
Genetic algorithms with path relinking for the minimum
tardiness permutation �owshop problem

Eva Vallada∗, Rubén Ruiz

Grupo de Sistemas de Optimización Aplicada

Instituto Tecnológico de Informática

Universidad Politécnica de Valencia. Ciudad Politécnica de la Innovación.

Edi�cio 8G, Acc. B. Camino de Vera S/N, 46021, Valencia, SPAIN

email: {evallada,rruiz}@eio.upv.es

April 15, 2009

Abstract

In this work three genetic algorithms are presented for the permutation �owshop
scheduling problem with total tardiness minimisation criterion. The algorithms in-
clude advanced techniques like path relinking, local search and a procedure to control
the diversity of the population. We also include a speed up procedure in order to re-
duce the computational e�ort needed for the local search technique, which results in
large CPU time savings. A complete calibration of the di�erent parameters and op-
erators of the proposed algorithms by means of a Design of Experiments approach is
also given. We carry out a comparative evaluation with the best methods that can be
found in the literature for the total tardiness objective, and with adaptations of other
state-of-the-art methods originally proposed for other objectives, mainly makespan.
All the methods have been implemented with and without the speed up procedure
in order to test its e�ect. The results show that the proposed algorithms are very
e�ective outperforming the remaining methods of the comparison by a considerable
margin.

Keywords: Flowshop, Tardiness, Genetic Algorithm, Path Relinking, Diversity.
1Corresponding author. Tel: +34 96 387 70 07, ext: 74911. Fax: +34 96 387 74 99

1



1 Introduction
The permutation �owshop scheduling problem (PFSP) is a widely studied combinatorial
optimisation problem where there is a set of N = {1, . . . , n} of n jobs that have to
be processed on a set M = {1, . . . , m} of m machines. In the PFSP all jobs visit the
machines in the same order which can be assumed to be 1, 2, . . . , m. Therefore, each job
is made up of m tasks. Furthermore, in the PFSP once the job sequence is established,
it is not changed from machine to machine. This yields n! job permutations and possible
processing sequences. Each operation requires a given processing time denoted by pij. The
most commonly studied objective in the literature is to �nd a minimum completion time
sequence, a criteria that is known as makespan or Cmax. According to Pinedo (2008) this
problem is denoted as F/prmu/Cmax and the associated decision problem was shown to
be NP-complete by Rinnooy Kan (1976) for m ≥ 3.

In the literature, there is a large body of papers dealing with the PFSP and the
makespan objective. Some of the most recent methods proposed for this problem are those
presented by Ruiz et al. (2006), Grabowski and Pempera (2007) and Farahmand et al.
(2009). We can �nd in Ruiz and Maroto (2005) an updated extensive comparison and
evaluation. Other recent reviews centered around makespan criterion can be found in
Framinan et al. (2004) or Hejazi and Sagha�an (2005). Recent research has also focused
on other objectives, especially those related to due dates. These objectives are important
in real-life, mainly in industry where the ful�llment of due dates agreed with customers
is of uttermost importance. Among due date based criteria, the minimisation of the total
tardiness is probably the most common one. Therefore, the PFSP with this criterion is
denoted as F/prmu/

∑
Tj (Pinedo, 2008) where Tj = max{Cj − dj, 0} is the tardiness of

job j, being dj its due date and Cj its completion time at the last machine of the shop.
Du and Leung (1990) showed that the problem is NP-hard in the ordinary sense even
when there is only one machine and NP-hard in the strong sense for m ≥ 2.

Recently, Vallada et al. (2008) reported an exhaustive review and comparative evalu-
ation of di�erent methods for the PFSP minimising total tardiness. In this review, it was
shown that it is not common to adapt recent, high performing methods from the makespan
to the total tardiness objective. As it was shown, only a few classic algorithms for the
makespan objective are usually adapted to the total tardiness objective (Campbell et al.,
1970, Gelders and Sambandam, 1978 and Nawaz et al., 1983).

Given that the makespan objective is the most studied, it seems plausible to take ad-
vantage of this research when developing new algorithms for total tardiness minimisation.
Like for example the advanced genetic algorithms depicted by Ruiz et al. (2006) for the

2



makespan criterion. Working with such methods for other objectives seems promising.
Furthermore, genetic algorithms have been sparsely used for the total tardiness objective.
Therefore, the main goal of this paper is to propose high performing genetic algorithms for
the PFSP minimising total tardiness. These algorithms make extensive use of advanced
techniques like local search, diversi�cation and path relinking. The resulting algorithms
show excellent performance when compared against recent proposed methods under careful
and comprehensive computational and statistical experiments.

The remainder of this paper is organised as follows; in Section 2 we review the literature
on this problem. In Section 3 we describe in detail the genetic algorithms proposed. In
Section 4, a design of experiments approach is applied in order to calibrate the genetic
algorithms. Results of a comparative computational and statistical evaluation are reported
in Section 5. Finally, conclusions are given in Section 6.

2 Literature review
Vallada et al. (2008) provided an extensive literature review along with a comparative
evaluation about the PFSP with the objective of total tardiness minimisation. In this
section we review the most important existing methods, from the classical exact approaches
to the most recent and e�ective metaheuristic algorithms.

Exact methods for the PFSP minimising total tardiness are mainly focused in the
two machine case. There exist several papers where branch and bound algorithms for
this case are proposed: Sen et al. (1989), Kim (1993b), Pan and Fan (1997), Pan et al.
(2002) and Schaller (2005). The best performing algorithms among those presented in
the aforementioned papers are able to solve instances of up to 18 or 20 jobs maximum.
Regarding the m-machine case, we only �nd two papers, Kim (1995) and more recently,
Chung et al. (2006). The former solved all the instances of up to 13 jobs and 8 machines
and some instances of up to 14 jobs and 4 machines. The latter solved optimally all
instances up to 15 jobs and two machines and some with 20 jobs and 8 machines. As we
can see, only the most recent exact methods are able to solve some problems of up to 20
jobs and 8 machines. For this reason, research is mainly focused on the development of
heuristic and metaheuristic methods to tackle this complex problem.
Some of the earlier heuristics are the four proposed by Gelders and Sambandam (1978)
based on priority rules. A few years later we �nd the paper by Ow (1985) where a heuristic
based on a priority rule is proposed for the proportionate �owshop problem. In Kim
(1993a) some adaptations of algorithms for di�erent objectives, mainly the makespan, are
presented. We want to remark the NEH method (Nawaz et al., 1983), which is considered

3



the best heuristic for the makespan objective, according to Ruiz and Maroto (2005) and
Kalczynski and Kamburowski (2007). In the adapted version of Kim (1993a), jobs are
initially sorted following the Earliest Due Date (EDD) rule, that is, in non-decreasing
order of due dates and according to the author we name this NEH version as NEHedd.
We can also �nd in Raman (1995) several rules and heuristics originally proposed for
the one machine and two machine cases and adapted to the m-machine case. Finally,
Kim et al. (1996) reported several improvement heuristics which start from the NEHedd

method (Kim, 1993a) and local search procedures based on insertion, interchange and
permutation of jobs are applied to improve the solution.

With respect to the metaheuristic methods, some of the earliest existing papers are
Adenso-Díaz (1992) and Kim (1993a). In both papers we �nd adapted versions of the
well-known tabu search by Widmer and Hertz (1989) originally proposed for the makespan
objective. The former starts from the solution provided by Ow (1985) and a restricted
neighborhood is applied. The latter starts from the Earliest Due Date rule. Later, the
same authors extended these results in Adenso-Díaz (1996) and Kim et al. (1996). In
this case, Adenso-Díaz (1996) proposed a hybrid algorithm based on simulated annealing
and tabu search starting from the solution provided by Ow (1985). Kim et al. (1996)
devised four tabu search and four simulated annealing methods all of them starting from
the NEHedd method. In two related papers (Parthasarathy and Rajendran, 1997a and
Parthasarathy and Rajendran, 1997b), two very similar simulated annealing methods for
the �owshop problem with sequence dependent setup times and the objective to minimise
the mean weighted tardiness are proposed. Another two simulated annealing algorithms
are those reported by the same authors in Parthasarathy and Rajendran (1998) which
start from a speci�c rule and perturbation schemes are applied to improve the initial solu-
tion. In Onwubolu and Mutingi (1999), a genetic algorithm is proposed which considered
three objective functions: minimising total tardiness, minimising number of tardy jobs
and minimising both objectives at the same time. In Armentano and Ronconi (1999),
a basic tabu search was proposed and then diversi�cation, intensi�cation and restricted
neighborhood strategies are applied to form four tabu search variations. Another work
is that by Rajendran and Ziegler (2003) where heuristic and metaheuristic methods are
proposed with the objective of minimising the sum of weighted �owtime and weighted
tardiness. A simulated annealing method can be found in Hasija and Rajendran (2004)
which starts from the solution provided by Parthasarathy and Rajendran (1998) and then
applies a local search procedure to improve it. After this, the simulated annealing method
itself is applied to improve this initial solution and two local search procedures are con-
sidered, the �rst one is very similar to that presented in Parthasarathy and Rajendran

4



(1998) and the second one is based on the interchange of jobs. This simulated annealing
shows the best performance for this problem up to the moment according to the results of
Vallada et al. (2008). Finally, in a recent work, Onwubolu and Davendra (2006) proposed
a di�erential evolution algorithm to minimise the makespan, �owtime and total tardiness
and Ronconi and Henriques (2009) presented heuristics for the �owshop problem with
blocking.

It is important to point out that most of the aforementioned published papers only
compare results with a few classical algorithms for the same problem and the experiments
were carried out using di�erent benchmarks of instances of up to 100 jobs and 20 machines
maximum in the best case. For more details about the performance of all these methods
see Vallada et al. (2008).

