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C
linical laboratory measurements (e.g., blood test results) 
are powerful intermediate phenotypes that can be used to 
diagnose and monitor human diseases. Elucidation of the 

underlying genetics, as well as inference of genetic relationships 
to diseases and implicated cell types, can provide clues about dis-
ease biology. To this end, GWASs have been conducted to inves-
tigate various quantitative traits, including anthropometric1–3, 
metabolic4,5, kidney-related6,7, hematological8,9, and blood pressure 
traits10–12. The interplay between the genetics of quantitative traits 
and diseases has been assessed by several approaches, such as plei-
otropy13,14, genetic correlation15,16, and Mendelian randomization17. 
For example, recent large-scale studies of body mass index (BMI), 
a key measure for assessing obesity, revealed shared genetic effects 
on metabolic traits and the involvement of the central nervous  
system2 and immune cells3 in obesity susceptibility. However, previ-
ous studies primarily examined subjects of European ancestry, and 
each study separately focused on few quantitative traits. For the cre-
ation of a comprehensive landscape, additional studies of non-Euro-
pean populations are warranted that simultaneously investigate a 
wide range of clinical measurements and extensively interrogate 
their relevance to complex diseases.

Here we report a GWAS of 58 quantitative traits in 162,255 
Japanese individuals from the BioBank Japan Project (BBJ)18,19, one 
of the largest non-European single-descent biobanks with detailed 
phenotypes, to broaden the current knowledge and understanding 

of the genetics and biology of these traits. Moreover, we incorpo-
rated additional GWASs of complex diseases and traits in Japanese 
subjects, and evaluated pleiotropy, genetic correlation, and cell-type 
specificity with respect to the quantitative traits. Our study provides 
many insights into the genetic basis of various quantitative traits 
and illuminates the complex genetic links among clinical measure-
ments, complex diseases, and relevant cell types.

Results
Genome-wide association analysis of 58 quantitative traits. We 
tested 5,961,600 autosomal variants and 147,353 X-chromosome 
variants (imputed with 1000 Genomes Project Phase 120; Methods) 
for association with 58 quantitative traits in 162,255 Japanese indi-
viduals. The studied traits covered a wide range of clinical measure-
ments, grouped into nine distinct categories (Table  1): metabolic 
(n =  6), serum protein (n =  4), kidney-related (n =  4), electrolyte 
(n =  5), liver-related (n =  6), other biochemical (n =  6), hemato-
logical (n =  13), blood pressure (n =  4), and echocardiographic 
(n =  9). The study design is illustrated in Supplementary Fig. 1, and 
the detailed characteristics of the subjects, phenotype source, and 
exclusion criteria are described in Supplementary Tables 1 and 2.

Overall, we identified 1,407 trait-associated loci for 53 quanti-
tative traits that satisfied a genome-wide significance threshold 
of P =  5.0 ×  10−8 (Methods). Of these, 679 loci were novel (Table 1 
and Supplementary Table  3). When we applied multiple-testing 
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Table 1 | Overview of the studied quantitative traits

category Trait Abbreviation n Number of loci (New loci)

Anthropometrica Adult height Height 159,148 – –

Body mass index BMI 158,284 – –

Metabolic Total cholesterol TC 128,305 32 (5)

High-density-lipoprotein cholesterol HDL-C 70,657 31 (9)

Low-density-lipoprotein cholesterol LDL-C 72,866 22 (6)

Triglyceride TG 105,597 26 (4)

Blood sugar BS 93,146 17 (3)

Hemoglobin A1c HbA1c 42,790 26 (16)

Protein Total protein TP 113,509 33 (31)

Albumin Alb 102,223 17 (13)

Non-albumin protein NAP 98,538 48 (46)

Albumin/globulin ratio A/G 98,626 42 (40)

Kidney-related Blood urea nitrogen BUN 139,818 43 (30)

Serum creatinine sCr 142,097 66 (51)

Estimated glomerular filtration rate eGFR 143,658 69 (48)

Uric acid UA 109,029 27 (10)

Electrolyte Sodium Na 127,304 14 (14)

Potassium K 132,938 14 (14)

Chloride Cl 126,402 19 (19)

Calcium Ca 71,701 15 (11)

Phosphorus P 42,793 8 (5)

