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Genetic analyses of diverse populations improves discovery for 

complex traits

A full list of authors and affiliations appears at the end of the article.

Abstract

Genome-wide association studies (GWAS) have laid the foundation for investigations into the 

biology of complex traits, drug development and clinical guidelines. However, the majority of 

discovery efforts are based on data from populations of European ancestry1–3. In light of the 

differential genetic architecture that is known to exist between populations, bias in representation 

can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they 

have a low frequency or are completely absent in European populations, especially as the field 

shifts its attention towards rare variants, which are more likely to be population-specific4–10. 

Additionally, effect sizes and their derived risk prediction scores derived in one population may 
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not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, 

multi-ethnic participants in large-scale genomic studies. The Population Architecture using 

Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural 

phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-

ethnic and admixed populations, we describe a framework for analysing diverse populations, 

identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS 

catalogue associations across these traits. Our data show evidence of effect-size heterogeneity 

across ancestries for published GWAS associations, substantial benefits for fine-mapping using 

diverse cohorts and insights into clinical implications. In the United States—where minority 

populations have a disproportionately higher burden of chronic conditions13—the lack of 

representation of diverse populations in genetic research will result in inequitable access to 

precision medicine for those with the highest burden of disease. We strongly advocate for 

continued, large genome-wide efforts in diverse populations to maximize genetic discovery and 

reduce health disparities.

The PAGE study was developed by the National Human Genome Research Institute and the 

National Institute on Minority Health and Health Disparities to conduct genetic 

epidemiological research in ancestrally diverse populations within the United States. The 

study is drawn from three existing major population-based cohorts (Hispanic Community 

Health Study/Study of Latinos (HCHS/SOL), Women’s Health Initiative (WHI) and 

Multiethnic Cohort (MEC)) and the Icahn School of Medicine at Mount Sinai BioMe 

biobank in New York City (BioMe). Genotyped individuals self-identified as Hispanic/

Latino (n = 22,216), African American (n = 17,299), Asian (n = 4,680), Native Hawaiian (n 

= 3,940), Native American (n = 652) or Other (n = 1,052) (Supplementary Table 1 and 

Supplementary Information 1). These 49,839 individuals were genotyped on the Multi-

Ethnic Genotyping Array (MEGA), which we developed to equitably capture global genetic 

variation14 (Supplementary Fig. 1 and Supplementary Information 3). Given that PAGE 

participants reside on a continuum of genetic ancestry, rather than discrete population 

groups15 (Fig. 1a and Supplementary Fig. 2), a joint analysis was optimally powered and the 

most parsimonious way to allow for heterogeneous variance across populations16. We then 

performed genome-wide association analyses on 26 traits harmonized across the four 

studies, adjusted for the top 10 principal components (PCs), indicators for study and self-

identified race/ethnicity, as well as trait-specific covariates. We used extensions of 

previously developed analytical tools (SUGEN and GENESIS), which explicitly model 

population structure, relatedness between individuals and population-specific genetic 

heterogeneity16–20. For comparison against standard multiethnic approaches and to assess 

heterogeneity by ancestry, we also conducted analyses stratified by self-identified race/

ethnicity and combined these analyses in a meta-analysis (Supplementary Table 3). We 

demonstrate that the joint analysis increased power for discovery compared to the meta-

analysis approach, but that it did not increase the incidence of type-1 error (Supplementary 

Information 5; the pipeline for the analysis of diverse populations in genomic research is 

outlined in the Methods).

Given that genetic architecture and/or causal variants may differ between populations, we 

hypothesized that the examination of underrepresented populations would reveal novel 
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ancestry-specific associations. Using minor allele frequency (MAF)-specific P-value 

thresholds21 (P < 5 × 10−8 for MAF > 5%; P < 3 × 10−9 for MAF < 5%), we identified 16 

novel genome-wide significant trait–variant associations and 11 low-frequency loci with 

suggestive associations (P < 5 × 10−8; Fig. 1b, Extended Data Table 1, Supplementary 

Tables 2, 3 and Supplementary Information 8). In regions that have been previously 

identified in the NHGRI-EBI GWAS Catalog22, we identified 32 significant trait-variant 

associations after conditioning on all trait-specific known variants in an ‘adjusted’ model, as 

well as 6 suggestive associations that had a low frequency or were rare variants (Pcond 

between 3 × 10−9 and 5 × 10−8), further enriching our understanding of the genetic 

architecture of traits (Supplementary Table 3).

To tease apart the influence of specific ancestral components on the 27 novel and 38 

secondary loci, we calculated the correlation between the risk allele genotype and each of 

the first 10 PCs (Extended Data Fig. 2). These correlations reveal a population structure that 

underlies many of our identified trait-variant associations, in which there are population 

differences in the frequencies of risk alleles. Notably, a novel single-nucleotide 

polymorphism (SNP) (rs182996728) was identified to be associated with the number of 

cigarettes smoked per day among smokers (P = 3.1 × 10−8) as well as with PC4, which 

represents the gradient of Native Hawaiian/Pacific Islander ancestry. Although the risk 

variant is absent or rare in most populations, it was found at a frequency of 17.2% in Native 

Hawaiian participants, in whom the signal was the strongest (Pstratified = 2.28 × 10−6). Our 

findings show that some trait-associated variants exhibit differential frequencies across 

populations, further illustrating a need for the inclusion of diverse groups.