3 Proposed genetic algorithms
Genetic algorithms (GAs) are bio-inspired optimisation methods that are widely used to
solve combinatorial problems such as the PFSP. There is a rich literature where GAs
are successfully applied to this problem (see for example Chen et al., 1995, Reeves, 1995,
Murata et al., 1996, Etiler et al., 2004, Zhang and Lai, 2006 or Ruiz et al., 2006, among
others). However, as we have mentioned in the previous section, despite showing a very
good performance for the makespan objective, only one paper can be found in the liter-
ature for the total tardiness objective (Onwubolu and Mutingi, 1999). In our proposed
algorithms, among other innovative features, we add path relinking techniques and a pro-
cedure to control the diversity of the population. We have studied all these characteristics
in a series of calibration experiments in order to set the best operators and parameter
values. In the next subsections a detailed description about the algorithms is reported.

3.1 Representation of solutions, initialisation of the population
and selection operator

The most commonly used solution representation for the PFSP is a simple permutation
of jobs that indicates the processing order by the machines. With this representation it
is easy to construct an active schedule by sequencing the �rst job of the permutation on
all m machines, then the second, and so on until all n jobs are scheduled. The GAs are
formed by a population of Psize individuals or n job permutations.

It is also common to randomly generate the initial population in a genetic algorithm.
However, a recent trend consists in including in the population some good individuals

5



provided by some e�ective heuristics, mainly the NEH heuristic (Nawaz et al., 1983) or
by some dispatching rules. This approach ensures a faster convergence to good solutions.
Such �seeded� GAs are very common and can be found in most papers related to PFSP
and GAs. In our case, we propose two initialisation schemes, the �rst one randomly
generates all the individuals except one which is given by the EDD rule. The second
initialisation scheme consists of seeding the population with two good individuals provided
by the NEHedd heuristic (Kim, 1993a) and by the EDD dispatching rule. The remaining
individuals are randomly generated.

Regarding the selection mechanism, in the classical genetic algorithms, tournament
and ranking-like selection operators are common. Such operators either require �tness
and mapping calculations or the population to be continuously sorted. In this work, a
much simpler and faster selection scheme, called n-tournament, is used. In this case, ac-
cording to a parameter called �pressure�, a given percentage of the population is randomly
selected. The individual with the lowest total tardiness value among the randomly selected
percentage of individuals wins the tournament and is �nally selected. This results in a
very fast GA and selection operator since no �tness calculation and/or mapping is needed,
and the population does not need to be sorted. Finally, we can easily vary the selection
pressure in the GA by increasing or decreasing the �pressure� parameter.

3.2 Crossover, mutation and generational scheme
There are several crossover operators proposed in the literature for scheduling problems.
In general, the goal of the crossover operator is to generate two good individuals, called
o�spring, from the two selected progenitors. In Ruiz et al. (2006) we can �nd an extensive
review of eight crossover operators suitable for the PFSP. After statistical experimentation,
the authors stated that the two best crossover operators are those proposed in the same
paper: Similar Block Order Crossover (SBOX) and Similar Block 2-Point Order Crossover
(SB2OX) with a very similar performance. The One Point Order Crossover (OP) showed
a good performance as well. In this work, we pick for experimentation the SBOX and
OP crossover operators which are applied with a Pc probability to two distinct individuals
selected by n-tournament, resulting in two o�spring. Regarding the mutation operator, the
most common and best performing for the PFSP with the objective to minimize makespan
is the shift mutation where each job in the permutation is extracted with a Pm probability
and inserted in a random di�erent position.

Another aspect to consider is the way the generated o�springs after selection, crossover
and mutation are inserted in the population. This is usually known as generational scheme.
It is usual that o�spring directly replace the parents. In other GAs, this procedure is

6



carried out only after having preserved the best individuals from the last generation in
order to avoid loosing the best solutions (elitist GAs). Another approach is the so called
steady state GAs where the o�spring do not replace the parents but di�erent individuals
from the population. In the genetic algorithms proposed in this work, the o�spring are
accepted into the population only if they are better than the worst individuals of the
population and if at the same time are unique, i.e., there are no other identical individuals
already in the population. Otherwise they are rejected. As a result, population steadily
evolves to better average tardiness values while at the same time it contains di�erent
solutions, which help in maintaining diversity and in avoiding premature convergence to
a dominant, sub-optimal individual.

3.3 Local search
Local search procedures to improve solutions are widely used in genetic algorithms just as
in other metaheuristic approaches for the PFSP regardless of the objective to minimise.
This is specially important in GAs for scheduling where genetic operators are unable to
carry out the �ne improvement that a simple local search method can do. We test a local
search based on job insertion (insertion neighborhood) since it is the most used in �owshop
problems, (see Ruiz et al., 2006 or Ruiz and Stützle, 2007, among many others). In the
proposed local search, a job is removed from the sequence and inserted in all possible n

positions. The job is �nally placed at the position that results in the lowest total tardiness
value. We call this a step or iteration of the local search procedure.

In order to reduce the computational e�ort it is possible to introduce a simple speed
up. When inserting a removed job in a given position, one has to calculate the total
tardiness of the sequence. This calculation has a computational complexity of O(nm).
Therefore, a single step of the local search has a computational complexity of O(n2m).
However, if the insertion in all n positions is done in order, substantial savings can be
obtained. For example, let us picture a permutation π = {1, 2, 3, 4, 5} of �ve jobs. If we
extract the job 4, the �incomplete� permutation would be πi = {1, 2, 3, 5} and the job 4 is
now tested in the �rst, second, third, fourth and �fth positions, i.e., the total tardiness for
the following permutations needs to be calculated: π1 = {4, 1, 2, 3, 5}, π2 = {1, 4, 2, 3, 5},
π3 = {1, 2, 4, 3, 5}, π4 = {1, 2, 3, 4, 5}, π5 = {1, 2, 3, 5, 4}. First, π4 does not need to be
calculated if the tardiness for the original π was known. Also, notice that job 1 is in the
same position for π2, π3, π4 and π5. Similarly, job 2 is in the same position for π3, π4 and π5.
This means that we need to calculate the tardiness of job 1 at the �rst position in π2 only
once and with proper bookkeeping, savings can be obtained in subsequent permutations.
In π2 job 1 is already calculated and only job 2 needs to be sequenced. In π3 jobs 1 and

7



2 are already set and so on. Unfortunately, the worst case computational complexity is
maintained with the speed up. However, a careful analysis results in a computational
complexity of O(n2m − n2−3n+2

2
m) for the speed up which con�rms the expected large

savings in CPU time. The above local search is carried out in all n jobs of each generated
o�spring after crossover and mutation with a probability Pls. It is also applied to the
best individual after the initialisation of the population. We test the algorithms with and
without the speed up procedure in order to study the e�ect of this improvement method.

3.4 Diversity of the population and restart mechanism
Ideally, a diverse population is more likely to evolve whereas when the diversity of the
population falls, it means that the individuals are very similar and the algorithm is or will
soon be stalled. Similarly, after a number of generations, the best solution in a GA will
cease to improve. If this is detected, one can apply some restart mechanism in order to
move away from the current population in which the GA is stuck, (see Ruiz et al., 2006)
hoping to �nd better solutions in the long run. However, these two problems (loosing
diversity and getting stalled), although related, are not the same. One can prematurely
converge to not so good solutions by rapidly loosing diversity. Di�erently, it is possible
for a GA to get stalled after many generations with a su�ciently diverse population. In
this latter case probably the GA has found a near optimum solution.

In this work, we deal with both problems. We propose to compute a diversity value
based on the number of times that jobs appear at the di�erent positions of the solutions
that form the population. Ultimately, and as we will detail, we obtain a value between
zero and one so that a value close to one indicates a very diverse population where each job
occupies di�erent positions among the individuals. A small value indicates that all indi-
viduals (although di�erent, according to the generational scheme depicted in Section 3.2)
are very similar which indicates a degenerated population with low diversity. When the
diversity value falls below a given threshold value, a restart mechanism is applied where all
or part of the population is regenerated. We test three restart mechanisms: 1) regenerate
the whole population randomly except for two individuals provided by the NEH heuristic
and the EDD rule, 2) regenerate all the population randomly and 3) keep the 20% best
individuals from the current population and regenerate the remaining 80% at random.

There are several diversity measures that can be found in the literature. The most
simple and usual is the sum of the Hamming distances between all possible pairs. In our
case, this is the sum of all positions where two given solutions have di�erent jobs. To
obtain the diversity value from the individuals of the population we compute two matrices
called GeneCount and GeneFrecuency according to Wineberg and Oppacher (2003) in the

8



following way:

• The GeneCount matrix is the number of times that a job α appears at a given
position k across the population:

ck(α) =

Psize∑
i=1

n∑
j=1

δi,j(α), α, k = 1, . . . , n (1)

where δi,k is a Kronecker δ such that becomes 1 if the job at position j of individual
i is the job α and at the same time j = k or 0 otherwise.

• The GeneFrecuency matrix is the ratio of the job count to the size of the population:

fk(α) =
ck(α)

Psize

, α, k = 1, . . . , n (2)

• The diversity value of the population (Div) is then computed in the following way:

Div =
1

n− 1

n∑

k=1

n∑
α=1

fk(α)(1− fk(α)) (3)

Hence, Div gives us the diversity measure between 0 and 1.
For example, let us picture a population P formed by three individuals (permutations)

of four jobs: π1 = {1, 2, 3, 4}, π2 = {2, 3, 4, 1}, π3 = {1, 4, 2, 3}. First, we compute the
GeneCount matrix following the equation 1:

job (α)
position
(k)

1 2 3 4

1 2 1 0 0
2 0 1 1 1
3 0 1 1 1
4 1 0 1 1

Then, we compute the GeneFrecuency matrix following expression 2, which is simply
obtained by dividing each cell of the GeneCount matrix by Psize (3 in our example).
Finally, we compute the diversity value using the equation 3 obtaining a value of 0.815.