Liver-related Total bilirubin TBil 110,207 11 (9)

Zinc sulfate turbidity test ZTT 12,303 4 (4)

Aspartate aminotransferase AST 134,154 25 (22)

Alanine aminotransferase ALT 134,182 27 (23)

Alkaline phosphatase ALP 105,030 28 (19)

γ -glutamyl transferase GGT 118,309 42 (24)

Other biochemical Activated partial thromboplastin time APTT 37,767 10 (5)

Prothrombin time PT 58,110 9 (6)

Fibrinogen Fbg 18,348 1 (0)

Creatine kinase CK 106,080 36 (31)

Lactate dehydrogenase LDH 126,319 10 (5)

C-reactive protein CRP 75,391 7 (1)

Hematological White blood cell count WBC 107,964 36 (7)

Neutrophil count Neutro 62,076 21 (3)

Eosinophil count Eosino 62,076 18 (1)

Basophil count Baso 62,076 26 (10)

Monocyte count Mono 62,076 31 (2)

Lymphocyte count Lym 62,076 13 (1)

Red blood cell count RBC 108,794 54 (11)

Hemoglobin Hb 108,769 19 (5)

Hematocrit Ht 108,757 22 (8)

Mean corpuscular volume MCV 108,256 91 (17)

Mean corpuscular hemoglobin MCH 108,054 77 (10)

Mean corpuscular hemoglobin concentration MCHC 108,728 39 (10)

Platelet count Plt 108,208 78 (19)

Blood pressure Systolic blood pressure SBP 136,597 23 (4)

Diastolic blood pressure DBP 136,615 18 (3)

Mean arterial pressure MAP 136,482 30 (21)

Pulse pressure PP 136,249 17 (8)

Continued
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correction to the number of the studied traits, 943 trait-associated 
loci for 51 traits showed significant associations (P <  5.0 ×  10−8/58 
=  8.6 ×  10−10), of which 372 loci were novel. Stepwise conditional 
analysis for each trait-associated locus further identified 267 addi-
tional independent signals at 158 trait-associated loci for 39 traits 
(Supplementary Table  4). We observed multiple additional inde-
pendent signals at 49 trait-associated loci, with the maximum 
number of 11 independent signals at 11q13.1 for uric acid (the 
top associated signal was rs57633992 on NRXN2; P =  7.30 ×  10−845) 
(Supplementary Fig.  2). Although the genomic inflation fac-
tors (λGC) of several traits showed considerable inflation (mean 
λGC =  1.11), linkage disequilibrium (LD) score regression21 analysis 
confirmed no existence of substantial confounding biases for all 
traits (mean intercept: 1.04), as shown in Supplementary Table 5. 
Given the substantial sample sizes in our GWASs, these statistics 
suggest that a majority of the inflation was due to polygenic effects, 
and population stratification and other potential biases were strictly 
controlled3,21. Manhattan, quantile–quantile, and LD score plots are 
provided in Supplementary Dataset  1. Detailed regional plots for 
each locus are provided in Supplementary Dataset 2.

Trans-ethnic comparison of the allele frequencies of the identified 
loci between East Asians and Europeans showed an overall shared 
allelic spectrum across populations (r =  0.687; Supplementary Fig. 3). 
The novel loci tended to have higher allele frequencies in East Asians 
than in Europeans, as 60 novel loci (8.8%) were common (minor 
allele frequency ≥  5%) in East Asians but rare (≤ 1%) in Europeans. 
Of note, the associated single-nucleotide polymorphisms (SNPs) in 
15 unique loci (for example, ALDH2, EGF, and SUFU) were mono-
morphic in Europeans but had higher frequencies in East Asians  
(≥ 10%). These observations show the contribution of population-
specific factors, such as evolutionary selection pressure, to the iden-
tified loci. The percentage of mean heritability of the traits explained 
by the significant loci was 2.84% (Supplementary Table 6). On aver-
age, the known loci in Europeans explained 1.92%, the overall known 
loci explained 2.03%, and the newly identified loci explained 0.84%. 
The percentage of global heritability explained by the genome-wide 
common SNPs was on average 8.60%, which is comparable to previ-
ous findings in Europeans (Supplementary Table 5).