In addition to identifying novel and secondary trait–variant associations, we also replicate a 

portion of the published GWAS literature (which is predominantly based on populations of 

European ancestry; Extended Data Fig. 1) for our 26 phenotypes from the GWAS Catalog22. 

Of 8,979 known variant-trait combinations, 1,444 replicated at the P < 0.05 significance 

threshold, after Bonferroni correction by trait. Of those meeting the genome-wide 

significance threshold (P < 5 × 10−8), we replicate 574 variant–trait associations in 261 

distinct regions, of which 132 had significant evidence of effect heterogeneity by genetic 

ancestry (SNP × PC, P < 8.71 × 10−5), which is likely to be a conservative estimate given the 

limitations of statistical power. We further tested for effect heterogeneity by genetic ancestry 

by comparing the standardized effect sizes of PAGE analyses (joint and stratified) to 

available effect sizes from the GWAS Catalog. We observed effect sizes of the PAGE joint 

analyses to be significantly weaker than previous reports with a slope of 0.77 (95% 

confidence interval = 0.75–0.81). When stratified by self-identified race/ethnicity, the effect 

sizes for the Hispanic/Latino population remained significantly attenuated compared to the 

previously reported effect sizes (β = 0.86; 95% confidence interval = 0.83–0.90; Fig. 2a). 

Effect sizes for the African American population were even further diminished at nearly half 

the strength (β = 0.54; 95% confidence interval = 0.50–0.58; Fig. 2a). This is suggestive of 

truly differential effect sizes between ancestries at previously reported variants, rather than 

these effect sizes being upwardly biased in general (that is, exhibiting ‘winner’s curse’), 

which should affect all groups equally.
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To quantify the added value of including multi-ethnic populations in GWAS, we used 

published data from GIANT (a study of more than 250,000 individuals of European descent 

for anthropometric traits23,24), for a meta-analysis with either PAGE (around 50,000 multi-

ethnic individuals) or 50,000 randomly sampled White British participants from the UK 

Biobank (UKB50k). Stratified GWAS of height in PAGE and UKB50k were each combined 

in separate meta-analyses with GIANT using a fixed-effect model. When comparing these 

meta-analyses to the original GIANT analysis; both meta-analyses resulted in novel findings 

(PAGE + GIANT, 82 loci; UKB50k + GiAnT, 107 loci; Extended Data Table 2). Although 

the number of novel loci is indicative of new insights into trait biology, understanding the 

proportion of phenotypic variance explained (PVE) by each locus has potentially important 

consequences for personalized medicine25. The original loci that were identified by GIANT 

had more than twice the PVE using UKB50k summary statistics (15.4%) compared to multi-

ethnic PAGE (7.2%; Fig. 2b). With the additional novel variants that were identified in 

UKB50k + GIANT, this gap between the PVE is exacerbated (UKB50k, 19.2%; PAGE, 

8.3%), whereas the addition of variants identified in PAGE + GIANT diminished the gap in 

PVE (UKB50k, 16.1%; PAGE, 12.0%). Similar trends were also observed with analyses of 

body-mass index (Supplementary Fig. 14). These results suggest that, although an increased 

sample size within a homogenous population will identify more variants and explain a larger 

proportion of the variance within that same population, it will also further exacerbate 

existing disparities in genetic knowledge for non-European populations.

The meta-analysis results can also be used to fine-map associations at known loci, which is 

an important step in the identification of functional polymorphisms that underlie a 

statistically significant association. Comparing the 95% credible sets for 390 associated 

variants reported by GIANT for height, we observed that the addition of PAGE to GIANT 

significantly shrunk the credible sets from an average of 11.94 SNPs in GIANT to 9.68 in 

the meta-analysis (P = 0.01), whereas no significant differences were observed with the 

addition of UKB50k to GIANT (P = 0.37; Fig. 3a). Additionally, the posterior probabilities 

of the top-ranked SNP within these credible sets was significantly higher in the PAGE + 

GIANT meta-analysis compared to the GIANT analysis alone (P = 1.9 × 10−6) and the 

UKB50k + GIANT analysis (P = 3.2 × 10−3; Fig. 3b). The addition of the UKB50k data to 

the GIANT results did not significantly improve the top posterior probability (P = 0.09). 

Here we highlight as an example the previously identified intronic variant rs11880992, 

which is found in DOT1L (PGIANT = 7 × 10−28)24 (Fig. 3c, d). The 95% credible set was 

narrowed down from four to a single SNP with the addition of the PAGE data, owing to low 

linkage disequilibrium between these SNPs in the African American and Hispanic/Latino 

populations (Fig. 3e). Although trends were consistent, none of these analyses yielded 

significant results for body-mass index (P > 0.05), which is probably due to the smaller 

number of regions that were analysed (n = 91; Supplementary Fig. 15).

