
F
uz

zy
Lo

gi
c

La
bo

ra
to

riu
m

Li
nz

-H
ag

en
be

rg

Genetic Algorithms:
Theory and Applications

Lecture Notes
Third Edition—Winter 2003/2004

by Ulrich Bodenhofer

Tel.: +43 732 2468 9194
Fax: +43 732 2468 1351

E-mail:
�✂✁☎✄✝✆✟✞✠✄☎✡✟✡✟✡☞☛✍✌✏✎✠✑✒☛✍✓✏✔

WWW: ✕ ✔✟✔✠✖✒✗✙✘✟✘✛✚✟✚✟✚✒☛✜✄☎✡✟✡✟✡☞☛✜✌✏✎✏✑✒☛✜✓✏✔

2

Preface

This is a printed collection of the contents of the lecture “Genetic Algo-
rithms: Theory and Applications” which I gave first in the winter semester
1999/2000 at the Johannes Kepler University in Linz.

The sources were manifold: Chapters 1 and 2 were written originally
for these lecture notes. All examples were implemented from scratch.
The third chapter is a distillation of the books of Goldberg [22] and Hoff-
mann [26] and a handwritten manuscript of the preceding lecture on ge-
netic algorithms which was given by Andreas Stöckl in 1993 at the Jo-
hannes Kepler University. Chapters 4, 6, and 8 contain adaptations of
previously published material from my own master thesis and a series of
lectures which was given by Francisco Herrera and myself at the Second
Summer School on Advanced Control at the Slovak Technical University,
Bratislava, in summer 1997 [5], with the only exception of Subsection 8.3.3
which is a summary of Chapter 7 from Peter Haslinger’s master thesis
[24]. Chapter 5 was extracted from a recent book by my dear colleagues
O. Cordón, F. Herrera, F. Hoffman, and L. Magdalena [13]. Chapter 7
was written originally, however, strongly influenced by A. Geyer-Schulz’s
works and H. Hörner’s paper on his C++ GP kernel [29].

I would like to thank all the students that attended my lectures on ge-
netic algorithms so far, for contributing much to these lecture notes with
their vivid, interesting, and stimulating questions, objections, and discus-
sions.

Last but not least, I want to express my sincere gratitude to Sabine
Lumpi and Susanne Saminger for support in organizational matters, and
Peter Bauer for proof-reading.

Ulrich Bodenhofer, October 2003.

3

4

Contents

1 Basic Ideas and Concepts 11
1.1 Introduction . 11
1.2 Definitions and Terminology 12

2 A Simple Class of GAs 17
2.1 Genetic Operations on Binary Strings 18

2.1.1 Selection . 18
2.1.2 Crossover . 19
2.1.3 Mutation . 22
2.1.4 Summary . 23

2.2 Examples . 24
2.2.1 A Very Simple One . 24
2.2.2 An Oscillating One-Dimensional Function 25
2.2.3 A Two-Dimensional Function 27
2.2.4 Global Smoothness versus Local Perturbations 29
2.2.5 Discussion . 31

3 Analysis 33
3.1 The Schema Theorem . 36

3.1.1 The Optimal Allocation of Trials 39
3.1.2 Implicit Parallelism . 41

3.2 Building Blocks and the Coding Problem 43
3.2.1 Example: The Traveling Salesman Problem 45

3.3 Concluding Remarks . 51

4 Variants 53
4.1 Messy Genetic Algorithms . 53
4.2 Alternative Selection Schemes 55
4.3 Adaptive Genetic Algorithms 56
4.4 Hybrid Genetic Algorithms 56
4.5 Self-Organizing Genetic Algorithms 57

5

6 CONTENTS

5 GA Variants for Real-Valued Optimization Problems 59
5.1 Real-Coded GAs . 59

5.1.1 Crossover Operators for Real-Coded GAs 60
5.1.2 Mutation Operators for Real-Coded GAs 61

5.2 Evolutionary Strategies . 61
5.2.1 Recombination in ESs 62
5.2.2 Mutation in ESs . 62
5.2.3 Selection and Sampling in ESs 63

5.3 Evolutionary Programming 64
5.3.1 Original EP . 64
5.3.2 D. B. Fogel’s Modified EP 64
5.3.3 Selection and Sampling in EP 65

6 Tuning of Fuzzy Systems Using Genetic Algorithms 67
6.1 Tuning of Fuzzy Sets . 69

6.1.1 Coding Fuzzy Subsets of an Interval 69
6.1.2 Coding Whole Fuzzy Partitions 72
6.1.3 Standard Fitness Functions 73
6.1.4 Genetic Operators . 73

6.2 A Practical Example . 74
6.2.1 The Fuzzy System . 76
6.2.2 The Optimization of the Classification System 79
6.2.3 Concluding Remarks 84

6.3 Finding Rule Bases with GAs 84

7 Genetic Programming 87
7.1 Data Representation . 88

7.1.1 The Choice of the Programming Language 92
7.2 Manipulating Programs . 93

7.2.1 Random Initialization 93
7.2.2 Crossing Programs . 93
7.2.3 Mutating Programs . 94
7.2.4 The Fitness Function 94

7.3 Fuzzy Genetic Programming (FGP) 97
7.4 A Checklist for Applying Genetic Programming 98

8 Classifier Systems 101
8.1 Introduction . 101
8.2 Holland Classifier Systems . 103

8.2.1 The Production System 104
8.2.2 The Bucket Brigade Algorithm 106

CONTENTS 7

8.2.3 Rule Generation . 109
8.3 Fuzzy Classifier Systems of the Michigan Type 110

8.3.1 Directly Fuzzifying Holland Classifier Systems 111
8.3.2 Bonarini’s ELF Method 114
8.3.3 An Improved FCS . 115
8.3.4 Online Modification of the Whole Knowledge Base . 119

Bibliography 121

8 CONTENTS

List of Figures

2.1 A graphical representation of roulette wheel selection 20
2.2 One-point crossover of binary strings 21
2.3 The function f2 . 25
2.4 A surface plot of the function f3 27
2.5 The function f4 and its derivative 30

3.1 Hypercubes of dimensions 1–4 35
3.2 A hyperplane interpretation of schemata for n = 3 36
3.3 Minimal deceptive problems 46

4.1 A messy coding . 54
4.2 Positional preference . 54
4.3 The cut and splice operation 55

6.1 Piecewise linear membership function with fixed grid points 71
6.2 Simple fuzzy sets with piecewise linear membership functions 71
6.3 Simple fuzzy sets with smooth membership functions 71
6.4 A fuzzy partition with N = 4 trapezoidal parts 73
6.5 Example for one-point crossover of fuzzy partitions 75
6.6 Mutating a fuzzy partition . 76
6.7 Magnifications of typical representatives of the four types

of pixels . 77
6.8 Clockwise enumeration of neighbor pixels 77
6.9 Typical gray value curves corresponding to the four types . 77
6.10 The linguistic variables v and e 78
6.11 Cross sections of a function of type (5.2) 80
6.12 A comparison of results obtained by several different opti-

mization methods . 82
6.13 A graphical representation of the results 83

7.1 The tree representation of (+ (* 3 X) (SIN (+ X 1))) 89
7.2 The derivation tree of (NOT (x OR y)) 91

9

10 LIST OF FIGURES

7.3 An example for crossing two binary logical expressions . . . 95
7.4 An example for mutating a derivation tree 96

8.1 Basic architecture of a classifier system of the Michigan type 103
8.2 The bucket brigade principle 108
8.3 An example for repeated propagation of payoffs 109
8.4 A graphical representation of the table shown in Figure 7.3 . 110
8.5 Matching a fuzzy condition 112
8.6 The creation of fuzzy messages in the improved FCS 117
8.7 The matching procedure of the modified fuzzy classifier

system . 117

Chapter 1

Basic Ideas and Concepts

Growing specialization and diversification have brought a host of
monographs and textbooks on increasingly specialized topics. How-
ever, the “tree” of knowledge of mathematics and related fields does
not grow only by putting forth new branches. It also happens, quite
often in fact, that branches which were thought to be completely dis-
parate are suddenly seen to be related.

Michiel Hazewinkel

1.1 Introduction

Applying mathematics to a problem of the real world mostly means, at
first, modeling the problem mathematically, maybe with hard restrictions,
idealizations, or simplifications, then solving the mathematical problem,
and finally drawing conclusions about the real problem based on the so-
lutions of the mathematical problem.

Since about 60 years, a shift of paradigms has taken place—in some
sense, the opposite way has come into fashion. The point is that the world
has done well even in times when nothing about mathematical modeling
was known. More specifically, there is an enormous number of highly so-
phisticated processes and mechanisms in our world which have always at-
tracted the interest of researchers due to their admirable perfection. To im-
itate such principles mathematically and to use them for solving a broader
class of problems has turned out to be extremely helpful in various disci-
plines. Just briefly, let us mention the following three examples:

11

12 1. BASIC IDEAS AND CONCEPTS

Artificial Neural Networks (ANNs): Simple models of nerve cells (neu-
rons) and the way they interact; can be used for function approxima-
tion, machine learning, pattern recognition, etc. (e.g. [38, 48]).

Fuzzy Control: Humans are often able to control processes for which no
analytic model is available. Such knowledge can be modeled math-
ematically by means of linguistic control rules and fuzzy sets (e.g.
[32, 47]).

Simulated Annealing: Robust probabilistic optimization method mim-
icking the solidification of a crystal under slowly decreasing tem-
perature; applicable to a wide class of problems (e.g. [35, 45]).

The fourth class of such methods will be the main object of study in
this lectures—Genetic Algorithms (GAs).

The world as we see it today, with its variety of different creatures, its
individuals highly adapted to their environment, with its ecological bal-
ance (under the optimistic assumption that there is still one), is the product
of a three billion years experiment we call evolution, a process based on
sexual and asexual reproduction, natural selection, mutation, and so on
[14]. If we look inside, the complexity and adaptability of today’s crea-
tures has been achieved by refining and combining the genetic material
over a long period of time.

Generally speaking, genetic algorithms are simulations of evolution, of what
kind ever. In most cases, however, genetic algorithms are nothing else than prob-
abilistic optimization methods which are based on the principles of evolution.

This idea appears first in 1967 in J. D. Bagley’s thesis “The Behavior
of Adaptive Systems Which Employ Genetic and Correlative Algorithms”
[1]. The theory and applicability was then strongly influenced by J. H.
Holland, who can be considered as the pioneer of genetic algorithms [27,
28]. Since then, this field has witnessed a tremendous development. The
purpose of this lecture is to give a comprehensive overview of this class of
methods and their applications in optimization, program induction, and
machine learning.

1.2 Definitions and Terminology

As a first approach, let us restrict to the view that genetic algorithms are
optimization methods. In general, optimization problems are given in the

1.2. DEFINITIONS AND TERMINOLOGY 13

following form:

Find an x0 ∈ X such that f is maximal in x0, where f : X → R

is an arbitrary real-valued function, i.e. f(x0) = max
x∈X

f(x). (1.1)

In practice, it is sometimes almost impossible to obtain global solutions
in the strict sense of (1.1). Depending on the actual problem, it can be
sufficient to have a local maximum or to be at least close to a local or global
maximum. So, let us assume in the following that we are interested in
values x where the objective function f is “as high as possible”.

The search space X can be seen in direct analogy to the set of competing
individuals in the real world, where f is the function which assigns a value
of “fitness” to each individual (this is, of course, a serious simplification).

In the real world, reproduction and adaptation is carried out on the
level of genetic information. Consequently, GAs do not operate on the
values in the search space X , but on some coded versions of them (strings
for simplicity).

1.1 Definition. Assume S to be a set of strings (in non-trivial cases with
some underlying grammar). Let X be the search space of an optimization
problem as above, then a function

c : X −→ S
x 7−→ c(x)

is called coding function. Conversely, a function

c̃ : S −→ X
s 7−→ c̃(s)

is called decoding function.

In practice, coding and decoding functions, which have to be specified
depending on the needs of the actual problem, are not necessarily bijective.
However, it is in most of the cases useful to work with injective decoding
functions (we will see examples soon). Moreover, the following equality
is often supposed to be satisfied:

(c ◦ c̃) ≡ idS (1.2)

Finally, we can write down the general formulation of the encoded
maximization problem:

Find an s0 ∈ S such that f̃ = f ◦ c̃ is as large as possible

14 1. BASIC IDEAS AND CONCEPTS

The following table gives a list of different expressions, which are com-
mon in genetics, along with their equivalent in the framework of GAs:

Natural Evolution Genetic Algorithm

genotype coded string
phenotype uncoded point
chromosome string
gene string position
allele value at a certain position
fitness objective function value

After this preparatory work, we can write down the basic structure of
a genetic algorithm.

1.2 Algorithm.

t := 0;
Compute initial population B0;

WHILE stopping condition not fulfilled DO
BEGIN

select individuals for reproduction;
create offsprings by crossing individuals;
eventually mutate some individuals;
compute new generation

END

As obvious from the above algorithm, the transition from one genera-
tion to the next consists of four basic components:

Selection: Mechanism for selecting individuals (strings) for reproduction
according to their fitness (objective function value).

Crossover: Method of merging the genetic information of two individu-
als; if the coding is chosen properly, two good parents produce good
children.

Mutation: In real evolution, the genetic material can by changed ran-
domly by erroneous reproduction or other deformations of genes,
e.g. by gamma radiation. In genetic algorithms, mutation can be
realized as a random deformation of the strings with a certain prob-
ability. The positive effect is preservation of genetic diversity and, as
an effect, that local maxima can be avoided.

1.2. DEFINITIONS AND TERMINOLOGY 15

Sampling: Procedure which computes a new generation from the previ-
ous one and its offsprings.

Compared with traditional continuous optimization methods, such as
Newton or gradient descent methods, we can state the following signifi-
cant differences:

1. GAs manipulate coded versions of the problem parameters instead
of the parameters themselves, i.e. the search space is S instead of X
itself.

2. While almost all conventional methods search from a single point,
GAs always operate on a whole population of points (strings). This
contributes much to the robustness of genetic algorithms. It im-
proves the chance of reaching the global optimum and, vice versa,
reduces the risk of becoming trapped in a local stationary point.

3. Normal genetic algorithms do not use any auxiliary information
about the objective function value such as derivatives. Therefore,
they can be applied to any kind of continuous or discrete optimiza-
tion problem. The only thing to be done is to specify a meaningful
decoding function.

4. GAs use probabilistic transition operators while conventional meth-
ods for continuous optimization apply deterministic transition oper-
ators. More specifically, the way a new generation is computed from
the actual one has some random components (we will see later by
the help of some examples what these random components are like).

16 1. BASIC IDEAS AND CONCEPTS

Chapter 2

A Simple Class of GAs

Once upon a time a fire broke out in a hotel, where just then a sci-
entific conference was held. It was night and all guests were sound
asleep. As it happened, the conference was attended by researchers
from a variety of disciplines. The first to be awakened by the smoke
was a mathematician. His first reaction was to run immediately to
the bathroom, where, seeing that there was still water running from
the tap, he exclaimed: “There is a solution!”. At the same time, how-
ever, the physicist went to see the fire, took a good look and went back
to his room to get an amount of water, which would be just suffi-
cient to extinguish the fire. The electronic engineer was not so choosy
and started to throw buckets and buckets of water on the fire. Finally,
when the biologist awoke, he said to himself: “The fittest will survive”
and went back to sleep.

Anecdote originally told by C. L. Liu

In this chapter, we will present a very simple but extremely important
subclass—genetic algorithms working with a fixed number of binary
strings of fixed length. For this purpose, let us assume that the strings
we consider are all from the set

S = {0, 1}n,

where n is obviously the length of the strings. The population size will be
denoted with m in the following. Therefore, the generation at time t is a
list of m strings which we will denote with

Bt = (b1,t, b2,t, . . . , bm,t).

All GAs in this chapter will obey the following structure:

17

18 2. A SIMPLE CLASS OF GAS

2.1 Algorithm.

t := 0;
Compute initial population B0 = (b1,0, . . . , bm,0);

WHILE stopping condition not fulfilled DO
BEGIN

FOR i := 1 TO m DO
select an individual bi,t+1 from Bt;

FOR i := 1 TO m − 1 STEP 2 DO
IF Random[0, 1] ≤ pC THEN

cross bi,t+1 with bi+1,t+1;

FOR i := 1 TO m DO
eventually mutate bi,t+1;

t := t + 1
END

Obviously, selection, crossover (done only with a probability of pC

here), and mutation are still degrees of freedom, while the sampling op-
eration is already specified. As it is easy to see, every selected individual
is replaced by one of its children after crossover and mutation; unselected
individuals die immediately. This is a rather common sampling operation,
although other variants are known and reasonable.

In the following, we will study the three remaining operations selec-
tion, crossover, and mutation.

2.1 Genetic Operations on Binary Strings

2.1.1 Selection

Selection is the component which guides the algorithm to the solution by
preferring individuals with high fitness over low-fitted ones. It can be a
deterministic operation, but in most implementations it has random com-
ponents.

One variant, which is very popular nowadays (we will give a theo-
retical explanation of its good properties later), is the following scheme,

2.1. GENETIC OPERATIONS ON BINARY STRINGS 19

where the probability to choose a certain individual is proportional to its
fitness. It can be regarded as a random experiment with

P[bj,t is selected] =
f(bj,t)

m∑

k=1

f(bk,t)
. (2.1)

Of course, this formula only makes sense if all the fitness values are pos-
itive. If this is not the case, a non-decreasing transformation ϕ : R → R

+

must be applied (a shift in the simplest case). Then the probabilities can
be expressed as

P[bj,t is selected] =
ϕ(f(bj,t))

m∑

k=1

ϕ(f(bk,t))
(2.2)

We can force the property (2.1) to be satisfied by applying a random
experiment which is, in some sense, a generalized roulette game. In this
roulette game, the slots are not equally wide, i.e. the different outcomes
can occur with different probabilities. Figure 2.1 gives a graphical hint
how this roulette wheel game works.

The algorithmic formulation of the selection scheme (2.1) can be writ-
ten down as follows, analogously for the case of (2.2):

2.2 Algorithm.

x := Random[0, 1];
i := 1

WHILE i < m & x <
∑i

j=1 f(bj,t)/
∑m

j=1 f(bj,t) DO
i := i + 1;

select bi,t;

For obvious reasons, this method is often called proportional selection.

2.1.2 Crossover

In sexual reproduction, as it appears in the real world, the genetic material
of the two parents is mixed when the gametes of the parents merge. Usu-
ally, chromosomes are randomly split and merged, with the consequence

20 2. A SIMPLE CLASS OF GAS

0.167

0.208

0.083

0.251

0.083

0.208

Figure 2.1: A graphical representation of roulette wheel selection, where
the number of alternatives m is 6. The numbers inside the arcs correspond
to the probabilities to which the alternative is selected.

that some genes of a child come from one parent while others come from
the other parents.

This mechanism is called crossover. It is a very powerful tool for intro-
ducing new genetic material and maintaining genetic diversity, but with
the outstanding property that good parents also produce well-performing
children or even better ones. Several investigations have come to the con-
clusion that crossover is the reason why sexually reproducing species have
adapted faster than asexually reproducing ones.

Basically, crossover is the exchange of genes between the chromosomes
of the two parents. In the simplest case, we can realize this process by
cutting two strings at a randomly chosen position and swapping the two
tails. This process, which we will call one-point crossover in the following,
is visualized in Figure 2.2.

2.1. GENETIC OPERATIONS ON BINARY STRINGS 21

�✂✁☎✄✝✆☎✞✠✟☛✡ ☞✍✌✏✎✒✑ ✓✔✄✝✆☎✞

✕

✖

✗

✘✙✘✛✚✙✚✜✘✙✘✢✚✙✚✣✘✤✘✥✚✙✚

✚✙✚✙✚✣✘✤✘✛✚✜✘✛✚✙✚✜✘✦✘✙✘

✘✤✘✛✚✦✚✜✘✙✘✢✚✙✚✙✚✜✘✙✘✤✘

✚✤✚✙✚ ✘✤✘✛✚✜✘✛✚✣✘✤✘✛✚✤✚

Figure 2.2: One-point crossover of binary strings.

2.3 Algorithm.

pos := Random{1, . . . , n − 1};

FOR i := 1 TO pos DO
BEGIN

Child1[i] := Parent1[i];
Child2[i] := Parent2[i]

END

FOR i := pos + 1 TO n DO
BEGIN

Child1[i] := Parent2[i];
Child2[i] := Parent1[i]

END

One-point crossover is a simple and often-used method for GAs which
operate on binary strings. For other problems or different codings, other
crossover methods can be useful or even necessary. We mention just a
small collection of them, for more details see [20, 22]:

N -point crossover: Instead of only one, N breaking points are chosen ran-
domly. Every second section is swapped. Among this class, two-
point crossover is particularly important

Segmented crossover: Similar to N -point crossover with the difference
that the number of breaking points can vary.

22 2. A SIMPLE CLASS OF GAS

Uniform crossover: For each position, it is decided randomly if the posi-
tions are swapped.

Shuffle crossover: First a randomly chosen permutation is applied to the
two parents, then N -point crossover is applied to the shuffled par-
ents, finally, the shuffled children are transformed back with the in-
verse permutation.

2.1.3 Mutation

The last ingredient of our simple genetic algorithm is mutation—the ran-
dom deformation of the genetic information of an individual by means of
radioactive radiation or other environmental influences. In real reproduc-
tion, the probability that a certain gene is mutated is almost equal for all
genes. So, it is near at hand to use the following mutation technique for
a given binary string s, where pM is the probability that a single gene is
modified:

2.4 Algorithm.

FOR i := 1 TO n DO
IF Random[0, 1] < pM THEN

invert s[i];

Of course, pM should be rather low in order to avoid that the GA be-
haves chaotically like a random search.

Again, similar to the case of crossover, the choice of the appropriate
mutation technique depends on the coding and the problem itself. We
mention a few alternatives, more details can be found in [20] and [22]
again:

Inversion of single bits: With probability pM, one randomly chosen bit is
negated.

Bitwise inversion: The whole string is inverted bit by bit with prob. pM.

Random selection: With probability pM, the string is replaced by a ran-
domly chosen one.

2.1. GENETIC OPERATIONS ON BINARY STRINGS 23

2.1.4 Summary

If we fill in the methods described above, we can write down a uni-
versal genetic algorithm for solving optimization problems in the space
S = {0, 1}n.