Pleiotropy of top associated quantitative trait loci. Pleiotropy, 
defined here as the sharing of risk alleles across multiple traits, is 
a key concept in investigations of cross-phenotype relationships 
across human traits, leading us to decipher a shared genetic eti-
ology underlying a complex genetic architecture13,14. To identify 
major pleiotropic loci, we assessed pleiotropy at the single-locus 
level across 763 unique loci (derived from the 1,407 trait-associ-
ated loci for 53 quantitative traits mentioned above; Methods). We 

identified numerous pleiotropic loci among the quantitative traits 
(n =  313), representing approximately 41% of the unique loci (Fig. 1 
and Supplementary Table  7). Of these, 88 loci showed pleiotropy 
across traits in multiple trait categories (intercategorical pleiotropy), 
whereas the other 225 loci showed pleiotropy across traits in a single 
category (intracategorical pleiotropy).

We observed the most abundant intercategorical pleiotropy at 
ALDH2 (12q24.12), associated with 21 traits in seven categories 
(Supplementary Fig. 4). The most significant associations were at 
rs79105258 (the top associated signal was γ -glutamyl transferase 
(GGT); P =  9.98 ×  10−100), which shows high minor allele frequency 
in East Asians (0.24) but is monomorphic in other ancestral popu-
lations20. Other pleiotropic loci that showed intercategorical plei-
otropy included GCKR (2p23.3), associated with 18 traits in seven 
categories (rs1260326 for triglyceride; P =  1.69 ×  10−94); ABO 
(9q34.2), associated with 15 traits in six categories (rs2519093 
for alkaline phosphatase; P =  2.02 ×  10−887); and RGS12 (4p16.3), 
associated with nine traits in six categories (rs4690095 for albu-
min; P =  1.63 ×  10−22). Although RGS12 (4p16.3) has received 
little attention as a pleiotropic locus compared with the other 
loci mentioned13, this locus has shown associations with several 
traits and diseases, including serum lipids4 and inflammatory 
bowel disease22. Our results expand its associations with addi-
tional traits, including kidney function, serum calcium, GGT, and  
platelet count (Plt).

Polygenic correlations across quantitative traits. Another 
approach to infer genetic overlap across traits is to estimate a genetic 
correlation, that is, a correlation of causal effect sizes at a genome-
wide level15,16. Rather than using  a single-locus-level analysis,  
we evaluated genetic correlations under a polygenic model that 
could take into account the consistency of effect directions, unlike 
pleiotropy analysis, to disentangle the polygenic architecture of 
the studied traits. We incorporated additional GWAS results for 
the anthropometric traits BMI3 and adult height, obtained from 
ongoing studies under the BBJ (Supplementary Note  1), to gain  
a broader perspective on quantitative traits. We carried out bivari-
ate LD score regression15 to estimate pairwise genetic correla-
tions across the 59 quantitative traits (we excluded the E/A ratio,  
a marker of heart function, owing to small sample size; Methods). 
We found 173 significant genetic correlations (false discovery 
rate (FDR) <  0.05), 100 (58%) of which were intercategorical 
(Supplementary Fig. 5 and Supplementary Table 8).

We observed the greatest number of significant intercategorical 
genetic correlations with BMI, which showed significant correla-
tions with 22 quantitative traits in seven trait categories (the most 
significant correlation (P =  9.83 ×  10−17) was with mean arterial  

category Trait Abbreviation n Number of loci (New loci)

Echocardiographic Interventricular septum thickness IVS 19,318 0 (0)

Posterior wall thickness PW 19,373 0 (0)

Left ventricular internal dimension in diastole LVDd 19,676 3 (3)

Left ventricular internal dimension in systole LVDs 19,586 4 (4)

Left ventricular mass LVM 19,076 0 (0)

Left ventricular mass index LVMI 17,837 0 (0)

Relative wall thickness RWT 19,311 1 (1)

Fractional shortening FS 19,580 4 (4)

Ejection fraction EF 19,516 3 (3)

E/A ratio E/A 8,600 0 (0)

aWe obtained the GWAS results for these two anthropometric traits from the ongoing studies in the BioBank Japan Project.