Finally, we examined the worldwide distribution of several medically actionable variants 

that were designed on MEGA26 (Supplementary Information 11). One such variant was 

identified through an association between a missense variant in HBB (rs334) and HbA1c 

levels (Pcond = 6.87 × 10−31; n = 11,178), with the majority of the signal originating from the 

Hispanic/Latino population (P = 7.65 × 10−27; n = 10,408; MAF = 0.01). Although this 

association has recently been reported in African Americans27 (PAGE African Americans, P 
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= 5.62 × 10−4; n = 559; MAF = 0.06), this is the first time—to our knowledge—that the 

association with HbA1c levels has been reported in Hispanic/Latinos. The gene HBB 

encodes the adult haemoglobin β chain and is known for its role in sickle-cell anaemia. 

Genetic variants of haemoglobin are known to affect the performance of some HbA1c 

assays28–30, potentially leading medical professionals to incorrectly believe that a patient has 

achieved glucose control, increasing the risk of complications caused by type 2 diabetes. 

This result illustrates how ancestry-specific findings may be transferable to other groups that 

share components of genetic ancestry—in this case, the African ancestry present in both 

African Americans and some Hispanic/Latinos. The PAGE study can therefore aid in 

expanding the reach of precision medicine to encompass individuals of diverse ancestry, 

particularly when combined with other studies31,32.

As large-scale biobanking, precision medicine and direct-to-consumer genetic testing 

become more common, it is critical that the genetics community takes a forward-thinking 

approach towards the opportunities presented by including diverse populations. Here we 

focused on quantifying the scientific value of including diverse populations in the discovery 

and replication phases of GWAS. As we move towards incorporating GWAS-based risk 

models in clinical care33, our study as well as other recent studies34 demonstrate that we risk 

exacerbating health disparities unless diverse, multi-ethnic studies are included. In the 

United States, the All of Us Research Program embraces the reality that the success of 

precision medicine requires precision genomics, and therefore emphasizes the recruitment 

and active participation of underrepresented populations35. It is in the best interest of our 

research community to follow suit and take steps to become more inclusive. As world 

populations become increasingly complex36,37, geneticists and clinicians will be required to 

evaluate genetic predictors of complex traits in ever more diverse populations. Current 

genomic databases are under representative of populations with the greatest health burden 

and possibility of meaningful benefit. This realization, combined with the increased 

availability of resources for studying diverse populations, means that researchers and funders 

can no longer afford to ignore non-European populations. The PAGE study provides 

valuable resources in the design of MEGA and through the sharing of population-specific 

allele frequencies and analysis approaches, which will provide the motivation to make 

research in diverse populations a priority in the field of genetics.

METHODS

Studies.

The PAGE study includes eligible participants with a minority ancestry from four studies. 

Written informed consent was obtained for all participants in this study at the relevant 

recruitment sites. The WHI is a long-term, prospective, multi-centre cohort study 

investigating the health of post-menopausal women in the United States that recruited 

women from 1993 to 1998 at 40 centres across the United States. WHI participants reporting 

European descent were excluded from this analysis. The HCHS/SOL is a multi-centre study 

including participants of Hispanic/Latino descent with the goal of determining the role of 

acculturation in the prevalence and development of diseases relevant to Hispanic/Latino 

health. Starting in 2006, household sampling was used to recruit self-identified Hispanic/ 
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Latinos from four sites in San Diego, Chicago, the Bronx and Miami. All SOL Hispanic/

Latinos were eligible for this study. The MEC is a population-based prospective cohort study 

recruiting men and women from Hawaii and California, beginning in 1993, and examines 

lifestyle risk factors and genetic susceptibility to cancer. Only the African American, 

Japanese American and Native Hawaiian participants of MEC were included in this study. 

The BioMe BioBank is managed by the Charles Bronfman Institute for Personalized 

Medicine at Mount Sinai Medical Center. Recruitment began in 2007 and continues at 30 

clinical care sites throughout New York City. BioMe participants were African American 

(25%), Hispanic/Latino, primarily of Caribbean origin (36%), Caucasian (30%) and Others 

who did not identify with any of the available options (9%). Biobank participants who self-

identified as Caucasian were excluded from this analysis. The Global Reference Panel 

(GRP) was created from Stanford-contributed samples to serve as a population reference 

dataset for global populations. GRP individuals do not have phenotype data and were only 

used to aid in the evaluation of genetic ancestry in the PAGE samples. Study protocols were 

approved for all studies by the appropriate boards at their respective institutions: Fred 

Hutchinson Cancer Research Center Institutional Review Board (WHI), University of North 

Carolina Office of Human Research Ethics/IRB (OHRE/IRB; HCHS/SOL), University of 

Southern California IRB (MEC), University of Hawaii IRB (MEC), Icahn School of 

Medicine at Mount Sinai IRB (BioMe) and the Stanford University IRB (GRP). Additional 

information about each participating study can be found in the Supplementary Information.

Phenotypes.

The 26 phenotypes included in this study were previously harmonized across the PAGE 

studies and white blood cell count, C-reactive protein, mean corpuscular haemoglobin 

concentration, platelet count, high-density lipoprotein, low-density lipoprotein, total 

cholesterol, triglycerides, glycated haemoglobin (HbA1c), fasting insulin, fasting glucose, 

type 2 diabetes, cigarettes per day, coffee consumption, QT interval, QRS interval, PR 

interval, systolic blood pressure, diastolic blood pressure, hypertension, body mass index 

(BMI), waist-to-hip ratio (WHR), height, chronic kidney disease (CKD), end-stage renal 

disease, and estimated glomerular filtration rate assessed using the CKD-Epidemiology 

Collaboration (CKD-Epi) equation. Single-variant association testing was completed for all 

phenotypes using phenotype-specific models, adjusting by indicators for study, self-

identified race/ethnicity as a proxy for cultural background, phenotype-specific standard 

covariates and the first 10 PCs. Additional information about phenotype-specific cleaning, 

exclusion criteria and the model covariates are included in the Supplementary Information.