2.5 Algorithm.

t := 0;
Create initial population B0 = (b1,0, . . . , bm,0);

WHILE stopping condition not fulfilled DO
BEGIN

(∗ proportional selection ∗)

FOR i := 1 TO m DO
BEGIN

x := Random[0, 1];

k := 1;
WHILE k < m & x <

∑k
j=1 f(bj,t)/

∑m
j=1 f(bj,t) DO

k := k + 1;

bi,t+1 := bk,t

END

(∗ one-point crossover ∗)

FOR i := 1 TO m − 1 STEP 2 DO
BEGIN

IF Random[0, 1] ≤ pC THEN
BEGIN

pos := Random{1, . . . , n − 1};

FOR k := pos + 1 TO n DO
BEGIN

aux := bi,t+1[k];
bi,t+1[k] := bi+1,t+1[k];
bi+1,t+1[k] := aux

END
END

END

(∗ mutation ∗)

FOR i := 1 TO m DO
FOR k := 1 TO n DO

IF Random[0, 1] < pM THEN
invert bi,t+1[k];

t := t + 1
END

24 2. A SIMPLE CLASS OF GAS

2.2 Examples

2.2.1 A Very Simple One

Consider the problem of finding the global maximum of the following
function:

f1 : {0, . . . , 31} −→ R

x 7−→ x2

Of course, the solution is obvious, but the simplicity of this problem allows
us to compute some steps by hand in order to gain some insight into the
principles behind genetic algorithms.

The first step on the checklist of things, which have to be done in order
to make a GA work, is, of course, to specify a proper string space along
with an appropriate coding and decoding scheme. In this example, it is
near at hand to consider S = {0, 1}5, where a value from {0, . . . , 31} is
coded by its binary representation. Correspondingly, a string is decoded
as

c̃(s) =
4∑

i=0

s[4 − i] · 2i.

Like in [22], let us assume that we use Algorithm 2.5 as it is, with a
population size of m = 4, a crossover probability pC = 1 and a mutation
probability of pM = 0.001. If we compute the initial generation randomly
with uniform distribution over {0, 1}5, we obtain the following in the first
step:

Individual String x value f(x) pselecti
No. (genotype) (phenotype) x2 fi∑

fj

1 0 1 1 0 1 13 169 0.14
2 1 1 0 0 0 24 576 0.49
3 0 1 0 0 0 8 64 0.06
4 1 0 0 1 1 19 361 0.31

One can compute easily that the sum of fitness values is 1170, where the
average is 293 and the maximum is 576. We see from the last column in
which way proportional selection favors high-fitted individuals (such as
no. 2) over low-fitted ones (such as no. 3).

A random experiment could, for instance, give the result that individu-
als no. 1 and no. 4 are selected for the new generation, while no. 3 dies and
no. 2 is selected twice, and we obtain the second generation as follows:

2.2. EXAMPLES 25

-1 -0.5 0.5 1

0.5

1

1.5

2

Figure 2.3: The function f2.

Set of selected Crossover site New x f(x)
individuals (random) population value x2

0 1 1 0|1 4 0 1 1 0 0 12 144
1 1 0 0|0 4 1 1 0 0 1 25 625
1 1|0 0 0 2 1 1 0 1 1 27 729
1 0|0 1 1 2 1 0 0 0 0 16 256

So, we obtain a new generation with a sum of fitness values of 1754, an
average of 439, and a maximum of 729.

We can see from this very basic example in which way selection favors
high-fitted individuals and how crossover of two parents can produce an
offspring which is even better than both of its parents. It is left to the
reader as an exercise to continue this example.

2.2.2 An Oscillating One-Dimensional Function

Now we are interested in the global maximum of the function

f2 : [−1, 1] −→ R

x 7−→ 1 + e−x2 · cos(36x).

As one can see easily from the plot in Figure 2.3, the function has a global
maximum in 0 and a lot of local maxima.

First of all, in order to work with binary strings, we have to discretize
the search space [−1, 1]. A common technique for doing so is to make a

26 2. A SIMPLE CLASS OF GAS

uniform grid of 2n points, then to enumerate the grid points, and to use
the binary representation of the point index as coding. In the general form
(for an arbitrary interval [a, b]), this looks as follows:

cn,[a,b] : [a, b] −→ {0, 1}n

x 7−→ binn

(
round

(
(2n − 1) · x−a

b−a

))
,

(2.3)

where binn is the function which converts a number from {0, . . . , 2n−1} to
its binary representation of length n. This operation is not bijective since
information is lost due to the rounding operation. Obviously, the corre-
sponding decoding function can be defined as

c̃n,[a,b] : {0, 1}n −→ [a, b]
s 7−→ a + bin−1

n (s) · b−a
2n−1

.
(2.4)

It is left as an exercise to show that the decoding function c̃n,[a,b] is injective
and that the equality (1.2) holds for the pair (cn,[a,b], c̃n,[a,b]).

Applying the above coding scheme to the interval [−1, 1] with n = 16,
we get a maximum accuracy of the solution of

1

2
· 2

216 − 1
≈ 1.52 · 10−5.

Now let us apply Algorithm 2.5 with m = 6, pC = 1, and pM = 0.005. The
first and the last generation are given as follows:

Generation 1 max. fitness 1.9836 at -0.0050
#0 0111111101010001 fitness: 1.98
#1 1101111100101011 fitness: 0.96
#2 0111111101011011 fitness: 1.98
#3 1001011000011110 fitness: 1.97
#4 1001101100101011 fitness: 1.20
#5 1100111110011110 fitness: 0.37
Average Fitness: 1.41

...

Generation 52 max. fitness 2.0000 at 0.0000
#0 0111111101111011 fitness: 1.99
#1 0111111101111011 fitness: 1.99
#2 0111111101111011 fitness: 1.99
#3 0111111111111111 fitness: 2.00
#4 0111111101111011 fitness: 1.99
#5 0111111101111011 fitness: 1.99
Average Fitness: 1.99

We see that the algorithm arrives at the global maximum after 52 gen-
erations, i.e. it suffices with at most 52 × 6 = 312 evaluations of the fitness

2.2. EXAMPLES 27

-10

-5

0

5

10 -10

-5

0

5

10

0

0.25

0.5

0.75

1

-10

-5

0

5

Figure 2.4: A surface plot of the function f3.

function, while the total size of the search space is 216 = 65536. We can
draw the conclusion—at least for this example—that the GA is definitely
better than a pure random search or an exhaustive method which stupidly
scans the whole search space.

Just in order to get more insight into the coding/decoding scheme, let
us take the best string 0111111111111111. Its representation as integer
number is 32767. Computing the decoding function yields

−1 + 32767 · 1 − (−1)

65535
= −1 + 0.9999847 = −0.0000153.

2.2.3 A Two-Dimensional Function

As next example, we study the function

f3 : [−10, 10]2 −→ R

(x, y) 7−→ 1−sin2(
√

x2+y2)

1+0.001·(x2+y2)
.

As one can see easily from the plot in Figure 2.4, the function has a global
maximum in 0 and a lot of local maxima.

Let us use the coding/decoding scheme as shown in (2.3) and (2.4) for
the two components x and y independently with n = 24, i.e. c24,[−10,10] and

28 2. A SIMPLE CLASS OF GAS

c̃24,[−10,10] are used as coding and decoding functions, respectively. In order
to get a coding for the two-dimensional vector, we can use concatenation
and splitting:

c3 : [−10, 10]2 −→ {0, 1}48

(x, y) 7−→ c24,[−10,10](x)|c24,[−10,10](y)

c̃3 : {0, 1}48 −→ [−10, 10]2

s 7−→
(
c̃24,[−10,10](s[1 : 24]), c̃24,[−10,10](s[25 : 48])

)

If we apply Algorithm 2.5 with m = 50, pC = 1, pM = 0.01, we observe
that a fairly good solution is reached after 693 generations (at most 34650
evaluations at a search space size of 2.81 · 1014):

Generation 693 max. fitness 0.9999 at (0.0098,0.0000)
#0 000000001000000001000000000000000000000010000000 fitness: 1.00
#1 000001000000011001000110000000000000000010100010 fitness: 0.00
#2 000000001000000000100000000000000000000010000000 fitness: 1.00
#3 000000001000001001000000000000000000000010000000 fitness: 0.97
#4 000000001000001011001000000000000000000010000011 fitness: 0.90
#5 000000101000000001000010000100000000000010000000 fitness: 0.00
#6 000000001000000011000000000000001000000010000011 fitness: 0.00
#7 000000001000000001100000000010000000000110000000 fitness: 0.00
#8 000000001001000001000000000000000000000000100010 fitness: 0.14
#9 000000001000000001000000000000000000000010100010 fitness: 0.78
#10 000000001000011011000000000000000000000010000000 fitness: 0.75
#11 000000001000000001000000000000000000000010100000 fitness: 0.64
#12 000000001000001000010010000000000000000010001001 fitness: 0.56
#13 000000001000001011000000000000000000000010100010 fitness: 0.78
#14 000000001000000001000001000000000000000010000000 fitness: 1.00
#15 000000001000000001100000100000000000000010000000 fitness: 0.00
#16 000000001000001010001000000000000000000010100010 fitness: 0.78
#17 000000001000011011000000000000000000000010000011 fitness: 0.70
#18 000000001000001011001000000000000000000010000011 fitness: 0.90
#19 000000001000011001000010001000010000000010000010 fitness: 0.00
#20 000000001000000001000000000001000000000010100010 fitness: 0.00
#21 000000001000011001100000000000000000010010000000 fitness: 0.00
#22 000000001000000101100000000000000000010010000000 fitness: 0.00
#23 000000001000100001000000000000000000000010000111 fitness: 0.44
#24 000000001000000011000000000000000000000000000000 fitness: 0.64
#25 000000001000000001011000000000010000000010100010 fitness: 0.00
#26 000000001000000001001000000000000000000000100010 fitness: 0.23
#27 000000001000001011000010000000000000000010100010 fitness: 0.78
#28 000000001000001011100010000000000000000010101010 fitness: 0.97
#29 010000001000000011000000000000000010010010000000 fitness: 0.00
#30 000000001000001011000000000000000000000010000011 fitness: 0.90
#31 000000001000011011000000000000000000000011000011 fitness: 0.26
#32 000000001000001001100000000000000000000010000000 fitness: 0.97
#33 000000001001001011000110000000000000000011110100 fitness: 0.87
#34 000000001000000000000000000000000000000010100010 fitness: 0.78
#35 000000001000001011001000000000000000000010000010 fitness: 0.93
#36 000000001000011011000000000000000010000010000001 fitness: 0.00
#37 000000001000001011000000000010000000000010100010 fitness: 0.00
#38 000000001000001011000010010000000000000010000000 fitness: 0.00
#39 000000001000000001000000000001000000000010100010 fitness: 0.00
#40 000000001000001001000110000000000000000011010100 fitness: 0.88
#41 000000001010000001000000000000000000000010000000 fitness: 0.66
#42 000000001000001001100110000000000000000011010100 fitness: 0.88
#43 0010000011 fitness: 0.64
#44 000000001000001011001000000000000000000010100000 fitness: 0.65
#45 000000001000001011000110000000000000000011110100 fitness: 0.81
#46 0010000000 fitness: 0.64
#47 000000001000010001000110000000000000000010000000 fitness: 0.89
#48 000000001000001011000000000000000000000010100011 fitness: 0.84
#49 000000001000000111000000000000000000000010000001 fitness: 0.98
Average Fitness: 0.53

Again, we learn from this example that the GA is here for sure much
faster than an exhaustive algorithm or a pure random search. The ques-

2.2. EXAMPLES 29

tion arises, since f3 is perfectly smooth, which result we obtain if we ap-
ply a conventional method with random selection of the initial value. In
this example, the expectation is obvious: The global maximum (0, 0) is
surrounded by a ring of minima at a radius of π

2
. If we apply, for in-

stance, BFGS (Broyden Fletcher Goldfarb Shanno—a very efficient Quasi-
Newton method for continuous unconstrained function optimization [10])
with line search, it is likely that convergence to the global maximum is
achieved if the initial value is inside that ring, but only in this case. If we
take the initial value from [−10, 10]2 randomly with uniform distribution,
the probability to get a value from the appropriate neighborhood of the
global maximum is

(
π
2

)2 · π
10 · 10

=
π3

400
= 0.0775.

The expected number of trials until we get an initial value is, therefore,
1

0.0775
≈ 13. In a test implementation, it took 15 trials (random initial val-

ues) until the correct global optimum was found by the BFGS method with
line search. The total time for all these computations was 5 milliseconds
on an SGI O2 (MIPS R5000/180SC). The genetic algorithm, as above, took
1.5 seconds until it found the global optimum with comparable accuracy.

This example shows that GAs are not necessarily fast. Moreover, they
are in many cases much slower than conventional methods which involve
derivatives. The next example, however, will drastically show us that
there are even smooth functions which can be hard for conventional opti-
mization techniques.

2.2.4 Global Smoothness versus Local Perturbations

Consider the function

f4 : [−2, 2] −→ R

x 7−→ e−x2
+ 0.01 cos(200x).

As easy to see from Figure 2.5, this function has a clear bell-like shape with
small but highly oscillating perturbations. In the first derivative, these
oscillations are drastically emphasized (see Figure 2.5):

f ′
4(x) = −2xe−x2 − 2 sin(200x)

We applied the simple GA as in Algorithm 2.5 with n = 16, i.e. the
pair c̃16,[−2,2]/c̃16,[−2,2] as coding/decoding scheme, m = 10, pC = 1, and

30 2. A SIMPLE CLASS OF GAS

-2 -1 1 2

0.2

0.4

0.6

0.8

1

-2 -1 1 2

-2

-1

1

2

Figure 2.5: The function f4 (top) and its derivative (bottom).

pM = 0.005. The result was that the global maximum at x = 0 was found
after 9 generations (i.e. at most 90 evaluations of the fitness function) and
5 milliseconds computation time, respectively (on the same computer as
above).

In order to repeat the above comparison, BFGS with line search and
random selection of the initial value was applied to f4 as well. The global
optimum was found after 30 trials (initial values) with perfect accuracy,
but 9 milliseconds of computation time.

We see that, depending on the structure of the objective function, a
GA can even outperform an acknowledged conventional method which
makes use of derivatives.

2.2. EXAMPLES 31

2.2.5 Discussion

Finally, let us summarize some conclusions about the four examples
above:

Algorithm 2.5 is very universal. More or less, the same algorithm has
been applied to four fundamentally different optimization tasks.

As seen in 2.2.4, GAs can even be faster in finding global maxima than
conventional methods, in particular when derivatives provide misleading
information. We should not forget, however, that, in most cases where
conventional methods can be applied, GAs are much slower because they
do not take auxiliary information like derivatives into account. In these
optimization problems, there is no need to apply a GA which gives less
accurate solutions after much longer computation time. The enormous
potential of GAs lies elsewhere—in optimization of non-differentiable or
even discontinuous functions, discrete optimization, and program induc-
tion.

32 2. A SIMPLE CLASS OF GAS

Chapter 3

Analysis

Although the belief that an organ so perfect as the eye could have been
formed by natural selection, is enough to stagger any one; yet in the
case of any organ, if we know of a long series of gradations in com-
plexity, each good for its possessor, then, under changing conditions
of life, there is no logical impossibility in the acquirement of any con-
ceivable degree of perfection through natural selection.

Charles R. Darwin

In this remark, Darwin, in some sense, tries to turn around the burden of
proof for his theory simply by saying that there is no evidence against it.
This chapter is intended to give an answer to the question why genetic
algorithms work—in a way which is philosophically more correct than
Darwin’s. However, we will see that, as in Darwin’s theory of evolution,
the complexity of the mechanisms makes mathematical analysis difficult
and complicated.

For conventional deterministic optimization methods, such as gradi-
ent methods, Newton- or Quasi-Newton methods, etc., it is rather usual
to have results which guarantee that the sequence of iterations converges
to a local optimum with a certain speed or order. For any probabilistic op-
timization method, theorems of this kind cannot be formulated, because
the behavior of the algorithm is not determinable in general. Statements
about the convergence of probabilistic optimization methods can only give
information about the expected or average behavior. In the case of genetic
algorithms, there are a few circumstances which make it even more diffi-
cult to investigate their convergence behavior:

33

34 3. ANALYSIS

• Since a single transition from one generation to the next is a combi-
nation of usually three probabilistic operators (selection, crossover,
and mutation), the inner structure of a genetic algorithm is rather
complicated.

• For each of the involved probabilistic operators, many different vari-
ants have been proposed, thus it is not possible to give general con-
vergence results due to the fact that the choice of the operators influ-
ences the convergence fundamentally.

In the following, we will not be able to give “hard” convergence theo-
rems, but only a summary of results giving a clue why genetic algorithms
work for many problems but not necessarily for all problems. For simplic-
ity, we will restrict to algorithms of type 2.1, i.e. GAs with a fixed number
m of binary strings of fixed length n. Unless stated otherwise, no specific
assumptions about selection, crossover, or mutation will be made.

Let us briefly reconsider the example in 2.2.1. We saw that the transi-
tion from the first to the second generation is given as follows:

Gen. #1 f(x)
0 1 1 0 1 169
1 1 0 0 0 576
0 1 0 0 0 64
1 0 0 1 1 361

=⇒

Gen. #2 f(x)
0 1 1 0 0 144
1 1 0 0 1 625
1 1 0 1 1 729
1 0 0 0 0 256

It is easy to see that it is advantageous to have a 1 in the first position.
In fact, the number of strings having this property increased from 2 in
the first to 3 in the second generation. The question arises whether this
is a coincidence or simply a clue to the basic principle why GAs work.
The answer will be that the latter is the case. In order to investigate these
aspects formally, let us make the following definition.

3.1 Definition. A string H = (h1, . . . , hn) over the alphabet {0, 1, ∗} is
called a (binary) schema of length n. An hi 6= ∗ is called a specification of
H , an hi = ∗ is called wildcard.

It is not difficult to see that schemata can be considered as specific sub-
sets of {0, 1}n if we consider the following function which maps a schema
to its associated subset.

i : {0, 1, ∗}n −→ P({0, 1}n)
H 7−→ {S | ∀1 ≤ i ≤ n : (hi 6= ∗) ⇒ (hi = si)}

35

n = 1 0 1

00

01 11

10

n = 2

n = 3
110

111011

101

100

001

010

000

1110

1100

1000

1101

0000

1111

0110

1010

1011

0111

0001

0011

1001

0100

0101

0010

n = 4

Figure 3.1: Hypercubes of dimensions 1–4.

If we interpret binary strings of length n as hypercubes of dimension
n (cf. Figure 3.1), schemata can be interpreted as hyperplanes in these hy-
percubes (see Figure 3.2 for an example with n = 3).

Before turning to the first important result, let us make some funda-
mental definitions concerning schemata.

3.2 Definition.

1. A string S = (s1, . . . , sn) over the alphabet {0, 1} fulfills the schema
H = (h1, . . . , hn) if and only if it matches H is all non-wildcard posi-
tions:

∀i ∈ {j | hj 6= ∗} : si = hi

According to the discussion above, we write S ∈ H .

2. The number of specifications of a schema H is called order and denoted
as

O(H) = |{i ∈ {1, . . . , n}|hi 6= ∗}|.

3. The distance between the first and the last specification

δ(H) = max{i|hi 6= ∗} − min{i|hi 6= ∗}

is called the defining length of a schema H .

36 3. ANALYSIS

*00 line

001

100

101

011 111

110

11* line

0*1 line

*11 line
**1 plane

00* line

0 plane

1*0 line

1** plane010

000

Figure 3.2: A hyperplane interpretation of schemata for n = 3.

3.1 The Schema Theorem

In this section, we will formulate and prove the fundamental result on the
behavior of genetic algorithms—the so-called Schema Theorem. Although
being completely incomparable with convergence results for conventional
optimization methods, it still provides valuable insight into the intrinsic
principles of GAs.

Assume in the following, that we have a genetic algorithm of type 2.1
with proportional selection and an arbitrary but fixed fitness function f .
Let us make the following notations:

1. The number of individuals which fulfill H at time step t are denoted
as

rH,t = |Bt ∩ H| .

2. The expression f̄(t) refers to the observed average fitness at time t:

f̄(t) =
1

m

m∑

i=1

f(bi,t)

3. The term f̄(H, t) stands for the observed average fitness of schema
H in time step t:

f̄(H, t) =
1

rH,t

∑

i∈{j|bj,t∈H}

f(bi,t)

3.1. THE SCHEMA THEOREM 37

3.3 Theorem (Schema Theorem—Holland 1975). Assuming we consider a
genetic algorithm of type 2.5, the following inequality holds for every schema H :

E[rH,t+1] ≥ rH,t ·
f̄(H, t)

f̄(t)
·
(

1 − pC · δ(H)

n − 1

)

· (1 − pM)O(H) (3.1)

Proof. The probability that we select an individual fulfilling H is (com-
pare with Eq. (2.1))

∑

i∈{j|bj,t∈H}

f(bi,t)

m∑

i=1

f(bi,t)
. (3.2)

This probability does not change throughout the execution of the selec-
tion loop. Moreover, every of the m individuals is selected completely
independently from the others. Hence, the number of selected individu-
als, which fulfill H , is binomially distributed with sample amount m and
the probability in (3.2). We obtain, therefore, that the expected number of
selected individuals fulfilling H is

m ·

∑

i∈{j|bj,t∈H}

f(bi,t)

m∑

i=1

f(bi,t)
= m · rH,t

rH,t

·

∑

i∈{j|bj,t∈H}

f(bi,t)

m∑

i=1

f(bi,t)

= rH,t ·

∑

i∈{j|bj,t∈H}

f(bi,t)

rH,t

m∑

i=1
f(bi,t)

m

= rH,t ·
f̄(H, t)

f̄(t)

If two individuals are crossed, which both fulfill H , the two offsprings
again fulfill H . The number of strings fulfilling H can only decrease if one
string, which fulfills H , is crossed with a string which does not fulfill H ,
but, obviously, only in the case that the cross site is chosen somewhere
in between the specifications of H . The probability that the cross site is
chosen within the defining length of H is

δ(H)

n − 1
.

Hence the survival probability pS of H , i.e. the probability that a string
fulfilling H produces an offspring also fulfilling H , can be estimated as
follows (crossover is only done with probability pC):

pS ≥ 1 − pC · δ(H)

n − 1

38 3. ANALYSIS

Selection and crossover are carried out independently, so we may compute
the expected number of strings fulfilling H after crossover simply as

f̄(H, t)

f̄(t)
· rH,t · pS ≥ f̄(H, t)

f̄(t)
· rH,t ·

(

1 − pC · δ(H)

n − 1

)

.

After crossover, the number of strings fulfilling H can only decrease if
a string fulfilling H is altered by mutation at a specification of H . The
probability that all specifications of H remain untouched by mutation is
obviously

(1 − pM)O(H).

Applying the same argument like above, Equation (3.1) follows.

The arguments in the proof of the Schema Theorem can be applied
analogously to many other crossover and mutation operations.