Table 1 | Overview of the studied quantitative traits (continued).
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pressure). Total protein and height had the second highest numbers of 
correlated categories (n =  6), followed by triglycerides, non-albumin  
protein, and Plt (n =  5). Although some of the significant intercat-
egorical genetic correlations had been suggested previously (for 
example, BMI and serum lipids in Europeans15), most were newly 
identified. Notably, most of these links were consistent with obser-
vations in epidemiological studies, thus demonstrating the robust-
ness and potential of the genetics-based studies to elucidate novel 
biological and medical architectures of human traits without prior 
knowledge (Supplementary Table  8). For example, the observed 
negative correlation between white blood cell (WBC) count and 
total bilirubin was suggested in an epidemiological study23, but our 

study corroborated this correlation on the basis of genetics, thus 
providing empirical support for the hypothesis of the anti-inflam-
matory activities of bilirubin24.

Genetic correlations among quantitative traits and diseases. 
Given that clinical measurements are informative as intermediate 
phenotypes for the assessment of complex human diseases, we rea-
soned that additional exploration of genetic correlations between 
quantitative traits and diseases would provide more empirical cor-
roboration of shared genetic architecture, which could illuminate 
the underlying etiology and pathogenesis. To this end, we addi-
tionally incorporated 30 case–control GWAS results for complex  
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Fig. 1 | Overview of the identified loci and their pleiotropy. a, The number of identified trait-associated loci for each trait, grouped by type of pleiotropy. 

b, Identified loci and their pleiotropy. Each dot corresponds to a trait-associated locus. Larger dots highlight a pleiotropic association. Each radial line 

connects all dots for an intercategorical pleiotropic locus with a locus symbol. c, The number of associated traits for each intercategorical pleiotropic locus. 

The orders of the quantitative traits in each trait category are the same as those presented in Table 1.
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diseases in Japanese individuals (Table  2 and Supplementary 
Note  1)25–30, including cardiometabolic (n =  6), immune-related 
(n =  6), hematologic (n =  1), psychiatric (n =  2), and musculoskel-
etal diseases (n =  2); cancer (n =  7); and other diseases (n =  6).

We then estimated pairwise genetic correlations across the 59 
quantitative traits and 30 diseases. We identified 68 significant 
genetic correlations (FDR <  0.05), which supported the biological 
relevance of associations between clinical measurements and com-
plex diseases (Fig. 2 and Supplementary Table 8; the full results are 
presented in Supplementary Fig.  6 and Supplementary Table  9). 
Among the 68 significant correlations, 52 (76.5%) involved car-
diometabolic diseases, correlating with quantitative traits in seven 
categories. Indeed, type 2 diabetes showed the greatest number of 
significant correlations with quantitative traits (n =  15), and dem-
onstrated the most significant genetic correlation with hemoglobin 
A1c (rg =  0.724; P =  2.54 ×  10−22). We also observed other significant 
correlations, such as those between ischemic stroke and uric acid 
(rg =  0.254; P =  5.74 ×  10−5), and between myocardial infarction and 

albumin/globulin ratio (rg =  − 0.174; P =  1.06 ×  10−3). Among the 
remaining 16 significant genetic correlations (other than for cardio-
metabolic diseases), the most significant correlation was between 
asthma and eosinophil count (rg =  0.348; P =  3.76 ×  10−4). Other sig-
nificant correlations included those between urolithiasis and sys-
tolic blood pressure (rg =  0.272; P =  7.22 ×  10−4), asthma and systolic 
blood pressure (rg =  0.214; P =  8.84 ×  10−4), and colorectal cancer 
and height (rg =  0.164; P =  2.92 ×  10−3).

In addition to the suggested genetic correlations in Europeans 
(type 2 diabetes and BMI; triglycerides, blood sugar, and hemoglo-
bin A1c; coronary artery disease and BMI; and high-density-lipo-
protein cholesterol and triglycerides)15, we empirically corroborated 
novel genetic correlations that have been implicated in Mendelian 
randomization analyses (e.g., type 2 diabetes and alanine amino-
transferase31; atrial fibrillation and height32; asthma and eosinophil 
count9; and colorectal cancer and height33) and epidemiological 
studies (e.g., ischemic stroke and uric acid34; myocardial infarction 
and albumin/globulin ratio35; peripheral artery disease and total 

Table 2 | Summary of the additional case–control GWASs of the 30 complex diseases