Genotyping.

A total of 53,338 PAGE and GRP samples were genotyped on the MEGA array at the CIDR, 

of which 52,878 samples successfully passed the quality control process of the CIDR. 

Genotyping data that passed initial quality control at CIDR were released to the quality 

assurance and quality control analysis team at the University of Washington Genetic 

Analysis Center, after which the data were further cleaned according to previously described 

methods38 and genotypes for 51,520 subjects were returned. A total of 1,705,969 SNPs were 

genotyped on the MEGA. Quality control of genotyped variants was completed by filtering 

through various criteria, including the exclusion of (1) CIDR technical filters; (2) variants 
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with missing call rate ≥ 2%; (3) variants with more than 6 discordant calls in 988 study 

duplicates; (4) variants with more than 1 Mendelian error in 282 trios and 1,439 duos; (5) 

variants with a Hardy–Weinberg P < 1 × 10−4; (6) SNPs with sex difference in allele 

frequency ≥ 0.2 for autosomes or XY; (7) SNPs with sex difference in heterozygosity > 0.3 

for autosomes or XY; and (8) positional duplicates. Sites were further restricted to 

chromosomes 1–22, X or XY, and only variants with available strand information were 

included. After SNP quality control, a total of 1,402,653 MEGA variants remained for 

further analyses (for further details see Supplementary Information 3).

Imputation.

To increase coverage, and thus improve power for fine-mapping loci, all PAGE individuals 

who were successfully genotyped on MEGA were subsequently imputed into the 1000 

Genomes phase 3 data release39. Imputation was conducted at the University of Washington 

Genetic Analysis Center. Genotype data that passed the above quality control filters were 

phased with SHAPEIT240 and imputed into 1000 Genomes phase 3 reference data using 

IMPUTE version 2.3.241. Segments of the genome that are known to contain gross 

chromosomal anomalies were filtered out of the final files of the genotype probabilities. 

Imputed sites were excluded if the IMPUTE information score was less than 0.4. A total of 

39,723,562 imputed SNPs passed quality control measures (for further details see 

Supplementary Information 3).

Principal component analysis.

The SNPRelate42 package in R was used for principal components analysis (PCA) (see 

Supplementary Information for further details). The relevant PCs were selected using scatter 

plots. Scatter plots, with various PCs on the x and y axes, helped to assess the spread of 

genetic ancestry in the data for self-identified racial/ethnic clusters. A parallel coordinate 

plots for the first 10 PCs was generated, in which each PAGE individual is represented by a 

set of line segments connecting his or her PC values. The amount of variance explained 

diminished with each subsequent PC, and we estimated that the top 10 PCs provided 

sufficient information to explain the majority of genetic variation in the PAGE study 

population.

Genome-wide association testing.

All imputed autosomal variants with IMPUTE information score > 0.4 (M = 39,723,562) 

were eligible for association testing in phenotype-specific models. An effective sample size 

(Neff) was calculated for each SNP in a given phenotype-specific model, where Neff = 2 × 

MAF × (1 — MAF) × N × info where MAF is the minor allele frequency among the set of 

individuals included in a phenotype-specific model, N is the total sample size for a given 

phenotype and info is the IMPUTE information score of the SNP. Variants with Neff < 30 

(continuous phenotypes) or Neff < 50 (binary phenotypes), were excluded from the final set 

of phenotype-specific results. The number of variants analysed per trait ranged from 

21,894,105 to 34,656,550 for continuous phenotypes and 11,665,604 to 28,263,875 for 

binary phenotypes (Supplementary Table 1). Quantile–quantile plots and λGC (GC = 

genomic control) were used to assess genomic inflation in all phenotypes, for which λGC 

ranged from 0.98 to 1.15. Single-variant association testing for each phenotype used an 
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additive model that was adjusted by indicators for study, self-identified race/ethnicity, the 

first 10 PCs and phenotype-specific covariates. Additional information about the phenotype-

specific model covariates and transformations are included in the Supplementary 

Information. Association testing was completed in both SUGEN and GENESIS programs.

The GENESIS17,18 program is a Bioconductor package made available in R that was 

developed for large-scale genetic analyses in samples with complex structure including 

relatedness, population structure and ancestry admixture. The current version of GENESIS 

implements both linear and logistic mixed model regression for genome-wide association 

testing. The software can accommodate continuous and binary phenotypes. The GENESIS 

package includes the program PC-Relate, which uses a PCA-based method to infer genetic 

relatedness in samples with unspecified and unknown population structure. By using 

individual-specific allele frequencies estimated from the sample with PC eigenvectors, it 

provides robust estimates of kinship coefficients and identity-by-descent sharing 

probabilities in samples with population structure, admixture and Hardy-Weinberg 

equilibrium departures. It does not require additional reference population panels or prior 

specification of the number of ancestral subpopulations.