3.4 Corollary. For a genetic algorithm of type 2.1 with roulette wheel selection,
the inequality holds

E[rH,t+1] ≥
f̄(H, t)

f̄(t)
· rH,t · PC(H) · PM(H) (3.3)

for any schema H , where PC(H) is a constant only depending on the schema H
and the crossover method and PM(H) is a constant which solely depends on H
and the involved mutation operator. For the variants discussed in 2.1.2 and 2.1.3,
we can give the following estimates:

PC(H) = 1 − pC · δ(H)
n−1

one-point crossing over

PC(H) = 1 − pC ·
(

1 −
(

1
2

)O(H)
)

uniform crossing over

PC(H) = 1 − pC any other crossing over method

PM(H) = (1 − pM)O(H) bitwise mutation

PM(H) = 1 − pM · O(H)
n

inversion of a single bit
PM(H) = 1 − pM bitwise inversion

PM(H) = 1 − pM · |H|
2n random selection

Even the inattentive reader must have observed that the Schema Theo-
rem is somehow different from convergence results for conventional opti-
mization methods. It seems that this result raises more questions than it is
ever able to answer. At least one insight is more or less obvious: Schemata
with above-average fitness and short defining length—let us put aside the

3.1. THE SCHEMA THEOREM 39

generalizations made in Corollary 3.4 for our following studies—tend to
produce more offsprings than others. For brevity, let us call such schemata
building blocks. It will become clear in a moment why this term is appro-
priate. If we assume that the quotient

f̄(H, t)

f̄(t)

is approximately stationary, i.e. independent of time and the actual gen-
erations, we immediately see that the number of strings, which belong to
above-average schemata with short defining lengths, grows exponentially
(like a geometric sequence).

This discovery poses the question whether it is a wise strategy to let
above-average schemata receive an exponentially increasing number of
trials and, if the answer is yes, why this is the case. In 3.1.1, we will try to
shed more light on this problem.

There is one other fundamental question we have yet not touched at
all: Undoubtedly, GAs operate on binary strings, but not on schemata. The
Schema Theorem, more or less, provides an observation of all schemata,
which all grow and decay according to their observed average fitness val-
ues in parallel. What is actually the interpretation of this behavior and
why is this a good thing to do? Subsection 3.1.2 is devoted to this topic.

Finally, one might ask where the crucial role of schemata with above-
average fitness and short defining length comes from and what the influ-
ence of the fitness function and the coding scheme is. We will attack these
problems in 3.2.

3.1.1 The Optimal Allocation of Trials

The Schema Theorem has provided the insight that building blocks re-
ceive exponentially increasing trials in future generations. The question
remains, however, why this could be a good strategy. This leads to an im-
portant and well-analyzed problem from statistical decision theory—the
two-armed bandit problem and its generalization, the k-armed bandit problem.
Although this seems like a detour from our main concern, we shall soon
understand the connection to genetic algorithms.

Suppose we have a gambling machine with two slots for coins and two
arms. The gambler can deposit the coin either into the left or the right slot.
After pulling the corresponding arm, either a reward is payed or the coin

40 3. ANALYSIS

is lost. For mathematical simplicity, we just work with outcomes, i.e. the
difference between the reward (which can be zero) and the value of the
coin. Let us assume that the left arm produces an outcome with mean
value µ1 and a variance σ2

1 while the right arm produces an outcome with
mean value µ2 and variance σ2

2 . Without loss of generality, although the
gambler does not know this, assume that µ1 ≥ µ2.

The question arises which arm should be played. Since we do not know
beforehand which arm is associated with the higher outcome, we are faced
with an interesting dilemma. Not only must me make a sequence of de-
cisions which arm to play, we have to collect, at the same time, informa-
tion about which is the better arm. This trade-off between exploration of
knowledge and its exploitation is the key issue in this problem and, as
turns out later, in genetic algorithms, too.

A simple approach to this problem is to separate exploration from ex-
ploitation. More specifically, we could perform a single experiment at the
beginning and thereafter make an irreversible decision that depends on
the results of the experiment. Suppose we have N coins. If we first allo-
cate an equal number n (where 2n ≤ N) of trials to both arms, we could
allocate the remaining N − 2n trials to the observed better arm. Assuming
we know all involved parameters [22], the expected loss is given as

L(N, n) = (µ1 − µ2) ·
(
(N − n)q(n) + n(1 − q(n))

)

where q(n) is the probability that the worst arm is the observed best arm
after the 2n experimental trials. The underlying idea is obvious: In case
that we observe that the worse arm is the best, which happens with prob-
ability q(n), the total number of trials allocated to the right arm is N − n.
The loss is, therefore, (µ1 − µ2) · (N − n). In the reverse case that we actu-
ally observe that the best arm is the best, which happens with probability
1−q(n), the loss is only what we get less because we played the worse arm
n times, i.e. (µ1 −µ2) ·n. Taking the central limit theorem into account, we
can approximate q(n) with the tail of a normal distribution:

q(n) ≈ 1√
2π

· e−c2/2

c
, where c =

µ1 − µ2
√

σ2
1 + σ2

2

·
√

n

Now we have to specify a reasonable experiment size n. Obviously, if
we choose n = 1, the obtained information is potentially unreliable. If
we choose, however, n = N

2
there are no trials left to make use of the

information gained through the experimental phase. What we see is again
the trade-off between exploitation with almost no exploration (n = 1) and

3.1. THE SCHEMA THEOREM 41

exploration without exploitation (n = N
2

). It does not take a Nobel price
winner to see that the optimal way is somewhere in the middle. Holland
[27] has studied this problem is very detail. He came to the conclusion that
the optimal strategy is given by the following equation:

n∗ ≈ b2 ln

(
N2

8πb4 ln N2

)

, where b =
σ1

µ1 − µ2

.

Making a few transformations, we obtain that

N − n∗ ≈
√

8πb4 ln N2 · en∗/2b2 ,

i.e. the optimal strategy is to allocate slightly more than an exponentially
increasing number of trials to the observed best arm. Although no gambler
is able to apply this strategy in practice, because it requires knowledge of
the mean values µ1 and µ2, we still have found an important bound of
performance a decision strategy should try to approach.

A genetic algorithm, although the direct connection is not yet fully
clear, actually comes close to this ideal, giving at least an exponentially in-
creasing number trials to the observed best building blocks. However, one
may still wonder how the two-armed bandit problem and GAs are related.
Let us consider an arbitrary string position. Then there are two schemata
of order one which have their only specification in this position. Accord-
ing to the Schema Theorem, the GA implicitly decides between these two
schemata, where only incomplete data are available (observed average fit-
ness values). In this sense, a GA solves a lot of two-armed problems in
parallel.

The Schema Theorem, however, is not restricted to schemata with an
order of 1. Looking at competing schemata (different schemata which are
specified in the same positions), we observe that a GA is solving an enor-
mous number of k-armed bandit problems in parallel. The k-armed bandit
problem, although much more complicated, is solved in an analogous way
[22, 27]—the observed better alternatives should receive an exponentially
increasing number of trials. This is exactly what a genetic algorithm does!

3.1.2 Implicit Parallelism

So far we have discovered two distinct, seemingly conflicting views of
genetic algorithms:

1. The algorithmic view that GAs operate on strings.

42 3. ANALYSIS

2. The schema-based interpretation.

So, we may ask what a GA really processes, strings or schemata? The an-
swer is surprising: Both. Nowadays, the common interpretation is that
a GA processes an enormous amount of schemata implicitly. This is ac-
complished by exploiting the currently available, incomplete information
about these schemata continuously, while trying to explore more informa-
tion about them and other, possibly better schemata.

This remarkable property is commonly called the implicit parallelism of
genetic algorithms.

A simple GA as presented in Chapter 2 processes only m structures in
one time step, without any memory or bookkeeping about the previous
generations. We will now try to get a feeling how many schemata a GA
actually processes.

Obviously, there are 3n schemata of length n. A single binary string ful-
fills n schemata of order 1,

(
n
2

)
schemata of order 2, in general,

(
n
k

)
schemata

of order k. Hence, a string fulfills

n∑

k=1

(
n

k

)

= 2n

schemata. Thus, for any generation, we obtain that there are between 2n

and m ·2n schemata which have at least one representative. But how many
schemata are actually processed? Holland [27] has given an estimation of
the quantity of schemata that are taken over to the next generation. Al-
though the result seems somewhat clumsy, it still provides important in-
formation about the large quantity of schemata which are inherently pro-
cessed in parallel while, in fact, considering a relatively small quantity of
strings.

3.5 Theorem. Consider a randomly generated start population of a simple GA of
type 2.5 and let ε ∈ (0, 1) be a fixed error bound. Then schemata of length

ls < ε · (n − 1) + 1

have a probability of at least 1 − ε to survive one-point crossover (compare with
the proof of the Schema Theorem). If the population size is chosen as m = 2ls/2,
the number of schemata, which survive for the next generation, is of order O(m3).

3.2. BUILDING BLOCKS AND THE CODING PROBLEM 43

3.2 Building Blocks and the Coding Problem

We have already introduced the term “building block” for a schema with
high average fitness and short defining length (implying small order).
Now it is time to explain why this notation is appropriate. We have seen
in the Schema Theorem and 3.1.1 that building blocks receive an exponen-
tially increasing number of trials. The considerations in 3.1.2 have demon-
strated that a lot of schemata (including building blocks) are evaluated
implicitly and in parallel. What we still miss is the link to performance,
i.e. convergence. Unfortunately, there is no complete theory which gives
a clear answer, just a hypothesis.

3.6 Building Block Hypothesis.
A genetic algorithm creates stepwise better solutions by recombining, crossing,
and mutating short, low-order, high-fitness schemata.

Goldberg [22] has found a good comparison for pointing out the main
assertion of this hypothesis:

Just as a child creates magnificent fortresses through the arrangement
of simple blocks of wood, so does a genetic algorithm seek near opti-
mal performance through the juxtaposition of short, low-order, high-
performance schemata, or building blocks.

This seems a reasonable assumption and fits well to the Schema Theo-
rem. The question is now if and when it holds. We first consider an affine
linear fitness function

f(s) = a +
n∑

i=1

ci · s[i],

i.e. the fitness is computed as a linear combination of all genes. It is easy to
see that the optimal value can be determined for every gene independently
(only depending on the sign of the scaling factors ci).

Conversely, let us consider a needle-in-haystack problem as the other
extreme:

f(x) =

{
1 if x = x0

0 otherwise

Obviously, there is a single string x0 which is the optimum, but all other
strings have equal fitness values. In this case, certain values on single

44 3. ANALYSIS

positions (schemata) do not provide any information for guiding an opti-
mization algorithm to the global optimum.

In the linear case, the building block hypothesis seems justified. For
the second function, however, it cannot be true, since there is absolutely
no information available which could guide a GA to the global solution
through partial, sub-optimal solutions. In other words, the more the posi-
tions can be judged independently, the easier it is for a GA. On the other
hand, the more positions are coupled, the more difficult it is for a GA (and
for any other optimization method).

Biologists have come up with a special term for this kind of
nonlinearity—epistasis. Empirical studies have shown that GAs are appro-
priate for problems with medium epistasis. While almost linear problems
(i.e. with low epistasis) can be solved much more efficiently with conven-
tional methods, highly epistatic problems cannot be solved efficiently at
all [26].

We will now come to a very important question which is strongly re-
lated to epistasis: Do good parents always produce children of compara-
ble or even better fitness (the building block hypothesis implicitly relies
on this)? In natural evolution, this is almost always true. For genetic al-
gorithms, this is not so easy to guarantee. The disillusioning fact is that
the user has to take care of an appropriate coding in order to make this
fundamental property hold.

In order to get a feeling for optimization tasks which could foul a GA,
we will now try to construct a very simple misleading example. Appar-
ently, for n = 1, no problems can occur, the two-bit problem n = 2 is
the first. Without loss of generality, assume that 11 is the global maxi-
mum. Next we introduce the element of deception necessary to make this
a tough problem for a simple GA. To do this, we want a problem where
one or both of the suboptimal order-1 schemata are better than the optimal
order-1 schemata. Mathematically, we want one or both of the following
conditions to be fulfilled:

f(0*) > f(1*), (3.4)

f(*0) > f(*1), (3.5)

i.e.

f(00) + f(01)

2
>

f(10) + f(11)

2
, (3.6)

f(00) + f(10)

2
>

f(01) + f(11)

2
. (3.7)

3.2. BUILDING BLOCKS AND THE CODING PROBLEM 45

Both expressions cannot hold simultaneously, since this would contradict
to the maximality of 11. Without any loss of generality, we choose the first
condition for our further considerations.

In order to put the problem into closer perspective, we normalize all
fitness values with respect to the complement of the global optimum:

r =
f(11)

f(00)
c =

f(01)

f(00)
c′ =

f(10)

f(00)

The maximality condition implies:

r > c r > 1 r > c′

The deception conditions (3.4) and (3.6), respectively, read as follows:

r < 1 + c − c′

From these conditions, we can conclude the following facts:

c′ < 1 c′ < c

We see that there are two possible types of minimal deceptive two-bit
problems based on (3.4):

Type I: f(01) > f(00) (c > 1)
Type II: f(01) ≤ f(00) (c ≤ 1)

Figure 3.3 shows sketches of these two fundamental types of deceptive
problems. It is easy to see that both fitness functions are nonlinear. In this
sense, epistasis is again the bad property behind the deception in these
problems.

3.2.1 Example: The Traveling Salesman Problem

We have already mentioned that it is essential for a genetic algorithm that
good individuals produce comparably good or even better offsprings. We
will now study a non-trivial example which is well-known in logistics—
the traveling salesman problem (TSP). Assume we are given a finite set of
vertices/cities {v1, . . . , vN}. For every pair of cities (vi, vj), the distance
Di,j is known (i.e. we have a symmetric K × K distance matrix). What
we want to find is a permutation (p1, . . . , pN) such that the total way—the
sum of distances—is minimal:

f(p) =
N−1∑

i=1

Dpi,pi+1
+ DpN ,p1

46 3. ANALYSIS

00

10

11

00

10

11

Figure 3.3: Minimal deceptive problems of type I (left) and type II (right).

This problem appears in route planning, VLSI design, etc.

For solving the TSP with a genetic algorithm, we need a coding, a cross-
over method, and a mutation method. All these three components should
work together such the building block hypothesis is satisfiable.

First of all, it seems promising to encode a permutation as a string
of integer numbers where entry no. i refers to the i-th city which is vis-
ited. Since every number between 1 and K may only occur exactly once—
otherwise we do not have a complete tour—the conventional one-point
crossover method is not inappropriate like all other methods we have con-
sidered. If we put aside mutation for a moment, the key problem remains
how to define an appropriate crossover operation for the TSP.

Partially Mapped Crossover

Partially mapped crossover (PMX) aims at keeping as many positions from
the parents as possible. To achieve this goal, a substring is swapped like
in two-point crossover and the values are kept in all other non-conflicting
positions. The conflicting positions are replaced by the values which were
swapped to the other offspring. An example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 5 2 1 8 7 6 9 3)

3.2. BUILDING BLOCKS AND THE CODING PROBLEM 47

Assume that positions 4–7 are selected for swapping. Then the two off-
springs are given as follows if we omit the conflicting positions:

o1 = (* 2 3|1 8 7 6|* 9)

o2 = (* * 2|4 5 6 7|9 3)

Now we take the conflicting positions and fill in what was swapped to the
other offspring. For instance, 1 and 4 were swapped. Therefore, we have
to replace the 1 in the first position of o1 by 4, and so on:

o1 = (4 2 3 1 8 7 6 5 9)

o2 = (1 8 2 4 5 6 7 9 3)

Order Crossover

Order crossover (OX) relies on the idea that the order of cities is more
important than their absolute positions in the strings. Like PMX, it swaps
two aligned substrings. The computation of the remaining substrings of
the offsprings, however, is done in a different way. In order to illustrate
this rather simple idea, let us consider the same example (p1, p2) as above.
Simply swapping the two substrings and omitting all other positions, we
obtain the following:

o1 = (* * *|1 8 7 6|* *)

o2 = (* * *|4 5 6 7|* *)

For computing the open positions of o2, let us write down the positions in
p1, but starting from the position after the second crossover site:

9 3 4 5 2 1 8 7 6

If we omit all those values which are already in the offspring after the
swapping operation (4, 5, 6, and 7), we end up in the following shortened
list:

9 3 2 1 8

Now we insert this list into o2 starting after the second crossover site and
we obtain

o2 = (2 1 8 4 5 6 7 9 3).

Applying the same technique to o1 produces the following result:

o1 = (3 4 5 1 8 7 6 9 2).

48 3. ANALYSIS

Cycle Crossover

PMX and OX have in common that they usually introduce alleles outside
the crossover sites which have not been present in either parent. For in-
stance, the 3 in the first position of o1 in the OX example above neither ap-
pears in p1 nor in p2. Cycle crossover (CX) tries to overcome this problem—
the goal is to guarantee that every string position in any offspring comes
from one of the two parents. We consider the following example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 1 2 8 7 6 9 3 5)

We start from the first position of o1:

o1 = (1 * * * * * * * *)

o2 = (* * * * * * * * *)

Then o2 may only have a 4 in the first position, because we do not want
new values to be introduced there:

o1 = (1 * * * * * * * *)

o2 = (4 * * * * * * * *)

Since the 4 is already fixed for o2 now, we have to keep it in the same
position for o1 in order to guarantee that no new positions for the 4 are in-
troduced. We have to keep the 8 in the fourth position of o2 automatically
for the same reason:

o1 = (1 * * 4 * * * * *)

o2 = (4 * * 8 * * * * *)

This process must be repeated until we end up in a value which have pre-
viously be considered, i.e. we have completed a cycle:

o1 = (1 2 3 4 * * * 8 *)

o2 = (4 1 2 8 * * * 3 *)

For the second cycle, we can start with a value from p2 and insert it into o1:

o1 = (1 2 3 4 7 * * 8 *)

o2 = (4 1 2 8 5 * * 3 *)

3.2. BUILDING BLOCKS AND THE CODING PROBLEM 49

After the same tedious computations, we end up with the following:

o1 = (1 2 3 4 7 * 9 8 5)

o2 = (4 1 2 8 5 * 7 3 9)

The last cycle is a trivial one (6–6) and the final offsprings are given as
follows:

o1 = (1 2 3 4 7 6 9 8 5)

o2 = (4 1 2 8 5 6 7 3 9)

In case that the two parents form one single cycle, no crossover can take
place.

It is worth to mention that empirical studies have shown that OX gives
11% better results and PMX and 15 % better results than CX. In general,
the performance of all three methods is rather poor.

A Coding with Reference List

Now we discuss an approach which modifies the coding scheme such that
all conventional crossover methods are applicable. It works as follows: A
reference list is initialized with {1, . . . , N}. Starting from the first position,
we take the index of the actual element in the list which is then removed
from the list. An example:

p = (1 2 4 3 8 5 9 6 7)

The first element is 1 and its position in the reference list {1, . . . , 9} is 1.
Hence,

p̃ = (1 * * * * * * * *).

The next entry is 2 and its position in the remaining reference list {2, . . . , 9}
is 1 and we can go further:

p̃ = (1 1 * * * * * * *).

The third allele is 4 and its position in the remaining reference list
{3, . . . , 9} is 2 and we obtain:

p̃ = (1 1 2 * * * * * *).

It is left to the reader as an exercise to continue with this example. He/she
will come to the conclusion that

p̃ = (1 1 2 1 4 1 3 1 1).

50 3. ANALYSIS

The attentive reader might have guessed that a string in this coding is a
valid permutation if and only if the following holds for all 1 ≤ i ≤ N :

1 ≤ p̃i ≤ N − i + 1

Since this criterion applies only to single string positions, completely inde-
pendently from other positions, it can never be violated by any crossover
method which we have discussed for binary strings. This is, without any
doubt, a good property. The next example, however, drastically shows
that one-point crossover produces more or less random values behind the
crossover site:

p̃1 = (1 1 2 1|4 1 3 1 1) p1 = (1 2 4 3 8 5 9 6 7)

p̃2 = (5 1 5 5|5 3 3 2 1) p2 = (5 1 7 8 9 6 4 3 2)

õ1 = (1 1 2 1|5 3 3 2 1) o1 = (1 2 4 3 9 8 7 6 5)

õ2 = (5 1 5 5|4 1 3 1 1) o2 = (5 1 7 8 6 2 9 4 3)

Edge Recombination

Absolute string positions do not have any meaning at all—we may start a
given round-trip at a different city and still observe the same total length.
The order, as in OX, already has a greater importance. However, it is not
order itself that makes a trip efficient, it is the set of edges between cities,
where it is obviously not important in which direction we pass such an
edge. In this sense, the real building blocks in the TS problem are hidden
in the connections between cities. A method called Edge Recombination
(ER) rests upon this discovery. The basic idea is to cache information about
all edges and to compute an offspring from this edge list.

We will study the basic principle with the help of a simple example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 1 2 8 7 6 9 3 5)

The first thing is to compute all vertices which occur in the two parents.

3.3. CONCLUDING REMARKS 51

What we obtain is a list of 2–4 cities with which every city is connected:

1 → 2, 4, 9

2 → 1, 3, 8

3 → 2, 4, 5, 9

4 → 1, 3, 5

5 → 3, 4, 6

6 → 5, 7, 9

7 → 6, 8

8 → 2, 7, 9

9 → 1, 3, 6, 8

We start from the city with the lowest number of neighbors (7 in this ex-
ample), put it into the offspring, and erase it from all adjacency lists. From
7, we have two possibilities to move next—6 and 8. We always take the
one with the smaller number of neighbors. If these numbers are equal,
random selection takes place. This procedure must be repeated until the
permutation is ready or a conflict occurs (no edges left, but permutation
not yet complete). Empirical studies have shown that the probability not
to run into a conflict is about 98%. This probability is high enough to have
a good chance when trying it a second time. Continuing the example, the
following offspring could be obtained:

o = (7 6 5 4 1 9 8 2 3)

There are a few variants for improving the convergence of a GA with
ER. First of all, it seems reasonable to mark all edges which occur in both
parents and to favor them in the selection of the next neighbor. Moreover,
it could be helpful to incorporate information about the lengths of single
edges.

3.3 Concluding Remarks

In this chapter, we have collected several important results which provide
valuable insight into the intrinsic principles of genetic algorithms. These
insights were not given as hard mathematical results, but only as a loose
collection of interpretations. In order to bring a structure into this mess,
let us summarize our achievements:

52 3. ANALYSIS

1. Short, low-order schemata with above-average fitness (building
blocks) receive an exponentially increasing number of trials. By the
help of a detour to the two-armed bandit problem, we have seen that
this is a near-optimal strategy.

2. Although a genetic algorithm only processes m structures at a time, it
implicitly accumulates and exploits information about an enormous
number of schemata in parallel.

3. We were tempted to believe that a genetic algorithm produces so-
lutions by the juxtaposition of small efficient parts—the building
blocks. Our detailed considerations have shown, however, that this
good property can only hold if the coding is chosen properly. One
sophisticated example, the TSP, has shown how difficult this can be
for non-trivial problems.