9



3.5 Path Relinking
Path relinking is a search technique originally proposed by Glover and Laguna (1997)
where the objective is to explore the search space or �path� between a given set (usu-
ally two) of good solutions. The objective is to generate a set of new solutions in be-
tween the good solutions from the set. Path relinking is frequently used in Greedy Ran-
domized Adaptive Search Procedure (GRASP) algorithms, (see Laguna and Martí, 1999,
Laguna and Martí, 2004 and Álvarez-Valdés et al., 2008). Regarding GAs, we �nd several
papers where the path relinking technique is applied, like for example Nowicki and Smutnicki
(2006), Zhang and Lai (2006), Basseur et al. (2005) or Reeves and Yamada (1998). Most
of them were proposed for the makespan objective and used Path relinking technique as lo-
cal search procedure between two good solutions. In this work, a path relinking technique
is applied in order to explore the search space between two individuals of the population.
We obtain all the job interchange movements that are necessary to transform one selected
solution, called �origin� into another one, called �destination�. In this way, Path relinking
based on interchange movements complements the local search procedure which is based
on the insertion neighborhood. Each time a movement is carried out, the obtained so-
lution looks less like origin and more like destination. For each intermediate solution,
the tardiness value is obtained and at the end the intermediate solution with the lowest
tardiness value among all the movements is returned. Note that the set of movements is
not symmetric, that is, the movements from individual A to individual B are not the same
that those from individual B to individual A. Therefore, given two selected individuals
from the population, when we apply the path relinking we obtain two new solutions, the
best intermediate solution in each direction. For example, let us picture two permutations
of �ve jobs: π1 = {1, 2, 5, 3, 4}, π2 = {2, 3, 4, 1, 5}. We de�ne the set of interchange move-
ments to transform π1 into π2 like for example (1,1,4), which means that the job 1 placed
on position 1 of π1 will be placed on position 4 of π1, which is the position of the job 1 in
π2. At the same time, job 3 in π1 (which is in position 4 of π1) will be placed in position 1
(interchange with job 1 in π1). The set of movements to transform π1 into π2 are showed
in Table 1.

Movements Permutation

(1,2,5,3,4) = π1

(1,1,4) (3,2,5,1,4)
(2,2,1) (2,3,5,1,4)
(5,3,5) (2,3,4,1,5) = π2

Table 1: Interchange movements of the Path Relinking to transform π1 into π2

10



With respect to the selection of the two individuals to carry out the path relinking, we
can select them from the current population or we can select two individuals from a pool
of elite solutions. In the latter case, we maintain a separated pool of 0.4Psize individuals
and after each generation, the best solution replaces the worst individual from the pool if
it is better than this worst individual and also if it is not already in the pool. Note that in
the �rst iteration of the GAs, the elitist pool is formed by the best 40% of the individuals
of the current population.

Di�erent approaches are proposed. We test the path relinking applied either as a
crossover operator or after a number of generations without improvement in the best
solution. The selected individuals are marked in order to not be selected again for the
path relinking. We propose four di�erent versions of the technique where the path relinking
is applied:

1. between two individuals of the current population. In this case the n-tournament
selection is carried out, that is, two di�erent unmarked individuals are selected
according to a pressure value,

2. between the two best unmarked individuals of the elite pool,

3. between two randomly selected unmarked individuals from the elite pool, and

4. between the best and a randomly selected individual. Both unmarked and from the
elite pool.

We test the four approaches in both cases; path relinking as crossover and path relinking
applied after a number of iterations without improving the best solution found so far.
Notice that the procedure is not carried out if there are less than two unmarked individuals
available.

4 Calibration of the algorithms
We propose and calibrate three GAs. In all three we apply the restart mechanism when
the population diversity falls below a given threshold value as well as the steady state
generational scheme. The �rst proposed algorithm, referred to as GAPR, substitutes
the crossover operator in favor of the path relinking technique. The second algorithm,
referred to as GAPR2, is slightly more complex since it maintains the crossover operator
and applies the path relinking technique as an additional step whenever the best solution
of the population has not improved over a given number of generations. Lastly, the third

11



proposed GA, refereed to as GADV, does without the path relinking technique entirely as
only applies the restart mechanism.

We calibrate all three proposed genetic algorithms taking into account the di�erent
choices for the operators and values for the parameters. Each algorithm is calibrated
separately and we make extensive use of the design of experiments (DOE) approach. A
full factorial design is employed.

For the calibration of the GAPR, the following combinations of factors are tested:

• Population Size (Psize): 2 levels (30 and 50)

• Population Initialisation (Inipop): 2 levels (Randomly + EDD individual; Randomly
+ NEHedd individual + EDD individual)

• Diversity threshold (Div): 3 levels (0.2, 0.4 and 0.6)

• Restart mechanism (Restart): 3 levels according to Section 3.4 (1, 2 and 3)

• Path Relinking (PR): 4 levels according to Section 3.5 (1, 2, 3 and 4)

We obtain a total of 2 × 2 × 3 × 3 × 4 = 144 di�erent combinations, that is, 144 di�er-
ent con�gurations for GAPR. For the GAPR2 calibration, the following combinations of
factors are tested:

• Crossover type: 2 levels (OP and SBOX)

• Crossover probability: 2 levels (0.3 and 0.5)

• Diversity threshold (Div): 2 levels (0.2, 0.4)

• Restart mechanism (Restart): 3 levels (1, 2 and 3)

• Path Relinking (PR): 4 levels (1, 2, 3 and 4)

• Number of iterations without improvement before path relinking is applied: 3 levels
(25, 50 and 75)

The total number of GAPR2 con�gurations is therefore 2×2×2×3×4×3 = 288. In the
last calibration for the GADV algorithm, we test the following combinations of factors:

• Population Size (Psize): 2 levels (30 and 50)

• Crossover type: 2 levels (OP and SBOX)

• Crossover probability: 2 levels (0.3 and 0.5)

12



• Diversity threshold (Div): 3 levels (0.2, 0.4, 0,6)

• Restart mechanism (Restart): 3 levels (1, 2 and 3)

For this last experiment, 2× 2× 2× 3× 3 = 72 di�erent con�gurations are tested.
Moreover, the following parameter values and operators are �xed in all the experiments:

• Selection type: n-tournament

• Pressure for the selection: 30%

• Mutation probability: 0.02

• Mutation type: insertion

• Probability to apply local search (Pls) : 0.15

These parameters are �xed after short runs or small calibrations in order to keep the
aforementioned calibrations at a manageable level.

Each algorithm is tested with a set of 24 randomly generated test instances. These
instances are generated following the procedure explained in Vallada et al. (2008) which
is brie�y summarised as follows: Two instances for each combination of n and m are
generated where n = {50, 150, 250, 350} and m = {10, 30, 50}. The processing times are
uniformly distributed between 1 and 99 as usual in the scheduling literature. The due dates
are also generated with a uniform distribution between P (1−T−R/2) and P (1−T +R/2)

following the method of Potts and Van Wassenhove (1982) where P is a lower bound of
the makespan and T and R are two parameters called Tardiness Factor and Due Date
Range which take the following values: T = {0.2, 0.4, 0.6}, R = {0.2, 0.6, 1}.

The GAs are coded in Delphi 2007 and run on a Pentium IV 3.0 GHz with 1 GB of main
memory. The stopping criterion is set to a maximum elapsed CPU time of n · (m/2) · 60

milliseconds. Therefore, the computational e�ort increases as the number of jobs and/or
machines increases.

Regarding the response variable for the experiments, the following performance mea-
sure is computed for each instance according to Zemel (1981), Kim (1993a) and Kim et al.
(1996):

Relative Deviation Index (RDI) =
Methodsol −Bestsol

Worstsol −Bestsol

· 100, (4)

where Bestsol and Worstsol are the best and the worst solutions obtained among all
the methods, respectively and Methodsol is the solution obtained with a given algorithm
con�guration. An index between 0 and 100 is obtained as a result such that a good

13



algorithm will obtain an index close to 0. Note that if the worst and the best solutions
are similar, all the combinations would provide the best (same) solution and hence, the
index value will be 0 (best index value) for all the similar solutions. We run �ve replicates
of each experiment and the results are analysed by means of a multifactor analysis of
variance (ANOVA) where n and m are also considered as factors. First, we check the
three main hypotheses of ANOVA: normality, homocedasticity and independence of the
residuals (Montgomery, 2000). Residuals from the three experiments satis�ed all three
hypotheses.

We can see in Table 2 a summary with the di�erent parameter values for the algorithms
GAPR, GAPR2 and GADV after the calibration experiments (details about the statistical
analysis are not shown due to space restrictions).

Factor GAPR GAPR2 GADV

Psize 30 30 30
Inipop 2 2 2
Div 0.4 0.4 0.4
Restart 1 1 1
PR 1 3 -
Crossover - 1 (OP) 1 (OP)
Pc - 0.3 0.3
Iterations - 50 -
SelType n-tournament n-tournament n-tournament
Pressure 30 30 30
Mutation Insertion Insertion Insertion
Pm 0.02 0.02 0.02
Pls 0.15 0.15 0.15

Table 2: Operators and parameter values used for the genetic algorithms after calibration.