The SUGEN program19 is a command-line software program developed for genetic 

association analysis under complex survey sampling and relatedness patterns. It implements 

the generalized estimating equation method, which does not require modelling of the 

correlation structures of complex pedigrees. It adopts a modified version of the ‘sandwich’ 

variance estimator, which is accurate for low-frequency SNPs. Association testing in 

SUGEN requires the formation of ‘extended’ families by connecting the households who 

share first-degree relatives or either first- or second-degree relatives. Trait values are 

assumed to be correlated within families but independent between families. In our 

experience in analysing this dataset, it is sufficient to account for first-degree relatedness. 

The current version of SUGEN can accommodate continuous, binary and age-at-onset traits. 

A comparison of P values produced by SUGEN and GENESIS for all previously identified 

known loci are included in Supplementary Fig. 12 and Supplementary Table 4.

Conditional analyses.

Phenotype-specific lists of previously identified loci were hand-curated for each phenotype 

and included SNPs indexed in the GWAS Catalog or identified through non-GWAS high-

throughput methods (for example, metabochip, exomechip or immunochip). The full lists of 

known loci for each phenotype are available in Supplementary Table 5. Conditional analyses 

were conducted for all phenotypes by conditioning on all previously identified loci on a 

given chromosome. P values estimated in conditional analyses are denoted by ‘Pcond in the 

main text; the SUGEN conditional results for all novel and secondary findings are shown in 

Supplementary Table 3.

SNP × PC effect heterogeneity by genetic ancestry and self-identified race/ethnicity.

We used two approaches to assess effect heterogeneity within PAGE participants. First, we 

used interaction analyses with models that included variant by PC (SNP × PC) interaction 

terms for all 10 PCs. The fit of nested models was compared using the F-statistic, for which 

Wojcik et al. Page 8

Nature. Author manuscript; available in PMC 2020 June 19.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



the associated interaction P value indicated whether the inclusion of the 10 SNP × PC 

interaction terms improved the model fit compared to a model that lacked the interaction 

terms. The overall SNP × PC interaction P values evaluated whether the additional variance 

explained by variant × genetic ancestry interactions was statistically significant and 

represented effect modification driven by genetic ancestry. Interaction P values for all novel 

and secondary findings are included in Supplementary Table 3.

For comparison against more standard (stratified) analysis strategies, all analyses were also 

run stratified by self-identified race/ethnicity. A minor allele count of at least five was 

required for a stratified model to be run within an ethnic group. The stratified analyses were 

then meta-analysed using a fixed-effect model implemented in METAL43. I2 and χ2 

heterogeneity P values were estimated for all meta-analysed results and represent effect size 

heterogeneity driven by self-identified race/ethnicity. The race/ethnicity-specific results, I2 

and χ2 heterogeneity P values for all novel and secondary findings are included in 

Supplementary Table 3.

Standardized effect size analysis.

The standardized effect size (z′) analysis for Fig. 2a was performed as follows. To avoid 

double-counting of SNPs/loci, we constrained analysis for each trait to (1) the single 

previous report that (2) did not combine genome-wide genotypes with focused platforms 

such as the metabochip, (3) reported the direction of effect with the allele in the GWAS 

Catalog and (3) included the maximum total number of individuals after applying criteria (1) 

and (2). (1) We selected a single manuscript, because many traits already have serial meta-

analyses published, where earlier publications represent a subset of individuals reported in 

later publications, so reported effect sizes in the GWAS Catalog are not necessarily 

independent. (2) We excluded meta-analyses using mixtures of agnostic GWAS data 

(consistent map density across the genome) with focused platforms (for example, 

metabochip, oncochip or exomechip), because the actual sample size varies markedly across 

the genome, with overlapping agnostic/focused regions having substantially greater numbers 

of individuals in the analysis. Most of these reports fail to specify the sample size on a per-

SNP basis, making it impossible to confidently calculate z′. (3) Starting from the 22 

quantitative traits, we found reference studies that explicitly reported the allele associated 

with direction of effect for 18. Furthermore, to be confident that the direction of effect was 

consistent between PAGE and previous reports, we restricted analysis to asymmetric SNPs 

(A/C, A/G, C/T and G/T). These criteria yielded 589 previously reported genome-wide 

significant variants, distributed across the 18 traits (Supplementary Table 7). Only 110 of 

these variants were traditionally genome-wide significant (P < 5 × 10−8) and therefore 

overlap with the SNP × PC heterogeneity analysis. We compared the PAGE z′ (both pooled 

and stratified) to the GWAS Catalog z′ in a linear regression.

Assessing single-variant results.

SUGEN association results were used for the identification of novel and secondary findings 

for all phenotypes. The variant with the smallest P value in a 1-Mb region was considered 

the ‘lead SNP. A lead SNP was considered to be a novel locus if it met the following criteria: 

(1) the lead SNP was located greater than ±500 kb away from a previously known locus (per 
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the phenotype-specific list of known loci); (2) had a SUGEN P < 5 × 10−8; (3) had a 

SUGEN conditional P < 5 × 10−8 after adjustment for all previously known loci on the same 

chromosome; and (4) had two or more neighbouring SNPs (within ±500 kb) with a P < 1 × 

10−5. A lead SNP was considered to be a secondary signal in a previously known loci if it 

met the following criteria: (1) the lead SNP was located within ±500 kb of a previously 

known loci; (2) had a SUGEN P < 5 × 10−8; and (3) had a SUGEN conditional P < 5 × 10−8 

after adjustment for all previously known loci on the same chromosome. Full results for all 

novel and secondary findings are included in Supplementary Tables 2, 3.