Chapter 4

Variants

Ich möchte aber behaupten, daß die Experimentiermethode der Evolu-
tion gleichfalls einer Evolutions unterliegt. Es ist nämlich nicht nur
die momentane Lebensleistung eines Individuums für das Überleben
der Art wichtig; nach mehreren Generationen wird auch die bessere
Vererbungs-Strategie, die eine schnellere Umweltanpassung zustan-
debringt, ausgelesen und weiterentwickelt.

Ingo Rechenberg

As Rechenberg pointed out correctly [37], the mechanisms behind evo-
lution themselves are subject to evolution. The diversity and the stage of
development of nature as we see it today would have never been achieved
only with asexual reproduction. It is exactly the sophistication of genetic
mechanisms which allowed faster and faster adaptation of genetic mate-
rial. So far, we have only considered a very simple class of GAs. This
chapter is intended to provide an overview of more sophisticated variants.

4.1 Messy Genetic Algorithms

In a “classical” genetic algorithm, the genes are encoded in a fixed or-
der. The meaning of a single gene is determined by its position inside the
string. We have seen in the previous chapter that a genetic algorithm is
likely to converge well if the optimization task can be divided into several
short building blocks. What, however, happens if the coding is chosen
such that couplings occur between distant genes? Of course, one-point

53

54 4. VARIANTS

�✂✁☎✄✆✁✞✝ �✠✟✡✄☞☛✌✝ �✎✍✏✄✑☛✌✝ �✓✒✔✄✆✁✕✝ �✎✖✏✄✑☛✌✝ �✠✗✡✄✆✁✕✝

✁ ☛ ☛ ✁ ☛ ✁

✘ ✘ ✘ ✘ ✘ ✘

Figure 4.1: A messy coding.

�✂✁☎✄✝✆✟✞ �✡✠☛✄☞✠✌✞ �✂✍☎✄✎✆✏✞ �✡✠☛✄☞✠✌✞ �✒✑✓✄✔✠✌✞ �✕✍✖✄☞✠✌✞
✗ ✗

Figure 4.2: Positional preference: Genes with index 1 and 6 occur twice,
the first occurrences are used.

crossover tends to disadvantage long schemata (even if they have low or-
der) over short ones.

Messy genetic algorithms try to overcome this difficulty by using a var-
iable-length, position-independent coding. The key idea is to append an
index to each gene which allows to identify its position [23, 26]. A gene,
therefore, is no longer represented as a single allele value and a fixed po-
sition, but as a pair of an index and an allele. Figure 4.1 shows how this
“messy” coding works for a string of length 6.

Since the genes can be identified uniquely by the help of the index,
genes may swapped arbitrarily without changing the meaning of the
string. With appropriate genetic operations, which also change the order
of the pairs, the GA could possibly group coupled genes together auto-
matically.

Due to the free arrangement of genes and the variable length of the
encoding, we can, however, run into problems which do not occur in
a simple GA. First of all, it can happen that there are two entries in a
string which correspond to the same index, but have conflicting alleles.
The most obvious way to overcome this “over-specification” is positional
preference—the first entry which refers to a gene is taken. Figure 4.2
shows an example.

The reader may have observed that the genes with indices 3 and 5 do
not occur at all in the example in Figure 4.2. This problem of “under-
specification” is more complicated and its solution is not as obvious as

4.2. ALTERNATIVE SELECTION SCHEMES 55

�✂✁☎✄

✆✞✝✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞✔✆✞✝✠✟✒✑✓☞✍✆✞✕✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞
✖ ✗

✆✙✘✚✟☛✡✌☞✍✆✞✕✠✟✒✑✓☞✔✆✞✝✠✟✒✑✓☞✍✆✞✕✠✟☛✡✌☞
✛ ✜

✢✤✣✦✥✞✧✩★✫✪

✆✞✕✠✟☛✡✌☞✍✆✙✘✚✟☛✡✌☞✔✆✞✕✠✟✒✑✓☞✍✆✞✝✠✟✒✑✓☞ ✜✭✬✮✛

✆✞✕✠✟☛✡✌☞✍✆✞✝✠✟✒✑✓☞✔✆✞✕✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞ ✜✭✬ ✗

✆✙✘✚✟☛✡✌☞✍✆✞✕✠✟✒✑✓☞✍✆✞✝✠✟✒✑✓☞✔✆✞✝✠✟✒✑✓☞✍✆✞✕✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞ ✛✯✬ ✗

✆✞✝✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞✍✆✙✘✚✟☛✡✌☞✔✆✞✕✠✟✒✑✓☞✍✆✞✝✠✟✒✑✓☞ ✖ ✬✰✛

✆✞✝✠✟☛✡✌☞✍✆✎✡✏✟✒✑✓☞✔✆✞✕✠✟☛✡✌☞ ✖ ✬✱✜

Figure 4.3: The cut and splice operation. There are 12 possible ways to
splice the four parts. This example shows five of them.

for over-specification. Of course, a lot of variants are reasonable. One
approach could be to check all possible combinations and to take the best
one (for k missing genes, there are 2k combinations). With the objective
to reduce this effort, Goldberg et al. [23] have suggested to use so-called
competitive templates for finding specifications for k missing genes. It
is nothing else than applying a local hill climbing method with random
initial value to the k missing genes.

While messy GAs usually work with the same mutation operator as
simple GAs (every allele is altered with a low probability pM), the cross-
over operator is replaced by a more general cut and splice operator which
also allows to mate parents with different lengths. The basic idea is to
choose cut sites for both parents independently and to splice the four frag-
ments. Figure 4.3 shows an example.

4.2 Alternative Selection Schemes

Depending on the actual problem, other selection schemes than the
roulette wheel can be useful:

Linear rank selection: In the beginning, the potentially good individuals
sometimes fill the population too fast which can lead to premature
convergence into local maxima. On the other hand, refinement in

56 4. VARIANTS

the end phase can be slow since the individuals have similar fitness
values. These problems can be overcome by taking the rank of the
fitness values as the basis for selection instead of the values them-
selves.

Tournament selection: Closely related to problems above, it can be bet-
ter not to use the fitness values themselves. In this scheme, a small
group of individuals is sampled from the population and the indi-
vidual with best fitness is chosen for reproduction. This selection
scheme is also applicable when the fitness function is given in im-
plicit form, i.e. when we only have a comparison relation which de-
termines which of two given individuals is better.

Moreover, there is one “plug-in” which is frequently used in conjunction
with any of the three selection schemes we know so far—elitism. The idea
is to avoid that the observed best-fitted individual dies out just by select-
ing it for the next generation without any random experiment. Elitism is
widely used for speeding up the convergence of a GA. It should, however,
be used with caution, because it can lead to premature convergence.

4.3 Adaptive Genetic Algorithms

Adaptive genetic algorithms are GAs whose parameters, such as the pop-
ulation size, the crossing over probability, or the mutation probability are
varied while the GA is running (e.g. see [12]). A simple variant could be
the following: The mutation rate is changed according to changes in the
population; the longer the population does not improve, the higher the
mutation rate is chosen. Vice versa, it is decreased again as soon as an
improvement of the population occurs.

4.4 Hybrid Genetic Algorithms

As they use the fitness function only in the selection step, genetic algo-
rithms are blind optimizers which do not use any auxiliary information
such as derivatives or other specific knowledge about the special struc-
ture of the objective function. If there is such knowledge, however, it is
unwise and inefficient not to make use of it. Several investigations have
shown that a lot of synergism lies in the combination of genetic algorithms
and conventional methods.

4.5. SELF-ORGANIZING GENETIC ALGORITHMS 57

The basic idea is to divide the optimization task into two complemen-
tary parts. The coarse, global optimization is done by the GA while local
refinement is done by the conventional method (e.g. gradient-based, hill
climbing, greedy algorithm, simulated annealing, etc.). A number of vari-
ants is reasonable:

1. The GA performs coarse search first. After the GA is completed, local
refinement is done.

2. The local method is integrated in the GA. For instance, every K gen-
erations, the population is doped with a locally optimal individual.

3. Both methods run in parallel: All individuals are continuously used
as initial values for the local method. The locally optimized individ-
uals are re-implanted into the current generation.

4.5 Self-Organizing Genetic Algorithms

As already mentioned, the reproduction methods and the representations
of the genetic material were adapted through the billions of years of evo-
lution [37]. Many of these adaptations were able to increase the speed of
adaptation of the individuals. We have seen several times that the choice
of the coding method and the genetic operators is crucial for the conver-
gence of a GA. Therefore, it is promising not to encode only the raw genetic
information, but also some additional information, for example, parame-
ters of the coding function or the genetic operators. If this is done properly,
the GA could find its own optimal way for representing and manipulating
data automatically.

58 4. VARIANTS

Chapter 5

GA Variants for Real-Valued
Optimization Problems

Phytagoras realised that numbers were hidden in everything, from
the harmonies of music to the orbits of planets, and this led him to
proclaim that ‘Everything is Number’.

From Simon Singh’s “Fermat’s Last Theorem” [40]

A large part of real-world optimization problems have real-valued param-
eters (i.e. X ⊆ R

N). It might be clear that the discretization approach (2.3)
has severe shortcomings:

1. The domain of possible values has to be limited to an interval in
advance;

2. The accuracy of the solution is limited by the discretization width
1

2n−1
;

3. Most often, no reasonable building blocks exist;

For these reasons, variants of GAs which are especially adapted to real-
valued optimization problems have been proposed.

5.1 Real-Coded GAs

The variant of GAs for real-valued optimization that is closest to the orig-
inal GA are so-called real-coded GAs [16, 25, 46]. Let us assume that we

59

60 5. GA VARIANTS FOR REAL-VALUED OPTIMIZATION PROBLEMS

are dealing with a free N -dimensional real-valued optimization problem,
which means X = R

N without constraints. In a real-coded GA, an indi-
vidual is then represented as an N -dimensional vector of real numbers:

b = (x1, . . . , xN)

As selection does not involve the particular coding, no adaptation
needs to be made—all selection schemes discussed so far are applicable
without any restriction. What has to be adapted to this special structure
are the genetic operations crossover and mutation.

5.1.1 Crossover Operators for Real-Coded GAs

So far, the following crossover schemes are most common for real-coded
GAs:

Flat crossover: given two parents b1 = (x1
1, . . . , x

1
N) and b2 = (x2

1, . . . , x
2
N),

a vector of random values from the unit interval (λ1, . . . , λN) is cho-
sen and the offspring b′ = (x′

1, . . . , x
′
N) is computed as a vector of

linear combinations in the following way (for all i = 1, . . . , N):

x′
i = λi · x1

i + (1 − λi) · x2
i

BLX-α crossover is an extension of flat crossover [25] which allows an off-
spring allele x′

i to be also located outside the interval

[min(x1
i , x

2
i), max(x1

i , x
2
i)].

In BLX-α crossover, each offspring allel x′
i is chosen as a uniformly

distributed random value from the interval

[min(x1
i , x

2
i) − I · α, max(x1

i , x
2
i) + I · α],

where I = max(x1
i , x

2
i) − min(x1

i , x
2
i). The parameter α has to be cho-

sen in advance. For α = 0, BLX-α crossover becomes identical to flat
crossover.

Simple crossover is nothing else but classical one-point crossover for real
vectors, i.e., a crossover site k ∈ {1, . . . , N − 1} is chosen and two
offsprings are created in the following way:

b′ = (x1
1, . . . , x

1
k, x

2
k+1, . . . , x

2
N)

b′′ = (x2
1, . . . , x

2
k, x

1
k+1, . . . , x

1
N)

5.2. EVOLUTIONARY STRATEGIES 61

Discrete crossover is analogous to classical uniform crossover for real
vectors. An offspring b′ of the two parents b1 and b2 is composed
from alleles x′

i which are randomly chosen either as x1
i or x2

i .

5.1.2 Mutation Operators for Real-Coded GAs

The following mutation operators are most common for real-coded GAs:

Random mutation: for a randomly chosen gene i of an individual b =
(x1, . . . , xN), the allele xi is replaced by a randomly chosen value
from a predefined interval [ai, bi].

Non-uniform mutation: in non-uniform mutation, the possible impact of
mutation decreases with the number of generations [33]. Assume
that tmax is the predefined maximum number of generations. Then,
with the same setup as in random mutation, the allele xi is replaced
by one of the two values

x′
i = xi + ∆(t, bi − xi),

x′′
i = xi − ∆(t, xi − ai).

The choice which of the two is taken is determined by a random
experiment with two outcomes that have equal probabilities 1

2
and

1
2
. The random variable ∆(t, x) determines a mutation step from the

range [0, x] in the following way:

∆(t, x) = x ·
(

1 − λ(1− t
tmax

)r
)

In this formula, λ is a uniformly distributed random value from the
unit interval. The parameter r determines the influence of the gen-
eration index t on the distribution of mutation step sizes over the
interval [0, x].

5.2 Evolutionary Strategies

Evolutionary strategies (ESs) were developed in the late 1960ies mainly by
I. Rechenberg independently from Holland’s works on genetic algorithms
[37, 39]. Like real-coded GAs, evolutionary strategies aim at solving real-
valued optimization problems. In ESs, an individual is represented as a
2N -dimensional vector of reals which is composed of two vectors:

b = (x1, . . . , xN ; σ1, . . . , σN) (5.1)

62 5. GA VARIANTS FOR REAL-VALUED OPTIMIZATION PROBLEMS

The first half (x1, . . . , xN) corresponds to the potential solution of the opti-
mization problem like in real-coded GAs. As it will turn out later in Sub-
section 5.2.2, the second half (σ1, . . . , σN) defines the vector of standard
deviations for the mutation operation.

As usual, there are two means of modifying genetic material in ESs: a
recombination operation that could be understood as some kind of cross-
over and mutation. Unlike GAs, mutation plays a more central role in ESs.

5.2.1 Recombination in ESs

ESs use operations to create offsprings from parents that are similar to the
ones used in real-coded GAs. Basically, there are two variants in ESs:

Intermediate recombination: an offspring b′ inherits the mean value of its
parents b1 and b2:

x′
i =

x1
i + x2

i

2
σ′

i =
σ1

i + σ2
i

2

Discrete recombination: totally analogous to discrete crossover in real-
coded GAs

As a kind of standard in ESs, the following hybrid kind of recombination
has emerged: to use intermediate recombination for the second half of
the individuals (σ1, . . . , σN) and discrete recombination for the first half
(x1, . . . , xN) which corresponds to the actual solutions.

5.2.2 Mutation in ESs

Mutation adds a normally distributed noise N(0, σ2
i) (i.e. with mean 0

and standard deviation σi) to each allele xi. More specifically, for all
i = 1, . . . , N , the mutated allele is given as

x′
i = xi + N(0, σ2

i).

A key feature of ESs is that not only the solution variables (x1, . . . , xN)
are subject to mutation, but also the standard deviations (σ1, . . . , σN). The
values σi are mutation according to a logarithmic normal distribution:

σ′
i = σi · exp

(
τ ′ · N(0, 1) + τ · Ni(0, 1)

)

5.2. EVOLUTIONARY STRATEGIES 63

The factor exp
(
τ ′ ·N(0, 1)

)
is an overall factor increasing or decreasing the

“mutability” of the individual under consideration. Note that N(0, 1) is
chosen only once for the whole individual when it is mutated. The factor
exp

(
τ · Ni(0, 1)

)
locally adapts the mutation step sizes. Note that, in this

second factor, the normally distributed random value Ni(0, 1) is chosen
separately for each gene. The adaptation of mutation step sizes in ESs has
the particular advantage that no parameters have to be chosen in advance.
Instead, they evolve during the run of an ES in a self-organizing way.

The two parameters τ ′ and τ have to be chosen in advance. Schwefel
[39] has proposed to chose these parameters in the following way:

τ ′ ∼ 1√
2 · N

τ ∼ 1
√

2 ·
√

N

5.2.3 Selection and Sampling in ESs

Early variants of ESs did not include any sophisticated selection mecha-
nism: An offspring replaced the parent it had better fitness, otherwise the
parent was kept.

The nowadays commonly accepted selection and sampling schemes in
ESs are the following:

(µ + λ)-strategy: a number of µ parents is selected from the current gener-
ation. These µ parents are used to generate a number of λ offsprings
which have been generated by some recombination and/or muta-
tion operations. Out of the union of parents and offsprings (in total,
a number of µ + λ), the best µ are kept for the next generation. Note
that the (µ + λ)-strategy inherently incorporates elitism.

(µ, λ)-strategy: in this scheme, which is nowadays considered the stan-
dard selection/sampling strategy in ESs, again µ parents are selected
from the current generation and used to generate λ offsprings (with
the additional restriction λ ≥ µ). The parents are discarded com-
pletely and the best µ offsprings are kept for the next generation.
The (µ, λ)-strategy does not incorporate elitism.

Note that both strategies only use the ranking of fitness values. Therefore,
they can be applied both to minimization and maximization problems,
without any need for scaling or transforming fitness values (compare with
(2.2)).

64 5. GA VARIANTS FOR REAL-VALUED OPTIMIZATION PROBLEMS

5.3 Evolutionary Programming

Evolutionary programming (EP) can be traced back to the works of L. J. Fo-
gel [19] and was later extended by his son, D. B. Fogel [18]. EP is motivated
in the same way as real-coded GAs and ESs. As an important difference
to GAs and ESs, EP does not use crossover or any other kind of exchange
of genetic material between individuals. Offsprings are generated by mu-
tation only.

5.3.1 Original EP

L. J. Fogels original EP used the same encoding of individuals as real-
coded GAs. As a significant difference to ESs, original EP is using a scaling
function to transform the objective function value:

Φ(x1, . . . , xN) = δ(f(x1, . . . , xN))

The mutation of a single allele is done in the following way:

x′
i = xi + Ni(0, 1) ·

√

βi · Φ(x1, . . . , xN) + γi

The motivation is to have small mutation step sizes close to the optimum
and higher mutation step sizes at values that are far from being an opti-
mum. The non-trivial difficulty in this approach, however, is to adjust the
parameters βi, γi and the scaling function δ such that this requirement is
actually fulfilled.

5.3.2 D. B. Fogel’s Modified EP

In order to overcome this difficulty, D. B. Fogel has proposed a modified
variant that is closely related to ESs [17]. It uses a similar representation of
individuals like in ESs (see also (5.1)):

b = (x1, . . . , xN ; v1, . . . , vN)

The second half of the vector (v1, . . . , vN) contains the variances of the mu-
tation step sizes, as the mutation is done in the following way:

x′
i = xi +

√
vi · Ni(0, 1)

v′
i = vi +

√
χ · vi · Ni(0, 1)

Unfortunately, it is not guaranteed that v′
i is positive. Therefore, additional

measures have to be taken to avoid that v′
i gets 0 or negative.

5.3. EVOLUTIONARY PROGRAMMING 65

5.3.3 Selection and Sampling in EP

EP uses a kind of combination of tournament and linear rank selection.
The fitness of an individual b is compared with q other randomly picked
competitors taken from the union of µ parents and λ offsprings. The score
wi ∈ {0, . . . , q} of the individual b is computed as the number of individu-
als within the q selected ones that have a lower fitness than b. The parents
and offsprings are ranked according to their score and the best µ are se-
lected for the next generation. Note that this selection/sampling scheme
inherently incorporates elitism. Moreover, for large q, it behaves almost in
the same way as the (µ + λ)-strategy used in ESs.

66 5. GA VARIANTS FOR REAL-VALUED OPTIMIZATION PROBLEMS

Chapter 6

Tuning of Fuzzy Systems Using
Genetic Algorithms

There are two concepts within fuzzy logic which play a central role
in its applications. The first is that of a linguistic variable, that is,
a variable whose values are words or sentences in a natural or syn-
thetic language. The other is that of a fuzzy if-then rule in which
the antecedent and consequent are propositions containing linguis-
tic variables. The essential function served by linguistic variables is
that of granulation of variables and their dependencies. In effect, the
use of linguistic variables and fuzzy if-then rules results—through
granulation—in soft data compression which exploits the tolerance
for imprecision and uncertainty. In this respect, fuzzy logic mimics
the crucial ability of the human mind to summarize data and focus on
decision-relevant information.

Lotfi A. Zadeh

Since it is not the main topic of this lecture, a detailed introduction to fuzzy
systems is omitted here. We restrict ourselves to a few basic facts which
are sufficient for understanding this chapter (the reader is referred to the
literature for more information [31, 32, 42, 47]).

The quotation above brilliantly expresses what the core of fuzzy sys-
tems is: Linguistic if-then rules involving vague propositions (e.g. “large”,
“small”, “old”, “around zero”, etc.). By this way, fuzzy systems allow re-
producible automation of tasks for which no analytic model is known, but
for which linguistic expert knowledge is available. Examples range from

67

68 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

complicated chemical processes over power plant control, quality control,
etc.

This sounds fine at first glance, but poses a few questions: How can
such vague propositions be represented mathematically and how can we
process them? The idea is simple but effective: Such vague assertions are
modeled by means of so-called fuzzy sets, i.e. sets which can have inter-
mediate degrees of membership (the unit interval [0, 1] is usually taken as
the domain of membership degrees). By this way, it is possible to model
concepts like “tall men” which can never be represented in classical set
theory without drawing ambiguous, counter-intuitive boundaries.

In order to summarize, there are three essential components of fuzzy
systems:

1. The rules, i.e. a verbal description of the relationships.

2. The fuzzy sets (membership functions), i.e. the semantics of the
vague expressions used in the rules.

3. An inference machine, i.e. a mathematical methodology for process-
ing a given input through the rule base.

Since this is not a major concern in this lecture, let us assume that a
reasonable inference scheme is given. There are still two important com-
ponents left which have to be specified in order to make a fuzzy system
work—the rules and the fuzzy sets. In many cases, they can both be found
simply by using common sense (some consider fuzzy systems as nothing
else than a mathematical model of common sense knowledge). In most
problems, however, there is only an incomplete or inexact description of
the automation task. Therefore, researchers have begun soon to investi-
gate methods for finding or optimizing the parameters of fuzzy systems.
So far, we can distinguish between the following three fundamental learn-
ing tasks:

1. The rules are given, but the fuzzy sets are unknown at all and must
be found or, what happens more often, they can only be estimated
und need to be optimized. A typical example would be the follow-
ing: The rules for driving a car are taught in every driving school,
e.g. “for starting a car, let in the clutch gently and, simultaneously,
step on the gas carefully”, but the beginner must learn from practical
experience what “letting in the clutch gently” actually means.

6.1. TUNING OF FUZZY SETS 69

2. The semantical interpretation of the rules is known sufficiently well,
but the relationships between input and output, i.e. the rules, are not
known. A typical example is extracting certain risk factors from pa-
tient data. In this case, it is sufficiently known which blood pressures
are high and which are low, but the factors, which really influence
the risk of getting a certain disease, are unknown.