5 Computational results
We proceed now with the comparison between the three proposed genetic algorithms,
GAPR, GAPR2 and GADV against other existing metaheuristics for the objective of
minimising the total tardiness. We also compare the proposed methods with some of the
most recent and e�ective algorithms originally proposed for the makespan and adapted to
the total tardiness criterion. In the latter case, we choose the following methods to carry

14



out the comparison: the hybrid genetic algorithm (HGA) by Ruiz et al. (2006) and the
iterated greedy method (IG) by Ruiz and Stützle (2007) which were shown by the authors
to outperform many other existing PFSP metaheuristics for the makespan objective. We
also adapt a genetic algorithm, referred to as SGALS by Ruiz and Allahverdi (2007) that
was recently proposed for a speci�c type of PFSP problem and for the maximum lateness
criterion.

Regarding the existing methods proposed for the total tardiness objective, from the
comparative evaluation by Vallada et al. (2008) we have chosen the best two performing
methods: the simulated annealing algorithms by Parthasarathy and Rajendran (1997b)
and Hasija and Rajendran (2004), which are referred to as SAH and SRH, respectively.
We want to remark that all methods have been implemented with and without the speed
up procedure explained in subsection 3.3. The only exception is the SAH algorithm since
in this method the local search is applied in a di�erent and unordered way and therefore
the speed up is not possible unless the local search step for this algorithm is completely
changed. We di�erentiate the methods tested with and without the speed up by adding
�su� (speed up) to the end of the method's names. For example, HGAsu and HGA refer
to the HGA method with and without speed up, respectively.

To test all the methods and variations (15 in total), we use the benchmark of instances
available from http://soa.iti.es, which are the same 540 problems that Vallada et al.
(2008) proposed, ranging from 50 to 350 jobs and from 10 to 30 machines.

All methods are coded in Delphi 2007 and run �ve independent times on a Pentium
IV 3.0 GHz with 1 GB of main memory. The stopping criterion is set to a maximum
elapsed CPU time of n · (m/2) · t milliseconds. We tested three di�erent values for t: 60,
90 and 120. Regarding the performance measure, we use again the Relative Deviation
Index (RDI).

The results are shown in Tables 3, 4 and 5 where we have averaged the 45 instances
of each n × m group (recall that the instance set contains also di�erent values for the
tardiness factor, T and ranges of due dates, R) for the di�erent t values in the stopping
criterion (60, 90 and 120).

15



In
st
an

ce
SA

H
SR

H
SR

H
su

H
G
A

H
G
A
su

IG
IG

su
SG

A
LS

50
×

10
47

.2
9(
11

.3
0)

34
.9
5(
9.
98

)
35

.3
0(
9.
84

)
15

.4
3(
5.
68

)
11

.9
8(
4.
09

)
17

.8
1(
6.
37

)
11

.2
0(
3.
70

)
11

.2
1(
3.
78

)
50
×

30
67

.3
3(
14

.7
2)

39
.3
8(
12

.4
7)

40
.4
5(
12

.4
8)

19
.1
7(
7.
30

)
15

.3
3(
5.
52

)
22

.1
1(
8.
54

)
16

.4
9(
5.
94

)
13

.1
0(
4.
44

)
50
×

50
62

.7
2(
14

.6
3)

39
.4
9(
12

.7
0)

41
.7
2(
13

.0
1)

16
.6
6(
6.
44

)
14

.3
7(
5.
25

)
24

.6
7(
9.
65

)
17

.4
1(
6.
77

)
12

.5
5(
4.
27

)
15

0
×

10
37

.6
6(
8.
14

)
52

.6
2(
10

.2
0)

52
.5
0(
10

.3
3)

39
.7
1(
8.
58

)
28

.9
6(
6.
04

)
32

.1
2(
6.
75

)
23

.0
6(
4.
10

)
29

.5
0(
6.
29

)
15

0
×

30
59

.0
7(
11

.3
6)

58
.1
2(
11

.3
8)

59
.4
2(
11

.3
5)

47
.8
0(
10

.4
6)

35
.7
0(
7.
52

)
39

.6
4(
8.
45

)
29

.5
3(
5.
43

)
35

.7
5(
7.
51

)
15

0
×

50
69

.2
9(
13

.5
7)

65
.7
7(
13

.2
6)

65
.4
1(
13

.2
2)

46
.4
7(
11

.0
5)

35
.9
2(
8.
05

)
40

.1
2(
9.
18

)
30

.0
8(
5.
99

)
35

.5
5(
8.
12

)
25

0
×

10
19

.8
2(
3.
80

)
36

.0
1(
7.
85

)
36

.8
1(
7.
96

)
46

.3
7(
9.
20

)
33

.0
0(
6.
95

)
32

.3
4(
7.
20

)
22

.6
7(
4.
14

)
26

.6
2(
5.
65

)
25

0
×

30
37

.0
4(
6.
79

)
53

.1
1(
10

.0
0)

54
.2
0(
10

.1
0)

55
.8
6(
10

.6
7)

42
.5
7(
8.
44

)
40

.7
9(
7.
92

)
31

.1
1(
5.
22

)
38

.9
0(
7.
56

)
25

0
×

50
52

.2
1(
9.
59

)
62

.1
0(
11

.5
2)

60
.8
6(
11

.3
8)

57
.8
0(
11

.1
0)

44
.0
4(
8.
40

)
43

.1
7(
8.
16

)
34

.7
0(
5.
76

)
40

.9
3(
7.
64

)
35

0
×

10
9.
52

(2
.5
7)

20
.5
7(
7.
00

)
20

.9
3(
7.
30

)
44

.0
3(
9.
76

)
28

.2
2(
8.
00

)
23

.7
7(
7.
39

)
13

.8
6(
3.
36

)
16

.3
8(
4.
87

)
35

0
×

30
16

.7
3(
3.
80

)
27

.6
0(
8.
05

)
27

.1
7(
7.
94

)
47

.7
9(
10

.8
6)

30
.8
4(
9.
21

)
26

.3
1(
8.
32

)
18

.5
0(
4.
91

)
21

.3
4(
6.
54

)
35

0
×

50
28

.3
5(
6.
67

)
37

.2
9(
10

.0
4)

37
.5
3(
10

.2
3)

50
.3
2(
11

.7
2)

34
.9
5(
10

.0
1)

29
.5
5(
8.
09

)
21

.9
8(
5.
08

)
26

.1
9(
7.
46

)
Av

er
ag

e
42

.2
5(
8.
91

)
43

.9
2(
10

.3
7)

44
.3
6(
10

.4
3)

40
.6
2(
9.
40

)
29

.6
6(
7.
29

)
31

.0
3(
8.
00

)
22

.5
5(
5.
03

)
25

.6
7(
6.
18

)
In
st
an

ce
SG

A
LS

su
G
A
DV

G
A
DV

su
G
A
PR

G
A
PR

su
G
A
PR

2
G
A
PR

2s
u

50
×

10
7.
91

(2
.4
2)

18
.5
5(
7.
08

)
16

.1
0(
6.
12

)
18

.5
9(
7.
17

)
17

.7
4(
6.
86

)
16

.9
5(
6.
41

)
15

.0
5(
5.
56

)
50
×

30
10

.7
5(
3.
45

)
20

.6
2(
8.
52

)
16

.6
5(
6.
28

)
20

.8
7(
8.
52

)
17

.9
2(
7.
16

)
19

.5
0(
7.
86

)
16

.5
5(
6.
36

)
50
×

50
11

.1
1(
3.
60

)
19

.6
9(
8.
23

)
16

.4
4(
6.
37

)
19

.7
2(
8.
20

)
17

.4
2(
6.
91

)
18

.6
6(
7.
49

)
15

.8
4(
6.
12

)
15

0
×

10
21

.4
8(
3.
71

)
28

.6
4(
5.
94

)
22

.4
1(
3.
96

)
28

.6
4(
5.
76

)
23

.3
7(
4.
22

)
29

.2
5(
5.
92

)
22

.6
3(
4.
06

)
15

0
×

30
26

.2
8(
4.
42

)
35

.0
3(
7.
04

)
25

.3
4(
3.
87

)
31

.4
8(
6.
02

)
26

.3
8(
4.
43

)
33

.0
6(
6.
63

)
23

.6
8(
3.
38

)
15

0
×

50
25

.2
0(
4.
43

)
33

.8
3(
7.
42

)
24

.4
9(
3.
91

)
32

.2
7(
6.
69

)
25

.0
4(
4.
04

)
32

.6
8(
6.
76

)
24

.7
7(
3.
96

)
25

0
×

10
20

.5
1(
3.
58

)
31

.2
8(
7.
01

)
23

.0
6(
4.
24

)
27

.7
7(
6.
04

)
20

.2
2(
3.
44

)
31

.7
5(
7.
26

)
22

.8
1(
4.
09

)
25

0
×

30
29

.0
0(
4.
46

)
39

.4
0(
7.
42

)
27

.8
0(
4.
00

)
35

.3
0(
6.
32

)
24

.9
1(
3.
20

)
41

.0
1(
7.
78

)
27

.2
4(
3.
84

)
25

0
×

50
31

.8
9(
4.
70

)
41

.3
7(
7.
96

)
27

.5
3(
3.
70

)
37

.0
0(
6.
80

)
25

.5
4(
3.
17

)
41

.4
0(
8.
18

)
28

.5
9(
4.
12

)
35

0
×

10
14

.2
0(
3.
46

)
23

.4
6(
7.
95

)
18

.3
8(
5.
29

)
21

.2
2(
6.
76

)
16

.6
4(
4.
47

)
23

.5
1(
8.
01

)
18

.1
2(
5.
00

)
35

0
×

30
17

.3
9(
4.
25

)
24

.3
1(
8.
05

)
17

.2
0(
4.
24

)
21

.1
6(
6.
70

)
15

.9
0(
3.
63

)
25

.6
3(
8.
23

)
16

.5
4(
3.
98

)
35

0
×

50
21

.4
5(
5.
00

)
27

.5
5(
8.
10

)
19

.3
2(
4.
30

)
23

.9
4(
6.
65

)
17

.4
9(
3.
39

)
27

.1
5(
8.
45

)
19

.2
7(
4.
34

)
Av

er
ag

e
19

.7
6(
3.
96

)
28

.6
4(
7.
56

)
21

.2
3(
4.
69

)
26

.5
0(
6.
80

)
20

.7
1(
4.
58

)
28

.3
8(
7.
42

)
20

.9
2(
4.
57

)

Ta
bl
e3

:A
ve
ra
ge

Re
la
tiv

eD
ev
ia
tio

n
In
de

x
(R

D
I
)a

nd
av
er
ag

eR
an

k
(in

br
ac
ke
ts
)f

or
th
ee

va
lu
at
ed

m
et
ho

ds
,w

ith
an

d
wi

th
ou

t
th
e
lo
ca
ls

ea
rc
h
sp
ee
d
up

s(
de

no
te
d
by

�su
�);

t=
60

in
th
e
st
op

pi
ng

cr
ite

rio
n.