Effect size heterogeneity in the GWAS Catalog.

The full GWAS Catalog22 database was downloaded on 31 December 2016. The data were 

filtered to identify results relevant to any of the 26 PAGE phenotypes, producing a subset of 

8,979 unique trait-SNP associations (3,322 unique variants) that were genome-wide 

significant (P < 5 × 10−8) in the GWAS Catalog. The PAGE results for each of the GWAS 

Catalog trait-SNP associations was examined to first identify the subset of pairs that 

replicated (P < 5 × 10−8) in PAGE unconditioned models. Pairs of replicated tag SNPs 

within 500,000 base pairs of each other were then merged into loci, to count ‘unique’ 

associated loci. Of the GWAS Catalog tag SNPs that were replicated in PAGE, SNPs that 

had a Bonferroni-corrected SNP × PC interaction heterogeneity P value (P < 8.71 × 10−5, 

0.05/574) were considered to show evidence of significant effect size heterogeneity between 

ancestries. Effect heterogeneity was also assessed using the multi-ethnic study population of 

PAGE by first identifying the lead SNP in each locus with the smallest P value in PAGE, 

totalling 333 SNPs (302 known loci from the GWAS Catalog, plus 31 novel loci discovered 

in the present analysis). Among the 333 lead SNPs, 24 (7.2%) had a significant Bonferroni-

corrected SNP × PC interaction heterogeneity P value (P < 1.5 × 10−4, 0.05/333).

Meta-analysis and fine-mapping with GIANT and UKB50k.

Meta-analysis.—We meta-analysed results for BMI and height in our PAGE multiethnic 

sample (around 50,000 individuals) with the published data from GIANT consortium23,24, 

which included approximately 250,000 individuals of European descent for each trait.

We also conducted a meta-analysis with 50,000 randomly sampled ‘White British’ 

individuals from the UK Biobank (UKB50k) for comparison. GWAS for both PAGE and 

UKB50k were estimated with analogous models for BMI and height traits. Within PAGE 

and UKB50k, we used the inverse normally transformed residuals for each trait by sex and 

race/ethnicity, and adjusted for population substructure, age, centre and racial/ethnic groups 

(if applicable). These methods were similar those used by GIANT, using inverse-normal-

adjusted residuals for each trait outcome. We then separately meta-analysed results using a 

fixed-effects model for either PAGE or UKB50k combined with GIANT using the METAL 

software43. We retained only variants available across both the combined meta-analyses (for 

PAGE + GIANT or UKB50k + GIANT), which led to the inclusion of approximately 2.5 

million variants. Significance was defined as P < 5 × 10−8. Novelty of a locus was defined as 

±500 kb from any known loci for the respective trait based on the previously published 

GIANT data23,24. We also required the at least two SNPs within a 1-Mb results had P < 1 × 

10−5 to be retained as a significant known or novel locus.
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Fine-mapping.—We used FINEMAP44 for all fine-mapping analyses. For each previously 

reported locus for height24 and BMI23 in GIANT, a 1-Mb region was subset, using the 

summary statistics from GIANT, the PAGE + GIANT meta-analysis and the UKB50k + 

GIANT meta-analysis. The linkage disequilibrium for the fine-mapping analyses was 

calculated using each individual ancestry from the PAGE sample and using the 9,700 

individuals of European descent from the ARIC study. For weighted linkage disequilibrium 

that included all ancestries, we weighted each ancestry in PAGE by the actual sample size 

and added in the ARIC sample but used the sample size from the GIANT consortium by 

trait. All analyses were run assuming one causal variant. The cumulative 95% credible set 

was calculated from the estimated posterior probabilities.

PVE analysis.

Each PVE analysis considered a single combination of (1) trait, (2) the analysis from which 

P values were derived (GIANT, GIANT + PAGE or GIANT + UKB50k) and (3) the target 

population in which PVE was calculated (either PAGE or UKB50k). To avoid overweighting 

any single region owing to linkage disequilibrium between multiple associated SNPs, we 

first defined a ‘locus’ as a contiguous series of genome-wide significant tag SNPs with 

genome-wide significance, for which each tag SNP was less than 500 kb from the next. Then 

we selected the single SNP within each locus with the smallest P value in the given analysis 

(the best tag SNP) and calculated the PVE for that SNP in the target population. The meta-

analysis was effectively limited to allele frequencies greater than 5%, so we used the 

standard P < 5 × 10−8 threshold for significance to define loci.

PVE was calculated for a given SNP using a previously published equation25:

PVE ∝
β

2
* 2p(1 − p)

β
2

* 2p(1 − p) + ( s.e. (β))
2

* N*2p(1 − p)

Input for this equation requires only the estimated effect size (β), the standard error of the 

estimate (s.e. (β), the allele frequency (p) and the number of samples (N). PVE was then 

summed across all of the best tag SNPs in a given analysis.