3. Nothing is known, both fuzzy sets and rules must be acquired, for
instance, from sample data.

6.1 Tuning of Fuzzy Sets

Let us start with the first learning task—how to find optimal configura-
tions of fuzzy sets. In Chapter 2, we have presented a universal algorithm
for solving a very general class of optimization problems. We will now
study how such a simple GA can be applied to the optimization of fuzzy
sets. All we need is an appropriate coding, genetic operators (in case that
the standard variants are not sufficient), and a fitness measure.

6.1.1 Coding Fuzzy Subsets of an Interval

Since this is by far the most important case in applications of fuzzy sys-
tems, let us restrict to fuzzy subsets of a given real interval [a, b]. Of course,
we will never be able to find a coding which accommodates any possible
fuzzy set. It is usual in applications to fix a certain subclass which can be
represented by means of a finite set of parameters. Descriptions of such
fuzzy sets can then be encoded by coding these parameters.

The first class we mention here are piecewise linear membership func-
tions with a fixed set of grid points (a = x0, x1, . . . , xn−1, xn = b), an equally
spaced grid in the simplest case. Popular fuzzy control software tools like
fuzzyTECH or TILShell use this technique for their internal representa-
tions of fuzzy sets. It is easy to see that the shape of the membership
function is uniquely determined by the membership degrees in the grid
points (see Figure 6.1 for an example). Therefore, we can simply encode
such a fuzzy set by putting codings of all these membership values in one
large string:

cn,[0,1](µ(x0)) cn,[0,1](µ(x1)) · · · cn,[0,1](µ(xn))

70 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

A reasonable resolution for encoding the membership degrees is n = 8.
Such an 8-bit coding is used in several software systems, too.

For most problems, however, simpler representations of fuzzy sets are
sufficient. Many real-world applications use triangular and trapezoidal
membership functions (cf. Figure 6.2). Not really surprising, a triangular
fuzzy set can be encoded as

cn,[a,b](r) cn,[0,δ](u) cn,[0,δ](v) ,

where δ is an upper boundary for the size of the offsets, for example δ =
(b − a)/2. The same can be done analogously for trapezoidal fuzzy sets:

cn,[a,b](r) cn,[0,δ](q) cn,[0,δ](u) cn,[0,δ](v) .

In specific control applications, where the smoothness of the control
surface plays an important role, fuzzy sets of higher differentiability must
be used. The most prominent representative is the bell-shaped fuzzy set
whose membership function is given by a Gaussian bell function:

µ(x) = e−
(x−r)2

2u2

The “bell-shaped analogue” to trapezoidal fuzzy sets are so-called radial
basis functions:

µ(x) =

{

e−
(|x−r|−q)2

2u2 if |x − r| > q
1 if |x − r| ≤ q

Figure 6.3 shows a typical bell-shaped membership function. Again the
coding method is straightforward, i.e.

cn,[a,b](r) cn,[ε,δ](u)

where ε is a lower limit for the spread u. Analogously for radial basis
functions:

cn,[a,b](r) cn,[0,δ](q) cn,[ε,δ](u)

The final step is simple and obvious: In order to define a coding of the
whole configuration, i.e. of all fuzzy sets involved, it is sufficient to put
codings of all relevant fuzzy sets into one large string.

6.1. TUNING OF FUZZY SETS 71

a=x0 x1 x2 x3 x4 x5=b

0.2

0.4

0.6

0.8

1

Figure 6.1: Piecewise linear membership function with fixed grid points.

a r-u r r+v b

0.2

0.4

0.6

0.8

1

a r-u r r+q r+q+v b

0.2

0.4

0.6

0.8

1

Figure 6.2: Simple fuzzy sets with piecewise linear membership functions
(triangular left, trapezoidal right).

a r-u r r+u b

0.2

0.4

0.6

0.8

1

a r-q-u r-q r r+q r+q+u b

0.2

0.4

0.6

0.8

1

Figure 6.3: Simple fuzzy sets with smooth membership functions (bell-
shaped left, radial basis right).

72 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

6.1.2 Coding Whole Fuzzy Partitions

There is often a-priori knowledge about the approximate configuration,
for instance, something like an ordering of the fuzzy sets. A general
method, which encodes all fuzzy sets belonging to one linguistic variable
independently like above, yields an unnecessarily large search space. A
typical situation, not only in control applications, is that we have a certain
number of fuzzy sets with labels, like “small”, “medium”, and “large”
or “negative big”, “negative medium”, “negative small”, “approximately
zero”, “positive small”, “positive medium”, and “positive big”. In such
a case, we have a natural ordering of the fuzzy sets. By including appro-
priate constraints, the ordering of the fuzzy sets can be preserved while
reducing the number of degrees of freedom. The preservation of ordering
is an important feature that helps to maintain interpretability of a fuzzy
system, as, for instance, [4] and other contributions in [11] show.

We will now study a simple example—an increasing sequence of trape-
zoidal fuzzy sets. Such a “fuzzy partition” is uniquely determined by an
increasing sequence of 2N points, where N is the number of linguistic val-
ues we consider. The mathematical formulation is the following:

µ1(x) =







1 if x ∈ [x0, x1]
x2−x
x2−x1

if x ∈ (x1, x2)

0 otherwise

µi(x) =







x−x2i−3

x2i−2−x2i−3
if x ∈ (x2i−3, x2i−2)

1 if x ∈ [x2i−2, x2i−1]
x2i−x

x2i−x2i−1
if x ∈ (x2i, x2i−1)

0 otherwise

for 2 ≤ i ≤ N − 1

µN(x) =







x−x2N−3

x2N−2−x2N−3
if x ∈ (x2N−3, x2N−2)

1 if x ≥ x2N−2

0 otherwise

Figure 6.4 shows a typical example with N = 4. It is not wise to encode
the values xi as they are, since this requires constraints for ensuring that
xi are non-decreasing. A good alternative is to encode the offsets:

cn,[0,δ](x1) cn,[0,δ](x2 − x1) · · · cn,[0,δ](x2N−2 − x2N−3)

6.1. TUNING OF FUZZY SETS 73

a=x0 x1 x2 x3 x4 x5 x6 x7=b

0.2

0.4

0.6

0.8

1

Figure 6.4: A fuzzy partition with N = 4 trapezoidal parts.

6.1.3 Standard Fitness Functions

Although it is impossible to formulate a general recipe which fits for all
kinds of applications, there is one important standard situation—the case
where a set of representative input-output examples is given. Assume that
F (~v, x) is the function which computes the output for a given input x with
respect to the parameter vector ~v. Example data is given as a list of couples
(xi, yi) with 1 ≤ i ≤ K (K is the number of data samples). Obviously, the
goal is to find a parameter configuration ~v such that the corresponding
outputs F (~v, xi) match the sample outputs yi as well as possible. This can
be achieved by minimizing the error function

f(~v) =
K∑

i=1

d
(
F (~v, xi), yi

)
,

where d(., .) is some distance measure defined on the output space. In
case that the output consists of real numbers, one prominent example is
the well-known sum of quadratic errors:

f(~v) =
K∑

i=1

(
F (~v, xi) − yi

)2

6.1.4 Genetic Operators

Since we have only dealt with binary representations of fuzzy sets and
partitions, all the operators from Chapter 2 are also applicable here. We
should be aware, however, that the offset encoding of fuzzy partitions is

74 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

highly epistatic. More specifically, if the first bit encoding x1 is changed,
the whole partition is shifted. If this results in bad convergence, the cross-
over operator should be modified. A suggestion can be found, for in-
stance, in [3]. Figure 6.5 shows an example what happens if two fuzzy
partitions are crossed with normal one-point crossover. Figure 6.6 shows
the same for bitwise mutation.

6.2 A Practical Example

Pixel classification is an important preprocessing task in many image pro-
cessing applications. In this project, where FLLL developed an inspection
system for a silk-screen printing process, it was necessary to extract re-
gions from the print image which had to be checked by applying different
criteria:

Homogeneous area: Uniformly colored area;

Edge area: Pixels within or close to visually significant edges;

Halftone: Area which looks rather homogeneous from a certain distance,
although it is actually obtained by printing small raster dots of two
or more colors;

Picture: Rastered area with high, chaotic deviations, in particular small
high-contrasted details.

The magnifications in Figure 6.7 show how these areas typically look like
at the pixel level. Of course, transitions between two or more of these areas
are possible, hence a fuzzy model is recommendable.

If we plot the gray values of the eight neighbor pixels according to a
clockwise enumeration (cf. Figure 6.8), we typically get curves like those
shown in Figure 6.9. Seemingly, the size of the deviations, e.g. by comput-
ing the variance, can be used to distinguish between homogeneous areas,
halftones and the other two types. On the other hand, a method which
judges the width and connectedness of the peaks should be used in order
to separate edge areas from pictures. A simple but effective method for
this purpose is the so-called discrepancy norm, for which there are already
other applications in pattern recognition (cf. [34]):

‖~x‖D = max
1≤α≤β≤n

∣
∣
∣
∣
∣

β
∑

i=α

xi

∣
∣
∣
∣
∣

6.2. A PRACTICAL EXAMPLE 75

0
1
0
0

1
5
0

2
0
0

2
6
0

0
.
2

0
.
4

0
.
6

0
.
81 0

2
0
0
2
3
0

2
8
0

3
3
0

0
.
2

0
.
4

0
.
6

0
.
81

0
1
0
0

1
6
2

2
1
2

2
6
2

0
.
2

0
.
4

0
.
6

0
.
81 0

2
0
0
2
1
8
2
6
8

3
2
8

0
.
2

0
.
4

0
.
6

0
.
81

�
✁
✁

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✞
✁

✂

✄☎

✆

✟
✁
✁

✂

✄☎

✆

✠
✁

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✝
✁

✂

✄☎

✆

�
✁
✁

✂

✄☎

✆

✞
✟

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✟
✁
✁

✂

✄☎

✆

�
✡

✂

✄☎

✆

✝
✁

✂

✄☎

✆

✞
✁

✂

✄☎

✆

☛ ☛

☞ ☞✌

✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✏✎

✑
✒
✒
✑
✑
✒
✑
✑
✑
✑
✒
✒
✑
✑
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑
✑
✑
✒
✒
✒
✒
✑
✑

✒
✒
✑
✑
✒
✑
✑
✑
✑
✑
✑
✒
✒
✒
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑

✑
✒
✒
✑
✑
✒
✑
✑
✑
✑
✒
✒
✒
✒
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑

✒
✒
✑
✑
✒
✑
✑
✑
✑
✑
✑
✒
✑
✑
✒
✑
✑
✑
✒
✒
✑
✑
✒
✑
✑
✑
✒
✒
✒
✒
✑
✑

Figure 6.5: Example for one-point crossover of fuzzy partitions.

76 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

0 100 150 200 260

0.2

0.4

0.6

0.8

1

0 228 278 328 388

0.2

0.4

0.6

0.8

1

�✂✁✄✁

☎ ✆✞✝ ✟

✠ ✁

☎ ✆✡✝ ✟

✠ ✁

☎ ✆✡✝ ✟

☛✄✁

☎ ✆✡✝ ✟

☞✄☞✄✌

☎ ✆✞✝ ✟

✠ ✁

☎ ✆✡✝ ✟

✠ ✁

☎ ✆✡✝ ✟

☛✄✁

☎ ✆✡✝ ✟

✍✏✎✑✎✒✍✑✍✏✎✓✍✑✍✑✍✑✍✔✎✑✎✕✍✑✍✔✎✕✍✑✍✖✍✏✎✑✎✕✍✖✍✏✎✕✍✗✍✑✍✏✎✑✎✖✎✑✎✕✍✑✍

✎✑✎✑✎✒✍✑✍✏✎✓✍✑✍✑✍✑✍✔✎✑✎✕✍✑✍✔✎✕✍✑✍✖✍✏✎✑✎✕✍✖✍✏✎✕✍✗✍✑✍✏✎✑✎✖✎✑✎✕✍✑✍

✘

✘

Figure 6.6: Mutating a fuzzy partition.

A more detailed analysis of the discrepancy norm, especially how it can
be computed in linear time, can be found in [2, 6].

6.2.1 The Fuzzy System

For each pixel (i, j), we consider its nearest eight neighbors enumerated
as described above, which yields a vector of eight gray values. As already
mentioned, the variance of the gray value vector can be taken as a mea-
sure for the size of the deviations in the neighborhood of the pixel. Let us
denote this value with v(i, j). On the other hand, the discrepancy norm of
the vector, where we subtract each entry by the mean value of all entries,
can be used as a criterion whether the pixel is within or close to a visually
significant edge (let us call this value e(i, j) in the following).

The fuzzy decision is then carried out for each pixel (i, j) indepen-
dently: First of all, the characteristic values v(i, j) and e(i, j) are computed.

6.2. A PRACTICAL EXAMPLE 77

Homogeneous Edge Halftone Picture

Figure 6.7: Magnifications of typical representatives of the four types of
pixels.

✉

✉

✉

✉

✉

✉

✉

✉

✉

(i, j)1

2 3 4

5

8 7 6

k l(k)
1 (i , j − 1)
2 (i − 1 , j − 1)
3 (i − 1 , j)
4 (i − 1 , j + 1)
5 (i , j + 1)
6 (i + 1 , j + 1)
7 (i + 1 , j)
8 (i + 1 , j + 1)

Figure 6.8: Clockwise enumeration of neighbor pixels.

�

✁

�

✁

�

✁

�

✁✂ ✂ ✂✄ ✄ ✄ ✂ ✄

☎✝✆✟✞✠✆☛✡✌☞☛✍✎☞✏✆✟✑✓✒ ✔✖✕✗✡✗☞ ☎✙✘✗✚ ✛✢✜✣✆✤✍✎☞ ✥✧✦ ★✩✜✪✑✗✫✬☞

Figure 6.9: Typical gray value curves corresponding to the four types.

78 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

✻

✲

❭
❭

❭❭✜
✜

✜✜ ❭
❭

❭❭✜
✜

✜✜
low med high

v1 v2 v3 v4

✻

✲

low

e1

❧
❧

❧
❧❧✱

✱
✱

✱✱
high

e2

Figure 6.10: The linguistic variables v and e.

These values are taken as the input of a small fuzzy system with two in-
puts and one output. Let us denote the linguistic variables on the input
side with v and e. Since the position of the pixel is of no relevance for
the decision in this concrete application, indices can be omitted here. The
input space of the variable v is represented by three fuzzy sets which are
labeled “low”, “med”, and “high”. Analogously, the input space of the
variable e is represented by two fuzzy sets, which are labeled “low” and
“high”. Experiments have shown that [0, 600] and [0, 200] are appropri-
ate domains for v and e, respectively. For the decomposition of the input
domains, simple fuzzy partitions consisting of trapezoidal fuzzy subsets
were chosen. Figure 6.10 shows how these partitions basically look like.

The output space is a set of linguistic labels, namely “Ho”, “Ed”,
“Ha”, and “Pi”, which are, of course, just abbreviations of the names
of the four types. Let us denote the output variable itself with t. Fi-
nally, the output of the system for each pixel (i, j) is a fuzzy subset of
{“Ho”, “Ed”, “Ha”, “Pi”}. This output set is computed by processing the
values v(i, j) and e(i, j) through a rule base with five rules, which cover
all the possible combinations:

IF v is low THEN t = Ho
IF v is med AND e is high THEN t = Ed
IF v is high AND e is high THEN t = Ed
IF v is med AND e is low THEN t = Ha
IF v is high AND e is low THEN t = Pi

In this application, ordinary Mamdani min/max-inference is used. Fi-
nally, the degree to which “Ho”, “Ed”, “Ha”, or “Pi” belong to the output
set can be regarded as the degree to which the particular pixel belongs to
area Homogeneous, Edge, Halftone, or Picture, respectively.

6.2. A PRACTICAL EXAMPLE 79

6.2.2 The Optimization of the Classification System

The behavior of the fuzzy system depends on six parameters, v1, . . . , v4,
e1, and e2, which determine the shape of the two fuzzy partitions. In the
first step, these parameters were tuned manually. Of course, we have also
taken into consideration to use (semi)automatic methods for finding the
optimal parameters.

Our optimization procedure consists of a painting program which of-
fers tools, such as a pencil, a rubber, a filling algorithm, and many more.
This painting tool can be used to make a reference classification of a given
representative image by hand. Then an optimization algorithm can be
used to find that configuration of parameters which yields the maximal
degree of matching between the desired result and the output actually ob-
tained by the classification system.

Assume that we have a set of N sample pixels for which the input
values (ṽk, ẽk)k∈{1,...,N} are computed and that we already have a reference
classification of these pixels

t̃(k) = (t̃Ho(k), t̃Ed(k), t̃Ha(k), t̃Pi(k)),

where k ∈ {1, . . . , N}. Since, as soon as the values ṽ and ẽ are computed,
the geometry of the image plays no role anymore, we can switch to one-
dimensional indices here. One possible way to define the performance
(fitness) of the fuzzy system would be

1

N

N∑

k=1

d(t(k), t̃(k)), (6.1)

where t(k) = (tHo(k), tEd(k), tHa(k), tPi(k)) are the classifications actually
obtained by the fuzzy system for the input pairs (ṽk, ẽk) with respect to the
parameters v1, v2, v3, v4, e1, and e2; d(., .) is an arbitrary (pseudo-)metric on
[0, 1]4. The problem of this brute force approach is that the output of the
fuzzy system has to be evaluated for each pair (vk, ek), even if many of
these values are similar or even equal. In order to keep the amount of
computation low, we “simplified” the procedure by a “clustering process”
as follows:

We choose a partition (P1, . . . , PK) of the input space, where
(n1, . . . , nK) are the numbers of sample points {pi

1, . . . , p
i
ni
} each part con-

tains. Then the desired classification of a certain part (cluster) can be de-
fined as

t̃X(Pi) =
1

ni

ni∑

j=1

t̃X(pi
j),

80 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

0 50 100 150 200

83

83.1

83.2

83.3

83.4

83.5

0 20 40 60 80 100 120 140

82

83

84

85

86

Figure 6.11: Cross sections of a function of type (5.2).

where X ∈ {Ho, Ed, Ha, Pi}.

If φ is a function which maps each cluster to a representative value (e.g.,
its center of gravity), we can define the fitness (objective) function as

100

N

K∑

i=1

ni ·



1 − 1

2
·

∑

X∈{Ho,Ed,Ha,Pi}

(
t̃X(Pi) − tX(φ(Pi))

)2



 , (6.2)

If the number of parts is chosen moderately (e.g. a rectangular 64 × 32
net which yields K = 2048) the evaluation of the fitness function takes
considerably less time than a direct application of formula (6.1).

Note that in (6.2) the fitness is already transformed such that it can be
regarded as a degree of matching between the desired and the actually ob-
tained classification measured in percent. This value has to be maximized.

In fact, fitness functions of this type are, in almost all cases, continuous
but not differentiable and have a lot of local maxima. Figure 6.11 shows
cross sections of such functions. Therefore, it is more reasonable rather
to use probabilistic optimization algorithms than to apply continuous op-
timization methods, which make excessive use of derivatives. This, first
of all, requires a (binary) coding of the parameters. We decided to use a
coding which maps the parameters v1, v2, v3, v4, e1, and e2 to a string of
six 8-bit integers s1, . . . , s6 which range from 0 to 255. The following table
shows how the encoding and decoding is done:

s1 = v1 v1 = s1

s2 = v2 − v1 v2 = s1 + s2

s3 = v3 − v2 v3 = s1 + s2 + s3

s4 = v4 − v3 v4 = s1 + s2 + s3 + s4

s5 = e1 e1 = s5

s6 = e2 − e1 e2 = s5 + s6

6.2. A PRACTICAL EXAMPLE 81

We first tried a simple GA with standard roulette wheel selection, one-
point crossover with uniform selection of the crossing point, and bitwise
mutation. The length of the strings was, as shown above, 48.

In order to compare the performance of the GAs with other well-
known probabilistic optimization methods, we additionally considered
the following methods:

Hill climbing: always moves to the best-fitted neighbor of the current
string until a local maximum is reached; the initial string is gener-
ated randomly.

Simulated annealing: powerful, often-used probabilistic method which
is based on the imitation of the solidification of a crystal under
slowly decreasing temperature

Each one of these methods requires only a few binary operations in each
step. Most of the time is consumed by the evaluation of the fitness func-
tion. So, it is near at hand to take the number of evaluations as a measure
for the speed of the algorithms.

Results

All these algorithms are probabilistic methods; therefore, their results are
not well-determined, they can differ randomly within certain boundaries.
In order to get more information about their average behavior, we tried out
each one of them 20 times for one certain problem. For the given problem,
we found out that the maximal degree of matching between the reference
classification and the classification actually obtained by the fuzzy system
was 94.3776%. In the table in Figure 6.12, fmax is the fitness of the best and
fmin is the fitness of the worst solution; f̄ denotes the average fitness of
the 20 solutions, σf denotes the standard deviation of the fitness values of
the 20 solutions, and # stands for the average number of evaluations of the
fitness function which was necessary to reach the solution.

The hill climbing method with random selection of the initial string
converged rather quickly. Unfortunately, it was always trapped in a local
maximum, but never reached the global solution (at least in these 20 trials).

The simulated annealing algorithm showed similar behavior at the
very beginning. After tuning the parameters involved, the performance
improved remarkably.

82 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

fmax fmin f̄ σf It

Hill Climbing 94.3659 89.6629 93.5536 1.106 862

Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510

Improved Simulated
Annealing

94.3773 93.7056 94.2697 0.229 21968

GA 94.3760 93.5927 94.2485 0.218 9910

Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460

Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631

Figure 6.12: A comparison of results obtained by several different opti-
mization methods.

The raw genetic algorithm was implemented with a population size
of 20; the crossover probability was set to 0.85, the mutation probability
was 0.005 for each byte. It behaved pretty well from the beginning, but it
seemed inferior to the improved simulated annealing.