16



In
st
an

ce
SA

H
SR

H
SR

H
su

H
G
A

H
G
A
su

IG
IG

su
SG

A
LS

50
×

10
47

.1
3(
11

.4
5)

35
.2
6(
10

.2
2)

33
.9
6(
9.
96

)
13

.1
1(
4.
57

)
10

.5
5(
3.
38

)
13

.3
0(
4.
77

)
9.
96

(3
.2
8)

17
.3
5(
6.
51

)
50
×

30
65

.0
2(
14

.6
7)

39
.0
5(
12

.7
2)

40
.2
1(
12

.9
4)

15
.5
9(
5.
88

)
13

.2
0(
4.
86

)
18

.8
0(
7.
47

)
14

.2
8(
5.
25

)
19

.5
8(
7.
99

)
50
×

50
63

.9
3(
14

.5
8)

39
.9
2(
12

.9
0)

41
.6
1(
13

.2
2)

16
.4
9(
6.
68

)
12

.5
4(
4.
16

)
19

.1
7(
7.
68

)
16

.1
0(
6.
07

)
19

.6
8(
8.
02

)
15

0
×

10
37

.0
5(
8.
29

)
50

.4
6(
10

.4
8)

49
.4
2(
10

.2
7)

41
.2
7(
9.
04

)
24

.6
4(
5.
39

)
32

.5
0(
7.
66

)
20

.0
1(
3.
98

)
23

.8
8(
5.
40

)
15

0
×

30
56

.8
9(
11

.6
7)

55
.2
6(
11

.5
2)

55
.4
9(
11

.7
0)

42
.5
4(
10

.4
7)

28
.8
4(
6.
86

)
37

.0
1(
9.
08

)
24

.2
4(
5.
10

)
28

.0
3(
6.
63

)
15

0
×

50
69

.7
0(
13

.9
8)

63
.8
7(
13

.4
0)

62
.2
7(
13

.4
5)

41
.9
4(
10

.8
2)

28
.0
8(
6.
95

)
39

.7
9(
10

.4
8)

25
.7
6(
6.
11

)
27

.3
8(
6.
72

)
25

0
×

10
19

.5
6(
4.
51

)
34

.9
9(
8.
45

)
35

.9
6(
8.
72

)
45

.0
1(
9.
52

)
26

.8
2(
6.
45

)
26

.1
9(
6.
74

)
18

.3
3(
4.
02

)
26

.7
1(
7.
00

)
25

0
×

30
34

.5
1(
7.
20

)
50

.0
9(
10

.3
1)

51
.4
5(
10

.6
7)

55
.2
4(
11

.3
6)

37
.5
4(
8.
42

)
39

.5
1(
9.
00

)
26

.5
1(
5.
36

)
30

.7
5(
6.
80

)
25

0
×

50
48

.8
8(
10

.1
5)

59
.1
2(
12

.0
4)

58
.6
2(
12

.0
3)

53
.2
6(
11

.3
1)

36
.9
5(
8.
18

)
41

.8
4(
9.
52

)
28

.5
0(
5.
49

)
33

.8
2(
7.
80

)
35

0
×

10
8.
71

(2
.5
8)

19
.0
0(
7.
45

)
19

.3
4(
7.
39

)
37

.8
8(
10

.0
7)

20
.9
7(
6.
98

)
16

.2
6(
6.
06

)
12

.3
3(
3.
37

)
19

.8
4(
7.
45

)
35

0
×

30
15

.9
6(
4.
38

)
26

.0
0(
9.
04

)
25

.4
1(
8.
72

)
40

.9
7(
11

.4
8)

25
.5
3(
8.
78

)
21

.1
0(
7.
56

)
16

.0
6(
4.
80

)
20

.6
4(
7.
83

)
35

0
×

50
27

.3
2(
7.
18

)
35

.3
5(
11

.0
0)

35
.7
9(
10

.7
5)

41
.2
1(
12

.0
8)

26
.9
6(
8.
84

)
25

.5
1(
8.
72

)
19

.4
6(
5.
84

)
22

.0
7(
8.
04

)
Av

er
ag

e
41

.2
2(
9.
22

)
42

.3
6(
10

.8
0)

42
.4
6(
10

.8
2)

37
.0
4(
9.
44

)
24

.3
8(
6.
60

)
27

.5
8(
7.
89

)
19

.2
9(
4.
89

)
24

.1
4(
7.
18

)
In
st
an

ce
SG

A
LS

su
G
A
DV

G
A
DV

su
G
A
PR

G
A
PR

su
G
A
PR

2
G
A
PR

2s
u

50
×

10
17

.5
9(
6.
58

)
17

.0
5(
6.
66

)
14

.2
4(
5.
28

)
18

.2
9(
7.
18

)
15

.9
5(
6.
04

)
15

.7
4(
5.
99

)
13

.1
3(
4.
57

)
50
×

30
18

.7
3(
7.
52

)
17

.9
4(
7.
76

)
14

.9
2(
5.
71

)
18

.8
9(
8.
07

)
15

.6
4(
6.
20

)
17

.0
6(
7.
00

)
15

.2
4(
5.
86

)
50
×

50
18

.8
8(
7.
61

)
17

.5
0(
7.
13

)
15

.1
6(
5.
66

)
18

.5
1(
7.
70

)
15

.9
3(
6.
12

)
17

.1
9(
7.
09

)
14

.5
7(
5.
30

)
15

0
×

10
20

.1
5(
4.
09

)
24

.1
0(
5.
49

)
19

.3
7(
4.
04

)
25

.7
3(
5.
93

)
20

.5
6(
4.
31

)
25

.1
6(
5.
84

)
19

.6
3(
4.
12

)
15

0
×

30
21

.0
9(
4.
04

)
27

.2
1(
6.
22

)
21

.3
9(
4.
20

)
27

.0
0(
6.
26

)
23

.0
8(
4.
74

)
28

.0
2(
6.
47

)
21

.3
1(
3.
96

)
15

0
×

50
21

.5
0(
4.
44

)
27

.1
5(
6.
65

)
20

.5
0(
4.
21

)
27

.5
2(
6.
69

)
22

.0
1(
4.
84

)
27

.6
6(
6.
84

)
21

.1
0(
4.
39

)
25

0
×

10
17

.6
0(
3.
62

)
24

.9
1(
6.
49

)
17

.8
2(
3.
79

)
23

.1
4(
5.
78

)
16

.4
2(
3.
12

)
24

.9
3(
6.
37

)
16

.7
0(
3.
45

)
25

0
×

30
21

.3
6(
3.
80

)
31

.7
6(
6.
94

)
22

.2
4(
3.
74

)
29

.6
0(
6.
45

)
19

.0
2(
3.
04

)
31

.6
8(
7.
09

)
21

.7
5(
3.
71

)
25

0
×

50
21

.5
4(
3.
53

)
33

.0
8(
7.
70

)
21

.8
6(
3.
45

)
29

.2
1(
6.
45

)
20

.6
6(
3.
31

)
33

.1
3(
7.
73

)
22

.5
4(
3.
88

)
35

0
×

10
14

.7
2(
4.
78

)
20

.8
4(
7.
55

)
15

.0
2(
4.
65

)
18

.5
5(
6.
86

)
12

.8
8(
4.
00

)
20

.7
1(
7.
94

)
15

.1
2(
4.
83

)
35

0
×

30
14

.0
7(
3.
80

)
20

.0
6(
7.
65

)
14

.1
7(
3.
80

)
17

.4
9(
6.
06

)
12

.4
5(
3.
10

)
20

.1
3(
7.
43

)
14

.0
0(
3.
98

)
35

0
×

50
15

.1
9(
4.
07

9)
23

.0
0(
8.
04

)
15

.3
5(
4.
12

)
19

.7
1(
6.
45

)
13

.2
4(
3.
00

)
22

.2
0(
7.
84

)
15

.2
3(
4.
06

)
Av

er
ag

e
18

.5
4(
4.
83

)
23

.7
2(
7.
02

)
17

.6
7(
4.
39

)
22

.8
0(
6.
66

)
17

.3
2(
4.
32

)
23

.6
4(
6.
97

)
17

.5
3(
4.
34

)

Ta
bl
e4

:A
ve
ra
ge

Re
la
tiv

eD
ev
ia
tio

n
In
de

x
(R

D
I
)a

nd
av
er
ag

eR
an

k
(in

br
ac
ke
ts
)f

or
th
ee

va
lu
at
ed

m
et
ho

ds
,w

ith
an

d
wi

th
ou

t
th
e
lo
ca
ls

ea
rc
h
sp
ee
d
up

s(
de

no
te
d
by

�su
�);

t=
90

in
th
e
st
op

pi
ng

cr
ite

rio
n.