Population allele frequencies of HCP rs2395029[G].

These 99 labels were compiled from self-identified ancestry information from the PAGE 

sample manifest, as well as self-reported country of origin from the Mount Sinai BioMe 

biobank. Per-population allele frequencies for rs2395029[G] were calculated in PLINK v.

1.90 (http://www.cog-genomics.org/plink/L9/)38 and results were visualized in R.

Extended Data
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Extended Data Fig. 1 |. Number of unique participants in the GWAS Catalog from 2006 to 2017 
(inclusive).

We observed that—although the number of unique participants (in millions) in the GWAS 

Catalog has grown substantially over the past decade—the relative proportion of participants 

of non-European descent has remained constant, with the majority of progress within Asian 

populations.
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Extended Data Fig. 2 |. Correlation between SNP genotype and PC1-PC10.

a, The correlation (r2) for novel and residual loci calculated by obtaining the individual level 

data for all PAGE participants and correlating the SNP genotype with each of the ten PCs. 

The correlation between each locus and each of the ten PCs was plotted on the y axis, novel 

loci are plotted in grey and residual loci are plotted in yellow. We observed an especially 

high correlation between a novel locus and PC4, which represents Native Hawaiian/Pacific 

Islander ancestry. b, The individual level data for all PAGE participants were obtained and 

plotted in a parallel coordinates plot, such that each PAGE individual is represented by a set 

of line segments connecting their eigenvalues. This allows us to see which race/ethnicity 

groups are differentiated at each PC. For example, we see predominantly green lines as 

outliers for PC4, which indicates that this vector represents a continuum of Native Hawaiian/

Pacific Islander ancestry.

Extended Data table 1 |

GWAS Catalog heterogeneity by trait, including number of novel and secondary findings

Phenotype

Largest GWAS catalog discovery population
1 GWAS catalog tagSNPs best PAGE 

tagSNPs Novel
Loci

(count)
6

Secondary
Loci

(count)
6

European
East

Asian African
Hispanic/

Latino PAGE Unique P<5×10−8 Het
4

P<5×10−8
Het5

Inflammatory 
Traits

CRP 66,185 10,112 8,280 3,548 28,537 82 38 7 16 1 0 0
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Phenotype

Largest GWAS catalog discovery population
1 GWAS catalog tagSNPs best PAGE 

tagSNPs Novel
Loci

(count)
6

Secondary
Loci

(count)
6

European
East

Asian African
Hispanic/

Latino PAGE Unique P<5×10−8 Het
4

P<5×10−8
Het5

WBC 19,509 33,231 16,388 - 28,534 27 10 5 11 3 1 1

MCHC 62,553 16,485 - 19,803 21 9 1 5 0 0 2

Platelet Count 48,666 14,806 7,943 12,491 29,328 92 23 0 28 0 1 1

Lipid Traits

HDL 99,900 12,545 7,917 4,383 33,063 244 71 8 21 1 2 2

LDL 94,595 12,545 7,861 4,383 32,221 192 46 12 18 0 0 2

TG 96,598 12,545 7,601 4,383 33,096 179 75 29 16 1 1 2

TC 100,184 8,344 6,480 4,383 33,185 166 31 4 20 0 1 2

Lifestyle Traits

Cigarettes/Day 
Excluding 

Nonsmokers

74,035 11,696 32,389 - 15,862 12 0 0 3 0 2 1

Coffee Cups/Day 91,462 - - - 35,902 16 3 1 3 0 1 0

Glycemic Traits

HbA1c 46,368 17,290 - - 11,178 29 8 1 9 0 1 3

Fasting Insulin 51,750 7,696 1,040 229 21,596 34 0 0 3 0 1 0

Fasting Glucose 58,074 24,740 2,029 4,176 23,963 55 15 3 7 0 2 0

Type II Diabetes
2 12,171/56,862 15,463/26,183 1,264/5,678 3,848/4,366 14,075/31,752 286 28 2 13 0 0 1

Electrocardiogram 
Traits

QT Interval 71,061 6,805 13,105 - 17,348 183 39 1 11 0 0 2

QRS Interval 60,255 6,085 13,031 - 17,052 63 9 3 12 0 1 2

PR Interval 28,517 6,085 13,415 - 17,428 154 19 1 10 0 1 2

Blood Pressure 
Traits

Systolic Blood 
Pressure

74,064 31,516 29,378 - 35,433 74 2 0 4 0 1 1

Diastolic Blood 
Pressure

74,064 31,516 29,378 - 35,433 81 2 0 4 0 0 0

Hypertension 74,064 31,516 29,378 - 49,158 111 0 0 2 0 1 1

Anthropometric 
Traits

Waist-to-hip 

Ratio
3

142,762 39,869 19,744 3,484 33,904 94 5 0 6 0 1 0

Height 253,288 36,227 20,427 - 49,781 698 99 42 93 18 5 13

Body Mass Index 236,781 82,438 39,144 3,484 49,335 572 41 12 13 0 1 0

Kidney Traits

eGFR by CKD 
Epi Equation

133,413 23,536 16,840 16,325 27,900 135 1 0 5 0 3 0

Average 90,953 20,953 14,710 5,570 Total 3356 548 194 333 24 27 38

For more information, see Supplementary Table 6.