Disease Number of 
samples

case recruitment controla PMID

category Trait Abbreviation case control

Metabolic disease Type 2 diabetes T2D 36,832 28,870 BBJ Cohort -

Cardiovascular disease Ischemic stroke IS 16,256 27,294 BBJ Cohort -

Cerebral aneurysm CeAn 2,597 28,870 BBJ Cohort -

Myocardial infarction MI 12,494 28,870 BBJ Cohort -

Peripheral artery disease PAD 3,382 28,870 BBJ Cohort -

Atrial fibrillation AF 8,180 28,612 BBJ Cohort 28416822

Allergic disease Asthma - 7,570 28,870 BBJ Cohort -

Atopic dermatitis AD 1,472 7,966 BBJ Disease-mix 23042114

Autoimmune disease Graves’ disease GD 1,961 7,968 BBJ Disease-mix 26029868

Rheumatoid arthritis RA 4,873 17,642 Meta-analysis (Asian) 24390342

Infectious disease Chronic hepatitis B CHB 1,092 28,870 BBJ Cohort -

Chronic hepatitis C CHC 4,988 28,870 BBJ Cohort -

Hematologic disease Anemia - 7,570 28,870 BBJ Cohort -

Psychiatric disorder Bipolar disorder BD 2,964 61,887 Collaborators Disease-mix 28115744

Schizophrenia SCZ 1,987 9,788 Collaborators Disease-mix -

Musculoskeletal disease Adolescent idiopathic 
scoliosis

AIS 2,109 11,140 Collaborators Case-mix 26211971

Osteoporosis - 7,099 28,870 BBJ Cohort -

Cancer Lung cancer LuCa 3,874 27,178 BBJ Cohort -

Gastric cancer GaCa 6,171 27,178 BBJ Cohort -

Esophageal cancer EsCa 1,225 27,178 BBJ Cohort -

Colorectal cancer CoCa 6,692 27,178 BBJ Cohort -

Prostate cancer PrCa 5,088 10,682 BBJ Cohort (male) -

Breast cancer BrCa 5,272 16,496 BBJ Cohort (female) -

Endometrial cancer EnCa 1,931 17,492 BBJ Cohort (female) -

Other Uterine fibroids UF 5,720 17,492 BBJ Cohort (female) -

Glaucoma - 3,980 18,815 BBJ Cohort -

Chronic obstructive 
pulmonary disease

COPD 3,050 28,870 BBJ Cohort -

Epilepsy - 2,109 28,870 BBJ Cohort -

Pollinosis - 6,246 28,870 BBJ Cohort -

Urolithiasis - 5,536 28,870 BBJ Cohort -

a“Cohort” refers to the population-based cohorts in Japan. “Disease-mix” refers to the mixture of the affected subjects obtained from BBJ.
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bilirubin36; and urolithiasis and blood pressure37) (Supplementary 
Table 8). Thus, we further investigated causal relationships between 
the significant pairs of quantitative traits and diseases by using a 
Mendelian randomization approach (Methods). We identified 24 
significant causal associations (P <  9.43 ×  10−4 (=  0.05/53)), 15 of 
which had not been previously suggested by genetic causal rela-
tionships (Supplementary Fig. 7 and Supplementary Table 10). To 
distinguish bias due to pleiotropy, we further applied MR-Egger 
regression38 as a sensitivity test, and confirmed the robustness of 
the identified causal relationships (P >  0.05 for intercept  after 
Bonferroni correction).

To facilitate understanding of the complex inter-relations 
between clinical measurements and diseases, we constructed a 
network from the genetic correlation matrix (Fig.  3). In the net-
work, the distance between correlated phenotypes is determined 
by weighting of the magnitudes of their correlations (Methods). 
Although we constructed our genetic correlation network without 
prior biological knowledge of cross-phenotype relationships, we 
observed distinctive clusters of biologically related phenotypes. The 
largest cluster was composed of cardiometabolic diseases and their 
biomarkers, interconnected with various clinical measurements, 
such as kidney-related, liver-related, and hematological traits. The 
network also depicted cross-disease interplay, including the positive  

correlation of autoimmune diseases (rheumatoid arthritis and 
Graves’ disease) and chronic inflammatory diseases (asthma and 
chronic obstructive pulmonary disease), as well as the negative 
correlation of glaucoma and Graves’ disease. These results suggest 
that the polygenic landscapes of traits reflect their biological back-
grounds, and thus could be used to elucidate the unknown etiology 
of diseases.