17



We can see that the adapted methods show a very good performance, especially those
proposed by Ruiz and Stützle (2007) (IG) and Ruiz and Allahverdi (2007) (SGALS) which
shows the best performance for the shortest time (t=60). We can also observe the e�ect of
the speed up procedure: all the methods show substantially better results except for the
SRH algorithm by Hasija and Rajendran (2004), which seems to be stalled as the speed up
provides no advantage. Regarding the proposed algorithms (GAPR, GAPR2 and GADV),
we can see that they provide the best results, and signi�cantly outperform the two best
existing methods for the total tardiness objective (SAH, SRH) for most instance sizes. As
a matter of fact, and on average, SAH, SRH and SRHsu obtain the highest RDI values on
the comparison, also signi�cantly higher than the methods adapted from other objectives.
These results support our initial hypothesis that the adaptation of existing methods to
other objectives is a worthwhile e�ort.

It is also interesting to check wether these observed di�erences in the RDI values are
statistically signi�cant. We have carried out a non parametric test (Rank-based test),
where a rank is assigned to each original value (RDI), instead of a parametric test
(ANOVA) since the three necessary hypotheses to apply this test: homogeneity of the
variance (homocedasticity), normality and independence of the residuals, are slightly not
ful�lled. More speci�cally, we apply the Friedman test (Friedman, 1937) according to
Conover (1999) to compute the Minimal Signi�cant Di�erence (MSD) between the rank
means of any two algorithms. We use the R language environment for statistical com-
puting (http://www.r-project.org/), and use the code provided in Chiarandini (2005).
We can see in Tables 3, 4 and 5, in brackets, the average rank for each method and the
corresponding means plots with MSD intervals (α=0.05) are shown in Figures 1, 2 and 3,
from the worst method (top of the plot) to the best one (bottom of the plot). Note that
in this case, we have 15 methods ranked from 1 to 75 due to the �ve replicates that were
carried out in the computational experiment. Note that overlapping con�dence intervals
means that the overlapped rank means are statistical equal.

The �rst interesting outcome is the great improvement obtained when the speed up
procedure is applied. We can observe that most methods jump several positions in the
ranking when using speed ups. In Figure 1 we can observe that the algorithm proposed by
Ruiz and Allahverdi (2007) shows the best performance due to the small amount of time
available (from 15 seconds for smallest instances to 8.75 minutes for largest ones) to run the
methods. Notice that the three proposed algorithms apply diversity techniques and path
relinking which need more computation time. Figures 2 and 3 con�rm the previous �ndings
that the best performing methods are those proposed in this paper: GAPR, GAPR2 and
GADV. Since the local search method used in the three new proposed methods is similar

18



In
st
an

ce
SA

H
SR

H
SR

H
su

H
G
A

H
G
A
su

IG
IG

su
SG

A
LS

50
×

10
48

.9
5(
11

.3
8)

35
.9
6(
10

.3
6)

34
.4
4(
10

.0
2)

11
.2
6(
4.
10

)
9.
31

(3
.1
2)

15
.6
5(
6.
07

)
9.
00

(3
.1
0)

16
.8
3(
6.
62

)
50
×

30
66

.7
7(
14

.6
7)

40
.4
8(
12

.9
6)

40
.4
9(
12

.8
8)

14
.4
9(
5.
62

)
12

.6
1(
4.
58

)
20

.7
3(
8.
86

)
14

.4
0(
5.
76

)
19

.6
9(
8.
50

)
50
×

50
62

.2
3(
14

.5
9)

39
.3
2(
12

.8
8)

40
.3
2(
13

.1
3)

14
.8
3(
6.
06

)
11

.6
6(
4.
47

)
21

.8
0(
9.
60

)
14

.8
0(
5.
89

)
19

.9
9(
8.
53

)
15

0
×

10
37

.4
2(
9.
17

)
49

.3
9(
10

.6
2)

49
.6
6(
10

.6
7)

29
.2
0(
7.
74

)
20

.2
9(
5.
10

)
23

.5
3(
6.
35

)
16

.9
2(
3.
94

)
22

.3
6(
5.
89

)
15

0
×

30
57

.0
5(
11

.9
3)

54
.3
2(
11

.6
9)

54
.2
7(
11

.7
9)

36
.9
0(
9.
93

)
24

.1
3(
6.
37

)
31

.0
4(
8.
51

)
21

.7
8(
5.
51

)
23

.9
5(
6.
27

)
15

0
×

50
69

.8
4(
14

.2
0)

60
.0
3(
13

.4
0)

61
.7
6(
13

.5
6)

36
.9
9(
10

.4
7)

25
.2
5(
7.
18

)
33

.2
9(
9.
71

)
21

.5
4(
5.
64

)
25

.5
2(
7.
21

)
25

0
×

10
18

.8
7(
5.
26

)
34

.1
7(
9.
06

)
33

.7
7(
9.
16

)
30

.6
8(
8.
40

)
22

.6
3(
6.
41

)
17

.7
5(
4.
67

)
15

.8
7(
4.
04

)
21

.2
9(
6.
52

)
25

0
×

30
34

.6
7(
8.
06

)
48

.8
9(
10

.9
1)

49
.6
7(
10

.9
1)

41
.5
4(
10

.4
4)

31
.8
8(
8.
32

)
25

.6
9(
6.
68

)
22

.6
7(
5.
59

)
27

.2
7(
7.
24

)
25

0
×

50
50

.7
6(
11

.1
0)

56
.5
9(
12

.1
8)

55
.9
4(
12

.1
9)

43
.8
2(
10

.8
4)

31
.3
5(
8.
00

)
28

.9
3(
7.
23

)
25

.5
5(
6.
33

)
27

.5
0(
7.
51

)
35

0
×

10
8.
45

(3
.2
2)

19
.2
8(
8.
36

)
18

.5
3(
7.
99

)
25

.0
0(
8.
88

)
18

.6
4(
7.
17

)
10

.0
1(
3.
21

)
11

.2
0(
3.
84

)
17

.5
2(
7.
60

)
35

0
×

30
16

.6
7(
5.
64

)
24

.9
5(
9.
52

)
24

.5
2(
9.
16

)
31

.2
1(
10

.8
2)

22
.3
8(
8.
71

)
12

.5
5(
3.
91

)
14

.6
6(
5.
47

)
17

.2
4(
7.
73

)
35

0
×

50
26

.3
7(
7.
87

)
33

.5
7(
11

.1
4)

34
.2
8(
11

.2
9)

34
.6
5(
11

.8
0)

24
.8
3(
9.
30

)
15

.7
6(
4.
99

)
17

.5
7(
6.
41

)
19

.2
2(
7.
99

)
Av

er
ag

e
41

.5
0(
9.
76

)
41

.4
1(
11

.0
9)

41
.4
7(
11

.0
6)

29
.2
1(
8.
76

)
21

.2
5(
6.
56

)
21

.3
9(
6.
65

)
17

.1
6(
5.
13

)
21

.5
3(
7.
30

)
In
st
an

ce
SG

A
LS

su
G
A
DV

G
A
DV

su
G
A
PR

G
A
PR

su
G
A
PR

2
G
A
PR

2s
u

50
×

10
15

.8
4(
6.
24

)
15

.9
5(
6.
59

)
13

.8
3(
5.
52

)
16

.0
8(
6.
66

)
14

.7
1(
6.
07

)
13

.8
2(
5.
55

)
13

.2
2(
5.
11

)
50
×

30
17

.9
8(
7.
49

)
16

.4
8(
7.
22

)
14

.6
2(
5.
75

)
16

.7
9(
7.
30

)
15

.0
1(
6.
24

)
16

.0
9(
6.
88

)
13

.5
4(
5.
20

)
50
×

50
17

.7
1(
7.
46

)
16

.2
1(
6.
79

)
14

.1
8(
5.
60

)
16

.8
9(
7.
34

)
14

.8
4(
6.
08

)
15

.2
9(
6.
42

)
13

.4
7(
5.
09

)
15

0
×

10
16

.5
3(
3.
94

)
21

.4
7(
5.
56

)
16

.4
8(
4.
03

)
23

.6
5(
6.
30

)
19

.3
5(
4.
96

)
22

.5
9(
5.
99

)
17

.1
0(
4.
08

)
15

0
×

30
18

.6
0(
4.
29

)
24

.4
2(
6.
44

)
18

.5
3(
4.
40

)
24

.5
6(
6.
45

)
18

.8
6(
4.
23

)
24

.5
0(
6.
49

)
19

.0
6(
4.
55

)
15

0
×

50
18

.7
5(
4.
55

)
23

.4
1(
6.
35

)
18

.2
4(
4.
52

)
25

.4
0(
7.
08

)
18

.9
2(
4.
66

)
24

.8
5(
6.
84

)
19

.0
3(
4.
64

)
25

0
×

10
15

.4
0(
3.
92

)
21

.2
3(
6.
49

)
14

.9
9(
3.
75

)
20

.4
5(
5.
85

)
14

.6
7(
3.
60

)
21

.6
2(
6.
63

)
15

.6
5(
4.
05

)
25

0
×

30
17

.6
4(
3.
92

)
27

.2
3(
7.
07

)
17

.8
2(
3.
85

)
24

.2
9(
6.
16

)
15

.9
6(
3.
35

)
26

.6
8(
7.
02

)
18

.2
6(
4.
13

)
25

0
×

50
18

.4
8(
4.
16

)
28

.8
6(
7.
93

)
17

.5
1(
3.
56

)
26

.0
0(
6.
82

)
15

.4
0(
2.
82

)
27

.7
8(
7.
33

)
18

.0
5(
3.
88

)
35

0
×

10
12

.6
4(
4.
61

)
18

.1
7(
8.
07

)
11

.8
8(
4.
51

)
15

.9
3(
6.
88

)
10

.7
3(
3.
89

)
17

.7
9(
7.
70

)
12

.1
2(
4.
73

)
35

0
×

30
12

.2
6(
4.
31

)
17

.2
8(
7.
52

)
11

.8
2(
3.
88

)
15

.1
7(
6.
13

)
10

.2
5(
3.
02

)
17

.7
9(
7.
72

)
12

.1
2(
4.
04

)
35

0
×

50
12

.3
4(
4.
01

)
19

.5
9(
7.
97

)
12

.3
1(
4.
01

)
17

.2
9(
6.
98

)
10

.6
0(
2.
91

)
19

.2
1(
8.
08

)
13

.0
4(
4.
44

)
Av

er
ag

e
16

.1
8(
4.
91

)
20

.8
6(
7.
00

)
15

.1
8(
4.
45

)
20

.2
1(
6.
66

)
14

.9
4(
4.
32

)
20

.6
7(
6.
89

)
15

.3
9(
4.
50

)

