n  G e n o m e  Project are chal lenging both 

because they are complex  and because they involve  large quanti t ies of data. The H u m a n  

Genome  Project  plans to identify the exact sequence of  base pairs, called a map, for 

the entire human  genome which consists of  approximately 3 bi l l ion base pairs. There 

are many  different components  to this project; our problem involves combin ing  partial 

informat ion about the sequences of D N A  fragments  into a consistent  map that accounts 

for the known  pieces. 

We explore the application of  a genetic a lgori thm to the problem of  D N A  fragment  

assembly. We draw parallels to a more  famil iar  permutat ion problem, the Travel ing 

Salesman Problem (Lawler, et al., 1985), both to explicate interesting features of our 
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problem and as a source for possibly useful heuristics. Specifically, we find that the use 

of specialized operators provides good performance on data sets up to about 10KB in 

size. Two of these specialized operators, transposition and inversion, are macro-operators 

in that they transform the individual based on groups of fragments as opposed to single 

fragments. These groups of fragments, called contigs, are the natural building blocks for 

the fragment assembly problem. We found adding these macro-operators, which operate 

directly on the building blocks, significantly increased the performance of the genetic 

algorithm. Throughout the course of a run, the genetic algorithm assembles larger and 

larger building blocks (contigs), and the macro-operators thus operate at a higher and 

higher level. This progression is an explicit example of the implicit behavior described 

by the building-blocks hypothesis. 

The accuracy of the various sequencing processes constrain laboratory approaches to 

DNA sequencing (Howe & Ward, 1989; Hunkapiller et al, 1991; Hunkapiller, 1991; 

Churchill, et al., 1993). Currently, strands of DNA longer than approximately 500 base 

pairs cannot routinely be sequenced accurately. Consequently, large strands of DNA are 

broken into smaller pieces for sequencing. In the shotgun sequencing method, to which 

this work applies, DNA is first replicated many times, and then individual strands of 

the double helix are broken randomly into smaller fragments. This produces a set of 

fragments short enough to sequence. However, this process does not retain either the 

ordering of the fragments on the parent strand of DNA or the strand of the double helix 

from which a particular fragment came. This paper addresses the first of these problems, 

hereafter referred to as the fragment assembly problem, relying on previously developed 

methods for addressing the alignment and strand assignment problems (Staden, 1980; 

Kececioglu, 1991; Huang, 1992; Churchill, 1993). 

Large-scale shotgun sequencing projects require automated solutions that do more than 

re-create the manual processes, because the complexity of the assembly process grows ex- 

ponentially with the size of the project. There are several complicating factors to be con- 

sidered in designing computational solutions. First, there is a large amount of experimen- 

tal error. Frequently quoted rates are between 0.1% and 10% (Chen& Hunkapiller, 1992). 

Further, repeated DNA sequences can be much longer than individual sequence frag- 

ments. Finally, the reagents and the experimentalists' time are valuable resources, so 

an important objective of any computational system is to monitor the progress of the 

sequencing to determine if other strategies need to be applied. The target parent size 

of many upcoming sequencing projects is cosmid size (about 40,000 base pairs, denoted 

as 40KB). Most experimentalists use coverage (sequencing redundancy at a particular 

point along the parent DNA) of at least 5 or 7 to compensate for some of the effects of 

sequencing errors. Using these figures (and an assumed average fragment length of 500 

base pairs) leaves an ordering problem of approximately 600 fragments. As the ordering 

problem is NP-hard 1, an approximate method is required to determine a reasonable 

layout. 

Most fragment assembly packages use a greedy algorithm to form the candidate. Typi- 

cally in a greedy algorithm, a candidate solution is presented to the researcher who must 

then massage it to obtain a biologically plausible final result. Simulated annealing has 

been applied to the ordering step of the fragment assembly problem (Churchill, et al, 
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1993; Burks, et al, 1994), and genetic algorithms have been applied to this problem bY 

the authors (Parsons, et al., 1993) and to a related ordering problem, map assembly, by 

others (Fickett & Cinkosky, 1993; Ceden & Vemuri, 1993). 

The next section of this paper contains a detailed explanation of the flow of information 

in the fragment assembly problem and the general computational approach we follow. 

Section 3' details the genetic algorithm explored in this paper, with the results appearing 

in Section 4. We explore the answers to some of our questions, and pose additional 

questions in the final section. 

2. The Fragment Assembly Problem 

Fragment assembly is only one step in the overall process of building a base-pair map 

for an unknown segment of DNA. The other steps in the process influence fragment 

assembly in several ways: they affect the overall quality of the information used by the 

assembly; they influence the quality of the final solution; and they introduce conflicting 

information and errors into the process. An overview of the process is shown in Figure 

1 (see also (Churchill, et al, 1993; Burks, et al., 1994) for a more detailed explanation 

of the sequencing process). 

The laboratory sequencing process provides a set of fragments and, for each fragment, 

the base-pair sequence for that fragment. 2 Because the fragments can come from either 

of the anti-parallel strands of the parent DNA, the orientation of the fragment relative 

to the parent is not known. At the assembly stage, the only information available is 

the sequence of bases, and thus the ordering of the fragments must rely primarily on 

the similarity of fragments and how they overlap. A particularly important aspect of 

the general sequencing problem is the precise determination of the relationship and 

orientation of the fragments. A complicating factor in the overlap computation is the 

frequent occurrence of repeated sequences, ranging in length from several bases to several 

thousand bases. 3 Any DNA fragment assembly method based on sequence similarity is 

bound to be misled by DNA repeats, confusing fragments which are similar because they 

originate from the same location in the parent sequence with fragments that are similar 

because they share a repeat pattern. 