Next, we tried a hybrid GA, where we kept the genetic operations and
parameters of the raw GA, but every 50th generation the best-fitted indi-
vidual was taken as initial string for a hill climbing method. Although
the performance increased slightly, the hybrid method still seemed to be
worse than the improved simulated annealing algorithm. The reason that
the effects of this modification were not so dramatic might be that the
probability is rather high that the best individual is already a local maxi-
mum. So we modified the procedure again. This time a randomly chosen
individual of every 25th generation was used as initial solution of the hill
climbing method. The result exceeded the expectations by far. The algo-
rithm was, in all cases, nearer to the global solution than the improved
simulated annealing (compare with table in Figure 6.12), but, surprisingly,
sufficed with less invocations of the fitness function. The graph in Figure
6.13 shows the results graphically. Each line in this graph corresponds to
one algorithm. The curve shows, for a given fitness value x, how many of
the 20 different solutions had a fitness higher or equal to x. It can be seen
easily from this graph that the hybrid GA with random selection led to the

6.2. A PRACTICAL EXAMPLE 83

�✁
✂ ✁✁
✁✁

�✄
✂☎
✁✁✆

�✄
✂☎
✝✞
�

�✄
✂ ✟☎
✁✆

�✄
✂ ✟✞
☎ ✆

�✄
✂ ✟✝
✝✆

☎✄✆✠✡ ✁✡☎✡✄✡ ✆✡ ✠☎
✁

☎✄✆✠✡ ✁✡☎✡✄✡ ✆✡ ✠☎
✁

☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛ ☛

☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛
☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛

☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛

☛ ☛☛ ☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛
☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛
☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛ ☛☛☛

☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛
☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛

☛☛☛ ☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛☛☛ ☛☛☛
☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛

☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛

☛ ☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛ ☛☛☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛

☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛ ☛☛ ☛ ☛☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛☛ ☛

☞ ☞☞ ☞☞ ☞☞ ☞☞ ☞☞ ☞☞ ☞☞ ☞☞ ☞☞

☞☞

☞

☞

☞

☞☞
☞☞

☞☞
☞☞

☞☞
☞☞

☞

☞

☞

☞

☞

☞

☞

☞

☞

☞☞
☞☞

☞

✌ ✌✌ ✌✌ ✌✌ ✌✌ ✌✌ ✌✌ ✌✌

✌

✌

✌✌

✌

✌

✌

✌

✌

✌

✌✌ ✌✌
✌✌ ✌✌

✌

✌✌ ✌✌

✌

✌

✌✌
✌✌

✌✌
✌✌ ✌

✍ ✍✍ ✍✍

✍

✍

✍

✍

✍

✍

✍

✍

✍

✍

✍✍

✍

✍

✍

✍

✍

✍✍ ✍✍

✍✍ ✍✍
✍✍

✍✍ ✍✍ ✍✍ ✍✍
✍✍ ✍✍ ✍✍ ✍✍ ✍✍ ✍✍

✍

✎ ✎✎

✎

✎

✎

✎✎

✎

✎✎

✎✎ ✎✎

✎

✎

✎✎

✎✎ ✎✎

✎✎

✎✎

✎

✎

✎

✎

✎✎

✎✎
✎✎ ✎✎ ✎✎ ✎✎

✎✎ ✎✎
✎

✏ ✏✏

✏

✏

✏

✏

✏

✏

✏✏

✏

✏

✏✏ ✏✏

✏✏

✏✏

✏

✏

✏✏
✏✏

✏✏ ✏✏

✏✏
✏✏ ✏✏

✏✏
✏✏ ✏✏

✏✏
✏✏ ✏

✑

✑

✑

✑✑

✑✑
✑✑ ✑✑ ✑✑

✑✑ ✑✑ ✑✑ ✑✑
✑✑ ✑✑ ✑✑ ✑✑ ✑✑ ✑✑

✑✑ ✑✑
✑✑ ✑

☞

✒
✓✔✔
✕✔✓✖
✗✓✘

✙

✎

✚✛
✘ ✛
✜✓ ✢✣

✔ ✙✤
✥✓ ✜✦
✖

✌

✧✓✖
★✔ ✩✜✛
✪✣

✘✘ ✛
✩✔✓✘

✙

✏

✒ ✫✗✥✓ ✪
✚✣

✬✛
✔✓ ✜✛

✭

✍

✮✖
✯✥ ✤

✰ ✛
✪
✧✓✖
★✔ ✩✜✛
✪✣

✘✘ ✛
✩✔✓✘

✙

✑

✒ ✫✗✥✓ ✪
✚✣

✬✥ ✩✘
✪✤

✖
✭

Figure 6.13: A graphical representation of the results.

84 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

best results. Note that the x-axis is not a linear scale in this figure. It was
transformed in order to make small differences visible.

6.2.3 Concluding Remarks

In this example, we have investigated the suitability of genetic algorithms
for finding the optimal parameters of a fuzzy system, especially if the an-
alytical properties of the objective function are bad. Moreover, hybridiza-
tion has been discovered as an enormous potential for improvements of
genetic algorithms.

6.3 Finding Rule Bases with GAs

Now let us briefly turn to the second learning problem from Page 68. If we
find a method for encoding a rule base into a string of a fixed length, all the
genetic methods we have dealt with so far, are applicable with only little
modifications. Of course, we have to assume in this case that the numbers
of linguistic values of all linguistic variables are finite.

The simplest case is that of coding a complete rule base which covers
all the possible cases. Such a rule base is represented as a list for one
input variable, as a matrix for two variables, and as a tensor in the case
of more than two input variables. For example, consider a rule base of
the following form (the generalization to more than two input variable is
straightforward):

IF x1 is Ai AND x2 is Bj THEN y is C̃i,j

Ai and Bj are verbal values of the variables x1 and x2, respectively. All the
values Ai are pairwise different, analogously for the values Bj ; i ranges
from 1 to N1, the total number of linguistic values of variable x1; j ranges
from 1 to N2, the total number of linguistic values of variable x2. The
values C̃i,j are arbitrary elements of the set of pairwise different linguis-
tic values {C1, . . . , CNy

} associated with the output variable y. Obviously,
such a rule base is uniquely represented by a matrix, a so-called decision
table:

B1 · · · BN2

A1 C̃1,1 · · · C̃1,N2

...
...

. . .
...

AN1 C̃N1,1 · · · C̃N1,N2

6.3. FINDING RULE BASES WITH GAS 85

Of course, the representation is still unique if we replace the values C̃i,j

by their unique indices within the set {C1, . . . , CNy
} and we have found a

proper coding scheme for table-based rule bases.

6.1 Example. Consider a fuzzy system with two inputs (x1 and x2) and
one output y. The domains of all three variables are divided into four
fuzzy sets labeled “small”, “medium”, “large”, and “very large” (for short,
abbreviated “S”, “M”, “L”, and “V”). We will now study how the following
decision table can be encoded into a string:

S M L V
S S S S M
M S S M L
L S M L V
V M L V V

For example, the third entry “M” in the second row reads as follows:

IF x1 is medium AND x2 is large THEN y is medium

If we assign indices ranging from 0–3 to the four linguistic values asso-
ciated with the output variable y, we can write the decision table as an
integer string with length 16:

(0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 3)

Replacing the integer values with two-bit binary strings, we obtain a 32-bit
binary string which uniquely describes the above decision table:

(00000001000001100001101101101111)

For the method above, genetic algorithms of type 2.5 are perfectly suit-
able. Of course, the fitness functions, which we have introduced in 6.1.3,
can also be used without any modifications.

It is easy to see that the approach above works consequent-oriented,
meaning that the premises are fixed—only the consequent values must be
acquired. Such an idea can only be applied to optimization of complete
rule bases which are, in more complex applications, not so easy to handle.
Moreover, complete rule bases are often an overkill and require a lot of
storage resources. In many applications, especially in control, it is enough
to have an incomplete rule base consisting of a certain number of rules
which cover the input space sufficiently well.

The acquisition of incomplete rule bases is a task, which is not so easy
to solve with representations of fixed length. We will come to this point a
little later.

86 6. TUNING OF FUZZY SYSTEMS USING GENETIC ALGORITHMS

Chapter 7

Genetic Programming

How can computers learn to solve problems without being explicitly
programmed? In other words, how can computers be made to do what
is needed to be done, without being told explicitly how to do it?

John R. Koza

Mathematicians and computer scientists, in their everyday practice, do
nothing else than searching for programs which solve given problems
properly. They usually try to design such programs based on their knowl-
edge of the problem, its underlying principles, mathematical models, their
intuition, etc. Koza’s questions seem somehow provocative and utopian.
His answers, however, are remarkable and worth to be discussed here in
more detail. The basic idea is simple but appealing—to apply genetic al-
gorithms to the problem of automatic program induction. All we need in
order to do so are appropriate modifications of all genetic operations we
have discussed so far. This includes random initialization, crossover, and
mutation. For selection and sampling, we do not necessarily need any-
thing new, because these methods are independent of the underlying data
representation.

Of course, this sounds great. The question arises, however, whether
this kind of Genetic Programming (GP) can work at all. Koza, in his remark-
able monograph [30], starts with a rather vague hypothesis.

7.1 The Genetic Programming Paradigm. Provided that we are given a solv-
able problem, a definition of an appropriate programming language, and a suf-
ficiently large set of representative test examples (correct input-output pairs), a
genetic algorithm is able to find a program which (approximately) solves the prob-
lem.

87

88 7. GENETIC PROGRAMMING

This seems to be a matter of believe. Nobody has been able to prove
this hypothesis so far and it is doubtable whether this will ever be possible.
Instead of giving a proof, Koza has elaborated a large set of well-chosen
examples which underline his hypothesis empirically. The problems he
has solved successfully with GP include the following:

• Process control (bang bang control of inverted pendulum)

• Logistics (simple robot control, stacking problems)

• Automatic programming (pseudo-random number generators,
prime number program, ANN design)

• Game strategies (Poker, Tic Tac Toe)

• Inverse kinematics

• Classification

• Symbolic computation:

– Sequence induction (Fibonacci sequence, etc.)

– Symbolic regression

– Solving equations (power series-based solutions of functional,
differential, and integral equations)

– Symbolic differentiation and integration

– Automatic discovery of trigonometric identities

This chapter is devoted to a brief introduction to genetic programming.
We will restrict ourselves to the basic methodological issues and omit to
elaborate examples in detail. For a nice example, the reader is referred to
a [21].

7.1 Data Representation

Without any doubt, programs can be considered as strings. There are,
however, two important limitations which make it impossible to use the
representations and operations from our simple GA:

1. It is mostly inappropriate to assume a fixed length of programs.

7.1. DATA REPRESENTATION 89

+

+

3 X

*

X

SIN

1

Figure 7.1: The tree representation of (+ (* 3 X) (SIN (+ X 1))).

2. The probability to obtain syntactically correct programs when apply-
ing our simple initialization, crossover, and mutation procedures is
hopelessly low.

It is, therefore, indispensable to modify the data representation and the
operations such that syntactical correctness is easier to guarantee. The
common approach to represent programs in genetic programming is to
consider programs as trees. By doing so, initialization can be done re-
cursively, crossover can be done by exchanging subtrees, and random re-
placement of subtrees can serve as mutation operation.

Since their only construct are nested lists, programs in LISP-like lan-
guages already have a kind of tree-like structure. Figure 7.1 shows an
example how the function 3x + sin(x + 1) can be implemented in a LISP-
like language and how such a LISP-like function can be split up into a tree.
Obviously, the tree representation directly corresponds to the nested lists
the program consists of; atomic expressions, like variables and constants,
are leaves while functions correspond to non-leave nodes.

There is one important disadvantage of the LISP approach—it is diffi-
cult to introduce type checking. In case of a purely numeric function like in
the above example, there is no problem at all. However, it can be desirable
to process numeric data, strings, and logical expressions simultaneously.
This is difficult to handle if we use a tree representation like in Figure 7.1.

A very general approach, which overcomes this problem allowing
maximum flexibility, has been proposed by A. Geyer-Schulz. He sug-
gested to represent programs by their syntactical derivation trees with
respect to a recursive definition of underlying language in Backus-Naur

90 7. GENETIC PROGRAMMING

Form (BNF) [15]. This works for any context-free language. It is far beyond
the scope of this lecture to go into much detail about formal languages.
We will explain the basics with the help of a simple example. Consider
the following language which is suitable for implementing binary logical
expressions:

S := 〈exp〉 ;
〈exp〉 := 〈var〉 | “(” 〈neg〉 〈exp〉 “)” | “(” 〈exp〉 〈bin〉 〈exp〉 “)” ;
〈var〉 := “x” | “y”;
〈neg〉 := “NOT” ;
〈bin〉 := “AND” | “OR” ;

The BNF description consists of so-called syntactical rules. Symbols in
angular brackets 〈〉 are called non-terminal symbols, i.e. symbols which
have to be expanded. Symbols between quotation marks are called ter-
minal symbols, i.e. they cannot be expanded any further. The first rule
S:=〈exp〉; defines the starting symbol. A BNF rule of the general shape

〈non-terminal〉 := 〈deriv1〉 | 〈deriv2〉 | · · · | 〈derivn〉 ;

defines how a non-terminal symbol may be expanded, where the different
variants are separated by vertical bars.

In order to get a feeling how to work with the BNF grammar descrip-
tion, we will now show step by step how the expression (NOT (x OR y))
can be derivated from the above language. For simplicity, we omit quota-
tion marks for the terminal symbols:

1. We have to begin with the start symbol: 〈exp〉

2. We replace 〈exp〉 with the second possible derivation:

〈exp〉 −→ (〈neg〉 〈exp〉)

3. The symbol 〈neg〉 may only be expanded with the terminal symbol
NOT:

(〈neg〉 〈exp〉) −→ (NOT 〈exp〉)

4. Next, we replace 〈exp〉 with the third possible derivation:

(NOT 〈exp〉) −→ (NOT (〈exp〉 〈bin〉 〈exp〉))

5. We expand the second possible derivation for 〈bin〉:

7.1. DATA REPRESENTATION 91

"y"

<exp>

1st of 3 1st of 3

1st of 2 2nd of 2

<bin>

2nd of 3 possible derivations

3rd of 3 possible derivations1st of 1

2nd of 2

<exp>"NOT"

"OR"

<exp>

<exp>

<neg>

"("

<var> <var>

"x"

")"

"(" ")"

Figure 7.2: The derivation tree of (NOT (x OR y)).

(NOT (〈exp〉 〈bin〉 〈exp〉)) −→ (NOT (〈exp〉 OR 〈exp〉))

6. The first occurrence of 〈exp〉 is expanded with the first derivation:

(NOT (〈exp〉 OR 〈exp〉)) −→ (NOT (〈var〉 OR 〈exp〉))

7. The second occurrence of 〈exp〉 is expanded with the first derivation,
too:

(NOT (〈var〉 OR 〈exp〉)) −→ (NOT (〈var〉 OR 〈var〉))

8. Now we replace the first 〈var〉 with the corresponding first alterna-
tive:

(NOT (〈var〉 OR 〈var〉)) −→ (NOT (x OR 〈var〉))

9. Finally, the last non-terminal symbol is expanded with the second
alternative:

(NOT (x OR 〈var〉)) −→ (NOT (x OR y))

Such a recursive derivation has an inherent tree structure. For the above
example, this derivation tree has been visualized in Figure 7.2.

92 7. GENETIC PROGRAMMING

7.1.1 The Choice of the Programming Language

The syntax of modern programming languages can be specified in BNF.
Hence, our data model would be applicable to all of them. The question is
whether this is useful. Koza’s hypothesis includes that the programming
language has to be chosen such that the given problem is solvable. This
does not necessarily imply that we have to choose the language such that
virtually any solvable problem can be solved. It is obvious that the size
of the search space grows with the complexity of the language. We know
that the size of the search space influences the performance of a genetic
algorithm—the larger the slower.

It is, therefore, recommendable to restrict the language to necessary
constructs and to avoid superfluous constructs. Assume, for example, that
we want to do symbolic regression, but we are only interested in polyno-
mials with integer coefficients. For such an application, it would be an
overkill to introduce rational constants or to include exponential functions
in the language. A good choice could be the following:

S := 〈func〉 ;
〈func〉 := 〈var〉 | 〈const〉 | “(” 〈func〉 〈bin〉 〈func〉 “)” ;
〈var〉 := “x” ;
〈const〉 := 〈int〉 | 〈const〉 〈int〉 ;
〈int〉 := “0” | · · · | “9” ;
〈bin〉 := “+” | “-” | “∗” ;

For representing rational functions with integer coefficients, it is sufficient
to add the division symbol “/” to the possible derivations of the binary
operator 〈bin〉.

Another example: The following language could be appropriate for
discovering trigonometric identities:

S := 〈func〉 ;
〈func〉 := 〈var〉 | 〈const〉 | 〈trig〉 “(” 〈func〉 “)” |

“(” 〈func〉 〈bin〉 〈func〉 “)” ;
〈var〉 := “x” ;
〈const〉 := “0” | “1” | “π” ;
〈trig〉 := “sin” | “cos” ;
〈bin〉 := “+” | “-” | “∗” ;

7.2. MANIPULATING PROGRAMS 93

7.2 Manipulating Programs

We have a generic coding of programs—the derivation trees. It remains to
define the three operators random initialization, crossover, and mutation
for derivations trees.

7.2.1 Random Initialization

Until now, we did not pay any attention to the creation of the initial pop-
ulation. We assumed implicitly that the individuals of the first generation
can be generated randomly with respect to a certain probability distribu-
tion (mostly uniform). Undoubtedly, this is an absolutely trivial task if we
deal with binary strings of fixed length. The random generation of deriva-
tion trees, however, is a much more subtle task.

There are basically two different variants how to generate random pro-
grams with respect to a given BNF grammar:

1. Beginning from the starting symbol, it is possible to expand non-
terminal symbols recursively, where we have to choose randomly
if we have more than one alternative derivations. This approach is
simple and fast, but has some disadvantages: Firstly, it is almost im-
possible to realize a uniform distribution. Secondly, one has to im-
plement some constraints with respect to the depth of the derivation
trees in order to avoid excessive growth of the programs. Depending
on the complexity of the underlying grammar, this can be a tedious
task.

2. Geyer-Schulz [20] has suggested to prepare a list of all possible
derivation trees up to a certain depth1 and to select from this list
randomly applying a uniform distribution. Obviously, in this ap-
proach, the problems in terms of depth and the resulting probability
distribution are elegantly solved, but these advantages go along with
considerably long computation times.

7.2.2 Crossing Programs

It is trivial to see that primitive string-based crossover of programs almost
never yield syntactically correct programs. Instead, we should use the

1The depth is defined as the number of all non-terminal symbols in the derivation tree.
There is no one-to-one correspondence to the height of the tree.

94 7. GENETIC PROGRAMMING

perfect syntax information a derivation tree provides. Already in the LISP
times of genetic programming, some time before the BNF-based represen-
tation was known, crossover was usually implemented as the exchange
of randomly selected subtrees. In case that the subtrees (subexpressions)
may have different types of return values (e.g. logical and numerical), it is
not guaranteed that crossover preserves syntactical correctness.

The derivation tree-based representation overcomes this problem in a
very elegant way. If we only exchange subtrees which start from the same
non-terminal symbol, crossover can never violate syntactical correctness.
In this sense, the derivation tree model provides implicit typechecking.

In order to demonstrate in more detail how this crossover operation
works, let us reconsider the example of binary logical expressions (gram-
mar defined on page 90). As parents, we take the following expressions:

(NOT (x OR y))
((NOT x) OR (x AND y))

Figure 7.3 shows graphically how the two children

(NOT (x OR (x AND y)))
((NOT x) OR y)

are obtained.

7.2.3 Mutating Programs

We have always considered mutation as the random deformation of a
small part of a chromosome. It is, therefore, not surprising that the most
common mutation in genetic programming is the random replacement of
a randomly selected subtree. This can be accomplished with the method
presented in 7.2.1. The only modification is that we do not necessarily start
from the start symbol, but from the non-terminal symbol at the root of the
subtree we consider. Figure 7.4 shows an example where, in the logical
expression (NOT (x OR y)), the variable y is replaced by (NOT y).

7.2.4 The Fitness Function

There is no common recipe for specifying an appropriate fitness function
which strongly depends on the given problem. It is, however, worth to

7.2. MANIPULATING PROGRAMS 95

Parents

Children

<bin><exp> <exp>"(" ")"

<var>

"y"

<var>

"x"

"y"

"(" ")"

<var>

"x"

<var>

<exp> <bin> <exp>

"OR"

"x"

<var>

"NOT" <var> "y"

")"

<exp>

"(" ")"

"AND"

"OR"<exp>"(" <neg>

<exp> <bin> <exp>

")""("

<exp> <bin> <exp>

"OR"

<exp>

"y"

<var>

<bin> <exp>"OR"

"(" ")"

"NOT"

<exp>

<neg> <exp>

"(" ")"

<var>

"x"

<exp>

"AND"<var>

"x"

")"

"NOT"

"("

<exp>

<neg> <exp>

"x"

<exp> <bin> <exp>

<neg>

"(" ")"

<var>"NOT"

<exp>"(" ")"

Figure 7.3: An example for crossing two binary logical expressions.

96 7. GENETIC PROGRAMMING

<exp> ")"<bin>

<var>"OR"

<exp>"(""NOT"

")"

<var>

"x"

2nd of 2

1st of 1 1st of 3

2nd of 3

<var>"y"

"y"

"x"

<var>

")""("

<neg>

<exp>

<exp>

"NOT"

")""("

"NOT"

")"

<exp>

"(" <exp><neg>

<exp><bin><exp>

"OR" "(" <exp><neg>

Figure 7.4: An example for mutating a derivation tree.

emphasize that it is necessary to provide enough information to guide the
GA to the solution. More specifically, it is not sufficient to define a fitness
function which assigns 0 to a program which does not solve the problem
and 1 to a program which solves the problem—such a fitness function
would correspond to a needle-in-haystack problem. In this sense, a proper
fitness measure should be a gradual concept for judging the correctness of
programs.

In many applications, the fitness function is based on a comparison of
desired and actually obtained output (compare with 6.1.3, p. 73). Koza, for
instance, uses the simple sum of quadratic errors for symbolic regression
and the discovery of trigonometric identities:

f(F) =
N∑

i=1

(yi − F (xi))
2

In this definition, F is the mathematical function which corresponds to
the program under evaluation. The list (xi, yi)1≤i≤N consists of reference
pairs—a desired output yi is assigned to each input xi. Clearly, the sam-
ples have to be chosen such that the considered input space is covered
sufficiently well.

Numeric error-based fitness functions usually imply minimization
problems. Some other applications may imply maximization tasks. There

7.3. FUZZY GENETIC PROGRAMMING (FGP) 97

are basically two well-known transformations which allow to standardize
fitness functions such that always minimization or maximization tasks are
obtained.

7.2 Definition. Consider an arbitrary “raw” fitness function f . Assuming
that the number of individuals in the population is not fixed (mt at time t),
the standardized fitness is computed as

fS(bi,t) = f(bi,t) −
mt

max
j=1

f(bj,t)

in case that f is to maximize and as

fS(bi,t) = f(bi,t) −
mt

min
j=1

f(bj,t)

if f has to be minimized. One possible variant is to consider the best in-
dividual of the last k generations instead of only considering the actual
generation.

Obviously, standardized fitness transforms any optimization problem
into a minimization task. Roulette wheel selection relies on the fact that
the objective is maximization of the fitness function. Koza has suggested
a simple transformation such that, in any case, a maximization problem is
obtained.

7.3 Definition. With the assumptions of Definition 7.2, the adjusted fitness
is computed as

fA(bi,t) =
mt

max
j=1

fS(bj,t) − fS(bj,t).

Another variant of adjusted fitness is defined as

f ′
A(bi,t) =

1

1 + fS(bj,t)
.