Ta
bl
e5

:A
ve
ra
ge

Re
la
tiv

eD
ev
ia
tio

n
In
de

x
(R

D
I
)a

nd
av
er
ag

eR
an

k
(in

br
ac
ke
ts
)f

or
th
ee

va
lu
at
ed

m
et
ho

ds
,w

ith
an

d
wi

th
ou

t
th
e
lo
ca
ls

ea
rc
h
sp
ee
d
up

s(
de

no
te
d
by

�su
�);

t=
12

0
in

th
e
st
op

pi
ng

cr
ite

rio
n.

19



SGALSsu

GAPR2su

GAPRsu

GADVsu

IGsu

SGALS

GAPR

HGAsu

GAPR2

GADV

IG

SAH

HGA

SRH

SRHsu

30 40 50

Figure 1: Means Plot and MSD intervals (α=0.05) for the mean rank of the methods
evaluated; t=60 in the stopping criterion.

GAPRsu

GAPR2su

GADVsu

SGALSsu

IGsu

HGAsu

GAPR

GAPR2

GADV

SGALS

IG

SAH

HGA

SRH

SRHsu

30 40 50

Figure 2: Means Plot and MSD intervals (α=0.05) for the mean rank of the methods
evaluated; t=90 in the stopping criterion.

20



GAPRsu

GADVsu

GAPR2su

SGALSsu

IGsu

HGAsu

GAPR

IG

GAPR2

GADV

SGALS

HGA

SAH

SRHsu

SRH

30 40 50 60

Figure 3: Means Plot and MSD intervals (α=0.05) for the mean rank of the methods
evaluated; t=120 in the stopping criterion.

to that of the IG and HGA algorithms, and all three proposed methods are GAs similar
to HGA and SGALS, the better performance observed can only be attributed to the new
diversity and path relinking techniques. These two simple additional techniques allow for
much better solutions as the results indicate.

From the remaining methods, we can observe that the SGALS algorithm proposed
by Ruiz and Allahverdi (2007) and the IG reported by Ruiz and Stützle (2007) show a
very good performance, specially the speed up variants, despite being adapted methods
from di�erent objectives; maximum lateness and makespan, respectively. The HGA algo-
rithm by Ruiz et al. (2006) shows an average performance when the speed up procedure
is applied (HGAsu), but when it is not applied the results are quite poor. Finally, if we
compare the results of the existing methods from the total tardiness literature: the SAH
by Parthasarathy and Rajendran (1997b) and the SRH by Hasija and Rajendran (2004),
we can see that these algorithms show a poor performance and are outperformed by almost
all other algorithms. This is an interesting result since these two simulated annealing al-
gorithms have been recently shown to outperform all other existing methods for the same
criterion (Vallada et al., 2008). As a result, we can safely conclude that the three proposed
methods are new state-of-the-art algorithms for the PFSP and total tardiness criterion.

A �nal analysis comes from the fact that in Figure 3, there are no statistically signi�cant

21



di�erences between the two speeded up versions of the best proposed algorithms: GAPR
and GADV. In order to closely study this behaviour, we need a more detailed analysis. We
carry out another experiment in which GAPR and GADV are run 20 independent times
with a stopping criterion set to a maximum elapsed CPU time of n·(m/2)·120 milliseconds.
We increase the number of observations in order to allow for a more exhaustive analysis.

In this experiment, the RDI is not advisable as a performance measure. The reason is
that with two methods alone, we will end up with a a method with index 0 (the best) and
another with index 100 (the worst). Such a performance measure cannot be analysed from
a statistical point of view and negates most di�erences among algorithms. Therefore, we
use the Relative Percentage Deviation (RPD) over the best solution instead:

Relative Percentage Deviation (RPD) =
Methodsol −Bestsol

Bestsol

· 100, (5)

In this case, we avoid the division by zero because in the few cases were a given
best solution was found to be zero, both methods did also obtain this optimal solution.
Therefore, the RPD will be zero for all the algorithms in these few cases.

In Table 6 we can see the averaged results of the 45 instances for each n ×m group.
We can observe that on average the algorithm GAPR seems to be the best. However, a
closer analysis indicates that this is not consistent across all n×m groups.

22



Instance GADV GAPR

50× 10 1.75 2.03
50× 30 1.51 1.61
50× 50 1.01 1.08
150× 10 3.55 3.81
150× 30 12.40 14.32
150× 50 7.96 8.29
250× 10 5.14 4.88
250× 30 38.12 35.25
250× 50 3.38 2.99
350× 10 95.00 39.29
350× 30 3.65 3.27
350× 50 13.69 9.25

Average 15.60 10.51

Table 6: Average Relative Percentage Deviation (RPD) for GADV and GAPR proposed
algorithms.

In order to obtain a better picture of the results, we carry out an ANOVA analysis.
However, the three hypotheses for the test are not strictly satis�ed. This is mainly due
to the total tardiness values, that can be very di�erent for the same instance and both
methods. Non-parametric methods are also not suitable since we are interested in the
interactions between the di�erent values of n and m and non-parametric methods are
limited in this regards. We can see in Figure 4 the means plot with HSD intervals for the
algorithm factor (α = 0.05).

23



Algorithm

R
e

la
tiv

e 
P

er
ce

nt
ag

e 
D

ev
ia

tio
n 

(R
P

D
)

GADV GAPR

8.2

10.2

12.2

14.2

16.2

18.2

Figure 4: Means plot and Tukey HSD intervals at the 95% con�dence level for the algo-
rithm (Alg) factor.

We can observe that there are statistically signi�cant di�erences, being the p-value 0.02.
According to the means plot, GADV and GAPR are statistically di�erent. Furthermore, if
some replicates are removed from the experiment, the observed di�erences diminish. This
indicates that with more and more replicates, the HSD intervals will most probably shrink
and more di�erences would be then observed. Nevertheless, we have to interpret the results
with a little scepticism due to the ANOVA assumptions being violated. Additionally, and
as can be deducted from Table 6, there seem to be di�erent outcomes depending on n and
m. Other plots (not shown), like that for the algorithm factor and n=50 shows that GADV
is the best method with narrow intervals and considerable di�erences in RPD values.
However, the means plot (not shown) for the algorithm factor when n=350, results GAPR
being statistically better than the other method by a considerable margin. As a conclusion,
it seems that GAPR is the best proposed algorithm but there is no clear recommendation
about which algorithm, among the proposed, performs best in all situations.

6 Conclusions and future research
In this work we have proposed three new genetic algorithms for the permutation �owshop
scheduling problem with the objective of minimising the total tardiness. The algorithms

24



include advanced techniques like local search, diversi�cation and path relinking. We have
also adapted some of the most e�ective algorithms that we can �nd in the literature for
di�erent objectives, mainly the makespan.

The proposed algorithms have been calibrated by means of a design of experiments
(DOE) approach that involves the evaluation of many di�erent alternatives. After this
calibration we have obtained the best combination of parameters for each proposed algo-
rithm.

We have carried out an extensive comparison of the three proposed algorithms against
the best existing methods for the tardiness objective, as well as with several adapted
algorithms originally proposed for other objectives. Moreover, we have applied a speed up
procedure to all of them in order to reduce the computational e�ort needed for the local
search technique. The e�ect of this speed up is also assessed. In total, we have compared
15 algorithms and the results show that the speed up procedure improves the results
substantially for almost all compared methods. The results also indicate that most adapted
methods from other objectives show a better performance than existing algorithms for the
total tardiness criterion. According to the extensive experimental and statistical analysis,
the three proposed genetic algorithms clearly outperform, by a considerable margin, the
adapted methods and specially the existing methods for the tardiness objective.

Future research directions involve the consideration of more complex scheduling prob-
lems with due date based criteria. Since these criteria are important in practice, it
seems worthwhile to study more realistic �owshop problems like those with setup times
(Allahverdi et al., 2008), parallel machines (Chen and Wu, 2006), no-idle considerations
(Pan and Wang, 2008) or other interesting extensions with practical applications.

Acknowledgments
The authors are partly funded by the Spanish Ministry of Science and Innovation, un-
der the projects �SMPA - Advanced Parallel Multiobjective Sequencing: Practical and
Theorerical Advances� with reference DPI2008-03511/DPI and �OACS - Advanced Op-
timization of the Supply Chain� with reference IAP-020100-2008-11. The authors are
indebted to Dr. Marco Chiarandini for his help and the R code provided which was used
in the non-parametric statistical analyses in this paper.