Once the fragments have been ordered, the final consensus sequence is generated from 

the ordering. This process includes a detailed alignment step that must account for the 

insertion and deletion errors potentMly present in the data. As shown in Figure 2, the 

steps from raw sequence data from a random sequencing project to a consensus sequence 

are as follows (Churchill, et al., 1993; Burks, et al, 1994): 

1. Compute pairwise relationships. Compare each pair of fragments and determine 

their similarity, resulting in an overlap strength, alignment and relative orientation 

of the two fragments. Each possible orientation is tried for the two fragments, and 

the overlap, orientation, and alignment are chosen to maximize the similarity of the 

fragments. 

2. Totally order the fragments. The ordering algorithm computes the fitness, or figure of 

merit, for a candidate ordering by examining the overlap information. In addition to 
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Figure 1. Overview of DNA Mapping Process 
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the fragment ordering, a particular layout results in contigs (Staden, 1980). A contig 

is a layout with no gaps; gaps occur when neighboring fragments do not overlap. 

Determine initial alignment. Use the alignment, offset and orientation information 

from the first step and the ordering from the second step to determine an initial 

alignment of the fragments. 

Determine the detailed alignment of the fragments, also known as multiple sequence 

alignment. Starting with the initial alignment, the bases within the fragments are 

examined to determine places where insertion or deletion errors likely occurred. To 

account for these errors, gaps are inserted into the fragments to bring correspond- 

ing bases back into alignment. See Waterman (1989) for a discussion of multiple 

sequence alignment. 

Generate the consensus sequence. Each column in the detailed alignment is examined 

to determine the "consensus" base for this position, yielding the consensus sequence 

for the contig. 
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Figure 2. Overview of Sequence Assembly Process 

The ordering step must find a total ordering of the given fragments that results in a 

consensus sequence accurately reflecting the parent sequence. Each fragment must be 

accounted for in the ordering, and each fragment can only appear in one place in the 

ordering. With previously solved sequences, the parent sequence is known, and we can 

judge the quality of an ordering by how closely the final consensus sequence corresponds 

to the known parent. In practice, however, the fragment sets are being generated to find 

the parent sequence. Thus, some other criteria must be used to evaluate an ordering. 

Although a small number of contigs is one goal of the orderings, this metric is not usable 

as an objective function. Many individuals with vastly different orderings have the same 

fitness value using this metric, preventing the genetic algorithm from distinguishing them 

and exploiting the building blocks. We examine two other objective functions, described 

in Section 3.1, which both use the pairwise-overlap information as the basis for evaluating 

the fitness of the layout. 

2.1. Fragment Assembly and the Traveling Salesman Problem 

The relationship between the ordering step and the general class of permutation order- 

ing problems is clear. Probably the best known problem in this class is the Traveling 

Salesman Problem (TSP) (Lawler, et al., 1985), but there are many others. The fragment 

assembly problem is quite similar to TSP, with notable differences. First, the solution 

to TSP is a circular tour of the cities; the endpoints of the tour are therefore irrelevant. 

In the fragment assembly problem, however, the endpoints represent fragments on op- 

posite ends of the parent sequence. Many solutions which are equivalent for TSP are 

thus inequivalent in our context. Second, the cities in the TSP are not assumed to have 

any relationship other than the distances, and the ordering is the final solution to the 

problem. In the fragment assembly problem, the ordering, referred to as "beads on a 

string", is only an intermediate step in the solution process; the layout process uses the 

overlap data to position the bases within the fragments relative to each other. Because 

there are frequently more than two fragments overlapping each other in the layout, sev- 
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eral different orderings of those fragments produce equivalent results after the layout 

phase, as shown in Figure 3. Additionally, many algorithms for TSP rely on the triangle 

inequality holding for the distance relation; no such assumption can be made about the 

overlap strengths. The errors in the overlap strength computation due to sequencing 

errors, chimeric fragments and DNA repeat sequences tend to invalidate any simplifying 

assumptions made about the relationships between fragments. Another distinguishing 

feature of the fragment assembly problem is that the fragments are drawn from both 

strands of the DNA, and the orientation of the fragment relative to the parent is lost 

during the sequencing process. 
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abcdef ~ bacedf ~ cbaedf 

Figure 3. Different Fragment Orders Can Produce Equivalent Consensus Sequence 

Genetic algorithms for permutation problems have not been universally successful, but 

there are successful examples. The primary problem faced by genetic algorithms in 

this context is representing the solutions in some way that allows the genetic operators 

to produce legal solutions. The simple representation for a solution is the permutation, 

represented as a list of the fragments (labeled with unique numbers) in the order in which 

they should appear. However, the standard genetic operators are then not closed over the 

space of legal solutions. As the space of illegal solutions is quite large, the probability 

of the operator forming a legal solution is relatively small. 

There are three obvious approaches to this representation problem: (1) choose a rep- 

resentation such that the standard operators are closed over legal solutions; (2) choose 

specialized operators that guarantee legal solutions; (3) penalize illegal solutions in the 

fitness function. We chose not to explore the third approach. The search space is so 

sparsely populated with legal solutions that too much time would be wasted generating 

and recognizing illegal solutions. In addition, the fitness functions are already costly 

to compute, and it is not clear what kind of penalty function to apply or whether legal 

blocks within these individuals would be useful building blocks. We studied the remain- 

ing two approaches, first trying the sorted-order representation, in which all solutions 

map to a legal permutation order (Syswerda, 1989; Bean, 1992). We then studied.the 

performance of the simple permutation representation in combination with two special- 

purpose recombination operators, edge-recombination (Starkweather, et al., 1991) and 

order crossover (Davis, 1985). In addition to recombination, we explore both bit and 

position mutation for the sorted-order representation, and for the permutation representa- 
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tion, we study position swaps, block moves (transpositions) and block inversions. These 

operators and representations are described in the next section, along with the data sets 

used for testing. 