1
Data only include studies indexed in the GWAS Catalog on 31 December 2016.

2
Data are shown as cases/controls.

3
Data include pooled and sex-stratified studies and/or results.

4
P < 8.71 × 10−5 for genotype:PC interactions in PAGE, adjusting for multiple tests (0.05/574).

5
P < 1.50 × 10−4 for genotype:PC interactions in PAGE, adjusting for multiple tests (0.05/333).

6
Significant loci have P < 5 × 10−8 after conditioning on all known loci from the literature.
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Extended Data Table 2 |

Results of the meta-analysis

Height
1

BMI
2

Analysis known
loci

3 novel
loci

4 novel,
shared

5 novel,
unshared

6 known
3

novel
4

novel,
shared

5 novel,
unshared

6

GIANT-only GWAS 425 0 74 0

PAGE-only GWAS 46 8 9 0

UKB50k-only GWAS 91 1 8 2

GIANT+PAGE meta 405
7

82 37 64
7

38 31

45 7

GIANT+UKB50k meta 412
7

107 62 67
7

28 21

1
Meta-analysis with previously reported height data24.

2
Meta-analysis with previously reported BMI data23.

3
Known loci include only the 425 height loci and 74 BMI loci from GIANT.

4
Novel loci were identified as P > 5 × 10−8 in the GIANT-only dataset and P > 5 × 10−8 in the specified analyses.

5
Novel, shared loci were identified as P > 5 × 10−9 in both GIANT+PAGE and GIANT+UKB50k datasets.

6
Novel, unshared loci were identified as P > 5 × 10−9 in either GIANT+PAGE or GIANT+UKB50k, but not in both 

datasets.

7
A modest number of known loci were significant in the GIANT-only GWAS, but not in the meta-analyses. These known 

loci were still included in PVE calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Inclusion of multi-ethnic samples enables discovery and replication in GWAS.

a, The population substructure present in the multi-ethnic sample of PAGE (n = 49,839) 

revealed complex patterns preventing meaningful stratification. Here we show that PC1 and 

PC2 show major patterns of variation, stratified by self-identified race/ethnicity. Individuals 

denoted by orange self-identified as ‘Other’. b, There are 8,979 previously reported trait–

variant pairs, of which 1,444 replicated at a by-trait Bonferroni-adjusted significance level 

for P values estimated from a Wald test in SUGEN. In addition, we found 27 novel trait–

variant pairs and 38 secondary signal pairs that remained after adjusting for known variants. 

BMI, body-mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycated 

haemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MCHC, mean 

corpuscular haemoglobin concentration; WHR, waist-to-hip ratio.
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Fig. 2 |. Weaker effect sizes of previously published trait–variant associations in non-European 
populations exacerbates disparity in PVE.

a, Standardized effect sizes for the two largest self-reported subsets of the PAGE population 

show markedly weaker effect sizes in African Americans (z′PAGE = 0.54 × z′prior (yellow); z

′ is the z-score from the trait–variant association standardized by the sample size in PAGE 

or the ‘prior’ publication from the NHGRI-EBI GWAS Catalog) than in Hispanic/Latino 

participants (z′PAGE = 0.86 × z′prior; red) compared to originally reported effect sizes from 

the NHGRI-EBI GWAS Catalog. Grey shading indicates the 95% confidence interval around 

the slope estimate. b, After identifying the SNP with the smallest P value in each locus, the 

PVE of height was calculated using the estimated effect size from this set of tag SNPs (left, 

GIANT-only GWAS; middle, UKB50k+GIANT meta-analysis; right, PAGE + GIANT meta-

analysis). PVE was estimated independently in the UKB50k (White British) and PAGE 

(multi-ethnic) samples. The gap in PVE with previously reported loci from GIANT (8.14%) 

is exacerbated with the inclusion of 50,000 more individuals of European descent, to 

11.19%. However, it narrows markedly with the inclusion of 50,000 multiethnic samples, to 

3.91%.
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Fig. 3 |. Fine-mapping with multi-ethnic PAGE versus homogeneous UK Biobank samples for 
height.

a, Comparison of 95% credible sets for height, comparing GIANT alone (n = 253,288) to 

UKB50k + GIANT (n = 303,288; paired-sample t-test P = 0.37) and PAGE + GIANT (n = 

303,069; paired-sample t-test P = 0.01). Box plots show the median as the line in the notch, 

with the top and bottom of the box indicating the interquartile range. Whiskers extend to 

either the minimum value or 1.5 × the interquartile range. Notches indicate the 95% 

confidence interval of the medians. b, Top posterior probability from each 95% credible set 

for height, comparing GIANT (n = 253,288) to UKB50k + GIANT (n = 303,288) and PAGE 

+ GIANT (n = 303,069). c, Example of results for a height locus from GWAS (rs11880992) 

in UKB50k + GIANT (n = 303,288) and PAGE + GIANT (n = 303,069), with linkage 

disequilibrium from weighted matrix from meta-analysis. d, Posterior probabilities for this 

signal with credible set in indicated by the diamond shapes. e, Linkage disequilibrium (r2) 

for the original 95% credible set from GIANT results stratified by populations. The index 

association SNP (rs11880992) with the highest posterior probability is denoted in bold.
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