25



References
Adenso-Díaz, B. (1992). Restricted neighbourhood in the tabu search for the �owshop

problem. European Journal of Operational Research, 62:27�37.
Adenso-Díaz, B. (1996). An SA/TS mixture algorithm for the scheduling tardiness prob-

lem. European Journal of Operational Research, 88:516�524.
Allahverdi, A., Ng, C., Cheng, T., and Kovalyov, M. (2008). A survey of scheduling

problems with setup times or costs. European Journal of Operational Research, 187:985�
1032.

Álvarez-Valdés, R., Crespo, E., Tamarit, J., and Villa, F. (2008). GRASP and path
relinking for project scheduling under partially renewable resources. European Journal
of Operational Research, 189:1153�1170.

Armentano, V. and Ronconi, D. (1999). Tabu search for total tardiness minimization in
�ow-shop scheduling problems. Computers & Operations Research, 26:219�235.

Basseur, M., Seynhaeve, F., and Talbi, E. (2005). Path relinking in Pareto multi-objective
genetic algorithms . Evolutionary multi-criterion optimization. Lecture Notes in Com-
puter Science, 3410:120�134.

Campbell, H., Dudek, R., and Smith, M. (1970). A heuristic algorithm for the n job m

machine sequencing problem. Management Science, 16(10):B�630�B�637.
Chen, C.-L., Vempati, V. S., and Aljaber, N. (1995). An application of genetic algorithms

for �ow shop problems. European Journal of Operational Research, 80:389�396.
Chen, J. and Wu, T. (2006). Total tardiness minimization on unrelated parallel machine

scheduling with auxiliary equipment constraints. OMEGA, The International Journal
of Management Science, 34:81�89.

Chiarandini, M. (2005). Stochastic Local Search Methods for Highly Constrained Combina-
torial Optimisation Problems. PhD thesis, Computer Science Department. Darmstadt
University of Technology. Darmstadt, Germany.

Chung, C., Flynn, J., and Kirca, O. (2006). A branch and bound algorithm to minimize
the total tardiness for m-machine permutation �owshop problems. European Journal of
Operational Research, 174(1):1�10.

Conover, W. (1999). Practical Nonparametric Statistics. John Wiley & Sons, New York,
third edition.

Du, J. and Leung, J. (1990). Minimizing total tardiness on one machine is NP-hard.
Operations Research, 38(1):22�36.

Etiler, O., Toklu, B., Atak, M., and Wilson, J. (2004). A genetic algorithm for �ow shop
scheduling problems. Journal of the Operational Research Society, 55(8):830�835.

26



Farahmand, S., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuristics for
minimizing makespan in permutation �owshops. OMEGA, the International Journal of
Management Science, 37(2):331�345.

Framinan, J. M., Gupta, J. N. D., and Leisten, R. (2004). A review and classi�cation
of heuristics for permutation �ow-shop scheduling with makespan objective. Journal of
the Operational Research Society, 55(12):1243�1255.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association, 32:675�701.

Gelders, L. and Sambandam, N. (1978). Four simple heuristics for scheduling a �ow-shop.
International Journal of Production Research, 16(3):221�231.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic, Boston.
Grabowski, J. and Pempera, J. (2007). The permutation �ow shop problem with blocking.

a tabu search approach. OMEGA, the International Journal of Management Science,
35:302�311.

Hasija, S. and Rajendran, C. (2004). Scheduling in �owshops to minimize total tardiness
of jobs. International Journal of Production Research, 42(11):2289�2301.

Hejazi, S. R. and Sagha�an, S. (2005). Flowshop-scheduling problems with makespan
criterion: a review. International Journal of Production Research, 43(14):2895�2929.

Kalczynski, P. and Kamburowski, J. (2007). On the neh heuristic for minimizing the
makespan in permutation �ow shops. OMEGA, the International Journal of Manage-
ment Science, 35(1):53�60.

Kim, Y. (1993a). Heuristics for �owshop scheduling problems minimizing mean tardiness.
Journal of Operational Research Society, 44(1):19�28.

Kim, Y. (1993b). A new branch and bound algorithm for minimizing mean tardiness in
2-machine �owshops. Computers & Operations Research, 20:391�401.

Kim, Y. (1995). Minimizing total tardiness in permutation �owshops. European Journal
of Operational Research, 85:541�555.

Kim, Y., Lim, H., and Park, M. (1996). Search heuristics for a �owshop scheduling problem
in a printed circuit board assembly process. European Journal of Operational Research,
91:124�143.

Laguna, M. and Martí, R. (1999). GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS, Journal on Computing, 11(1):44�52.

Laguna, M. and Martí, R. (2004). Scatter Search. Kluwer Academic, Boston.
Montgomery, D. (2000). Design and Analysis of Experiments. John Wiley & Sons, New

York, �fth edition.

27



Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Genetic algorithms for �owshop schedul-
ing problems. Computers & Industrial Engineering, 30(4):1061�1071.

Nawaz, M., Enscore Jr, E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-
job �ow-shop sequencing problem. OMEGA, The International Journal of Management
Science, 11(1):91�95.

Nowicki, E. and Smutnicki, C. (2006). Some aspects of scatter search in the �ow-shop
problem. European Journal of Operational Research, 169:654�666.

Onwubolu, G. and Davendra, D. (2006). Scheduling �ow shops using di�erential evolution
algorithm. European Journal of Operational Research, 171:674�692.

Onwubolu, G. and Mutingi, M. (1999). Genetic algorithm for minimizing tardiness in
�ow-shop scheduling. Production Planning & Control, 10(5):462�471.

Ow, P. (1985). Focused scheduling in proportionate �owshops. Management Science,
31(7):852�869.

Pan, J., Chen, J., and Chao, C. (2002). Minimizing tardiness in a two-machine �ow-shop.
Computers & Operations Research, 29:869�885.

Pan, J. and Fan, E. (1997). Two-machine �owshop scheduling to minimize total tardiness.
International Journal of Systems Science, 28:405�414.

Pan, Q. and Wang, L. (2008). A novel di�erential evolution algorithm for no-idle per-
mutation �ow-shop scheduling problems. European Journal of Industrial Engineering,
2(3):279�297.

Parthasarathy, S. and Rajendran, C. (1997a). An experimental evaluation of heuristics
for scheduling in a real-life �owshop with sequence-dependent setup times of jobs. In-
ternational Journal of Production Economics, 49:255�263.

Parthasarathy, S. and Rajendran, C. (1997b). A simulated annealing heuristic for schedul-
ing to minimize mean weighted tardiness in a �owshop with sequence-dependent setup
times of jobs - a case study. Production Planning & Control, 8(5):475�483.

Parthasarathy, S. and Rajendran, C. (1998). Scheduling to minimize mean tardiness and
weighted mean tardiness in �owshop and �owline-based manufacturing cell. Computers
& Industrial Engineering, 34(2):531�546.

Pinedo, M. (2008). Scheduling: Theory, Algorithms and Systems. Springer, third edition.
Potts, C. and Van Wassenhove, L. (1982). A decomposition algorithm for the single

machine total tardiness problem. Operations Research Letters, 1(5):177�181.
Rajendran, C. and Ziegler, H. (2003). Scheduling to minimize the sum of weighted �owtime

and weighted tardiness of jobs in a �owshop with sequence-dependent setup times.
European Journal of Operational Research, 149(3):513�522.

Raman, N. (1995). Minimum tardiness scheduling in �ow shops: Construction and evalua-

28



tion of alternative solution approaches. Journal of Operations Management, 85:131�151.
Reeves, C. and Yamada, T. (1998). Genetic algorithms, path relinking and the �owshop

sequencing problem. Evolutionary Computation, 12(4):335�344.
Reeves, C. R. (1995). A Genetic Algorithm for Flowshop Sequencing. Computers &
Operations Research, 22(1):5�13.

Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classi�cation, Complexity
and Computations. Martinus Nijho�� The Hague.

Ronconi, D. and Henriques, L. (2009). Some heuristic algorithms for total tardiness min-
imization in a �owshop with blocking. OMEGA, the International Journal of Manage-
ment Science, 37:272�281.

Ruiz, R. and Allahverdi, A. (2007). No-wait �owshop with separate setup times to mini-
mize maximum lateness. International Journal of Advanced Manufacturing Technology,
35:551�565.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation
�owshop heuristics. European Journal of Operational Research, 165:479�494.

Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new robust genetic algorithms for
the �owshop scheduling problem. OMEGA, The International Journal of Management
Science, 34:461�476.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the
permutation �owshop scheduling problem. European Journal of Operational Research,
177(3):2033�2049.

Schaller, J. (2005). Note on minimizing total tardiness in a two-machine �owshop. Com-
puters & Operations Research, 32(5):3273�3281.

Sen, T., Dileepan, P., and Gupta, J. (1989). The two-machine �owshop scheduling problem
with total tardiness. Computers & Operations Research, 16(4):333�340.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine
�owshop problem: a review and evaluation of heuristics and metaheuristics. Computers
& Operations Research, 35(4):1350�1373.

Widmer, M. and Hertz, A. (1989). A new heuristic method for the �ow shop scheduling
problem. European Journal of Operations Research, 41:186�193.

Wineberg, M. and Oppacher, F. (2003). The underlying similarity of diversity measures
used in evolutionary computation. In Genetic and evolutionary computation - GECCO
2003, volume 2774, pages 1493�1504.

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one programming
problems. Mathematics of Operations Research, 6(3):319�332.

Zhang, G. and Lai, K. (2006). Combining path relinking and genetic algorithms for the

29



multiple-level warehouse layout problem. European Journal of Operational Research,
169:413�4254.

30