3. Genetic Algorithms Applied to Fragment Assembly 

Genetic algorithms operate on a population of candidate solutions, called individuals 

(Holland, 1975; Goldberg, 1989; Forrest, 1993). Typically, the population is initialized 

with random individuals. After that, individuals are deleted from or reproduced in the 

population on the basis of their relative fitness. New individuals are formed by applying 

various operators to the existing population of individuals (see below). Each successive 

population of individuals is called a generation. Processing within the genetic algorithm 

typically follows these steps: 

Selection: Each individual is evaluated to determine its fitness. Individuals are re- 

produced (copied) differentially based on this fitness. Different genetic algorithms 

use different methods to implement the idea of differential reproduction. In the 

"generational GA," which we used, a new population is created at each generation, 

completely replacing the previous population. Individuals with below average fitness 

for the population have a low probability of being copied into the next generation, 

while individuals with high fitness have a high probability of having multiple copies 

in the next generation. 4 

Crossover: Two individuals are selected from the population and substrings from cor- 

responding positions within the individuals are exchanged. One or both of the new 

individuals are inserted into the population at the next generation. The purpose of 

this operator is to allow partial solutions to evolve on different individuals, and then 

to combine them to produce, sometimes, a better solution. For all of the crossover 

operators described in this report, the crossover rate specifies, on average, the fraction 

of new individuals formed each generation through crossover. 

Mutation: Mutation alters one individual by changing a primitive element of that indi- 

vidual (e.g., flipping one bit). The mutation rate controls the probability with which 

each component in an individual is changed. The resulting individual replaces the 

parent of the mutation. Mutation is believed to be effective for two reasons: it 

explores the search space near existing individuals (local search) and it prevents so- 

lution components which have been completely eliminated from the population by 

selection (fixation) from being lost for all successive generations. 

The genetic algorithm begins with a random population, and the cycle of selec- 

tion, crossover, and mutation is repeated for many generations. The genetic algorithm 

used to produce the results reported here was implemented by modifying the Gene- 

sis (Grefenstette, 1984) software package. 

Although there is some controversy over how well genetic algorithms actually perform 

and about why they perform as well as they do, the most common explanation is that 
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the average fitness of the population is likely to increase in successive generations, as 

good partial solutions combine to form even better composite solutions. The process 

of creating good solutions is described in terms of the combination of building blocks, 

which are portions of solutions that have high fitness. In the context of the fragment 

assembly problem, a building block is a portion of the ordering representing several 

fragments that form a contig. When considering different representations for genetic 

algorithms, it is important to consider what the likely building blocks are and how they 

might be combined to form a complete solution. 

3.1. Fitness Functions 

The choice of fitness function is crucial to the success of a genetic algorithm on a 

particular problem. In the fragment assembly problem the choice of an efficient and 

reliable measure of fitness is complicated by several factors, including errors in the 

sequence information (insertions, deletions, etc.), repeated sequences, and the "beads on 

a string" model. We studied two closely related fitness functions. The first is a natural 

analog to the fitness function for TSP. Let I = f[0], f[1], ..., f[n - 1] be an ordering of 

fragments, where f[i] = j denotes that fragment j appears in position i of the ordering. 

The fitness of the individual under the first fitness function F1 is 

n-2 

FI( I )  = E wytqJ[i+ll 
i=0 

where wi,j is the pairwise overlap strength of fragments i and j .  This fitness function 

only examines the overlap strengths of directly adjacent fragments in the ordering and 

takes O(n) time to compute for each individual. The optimization process attempts to 

find a layout that maximizes this function. 

The second fitness function accounts for the additional information that is exploited in 

the subsequent passes of the assembly processing (Churchill, et al., 1993). In addition to 

examining the overlap strengths for adjacent fragments, it considers the overlap strengths 

among all pairs of fragments, penalizing layouts in which fragments with strong overlap 

are far apart. The specific fitness function F2 

n - - l n - - 1  

F2(1) = E Eli- Jl * wf[i],f[j] 
i=o j=o 

uses the absolute value of the distance of the fragments in the layout as a weight on 

the overlap strength of the pair of fragments in those layout positions. The optimization 

process searches for layouts that minimize this function. This function has complexity 

O(n 2) because all pairs of fragments must be considered. 



GENETIC ALGORITHMS, OPERATORS, AND DNA 19 

3.2. Representations 

Genetic algorithms are appealing because they are largely domain independent--the prob- 

lem specifics are isolated in the fitness function and in the mapping from the individual 

to the problem-level solution. From this perspective, the first solution to the problem 

of representing permutation problems--a representation guaranteeing legal solutions--is 

more appealing than the second. Using this type of representation provides the isolation 

of problem-specific information from which the genetic algorithm derives its general- 

ity. For this reason, we chose to try the sorted-order representation (Schaffer, 1989; 

Syswerda, 1989), also referred to as the random-key representation (Bean, 1992). 

The sorted-order representation provides a rather complex mapping from the individual 

to the permutation ordering. The two requisite properties for a legal ordering are that 

all fragments be present in the ordering and that there be no duplication in the ordering. 

These properties are ensured through the use of a sort (hence the name '"sorted-order"). 

Specifically, consider a fragment set f l ,  • . . ,  fn and an individual B = b l , . . . ,  bm where 

each bi is a bit, and m = 2 k > n. To find the permutation specified by B, first convert 

the bit string into n key values, k l , . . . ,  kn, each of k bits, and then sort the key values. 

If the key value in position j of the individual appears in position i of the sorted list, 

then fragment fj is in the ith position in the permutation specified by the individual B. 5 

Because a fragment (f j)  is identified by a position in the individual (j), and a fragment 

is placed in the permutation based on the position in the sort order (i) of its key (j), any 

bit string represents a legal permutation. 

To represent the fragment assembly problem more closely (as opposed to TSP, with its 

circular solution), we introduced a modification to the sorted-order representation. In each 

individual, add k bits to the end, which designates the starting point of the permutation 

order. This value does not participate in the sort or in the mapping described above; 

instead, it allows the shifting of the ordering to allow alternate starting positions. Figure 4 

illustrates the mapping. 