7.3 Fuzzy Genetic Programming (FGP)

It was already mentioned that the acquisition of fuzzy rule bases from ex-
ample data is an important problem (Points 2. and 3. according to the clas-
sification on pp. 68ff.). We have seen in 6.3, however, that the possibilities
for finding rule bases automatically are strongly limited. A revolutionary
idea was introduced by A. Geyer-Schulz: To specify a rule language in
BNF and to apply genetic programming. For obvious reasons, we refer to
this synergistic combination as fuzzy genetic programming. Fuzzy genetic
programming elegantly overcomes limitations of all other approaches:

98 7. GENETIC PROGRAMMING

1. If a rule base is represented as a list of rules of arbitrary length, we
are not restricted to complete decision tables.

2. We are not restricted to atomic expressions—it is easily possible to
introduce additional connectives and linguistic modifiers, such as
“very”, “at least”, “roughly”, etc.

The following example shows how a fuzzy rule language can be specified
in Backus-Naur form. Obviously, this fuzzy system has two inputs x1 and
x2. The output variable is y. The domain of x1 is divided into three fuzzy
sets “neg”, “approx. zero”, and “pos”. The domain of x2 is divided into
three fuzzy sets which are labeled “small”, “medium”, and “large”. For
the output variable y, five atomic fuzzy sets called “nb”, “nm’, “z”, “pm’,
and “pb” are specified.

S := 〈rb〉 ;
〈rb〉 := 〈rule〉 | 〈rule〉 “,” 〈rb〉 ;
〈rule〉 := “IF” 〈premise〉 “THEN” 〈conclusion〉 ;
〈premise〉 := 〈atomic〉 | “(” 〈neg〉 〈premise〉 “)” |

“(” 〈premise〉 〈bin〉 〈premise〉 “)” ;
〈neg〉 := “NOT” ;
〈bin〉 := “AND” | “OR” ;
〈atomic〉 := “x1” “is” 〈val1〉 | “x2” “is” 〈val2〉 ;
〈conclusion〉 := “y” “is” 〈val3〉 ;
〈val1〉 := 〈adjective1〉 | 〈adverb〉 〈adjective1〉 ;
〈val2〉 := 〈adjective2〉 | 〈adverb〉 〈adjective2〉 ;
〈val3〉 := 〈adjective3〉 | 〈adverb〉 〈adjective3〉 ;
〈adverb〉 := “at least” | “at most” | “roughly” ;
〈adjective1〉 := “neg” | “approx. zero” | “pos” ;
〈adjective2〉 := “small” | “medium” | “large” ;
〈adjective3〉 := “nb” | “nm” | “z” | “pm’ | “pb”;

A very nice example on an application of genetic programming and fuzzy
genetic programming to a stock management problem can be found in
[21]. A thorough empirical study of FGP can be found in [41].

7.4 A Checklist for Applying Genetic Program-

ming

We conclude this chapter with a checklist of things which are necessary to
apply genetic programming to a given problem:

7.4. A CHECKLIST FOR APPLYING GENETIC PROGRAMMING 99

1. An appropriate fitness function which provides enough information
to guide the GA to the solution (mostly based on examples).

2. A syntactical description of a programming language which contains
as much elements as necessary for solving the problem.

3. An interpreter for the programming language.

100 7. GENETIC PROGRAMMING

Chapter 8

Classifier Systems

Ever since Socrates taught geometry to the slave boy in Plato’s Meno,
the nature of learning has been an active topic of investigation. For
centuries, it was province of philosophers, who analytically studied
inductive and deductive inference. A hundred years ago, psychology
began to use experimental methods to investigate learning in humans
and other organisms. Still more recently, the computer has provided
a research tool, engendering the field of machine learning.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard

8.1 Introduction

Almost all GA-based approaches to machine learning problems have
in common, firstly, that they operate on populations of mod-
els/descriptions/rule bases and, secondly, that the individuals are judged
globally, i.e. there is one fitness value for each model indicating how good
it describes the actual interrelations in the data. The main advantage of
such approaches is simplicity: There are only two things one has to find—
a data representation which is suitable for a genetic algorithm and a fitness
function. In particular, if the representation is rule-based, no complicated
examination which rules are responsible for success or failure has to be
done.

The convergence of such methods, however, can be weak, because sin-
gle obstructive parts can deteriorate the fitness of a whole description

101

102 8. CLASSIFIER SYSTEMS

which could contain useful, well-performing rules. Moreover, genetic al-
gorithms are often perfect in finding suboptimal global solutions quickly;
local refinement, on the other hand, can take a long time.

Another aspect is that it is sometimes difficult to define a global quality
measure which provides enough information to guide a genetic algorithm
to a proper solution. Consider, for instance, the game of chess: A global
quality measure could be the percentage of successes in a large number of
games or, using more specific knowledge, the number of moves it took to
be successful in the case of success and the number of moves it had been
possible to postpone the winning of the opponent in the case of failure. It
is easy to see that such information provides only a scarce foundation for
learning chess, even if more detailed information, such as the number of
captured pieces, is involved. On the contrary, it is easier to learn the prin-
ciples of chess, when the direct effect of the application of a certain rule
can be observed immediately or at least after a few steps. The problem,
not only in the case of chess, is that early actions can also contribute much
to a final success.

In the following, we will deal with a paradigm which can provide so-
lutions to some of the above problems—the so-called classifier systems of
the Michigan type. Roughly speaking, they try to find rules for solving a
task in an online process according to responses from the environment by
employing a genetic algorithm. Figure 8.1 shows the basic architecture of
such a system. The main components are:

1. A production system containing a rule base which processes incom-
ing messages from the environment and sends output messages to
the environment.

2. An apportionment of credit system which receives payoff from the
environment and determines which rules had been responsible for
that feedback; this component assigns strength values to the single
rules in the rule base. These values represent the performance and
usefulness of the rules.

3. A genetic algorithm which recombines well-performing rules to new,
hopefully better ones, where the strengths of the rules are used as
objective function values.

Obviously, the learning task is divided into two subtasks—the judgment
of already existing and the discovery of new rules.

There are a few basic characteristics of such systems which are worth
to be mentioned:

8.2. HOLLAND CLASSIFIER SYSTEMS 103

�✂✁✄✁✆☎✞✝✆✟✡✠☛☎✌☞✎✍✑✏✆☞✒✟✓☎✞✔
✕ ✝✒✏✆✖✂✠✗✟✓✘✚✙✛✘✜✟✢✏✆✍

✣✥✤✧✦ ★✩✦✫✪✭✬✯✮✱✰✲✤✴✳✞✪✒✵✷✶ ★✹✸✻✺✹✤✽✼

✝✄✾✛✿❀✏❁✖✂✠❂✘ ✕ ☎✭❃✫✏❄✝❅✙
✘✚✙❆✘✜✟✡✏❇✍

✣✥✤✧✦ ★✩✦✂❈❉✤✱❊✯✤✴✳❋✶ ✮ �✂● ★■❍■✵✥✶ ✳❑❏✹▲▼✼

✖✡✏✚✟✢✏ ✕ ✟❆☎✌✝❇✘ ✏✆✔❅✔◆✏ ✕ ✟❆☎✌✝❇✘✍✑✏✜✘✩✘✜� ❈ ✏
✿❀✠❂✘✜✟

✝✒✾❖✿❀✏ ✪ �P✘❇✏

◗✒❘❚❙✞❯❲❱✄❳❨❘✢❩❁◗✒❘P❬

❭

❪ ❪ ❪

❫

❭

❴

❪ ❫

❭ ❭

❵✯❛❝❜✩❞■❡✹❢❀❣❝❤✆❵✧❞✧❛ ❣✜✐✹❤❄❵✧❞✧❛

❥❝❣❝❦✩❞✧❜✚❜

❧❖❱✒❳♥♠✌♦❆♣✒❬q❯r❳❨❘ts◆✉✂s❄❬q◗✄❩

♣✎✈✹✇✎s✆s✒❯②①③❯②◗✒❱④s◆✉✡s❅❬q◗✄❩

Figure 8.1: Basic architecture of a classifier system of the Michigan type.

1. The basis of the search does not consist of examples which describe
the task as in many classical ML methods, but of feedback from the
environment (payoff) which judges the correctness/usefulness of the
last decisions/actions.

2. There is no strict distinction between learning and working like, for
instance, in many ANN approaches.

3. Since learning is done in an online process, Michigan classifier sys-
tems can adapt to changing circumstances in the environment.

8.2 Holland Classifier Systems

For illustrating in more detail how such systems basically work, let us first
consider a common variant—the so-called Holland classifier system.

104 8. CLASSIFIER SYSTEMS

A Holland classifier system is a classifier system of the Michigan type
which processes binary messages of a fixed length through a rule base
whose rules are adapted according to response of the environment [20, 27,
28].

8.2.1 The Production System

First of all, the communication of the production system with the envi-
ronment is done via an arbitrarily long list of messages. The detectors
translate responses from the environment into binary messages and place
them on the message list which is then scanned and changed by the rule
base. Finally, the effectors translate output messages into actions on the
environment, such as forces or movements.

Messages are binary strings of the same length k. More formally, a
message belongs to {0, 1}k. The rule base consists of a fixed number m of
rules (classifiers) which consist of a fixed number r of conditions and an
action, where both conditions and actions are strings of length k over the
alphabet {0, 1, ∗}. The asterisk plays the role of a wildcard, a “don’t care”
symbol.

A condition is matched, if and only if there is a message in the list
which matches the condition in all non-wildcard positions. Moreover,
conditions, except the first one, may be negated by adding a “–” prefix.
Such a prefixed condition is satisfied, if and only if there is no message in
the list which matches the string associated with the condition. Finally, a
rule fires, if and only if all the conditions are satisfied, i.e. the conditions
are connected with AND. Such “firing” rules compete to put their action
messages on the message list. This competition will soon be discussed in
connection with the apportionment of credit problem.

In the action parts, the wildcard symbols have a different meaning.
They take the role of “pass through” element. The output message of a
firing rule, whose action part contains a wildcard, is composed from the
non-wildcard positions of the action and the message which satisfies the
first condition of the classifier. This is actually the reason why negations of
the first conditions are not allowed. More formally, the outgoing message
m̃ is defined as

m̃[i] =

{
a[i] if a[i] 6= ∗
m[i] if a[i] = ∗ i = 1, . . . , k,

where a is the action part of the classifier and m is the message which

8.2. HOLLAND CLASSIFIER SYSTEMS 105

matches the first condition. Formally, a classifier is a string of the form

Cond1, [“–”]Cond2, . . . , [“–”]Condr/Action,

where the brackets should express the optionality of the “–” prefixes.

Depending on the concrete needs of the task to be solved, it may be
desirable to allow messages to be preserved for the next step. More specif-
ically, if a message is not interpreted and removed by the effector interface,
it can make another classifier fire in the next step. In practical applications,
this is usually accomplished by reserving a few bits of the messages for
identifying the origin of the messages (a kind of variable index called tag).
Tagging offers new opportunities to transfer information about the cur-
rent step into the next step simply by placing tagged messages on the list
which are not interpreted by the output interface. These messages, which
obviously contain information about the previous step, can support the
decisions in the next step. Hence, appropriate use of tags permits rules
to be coupled to act sequentially. In some sense, such messages are the
memory of the system.

A single execution cycle of the production system consists of the fol-
lowing steps:

1. Messages from the environment are appended to the message list.

2. All the conditions of all classifiers are checked against the message
list to obtain the set of firing rules.

3. The message list is erased.

4. The firing classifiers participate in a competition to place their mes-
sages on the list (see 8.2.2).

5. The winning classifiers place their actions on the list.

6. The messages directed to the effectors are executed.

This procedure is repeated iteratively.

How 6. is done, if these messages are deleted or not, and so on, depends
on the concrete implementation. It is, on the one hand, possible to choose
a representation such that each output message can be interpreted by the
effectors. On the other hand, it is possible to direct messages explicitly to
the effectors with a special tag. If no messages are directed to the effectors,
the system is in a thinking phase.

106 8. CLASSIFIER SYSTEMS

A classifier R1 is called consumer of a classifier R2 if and only if there
is a message m′ which fulfills at least one of R1’s conditions and has been
placed on the list by R2. Conversely, R2 is called a supplier of R1.

8.2.2 The Bucket Brigade Algorithm

As already mentioned, in each time step t, we assign a strength value ui,t

to each classifier Ri. This strength value represents the correctness and
importance of a classifier. On the one hand, the strength value influences
the chance of a classifier to place its action on the output list. On the other
hand, the strength values are used by the rule discovery system which we
will soon discuss.

In Holland classifier systems, the adaptation of the strength values de-
pending on the feedback (payoff) from the environment is done by the
so-called bucket brigade algorithm. It can be regarded as a simulated eco-
nomic system in which various agents, here the classifiers, participate in
an auction, where the chance to buy the right to post the action depends
on the strength of the agents.

The bid of classifier Ri at time t is defined as

Bi,t = cL · ui,t · si,

where cL ∈ [0, 1] is a learning parameter, similar to learning rates in arti-
ficial neural nets, and si is the specifity, the number of non-wildcard sym-
bols in the condition part of the classifier. If cL is chosen small, the system
adapts slowly. If it is chosen too high, the strengths tend to oscillate chaot-
ically.

Then the rules have to compete for the right for placing their output
messages on the list. In the simplest case, this can be done by a random
experiment like the selection in a genetic algorithm. For each bidding clas-
sifier it is decided randomly if it wins or not, where the probability that it
wins is proportional to its bid:

P[Ri wins] =
Bi,t

∑

j∈Satt

Bj,t

In this equation, Satt is the set of indices all classifiers which are satisfied
at time t. Classifiers which get the right to post their output messages are
called winning classifiers.

8.2. HOLLAND CLASSIFIER SYSTEMS 107

Obviously, in this approach, more than one winning classifier is al-
lowed. Of course, other selection schemes are reasonable, for instance,
the highest bidding agent wins alone. This can be necessary to avoid that
two winning classifiers direct conflicting actions to the effectors.

Now let us discuss how payoff from the environment is distributed
and how the strengths are adapted. For this purpose, let us denote the
set of classifiers, which have supplied a winning agent Ri in step t, with
Si,t. Then the new strength of a winning agent is reduced by its bid and
increased by its portion of the payoff Pt received from the environment:

ui,t+1 = ui,t +
Pt

wt

− Bi,t,

where wt is the number of winning agents in the actual time step. A win-
ning agent pays its bid to its suppliers which share the bid among each
other, equally in the simplest case:

ul,t+1 = ul,t +
Bi,t

|Si,t|
for all Rl ∈ Si,t

If a winning agent has also been active in the previous step and supplies
another winning agent, the value above is additionally increased by one
portion of the bid the consumer offers. In the case that two winning agents
have supplied each other mutually, the portions of the bids are exchanged
in the above manner. The strengths of all other classifiers Rn, which are
neither winning agents nor suppliers of winning agents, are reduced by a
certain factor (they pay a tax):

un,t+1 = un,t · (1 − T),

T is a small values from [0, 1]. The intention of taxation is to punish clas-
sifiers which never contribute anything to the output of the system. With
this concept, redundant classifiers, which never become active, can be fil-
tered out.

The idea behind credit assignment in general and bucket brigade in
particular is to increase the strengths of rules which have set the stage
for later successful actions. The problem of determining such classifiers,
which were responsible for conditions under which it was later on possi-
ble to receive a high payoff, can be very difficult. Consider, for instance,
the game of chess again, in which very early moves can be significant for a
late success or failure. In fact, the bucket brigade algorithm can solve this
problem, although strength is only transferred to the suppliers which were

108 8. CLASSIFIER SYSTEMS

100

60

100

100

140

112

28

100 100

Payoff

202020

60 Payoff

80

Strengths

80

Strengths

First execution

Second execution

20202020

100

80

8080

108 172100

80

808080

Figure 8.2: The bucket brigade principle.

active in the previous step. Each time the same sequence is activated, how-
ever, a little bit of the payoff is transferred one step back in the sequence.
It is easy to see that repeated successful execution of a sequence increases
the strengths of all involved classifiers.

Figure 8.2 shows a simple example how the bucket brigade algorithm
works. For simplicity, we consider a sequence of five classifiers which al-
ways bid 20 percent of their strength. Only after the fifth step, after the
activation of the fifth classifier, a payoff of 60 is received. The further de-
velopment of the strengths in this example is shown in the table in Fig-
ure 8.3. It is easy to see from this example that the reinforcement of the
strengths is slow at the beginning, but it accelerates later. Exactly this
property contributes much to the robustness of classifier systems—they
tend to be cautious at the beginning, trying not to rush conclusions, but,
after a certain number of similar situations, the system adopts the rules
more and more. Figure 8.4 shows a graphical visualization of this fact
interpreting the table shown in Figure 8.3 as a two-dimensional surface.

8.2. HOLLAND CLASSIFIER SYSTEMS 109

Strength after the
3rd 100.00 100.00 101.60 120.80 172.00
4th 100.00 100.32 105.44 136.16 197.60
5th 100.06 101.34 111.58 152.54 234.46
6th 100.32 103.39 119.78 168.93 247.57

...
10th 106.56 124.17 164.44 224.84 278.52

...
25th 215.86 253.20 280.36 294.52 299.24

...
execution of the
sequence

Figure 8.3: An example for repeated propagation of payoffs.

It might be clear, that a Holland classifier system only works if suc-
cessful sequences of classifier activations are observed sufficiently often.
Otherwise the bucket brigade algorithm does not have a chance to rein-
force the strengths of the successful sequence properly.

8.2.3 Rule Generation

While the apportionment of credit system just judges the rules, the pur-
pose of the rule discovery system is to eliminate low-fitted rules and to
replace them by hopefully better ones. The fitness of a rule is simply its
strength. Since the classifiers of a Holland classifier system themselves are
strings, the application of a genetic algorithm to the problem of rule induc-
tion is straightforward, though many variants are reasonable. Almost all
variants have in common that the GA is not invoked in each time step, but
only every n-th step, where n has to be set such that enough information
about the performance of new classifiers can be obtained in the meantime.

A. Geyer-Schulz [20], for instance, suggests the following procedure,
where the strength of new classifiers is initialized with the average
strength of the current rule base:

1. Select a subpopulation of a certain size at random.

110 8. CLASSIFIER SYSTEMS

0

10

20

100

150

200

250

300

100

150

200

250

300

Figure 8.4: A graphical representation of the table shown in Figure 7.3.

2. Compute a new set of rules by applying the genetic operations selec-
tion, crossing over, and mutation to this subpopulation.

3. Merge the new subpopulation with the rule base omitting duplicates
and replacing the worst classifiers.

This process of acquiring new rules has an interesting side effect. It is
more than just the exchange of parts of conditions and actions. Since we
have not stated restrictions for manipulating tags, the genetic algorithm
can recombine parts of already existing tags to invent new tags. In the
following, tags spawn related tags establishing new couplings. These new
tags survive if they contribute to useful interactions. In this sense, the GA
additionally creates experience-based internal structures autonomously.

8.3 Fuzzy Classifier Systems of the Michigan

Type

While classifier systems of the Michigan type have been introduced by
J. H. Holland already in the Seventies, their fuzzification awaited discov-
ery many years. The first fuzzy classifier system of the Michigan type
was introduced by M. Valenzuela-Rendón [43, 44]. It is, more or less, a
straightforward fuzzification of a Holland classifier system. An alterna-
tive approach has been developed by A. Bonarini [7, 8], who introduced a

8.3. FUZZY CLASSIFIER SYSTEMS OF THE MICHIGAN TYPE 111

different scheme of competition between classifiers. These two approaches
have in common that they operate only on the fuzzy rules—the shape of
the membership functions is fixed. A third method, which was introduced
by P. Bonelli and A. Parodi [36], tries to optimize even the membership
functions and the output weights in accordance to payoff from the envi-
ronment.

8.3.1 Directly Fuzzifying Holland Classifier Systems

The Production System

We consider a fuzzy controller with real-valued inputs and outputs. The
system has, unlike ordinary fuzzy controllers, three different types of
variables—input, output, and internal variables. As we will see later, in-
ternal variables are for the purpose of storing information about the near
past. They correspond to the internally tagged messages in Holland clas-
sifier systems. For the sake of generality and simplicity, all domains of
all variables are intervals transformed to the unit interval [0, 1]. For each
variable, the same number of membership functions n is assumed. These
membership functions are fixed at the beginning. They are not changed
throughout the learning process. M. Valenzuela-Rendón took bell-shaped
function dividing the input domain equally.

A message is a binary string of length l + n, where n is the number
of membership functions defined above and l is the length of the pre-
fix (tag), which identifies the variable to which the message belongs. A
perfect choice for l would be ⌈log2 K⌉, where K is the total number of
variables we want to consider. To each message, an activity level, which
represents a truth value, is assigned. Consider, for instance, the following
message (l = 3, n = 5):

010
︸︷︷︸

=2

: 00010 → 0.6

Its meaning is “Input value no. 2 belongs to fuzzy set no. 4 with a degree
of 0.6”. On the message list, only so-called minimal messages are used,
i.e. messages with only one 1 in the right part which corresponds to the
indices of the fuzzy sets.

Classifiers again consist of a fixed number r of conditions and an action
part. Note that, in this approach, no wildcards and no “–” prefixes are
used. Both condition and action part are also binary strings of length l+n,
where the tag and the identifiers of the fuzzy sets are separated by a colon.

112 8. CLASSIFIER SYSTEMS

0.8

max

:

:

1.0

: 0.4

0.4

0.8

0.3:

0.8

:

0.3

:

:

:

:

0.7

Message List

0 01

0

0

0

1

1 0 0

0

100

0

0

0

00

0 1001

0

0010

1

1 0010

0000 0

Messages with same tag

001

00 0 00011

Condition

0010

1 00000

0

1 001 0

010

00

Figure 8.5: Matching a fuzzy condition.

The degree to which such a condition is matched is a truth value between 0
and 1. The degree of matching of a condition is computed as the maximal
activity of messages on the list, which have the same tag and whose 1s are
a subset of those of the condition. Figure 8.5 shows a simple example how
this matching is done. The degree of satisfaction of the whole classifier
is then computed as the minimum of matching degrees of the conditions.
This value is then used as the activity level which is assigned to the output
message (corresponds to Mamdani inference).

The whole rule base consists of a fixed number m of such classifiers.
Similarly to Holland classifier systems, one execution step of the produc-
tion system is carried out as follows:

1. The detectors receive crisp input values from the environment and
translate them into minimal messages which are then added to the
message list.

2. The degrees of matching are computed for all classifiers.

3. The message list is erased.

4. The output messages of some matched classifiers (see below) are
placed on the message list.

5. The output messages are translated into minimal messages. For in-
stance, the message 010 : 00110 → 0.9 is split up into the two mes-
sages 010 : 00010 → 0.9 and 010 : 00100 → 0.9.

8.3. FUZZY CLASSIFIER SYSTEMS OF THE MICHIGAN TYPE 113

6. The effectors discard the output messages (referring to output vari-
ables) from the list and translate them into instructions to the envi-
ronment.