We also studied the straightforward permutation representation, together with a suite 

of specialized operators. In this representation, the bit string is again rn = 2 k > n long. 

Each k bits represents one fragment (labeled 0 to 2 k - 1); the position of a fragment in 

the individual designates the position that fragment occupies in the layout.. Although this 

representation vastly simplifies the mapping from bit strings to permutations, the operators 

must be more complex to ensure that only legal individuals enter the population. 

3.3. Recombination operators 

We used both uniform and two-point crossover methods with the sorted-order representa- 

tion. We found that uniform crossover did not perform well on our problem, so we report 

only results based on the more standard two-point crossover, in which two points are 

randomly selected, and the bits between those positions are exchanged (Goldberg, 1989). 

Because the sorted-order representation is closed under the standard genetic operators, 

no additional processing is required to find a legal permutation. 
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0 1 0 Q i ~  0 0 1 1 0 1 0 1 1 QI  0 BitString 

\1/ \ 1 / \ l / \ 1 /  I/ 
~ ~ ~  2 Key Values 

(start position) 

3 1 5 4 2 Intermediate Layout 

Start Position 

Figure 4. Sorted-order Representation for the Fragment Assembly Problem. Consider a bit string which 

produces the following integers (k = 3): 2 7 1 5 3 2. The fragment layout represented by this individual is 

1 5 4 2 3 with an intermediate (before shifting) ordering of 3 1 5 4 2. Because the lowest key value in the 

individual, 1, appears in the third position of the individual, the first fragment in the intermediate layout is 

3. The next lowest value, 2, is in the first position of the individual, and therefore, the second fragment in 

this layout is 1. The last key, which represents the starting position, is 2, so the first key in the permutation 

ordering is 1 (because 1 appears in the second position of the intermediate layout). The final layout continues 

from this position and then wraps to the beginning. 

Two special-purpose crossover operators that have been successful in permutation prob- 

lems are edge recombination (Starkweather, et al., 1991) and order crossover (Davis, 1985) 

Different crossover operators emphasize the preservation of different kinds of informa- 

tion from the parents. Thus, the success of different operators for different permutation 

problems is likely tied to the ability of the crossover operator to preserve the high-value 

information from the parents under crossover. There are at least three kinds of infor- 

mation that might be important in a permutation ordering: absolute position, relative 

ordering (e.g., precedence relations as in scheduling applications), and adjacency. In 

the TSP, particularly due to its circular nature, the only relevant information is probably 

adjacency information. For the fragment assembly problem, the issue is less clear. Ad- 

jacency information in the total ordering is important. However, given the linear nature 

of the layout, with the definite end points, and the overlapping nature of the fragments 

in the ordering, relative position may also be important. We chose to experiment with 

two crossover operators, order crossover and edge recombination. Order crossover pre- 

serves relative ordering (and in some cases absolute position and ordering), while edge 

recombination emphasizes adjacency information. For simplicity of explanation, these 

crossover operators will be described in terms of integer, not bit values. 

In order crossover, as in two-point crossover, two random points are selected. However, 

instead of exchanging the information between these points, the information from the 

first parent is copied into those same positions in the offspring, as shown in Figure 5. 

Then, starting from the beginning of the second parent and the beginning of the offspring, 

the fragments from the second parent are placed into the offspring, with any fragment 

already placed in the offspring being skipped in the second parent. Thus, the fragments 

from the first parent retain their position and relative ordering while the fragments from 

the second parent retain their relative ordering. 
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Figure 5. Order Crossover and Edge Recombination. Illustrates order crossover on the individuals 1 7 8 3 
6 4 2 9 5 and 6 4 5 3 8 1 9 7 2. For edge recombination, The offspring begins with the first fragment in 

the first parent, 1. In examining l's adjacencies, we select 8 because it has a shared adjacency in its list and 

the others do not. This shared adjacency is 3, and so it is placed next. Because it has a shared adjacency, 
6 is chosen next, followed by 4. At 4, the next fragment 2 is placed in the individual because it has more 

remaining adjacencies. This process continues until the end, where 5 is placed because it has not yet been 
placed, yielding the individual 1 8 3 6 4 2 9 7. 

Edge  recombinat ion  is a more  compl ica ted  operator. A detai led explanat ion o f  the op- 

erator  implemented  here appears in Starkweather,  et al. (1991). In general, this c rossover  

attempts to preserve adjacencies  in the parents, and in particular, those adjacencies  that 

are c o m m o n  to both parents. W h e n  nei ther  o f  those options is possible,  a random se- 

lection made. An  example  o f  how the edge- recombina t ion  operator  works is shown in 

Figure  5. Whi t ley  reported addit ional  modif icat ions  to the edge- recombina t ion  operator, 

which give even better results on T S P  (Whitley,  1993), but we  have not yet  tested these 

modifications.  

3.4. Other Operators 

The sorted-order representat ion a l lows the use o f  the s imple  bi t -mutat ion operator  

(Goldberg,  1989). With some (small)  probabili ty,  each bit in each individual  is altered. 

However ,  in the permutat ion representat ion,  point  mutat ion is guaranteed to produce  

an illegal solution. Consequent ly ,  we did not  use point  mutat ion with the permutat ion 

representation. However ,  we tried a suite of  other  mutat ion- l ike  operators. 
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The simplest of these is the swap. Two positions in the ordering are selected at 

random, and the fragments in those positions are swapped to create the new individ- 

ual (Churchill, et al., 1993). This operator is a restricted form of a 4-opt transforma- 

tion (Lin & Kernighan, 1973), using TSP terminology. 

We used two other operators, each of which rely on some domain-specific information. 

These two operators, inversion and transposition, move blocks of fragments, specifi- 

cally contigs, in the ordering. Although random locations are selected in the individ- 

ual for these operators, a location simply indicates to which contig(s) the operation 

wilt be applied. Inversion reverses the order of the fragments in the selected con- 

tig (Goldberg, 1989). This operator is useful since fragments come from both strands of 

DNA, but the total ordering forces an orientation to the data. By inverting a contig, it 

may be extended, since the contig may be oriented in the opposite direction from that of 

the adjacent fragments in the ordering. We restrict inversion to operate only on contigs 

within the layout, instead of the more general inversion operator which randomly selects 

an area to invert. 

Transposition moves a contig to a position between two adjacent contigs which may 

allow the extension of a contig. This operator allows smaller contigs to form anywhere 

along the individual; transpositions can correct the relative positions of these clusters, 

yielding an improved solution. Transposition is also a restricted form of 4-opt, with the 

restriction focusing on the selection of the edges to break and with what edges to replace 

them. 

Contigs are the natural building blocks of our problem. Transposition and inversion, 

by design, do not disrupt these building blocks. Instead, they allow for the evolution of 

larger contigs by treating the smaller contigs as primitive elements. 

The meaning of the rates for the mutation and specialized operators are different. For 

the mutation used with the sorted-order representation, the rate specifies the probability 

of a bit in an individual being selected for mutation in a given generation. Thus, to find 

the probability that an individual is altered, this rate must be multiplied by the length 

of the individual. For the specialized operator, the rate quoted is the probability that an 

individual will be affected. Thus, a rate of 0.2 implies that there is a 20% probability 

for each individual that it will be selected for alteration by that operator. 

3.5. Data Sets and Implementation Environment 

Most of the fragment data sets for which we report results were artificially generated 

from actual DNA sequences. The parent DNA sequence is replicated by the pro- 

gram and then fragmented, at random locations, to derive a fragment set that is rep- 

resentative of the data sets produced in sequencing laboratories. The generator, Gen- 

Frag (Engle & Burks, 1993), allows fragment sets of different sizes, error content, and 

coverage to be generated. This approach allowed us to study how these different fac- 

tors affect the performance of the genetic algorithm. This baseline testing proved useful 

in identifying particularly successful and unsuccessful configurations of representations, 

operators, population sizes, etc. Having completed these control experiments, we are 

beginning to tackle experimentally derived DNA fragment sets. 
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Three DNA sequences served as the basis for most of  the experiments: a human 

brain DNA sequence, HUMATPK01 (Sverdlov, 1987), accession number Ivi55090 which 

is 2026 base pairs long; a human MHC class III  region DNA with fibronectin type- 

II repeats HUMMHCFIB (Matsumoto, 1991), with accession number X60189, which 

is 3835 bases long; and a human apolopoprotein H U M A P O B F  (Carlsson, et al., 1986), 

with accession number M15421 which is 10089 bases long. We are also working with 

two longer sequences. The 20KB sequence, AMCG,  is the initial 40% of  the bases from 

LAMCG,  the complete genome of bacteriophage lambda, accession numbers J02459 and 

M17233 (Sanger, 1982). The data set designated SETO is the experimental data set made 

available for the testing of  sequencing algorithms (Seto, et al., 1993). 

Most  of  our results were obtained using fragment sets from the first three parent 

sequences. We experimented with coverages ranging from three to seven and mean 

fragment length between 300 and 500 bases. In addition, fragment sets with experimental 

errors at a rate of  10% mismatch errors and 5% insertion and deletion errors have been 

used to determine how robust the algorithm is. Table 1 presents some information about 

the specific fragment sets on which we tested our algorithm. 

Table 1. Information on Data Sets: Names: ATPK - HUMATPK01, CFIB - HUMMHCFIB, POBF - 
HUMAPOBP data set, AMCG - LAMCG and SETO - experimental data set. Bases: number of base pairs 
in the known consensus sequence. Coverage: the average number of fragments covering any base of the 
parent. Gaps: areas of the parent with no coverage. CFIB-5% and CFIB-10% have errors introduced into 
the fragment sets at the specified rate. 

5% 10% 

ATPK CFIB CFIB CFIB POBF AMCG SETO 

Bases 2026 3835 3835 3835 10089 20100 34475 

Coverage 5 7 3 4 5 7 7 5 5 7 7 11 

Fragments 26 36 24 39 48 68 68 48 127 177 352 829 

Gaps 0 0 1 0 0 0 1 0 1 0 0 0 

The overlap computation uses a technique that allows the setting of a cutoff value, such 

that overlap scores below this value are considered to be zero (Churchill, et al., 1993) The 

cutoff, which we have set to twenty, provides one filter for spurious overlaps introduced 

by experimental error. 

4. Results 

As described earlier, it is difficult to identify a single best measure of performance for this 

problem. In the case where the consensus sequence for the data is known, the correctness 

of  an ordering can be determined by performing the final steps of  the assembly process 

and comparing the resulting sequence with the known consensus sequence; the goal is a 

complete match. It is also important to consider the time to reach a solution. Table 2 

summarizes the results using the match with the parents, the number of contigs in the 
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solution and the number of  function evaluations and generations used by the genetic 

algorithm. The remainder of  this section explores the overall performance achieved 

by the genetic algorithm and the experiments we performed to analyze the different 

components of the genetic algorithm: the fitness function, the representation, and the 

operators. The final section draws conclusions from these data and discusses future 

directions for research. 

Table 2. Genetic Algorithm Performance on Fragment Assembly Problem. Data set name 
includes coverage in parentheses. Num Gens: Number of Generations. Num Trials: 
Number of Fitness Function Evaluations (Gen*Pop > Trials because not all individuals 
change in a generation). Num Contigs: Number of contigs in GA solution, Num Greedy: 
Number of Contigs in the Greedy Solution. Num Sorted: previous results using sorted 
order representation (* indicates that this experiment was not performed on sorted order). 
Other parameter settings: Crossover Rate: 0.3, Specialized Operator Rate: 0.7, Pointswap 
rate: 0.2, Inversion Rate: 0.4, Transposition Rate: 0.4, Scaling Factor: 2.0. Parent match 
computed for single contig solutions and computed over entire region of parent. 