Step 6 is done by a slightly modified Mamdani inference: The sum (in-
stead of the maximum or another t-conorm) of activity levels of messages,
which refer to the same fuzzy set of a variable, is computed. The mem-
bership functions are then scaled with these sums. Finally, the center of
gravity of the “union” (i.e. maximum) of these functions, which belong to
one variable, is computed (Sum-Prod inference).

Credit Assignment

Since fuzzy systems have been designed to model transitions, a proba-
bilistic auction process as discussed in connection with Holland classifier
systems, where only a small number of rules is allowed to fire, is not de-
sirable. Of course, we assign strength values to the classifiers again.

If we are dealing with a one-stage system, in which payoff for a cer-
tain action is received immediately, where no long-term strategies must
be evolved, we can suffice with allowing all matched rules to post their
outputs and sharing the payoff among the rules, which were active in the
last step, according to their activity levels in this step. For example, if St is
the set of classifiers, which have been active at time t, and Pt is the payoff
received after the t-th step, the modification of the strengths of firing rules
can be defined as

ui,t+1 = ui,t + Pt ·
ai,t

∑

Rj∈St

aj,t

∀Ri ∈ St, (8.1)

where ai,t denotes the activity level of the classifier Ri at time t. It is again
possible to reduce the strength of inactive classifiers by a certain tax.

In the case, that the problem is so complex that long-term strategies
are indispensable, a fuzzification of the bucket brigade mechanism must
be found. While Valenzuela-Rendón only provides a few vague ideas, we
state one possible variant, where the firing rules pay a certain value to their
suppliers which depends on the activity level. The strength of a classifier,
which has recently been active in time step t, is then increased by a portion
of the payoff as defined in (8.1), but it is additionally decreased by a value

Bi,t = cL · ui,t · ai,t,

114 8. CLASSIFIER SYSTEMS

where cL ∈ [0, 1] is the learning parameter. Of course, it is again possible
to incorporate terms which depend on the specifity of the classifier.

This “fuzzy bid” is then shared among the suppliers of such a firing
classifier according to the amount they have contributed to the matching
of the consumer. If we consider an arbitrary but fixed classifier Rj , which
has been active in step t and if we denote the set of classifiers supplying Rj ,
which have been active in step t − 1, with Sj,t, the change of the strengths
of these suppliers can be defined as

uk,t+1 = uk,t + Bj,t ·
ak,t−1

∑

Rl∈Sj,t

al,t−1

for all Rk ∈ Sj,t.

Rule Discovery

The adaptation of a genetic algorithm to the problem of manipulating clas-
sifiers in our system is again straightforward. We only have to take special
care that tags in conditional parts must not refer to output variables and
that tags in the action parts of the classifiers must not refer to input vari-
ables of the system.

Analogously to our previous considerations, if we admit a certain
number of internal variables, the system can build up internal chains au-
tomatically. By means of internal variables, a classifier system of this type
does not only learn stupid input-output actions, it also tries to discover
causal interrelations.

8.3.2 Bonarini’s ELF Method

In [7], A. Bonarini presents his ELF (evolutionary learning of fuzzy rules)
method and applies it to the problem of guiding an autonomous robot.
The key issue of ELF is to find a small rule base which only contains impor-
tant rules. While he takes over many of M. Valenzuela-Rendón’s ideas, his
way of modifying the rule base differs strongly from Valenzuela-Rendón’s
straightforward fuzzification of Holland classifier systems.

Bonarini calls the modification scheme “cover-detector algorithm”.
The number of rules can be varied in each time step depending on the
number of rules which match the actual situation. This is done by two
mutually exclusive operations:

1. If the rules, which match the actual situation, are too many, the worst
of them is deleted.

8.3. FUZZY CLASSIFIER SYSTEMS OF THE MICHIGAN TYPE 115

2. If there are too few rules matching the current inputs, a new rule,
the antecedents of which cover the current state, is added to the rule
base with randomly chosen consequent value.

The genetic operations are only applied to the consequent values of the
rules. Since the antecedents are generated on demand in the different time
steps, no taxation is necessary.

Obviously, such a simple modification scheme can only be applied
to so-called one-stage problems, where the effect of each rule can be ob-
served in the next time step. For applications where this is not the case,
e.g. backing up a truck, Bonarini introduced an additional concept to his
ELF algorithm—the notion of an episode, which is a given number of sub-
sequent control actions, after which the reached state is evaluated (for de-
tails, see [8]).

8.3.3 An Improved FCS

Fuzzy rules interact—the rules “collaborate” to generate a desired output.
On the other hand, classifier systems need to evaluate the contribution of
a single members or a small fraction of classifiers to the performance of the
system. Classifier systems and fuzzy systems, therefore, contradict in this
point. There is a big difference in the selection scheme of a classifier sys-
tem and the fuzzy classifier system. Classifier Systems mostly select only
one single rule and send its action to the environment, they receive a pay-
off which is directly applied to the selected classifier. The FCS performs a
sum-product inference on all firing classifiers, sending the generated ac-
tion to the environment and receiving a payoff that must be distributed to
all selected classifiers. However, by selecting all classifiers—good and bad
ones—the outgoing messages to the environment become distorted and
the system is unable to determine which rules are good and which are not.

In a recent master thesis [24], this impression was confirmed by thor-
ough empirical studies. To overcome the drawbacks of the FCS as pro-
posed in Subsection 8.3.1, a modified version has been designed which can
be seen as a fusion of Valenzuela-Rendón’s FCS and Bonarini’s ELF Algo-
rithm. From Valenzuela-Rendón, the structure of the classifier system has
been taken (similarly to Michigan classifier system), and from Bonarini,
the idea of competition and cooperation and the cover-detector operation
has been taken.

As a first important difference, the modified variant uses fuzzy par-

116 8. CLASSIFIER SYSTEMS

titions consisting of trapezoidal membership functions instead of bell-
shaped ones in Valenzuela-Rendón’s fuzzy classifier system.

The Production System

The structure of a classifier differs strongly from Valenzuela-Rendón’s
fuzzy classifier system. Not all fuzzy sets are represented in the binary
condition and action string. Instead, only one fuzzy set per variable is ad-
dressed, represented by an integer value. The position in the condition
string or integer list, respectively, corresponds to the number of the input
or internal variable. Within the action, the number of the internal or out-
put variable is represented by the action tag. Consider two input variables
x0 and x1 and one output variable x2 which all have a partition with three
component sets (“low”= 0,“medium”= 1, and “high”= 2). An example of
such a classifier would look as follows:

0 : 1, 1 : 2/2 : 0

The corresponding decoded rule would be the following:

“if x0 is medium and x1 is high then x2 should be low”

Obviously, the representation uses only the logical AND operator.

Again, an activity level is assigned to each message. However, to be
compatible with the coding of the rules, the messages are structured like
the action part of the classifiers. They consist of a tag which names the
variable the message corresponds to and an integer value which repre-
sents the fuzzy set. For example, the message 2 : 1 → 0.5 means “the
value of variable 2 is medium with a degree of 0.5”. Obviously, this kind of
message is already a minimal message, so the evaluation of the matching
scheme and payoff distribution is simplified. In Figure 8.6, an example of
the creation of fuzzy messages is given.

The matching of the conditions is done in the following way: the tag of
the message is compared with the tags of the conditions. Then the value
of the condition with the same tag is checked with the value from the mes-
sage. The condition matches the message if the message value and the
condition value correspond to the same fuzzy set. The activity level of the
condition is then set to the same degree as that of the message. This is
done for all messages and all classifiers.

After the matching procedure the satisfaction level of the classifier is set
to the minimum of all matching degrees of the conditions (i.e. conjunction

8.3. FUZZY CLASSIFIER SYSTEMS OF THE MICHIGAN TYPE 117

1.0 0 1

x

0.2

0.8 Messages:

0:0 0.8

0:1 0.2

0x

Figure 8.6: The creation of fuzzy messages in the improved FCS

0:3

MESSAGE LIST

0:3,1:3/2:1

0:3,1:1/2:3

0:1,1:2/2:0

CLASSIFIER LIST

0.3

0:2 0.7

1:1 0.5

1:2 0.5

min(0.3,0)=0

min(0.3,0.5)=0,3

min(0,0.5)=0

2:3 0.3

OUTGOING
MESSAGE

Figure 8.7: The matching procedure of the modified fuzzy classifier system

by means of the minimum t-norm). This activity level of the classifier is
then used as the degree of satisfaction for the output message. Figure 8.7
gives an example of the matching procedure.

For the case that no matching classifier is found, the cover-detector
operation is performed to create a new classifier with a condition that
matches the messages and an random action. This new classifier is added
to the classifier list, either as additional one or as replacement for a weak
classifier, similarly to ELF [7, 8, 9].

Now let us turn to the most important modification—the selection
scheme. In Valenzuela-Rendón’s FCS, all matching classifiers are allowed
to fire and to send their action messages to the output unit. The modified
version uses another selection scheme. If there are activated classifiers
which have the same condition and the same action tag (but a different ac-

118 8. CLASSIFIER SYSTEMS

tion value), a selection scheme is performed (e.g. roulette wheel) according
to the classifiers strength. The winning classifier is then allowed to post its
message to the message list. With this kind of selection, we have found a
middle course between competition and cooperation of fuzzy rules. Fuzzy
classifiers with the same condition and action tag compete to post a mes-
sage, and all others “work together” to create the output of the classifier
system. This is done exactly as in Valenzuela-Rendón’s FCS—by sum-
prod inference.

Credit Assignment

The payoff distribution is solved in a very simple way. All classifiers that
did post a message receive a payoff according to their activity level, that
means the Classifier Ri receives a payoff Pi,t at time step t:

Pi,t = Pt · ai,t,

where Pt is the payoff from the environment at time step t, and ai,t is the
activity level of classifier Ri.

An active classifier has to pay a bid to be allowed to post a message. For
simplicity the bid is set to the activity level of the classifier. With this bid
and the above payoff we can give the strength adjustment of the classifier
Ri:

ui,t+1 = ui,t − ai,t + Pt · ai,t

This strength adjustment works properly, if the payoff P is out of the in-
terval [0, 2] or [0, pmax] with pmax ≥ 2. If the payoff P ≤ 1 then the strength
of the classifier is reduced, if P ≥ 1 then the strength is increased. In case
of P = 1 the classifier keeps its strength.

Again, additional versatility could be added with internal messages
and a bucket brigade algorithm, or a taxation system.

Rule Discovery

The rule discovery system is similar as to the approach of Valenzuela-
Rendón. Again, classifiers with a higher strength are selected more of-
ten than weaker ones. The reproduction of the selected classifiers is done
by crossover and mutation. Special care has to be taken that the cross-
over makes sense. For example an crossover algorithm is thinkable, which
works on the condition part only. However, this is only useful if there is
more than one condition per classifier.

8.3. FUZZY CLASSIFIER SYSTEMS OF THE MICHIGAN TYPE 119

8.3.4 Online Modification of the Whole Knowledge Base

While the last two methods only manipulate rules and work with fixed
membership functions, there is at least one variant of fuzzy classifier sys-
tems where also the shapes of the membership functions are involved in
the learning process. This variant was introduced by A. Parodi and P.
Bonelli in [36]. Let us restrict to the very basic idea here: A rule is not
encoded with indices pointing to membership functions of a given shape.
Instead, each rule contains codings of fuzzy sets like the ones we discussed
in 6.1.

120 8. CLASSIFIER SYSTEMS

Bibliography

[1] BAGLEY, J. D. The Behavior of Adaptive Systems Which Employ Genetic
and Correlative Algorithms. PhD thesis, University of Michigan, Ann
Arbor, 1967.

[2] BAUER, P., BODENHOFER, U., AND KLEMENT, E. P. A fuzzy algo-
rithm for pixel classification based on the discrepancy norm. In Proc.
5th IEEE Int. Conf. on Fuzzy Systems (New Orleans, September 1996),
vol. III, pp. 2007–2012.

[3] BODENHOFER, U. Tuning of fuzzy systems using genetic algorithms.
Master’s thesis, Johannes Kepler Universität Linz, March 1996.

[4] BODENHOFER, U., AND BAUER, P. A formal model of interpretabil-
ity of linguistic variables. In Interpretability Issues in Fuzzy Modeling,
J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Eds., vol. 128
of Studies in Fuzziness and Soft Computing. Springer, Berlin, 2003,
pp. 524–545.

[5] BODENHOFER, U., AND HERRERA, F. Ten lectures on genetic fuzzy
systems. In Preprints of the International Summer School: Advanced
Control—Fuzzy, Neural, Genetic, R. Mesiar, Ed. Slovak Technical Uni-
versity, Bratislava, 1997, pp. 1–69.

[6] BODENHOFER, U., AND KLEMENT, E. P. Genetic optimization of
fuzzy classification systems — a case study. In Computational Intel-
ligence in Theory and Practice, B. Reusch and K.-H. Temme, Eds., Ad-
vances in Soft Computing. Physica-Verlag, Heidelberg, 2001, pp. 183–
200.

[7] BONARINI, A. ELF: Learning incomplete fuzzy rule sets for an au-
tonomous robot. In Proc. EUFIT’93 (1993), vol. I, pp. 69–75.

121

122 BIBLIOGRAPHY

[8] BONARINI, A. Evolutionary learning of fuzzy rules: Competition and
cooperation. In Fuzzy Modeling: Paradigms and Practice, W. Pedrycz,
Ed. Kluwer Academic Publishers, Dordrecht, 1996, pp. 265–283.

[9] BONARINI, A. Anytime learning and adaptation of hierarchical fuzzy
logic behaviors. Adaptive Behavior 5 (1997), 281–315.

[10] BULIRSCH, R., AND STOER, J. Introduction to Numerical Analysis.
Springer, Berlin, 1980.

[11] CASILLAS, J., CORDÓN, O., HERRERA, F., AND MAGDALENA, L.,
Eds. Interpretability Issues in Fuzzy Modeling, vol. 128 of Studies in
Fuzziness and Soft Computing. Springer, Berlin, 2003.

[12] CHEN, C. L., AND CHANG, M. H. An enhanced genetic algorithm.
In Proc. EUFIT’93 (1993), vol. II, pp. 1105–1109.

[13] CORDÓN, O., HERRERA, F., HOFFMANN, F., AND MAGDALENA, L.
Genetic Fuzzy Systems — Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases, vol. 19 of Advances in Fuzzy Systems — Applications
and Theory. World Scientific, Singapore, 2001.

[14] DARWIN, C. R. On the Origin of Species by means of Natural Selection
and The Descent of Man and Selection in Relation to Sex, third ed., vol. 49
of Great Books of the Western World, Editor in chief: M. J. Adler. Robert
P. Gwinn, Chicago, IL, 1991. First edition John Murray, London, 1859.

[15] ENGESSER, H., Ed. Duden Informatik: Ein Sachlexikon für Studium und
Praxis, second ed. Brockhaus, Mannheim, 1993.

[16] ESHELMAN, L., AND SCHAFFER, J. Real-coded genetic algorithms
and interval-schemata. In Foundations of Genetic Algorithms 2, L. D.
Whitley, Ed. Morgan Kaufmann, 1993, pp. 187–202.

[17] FOGEL, D. B. Evolving Artificial Intelligence. PhD thesis, University of
California, San Diego, 1992.

[18] FOGEL, D. B. Evolutionary Computation. IEEE Press, New York, 1995.

[19] FOGEL, L. J. Autonomous automata. Industrial Research 4 (1962), 14–
19.

[20] GEYER-SCHULZ, A. Fuzzy Rule-Based Expert Systems and Genetic Ma-
chine Learning, vol. 3 of Studies in Fuzziness. Physica-Verlag, Heidel-
berg, 1995.

BIBLIOGRAPHY 123

[21] GEYER-SCHULZ, A. The MIT beer distribution game revisited: Ge-
netic machine learning and managerial behavior in a dynamic deci-
sion making experiment. In Genetic Algorithms and Soft Computing,
F. Herrera and J. L. Verdegay, Eds., vol. 8 of Studies in Fuzziness and
Soft Computing. Physica-Verlag, Heidelberg, 1996, pp. 658–682.

[22] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, Reading, MA, 1989.

[23] GOLDBERG, D. E., KORB, B., AND DEB, K. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems 3 (1989), 493–
530.

[24] HASLINGER, P. Fuzzy classifier systems — a critical review and a
new approach. Master’s thesis, Johannes Kepler Universität Linz,
February 2002.

[25] HERRERA, F., LOZANO, M., AND VERDEGAY, J. L. Tackling real-
coded genetic algorithms: Operators and tools for behavioural anal-
ysis. Artificial Intelligence Review 12 (1998), 265–319.

[26] HOFFMANN, F. Entwurf von Fuzzy-Reglern mit Genetischen Algorith-
men. Deutscher Universitäts-Verlag, Wiesbaden, 1997.

[27] HOLLAND, J. H. Adaptation in Natural and Artificial Systems, first MIT
Press ed. The MIT Press, Cambridge, MA, 1992. First edition: Uni-
versity of Michigan Press, 1975.

[28] HOLLAND, J. H., HOLYOAK, K. J., NISBETT, R. E., AND THAGARD,
P. R. Induction: Processes of Inference, Learning, and Discovery. Compu-
tational Models of Cognition and Perception. The MIT Press, Cam-
bridge, MA, 1986.

[29] HÖRNER, H. A C++ class library for genetic programming: The Vi-
enna university of economics genetic programming kernel. Tech. rep.,
Vienna University of Economics, May 1996.

[30] KOZA, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge, MA, 1992.

[31] KRUSE, R., GEBHARDT, J., AND KLAWONN, F. Fuzzy-Systeme. B. G.
Teubner, Stuttgart, 1993.

[32] KRUSE, R., GEBHARDT, J., AND KLAWONN, F. Foundations of Fuzzy
Systems. John Wiley & Sons, New York, 1994.

124 BIBLIOGRAPHY

[33] MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution
Programs, third extended ed. Springer, Heidelberg, 1996.

[34] NEUNZERT, H., AND WETTON, B. Pattern recognition using measure
space metrics. Tech. Rep. 28, Universität Kaiserslautern, Fachbereich
Mathematik, November 1987.

[35] OTTEN, R. H. J. M., AND VAN GINNEKEN, L. P. P. P. The Annealing
Algorithm. Kluwer Academic Publishers, Boston, 1989.

[36] PARODI, A., AND BONELLI, P. A new approach to fuzzy classifier
systems. In Proc. ICGA’97 (Los Altos, CA, 1993), S. Forrest, Ed., Mor-
gan Kaufmann, pp. 223–230.

[37] RECHENBERG, I. Evolutionsstrategie, vol. 15 of Problemata. Friedrich
Frommann Verlag (Günther Holzboog KG), Stuttgart, 1973.

[38] RUMELHART, D. E., AND MCCLELLAND, J. L. Parallel Distributed
Processing—Exploration in the Microstructures of Cognition, Volume I:
Foundations. MIT Press, Cambridge, MA, 1986.

[39] SCHWEFEL, H.-P. Evolution and Optimum Seeking. Sixth-Generation
Computer Technologie Series. John Wiley & Sons, New York, 1995.

[40] SINGH, S. Fermat’s Last Theorem. Fourth Estate Limited, London,
1997.

[41] STEINÖCKER, G. Fuzzy genetic programming — offline acquisition
of fuzzy rules using variable-length GAs. Master’s thesis, Johannes
Kepler Universität Linz, January 2002.

[42] TILLI, T. Automatisierung mit Fuzzy-Logik. Franzis-Verlag, München,
1992.

[43] VALENZUELA-RENDÓN, M. The fuzzy classifier system: A classifier
system for continuously varying variables. In Proc. ICGA’91 (San Ma-
teo, CA, 1991), R. K. Belew and L. B. Booker, Eds., Morgan Kaufmann,
pp. 346–353.

[44] VALENZUELA-RENDÓN, M. The fuzzy classifier system: Motivations
and first results. In Parallel Problem Solving from Nature, H.-P. Schwefel
and R. Männer, Eds. Springer, Berlin, 1991, pp. 330–334.

BIBLIOGRAPHY 125

[45] VAN LAARHOVEN, P. J. M., AND AARTS, E. H. L. Simulated Anneal-
ing: Theory and Applications. Kluwer Academic Publishers, Dordrecht,
1987.

[46] WRIGHT, A. Genetic algorithms for real parameter optimization. In
Foundations of Genetic Algorithms 1, G. J. E. Rawlin, Ed. Morgan Kauf-
mann, 1991, pp. 205–218.

[47] ZIMMERMANN, H.-J. Fuzzy Set Theory—and its Applications, sec-
ond ed. Kluwer Academic Publishers, Boston, 1991.

[48] ZURADA, J. M. Introduction to Artificial Neural Networks. West Pub-
lishing, St. Paul, 1992.

126 BIBLIOGRAPHY

	Basic Ideas and Concepts
	Introduction
	Definitions and Terminology

	A Simple Class of GAs
	Genetic Operations on Binary Strings
	Selection
	Crossover
	Mutation
	Summary

	Examples
	A Very Simple One
	An Oscillating One-Dimensional Function
	A Two-Dimensional Function
	Global Smoothness versus Local Perturbations
	Discussion

	Analysis
	The Schema Theorem
	The Optimal Allocation of Trials
	Implicit Parallelism

	Building Blocks and the Coding Problem
	Example: The Traveling Salesman Problem

	Concluding Remarks

	Variants
	Messy Genetic Algorithms
	Alternative Selection Schemes
	Adaptive Genetic Algorithms
	Hybrid Genetic Algorithms
	Self-Organizing Genetic Algorithms

	GA Variants for Real-Valued Optimization Problems
	Real-Coded GAs
	Crossover Operators for Real-Coded GAs
	Mutation Operators for Real-Coded GAs

	Evolutionary Strategies
	Recombination in ESs
	Mutation in ESs
	Selection and Sampling in ESs

	Evolutionary Programming
	Original EP
	D. B. Fogel's Modified EP
	Selection and Sampling in EP

	Tuning of Fuzzy Systems Using Genetic Algorithms
	Tuning of Fuzzy Sets
	Coding Fuzzy Subsets of an Interval
	Coding Whole Fuzzy Partitions
	Standard Fitness Functions
	Genetic Operators

	A Practical Example
	The Fuzzy System
	The Optimization of the Classification System
	Concluding Remarks

	Finding Rule Bases with GAs

	Genetic Programming
	Data Representation
	The Choice of the Programming Language

	Manipulating Programs
	Random Initialization
	Crossing Programs
	Mutating Programs
	The Fitness Function

	Fuzzy Genetic Programming (FGP)
	A Checklist for Applying Genetic Programming

	Classifier Systems
	Introduction
	Holland Classifier Systems
	The Production System
	The Bucket Brigade Algorithm
	Rule Generation

	Fuzzy Classifier Systems of the Michigan Type
	Directly Fuzzifying Holland Classifier Systems
	Bonarini's ELF Method
	An Improved FCS
	Online Modification of the Whole Knowledge Base

	Bibliography