Data Set Pop Num Num Num Parent Num Num 

Name Size Gens Trials Contigs Match Greedy Sorted 

ATPK(5) 100 135 4K 1 1.0 3 * 

ATPK(7) 500 64  10K 1 1.0 3 * 

CFIB(3) 200 167 10K 2 3 4 

CFIB(4) 600 193 35K 1 1.0 4 * 

CFIB(5) 600 304 55K 1 1.0 3 5 

CFIB(5)- 10% 600 668 120K 1 .97 6 * 

CFIB(7) 500 1200 180K 1 1.0 3 7 

CFIB(7)-5% 500 5635 855K 2 5 7 

POBF(5) 1000 19K 5.7M 6 10 23 

POBF(7) 1500 13K 5.9M 1 1.0 7 43 

AMCG(7) 2500 5.6K 2.3M 13 15 * 

SETO(11) 2500 137 302K 89 65 * 

The genetic algorithm performs quite well with the appropriate representation and 

operator set, both in terms of  speed and solution quality. Figure 6 shows how the 

mean and best fitness improves for the CFIB data set. The genetic algorithm solves the 

smaller two data sets, finding a single-contig solution representing a consensus sequence 

that completely matches the parent sequence. This result, however, is not all that startling 

as the fragment sets are relatively small. Most  fragment assembly systems can, for data 

sets of this size with no errors, produce results that are close enough to correct that a 

small amount of manual intervention produces the correct solution. Even for the smaller 

data sets, however, the correct representation is crucial to the performance of  the genetic 

algorithm. By using a representation and a suite of  operators that exploit the conceptual 

building blocks of the problem, we were able to construct a genetic algorithm with good 

performance on our problem. 

The results for the POBF data set, with the 10KB parent, are more interesting than 

those for the smaller data sets. There are 177 fragments in the seven-fold coverage data 
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Figure 6. Population mean and best fitness plots. Typical run for CFIB(7) data set. 

set. With no manual intervention, the genetic algorithm produces a single-contig solution 

whose consensus sequence completely matches the parent. We have yet to solve fully 

the remaining two large data sets, the AMCG data set with a 20KB parent, and the Seto 

data set, with the consensus sequence of 34KB. Table 2 presents the results on those data 

sets to date. 

The most exhaustive testing involved the CFIB data set, as seen in Table 2. Our 

fragment sets included some with significant amounts of error; some of the data sets 

contained a gap. The GA found the correct single-contig solution for all the data sets 

without gaps and errors. In the case of the data set with 10% mismatch errors, the GA 

finds a single-contig solution with a 97% match to the parent. Although there were mis- 

match errors in 10% of the base pairs in the fragment set, the five-fold coverage and the 

post-processing of the multiple sequence alignment and consensus generation algorithms 

correctly reproduced 97% of the bases. For the CFIB data set with the gap but with no 

errors, the solution found, while consisting of two contigs, matched on all the base pairs 

covered in the solution. 

4.1. Comparison to a Greedy Approach 

Many of the standard assembly packages use some form of greedy algorithm to find 

the appropriate ordering (Staden, 1980; Huang, 1992). To evaluate the performance of 

the genetic algorithm, we compare our results to those found by a greedy algorithm. 

The greedy algorithm we use, which is similar to that used in Huang (1992), examines 

overlap strengths and picks the strongest overlap that connects some as yet unplaced 

fragment to the contig being constructed. Table 2 includes the solutions found by our 
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greedy algorithm. The greedy algorithm never uncovers the best solution, except for the 

small CFIB data set with the gap, where it does find the optimal solution. 

For the POBF data set, we looked at the solution found by the greedy algorithm. The 

fitness values for this data set are shown in Table 3. The results from the F2 function, 

which penalizes solutions that ignore significant overlap, is particularly informative. The 

large difference between the F2 scores for the greedy solution and the genetic algorithm 

solution provides an indication of how much manual editing would be required to convert 

the greedy solution into a workable solution. The work is even greater than the difference 

between 1 and 7 contigs initially indicates. 

Table 3. Comparison of Greedy Algorithm and 
Genetic Algorithm on POBF Seven-Fold Cover- 
age Data Set. 

E l  Score F2 Score Contigs 

Greedy 54 ,049  6,940,730 7 

GA 55,683 1,705,272 1 

4.2. Fitness Functions 

A critical part of the design of any genetic algorithm is the selection of the appropriate 

fitness function. For fragment assembly, this selection is complicated by the processing 

required after the fragment-ordering step. In previous work (Parsons, et al., 1993), we 

compare in detail the two fitness functions described in Section 3.1. These results are 

reproduced in Table 4. The experiments with the sorted-order representation showed 

the quadratic fitness function, F2, to be marginally superior in performance to the linear 

function, El. We ran a small set of experiments on these two functions using the 

permutation representation and the edge-recombination operator. In this case the linear 

function performs better. The results appear in Table 4 for the ATPK data set. Although it 

can be argued that this objective function is not ideal for the fragment assembly problem, 

the computational results show that the function is adequate, when compared with F2 

and based on the results we have achieved so far. Nevertheless, we consider the design 

of a more appropriate fitness function to be an important area for continued research. 

4.3. Comparison of the Representations 

The results of our experiments show that, for our application, the edge-recombination 

operator in conjunction with the permutation representation and the full suite of other 

operators is quite successful. The final column in Table 2, reproduced from Parsons, et 

al. (1993), gives the results for the sorted-order representation. Summarizing our prior 

results, the sorted-order representation is too disruptive of the building blocks of the 

fragment assembly problem to be useful in this context. The permutation representation 
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Table 4. GA Test Results for Two Fitness Functions. Best: score for the best individual, followed 
by the score for this individual under the other function. Contigs: the number of contigs in the 
layout specified by the best individual. For data set ATPK with coverage 7. Parameters: 10 runs, 
different random seeds, Crossover rate of 0.85, 0.7 point swap, 0.03 transposition, 0.27 inversion. 

F1 (O(N), Maximize) Function F2 (O(N2), Minimize) Function 

Parent Best F1 F2 Score Contigs Best F2 F1 Score Contigs 

CFIB(5) 13,900 570,627 5 422,049 13,304 4 

CFIB(3) 7,534 488,198 4 73,755 7539 3 

CFIB(6) 15,809 1,936,597 11 852,087 13,274 8 

CFIB(7) 19,513 2,679,743 7 1,243,338 20,163 3 

CFIB(5)-10% 3,873 162,581 7 100,179 3,333 8 

POBF(5) 31,372 4,773,694 23 1,331,745 24,040 23 

POBF(3) 17,989 551,698 13 179,950 18,092 7 

POBF(6) 27,029 19,224,270 48 5,776,555 8,305 36 

POBF(7) 33,823 22,285,703 43 7,128,031 13,582 28 

ATPK(7) 11,284 286,118 1 355,478 9,671 2 

with the edge-recombination operators and the other specialized operators are able to 

exploit the building blocks in a powerful way. 

4.4. Comparison of  Operators Using the Permutation Representation 

This section describes several experiments we performed to analyze the effectiveness of  

the various operators and to examine the way in which they interact with each other. 

First, we compared the two crossover operators: order crossover and edge recombination, 

described in Section 3.3. Table 5 summarizes the results obtained using order crossover. 

Comparing the results from Table 5 with those in Table 2 clearly demonstrates that, 

when we attempted to tune the genetic algorithm parameters for order crossover, edge 

recombination is superior to order crossover. 

Next, we ran several experiments applying the operators at various rates. Some of 

the particular results are worth noting. The genetic algorithm was relatively successful 

in solving the smaller data sets with traditional parameter settings: (crossover rate of 

0.7-0.85 and rates for the specialized operators of 0.05-0.1). However, significantly 

better performance occurs at much lower crossover rates and much higher rates for the 

specialized operators. These rates increased the efficiency of the genetic algorithm on 

the small data set and allowed the genetic algorithm to solve the larger data set. Most 

of  the runs reported here used a crossover rate of 0.2-0.3 and a special operator rate of 

0.7-0.85. 

Eliminating any one of  the operators (either crossover or one of the specialized op- 

erators) tended to give poorer results. There is a synergistic effect among the various 

operators in finding appropriate solutions. The results of  these experiments are summa- 
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Table 5. Genetic Algorithm Performance Using the Order Crossover Operator. Trials: 
Number of F1 Fitness Function Evaluations. Num Contigs: Number of Contigs found 
in the Best Solution Over 5 Runs. 

Population Num Xover Swap Inversion Transposition Num 

Size Trials Rate Rate Rate Rate Contigs 

600 100K 0.3 0.14 0.28 0.28 6 

600 200K 0.3 0.14 0.28 0.28 6 

600 100K 0.6 0.14 0.28 0.28 9 

600 100K 0.8 0.06 0.12 0.12 12 

1000 200K 0.8 0.02 0.04 0.04 15 

1000 400K 0.8 0.02 0.04 0.04 13 

300 400K 0.8 0.02 0.04 0.04 7 

300 400K 0.5 0.14 0.28 0.28 8 

rized in Table 6. We tracked the change in the fitness values for each application of each 

Table 6. GA performace for CFIB data set 
with five-fold coverage, population of 300 and 
250,000 trials. * This run completely converged 
at 50,000 iterations. 

Xover Swap Trans Inv Contigs 

0.1 0.14 0.28 0.28 1 

0.2 0.14 0.28 0.28 2 

0.3 0.14 0.28 0.28 1 

0.4 0.14 0.28 0.28 2 

0.5 0.14 0.28 0.28 3 

0.0 0.3 0.28 0.28 4 

0.0 0.3 0.56 0.14 1 

0.85 0.0 0.0 0.0 4 

0.0 0.0 0.45 0.45 6 

0.0 0.1 0.75 0.0 5 

0.0 0.1 0.0 0.75 9* 

operator over the course of several runs. Figure 7 shows the efficacy of the different op- 

erators over the life of twenty different runs. A low-pass filter was applied to smooth out 

the variations in the data. The graph shows that the utility of pointwise swap decreases 

as the run progresses, and inversion and transposition remain useful throughout. 

We computed the genealogy of the best individuals in the population to determine 

which operators contribute to the creation of good individuals and if the mix changes 

as the population changes. Specifically, every 100 generations, we examined the history 

of the five best individuals and recorded how often each operator occurred in its history 

during the last 100 generations. Crossover is consistently contributing to the creation of 

the best individuals, over the course of the run. 
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Figure 7. Average change in fitness by operator, smoothed using a low pass filter. Only operations which 
improved fitness considered. 

5. Discussion and Conclusions 

One of the interesting questions raised by this work relates to the way in which the 

specialized operators exploit the building blocks in our problem and the way the full 

operator suite interacts to improve the genetic algorithm's performance. Performance 

suffers when any operator is removed from the suite, although a high enough rate of 

transposition reduces the impact of the loss of the crossover operator. However, if 

one examines the mechanics of the crossover operator between two individuals that are 

similar, this result is not that surprising as transposition mimics this kind of crossover 

operation. 

The genealogy for the best individuals, shown in Figure 8, highlights the importance 

of the crossover operator in the creation of good solutions, even at the low' rate at which 

it is applied. As described earlier, this low rate of crossover was the best we found 

while tuning the genetic algorithm parameters. One should not conclude, however, that 

this low rate indicates that crossover is unimportant to the solution power; the genealogy 

information tells a very different story. Although the average fitness improvement of 

the operator declines during the run, it remains an active participant in the creation of 

improved individuals. 

The behavior of crossover, transposition and inversion change during the run, while 

that of the swap operator remains the same. Transposition and inversion affect contigs. 

Early in the run, contigs are likely to be quite small and frequently contain only one 

fragment. Thus, in these early generations, the specialized operators act similarly. The 

decrease of effectiveness of pointwise swap in later generations is consistent with the 

building-block hypothesis. Late in the run, the changes required to improve an individual 

tend to be on a larger scale than can be obtained by a single swap, i.e. improvements 
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Figure 8. Operator frequency in 100 generation intervals for five best individuals in population for the CFIB 

seven-fold data set. The operators are displayed in the order in which they appear in the legend. 

tend to require the movement of contigs, the conceptual building blocks in this problem, 

rather than movement of individual fragments. 

For many genetic algorithms, a significant problem is premature convergence. Our 

operator suite tends to prevent this convergence. After the 668 generations of the CFIB 

seven-fold coverage run, the population was not close to being converged in the traditional 

sense. Although almost all of the positions in this data set had 50% or more of the 

individuals with the same fragment in that position, none of those positions had more 

than 60% of the individuals with the same fragment value. Thus, the GA is still searching 

for improved solutions. Two factors contribute significantly to this effect. First, in the 

permutation representation, the alphabet at each position is much larger than the binary 

alphabet traditionally used in genetic algorithms. Second, and more importantly, the 

operators used in this genetic algorithm tend to be quite disruptive in terms of the values 

in a particular position towards the end of the run. Consider an inversion operation, 

which inverts a contig. An entire block of positions within the individual is changed by 

this operation, and the operator, at worst, creates an individual with equal fitness to itself. 

Towards the end of the run when convergence is an issue, the contigs are quite large, 

meaning many fragment positions are altered. The effects of the operators, coupled with 

the high rates at which they are applied, counterbalances the strong convergence seen in 

most genetic algorithm applications. 

Some features of the fragment assembly process aid the performance of the genetic 

algorithm. The results shown in Table 2 for the POBF data set are from runs with the 

same number of iterations, which represents one-third fewer generations for the larger 

data set when the size of the population is taken into account. One would expect that 

increasing the problem by size 35% from the perspective of the optimizer - -  it must 

now order 177 fragments instead of 127 - -  would make the problem more difficult. 

However, for the 177 fragment problem, the genetic algorithm in that time finds a one- 

contig solution while the solution for the 127 fragment problem appears stuck at a 
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six-contig solution. With the increase in coverage from five-fold to seven-fold, there 

is a corresponding increase in the number of essentially equivalent solutions, and the 

precise ordering becomes less critical. This characteristic of the search space for the 

higher-coverage problem is another indication that a genetic algorithm is an appropriate 

approach, because genetic algorithms tend to find near-optimal solutions relatively easily, 

but have difficulty refining those solutions. 

A high degree of redundancy in the search space is also present in the sorted-order 

representation, as many different combinations of numbers would map to the same per- 

mutation ordering. However, the redundancy in the search space is not sufficient to 

overcome the disruption of the solution building blocks caused by the operators (see 

Parsons, et al. (1993) for further details). 

The work so far demonstrates the feasibility of using genetic algorithms in sequencing 

problems when the parent sequence is on the order of 10KB and when coverage is 

sufficient (seven-fold). Since most sequencing labs use coverages at this level or higher, 

the coverage range is not a restriction. We are still working with parents in the range 

of 20KB - 35KB. In this range, however, problems in the other phases of the analysis, 

on which the ordering depends, become more pronounced, in addition to the dramatic 

increase in the size of the search space. The most obvious problem is that of DNA 

repeats. Longer parent sequences tend to have more repeat sequences. The regions of 

these repeats will have high overlap, since the repeat sequences are generally quite similar 

(> 90% homology is not uncommon) and can be lengthly. Thus, fragments from different 

sections of the DNA that have repeats will show overlaps that are, from examination of 

the sequence and overlap information, indistinguishable from overlaps that result from 

fragments being drawn from the same section of DNA using only overlap information. 

Additional information must be provided to any program attempting to sequence DNA 

with these repeated segments to allow repeat-induced overlaps to be distinguished from 

true overlaps. Some auxiliary data, such as mapping information, is available, but the 

objective function will have to be redesigned to take this new information into account. 

The success of the specialized operators and representations which exploit the concep- 

tual building blocks may influence the solution of permutation problems using techniques 

other than genetic algorithms. As an example, Burks et al. (1993) have successfully 

incorporated the inversion and transposition operators into a simulated annealer with im- 

pressive performance improvements. More generally, there are many other interesting 

questions raised by these experiments, particularly relating to the role of the solution 

space redundancy and to the synergistic effects among the various operators. 
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Notes 

1. NP-hardness follows from a straightforward reduction from Hamiltonian Path. 

2. DNA is a double helix comprised of two complementary strands of polynucleotides. Each nucleotide 

consists of a purine or pyrimidine base attached to a sugar-phosphate moiety. The sugar-phosphate is 

constant throughout the entire strand, but the bases vary. There are four bases found in DNA: adenine (A), 

guanine (G), cytosine (C), and thymine (T). From a computational viewpoint, each strand of DNA can be 

viewed as a character string over an alphabet of four letters. The two strands are complementary in the 

sense that at corresponding positions A's are always paired with T's and C's with G's, although any of the 

letters can appear in either strand. These pairs of complementary bases are referred to as "base pairs." 

3. There are different families of repeat sequences, each with different characteristic lengths and degree of 

conservation among the family members. Some repeat sequences arise due to duplicated genes, as an 

example. 

4. We used an elitist policy and sigma scaling with a cutoff value of 2. 

5. Ties in the sort are broken arbitrarily. We use a left-to-right ordering. 
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