Shared cell-type specificity among human complex traits. The 
identification of trait-relevant cell types is essential for fine-mapping 
of candidate causal variants, the identification of potent therapeutic 
targets, and, ultimately, full understanding of disease biology39–41. 
To assess the cell-type specificity of human traits and diseases on 
the basis of heritability enrichment, we applied stratified LD score 
regression39 to the GWAS results for the 59 quantitative traits and 30 
diseases using 220 cell-type-specific annotations for histone modifi-
cations (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) constructed 
from the Roadmap Epigenomics Project dataset39,42.

To create a broad picture of trait-relevant cell types, we first 
assessed heritability enrichment in ten major cell-type groups, 
defined as unions of 220 cell-type-specific annotations, represent-
ing their system- or organ-level structure39. We observed 72 signifi-
cant heritability enrichments (FDR <  0.05) in the cell-type groups 

H
e

ig
h

t
B

M
I

T
C

H
D

L
-C

L
D

L
-C

T
G

B
S

H
b

A
1

c
T

P
A

lb
N

A
P

A
/G

B
U

N
s
C

r
e

G
F

R
U

A
N

a
K C

l
C

a
P T

B
il

Z
T

T
A

S
T

A
L

T
A

L
P

G
G

T
A

P
T

T
P

T
F

b
g

C
K

L
D

H
C

R
P

W
B

C
N

e
u

tr
o

E
o

s
in

o
B

a
s
o

M
o

n
o

L
y
m

R
B

C
H

b
H

t
M

C
V

M
C

H
M

C
H

C
P

lt
S

B
P

D
B

P
M

A
P

P
P

IV
S

P
W

L
V

D
d

L
V

D
s

L
V

M
L

V
M

I
R

W
T

F
S

E
F

Adrenal or pancreas
CNS

Cardiovascular
Connective or bone

Gastrointestinal
Immune or hematopoietic

Kidney
Liver

Skeletal muscle
Other

Adrenal or pancreas
CNS

Cardiovascular
Connective or bone

Gastrointestinal
Immune or hematopoietic

Kidney
Liver

Skeletal muscle
Other

T
y
p

e
 2

 d
ia

b
e

te
s

Is
c
h

e
m

ic
 s

tr
o

k
e

C
e

re
b

ra
l 
a

n
e

u
ry

s
m

M
y
o

c
a

rd
ia

l 
in

fa
rc

ti
o

n
P

A
D

A
tr

ia
l 
fi
b

ri
lla

ti
o

n

U
ro

lit
h

ia
s
is

A
s
th

m
a

A
to

p
ic

 d
e

rm
a

ti
ti
s

G
ra

v
e

s
’ 
d

is
e

a
s
e

R
h

e
u

m
a

to
id

 a
rt

h
ri
ti
s

C
h

ro
n

ic
 h

e
p

a
ti
ti
s
 B

C
h

ro
n

ic
 h

e
p

a
ti
ti
s
 C

A
n

e
m

ia
B

ip
o

la
r 

d
is

o
rd

e
r

S
c
h

iz
o

p
h

re
n

ia
A

IS
O

s
te

o
p

o
ro

s
is

G
la

u
c
o

m
a

L
u

n
g

 c
a

n
c
e

r
G

a
s
tr

ic
 c

a
n

c
e

r
E

s
o

p
h

a
g

e
a

l 
c
a

n
c
e

r
C

o
lo

re
c
ta

l 
c
a

n
c
e

r
P

ro
s
ta

te
 c

a
n

c
e

r
B

re
a

s
t 

c
a

n
c
e

r
E

n
d

o
m

e
tr

ia
l 
c
a

n
c
e

r
U

te
ri
n

e
 f

ib
ro

id
s

C
O

P
D

E
p

ile
p

s
y

P
o

lli
n

o
s
is

Quantitative traits (n = 59)a

b

Diseases (n = 30)

C
e

ll-
ty

p
e

 g
ro

u
p

s
 (
n

 =
 1

0
)

C
e

ll-
ty

p
e

 g
ro

u
p

s
 (
n

 =
 1

0
)

C
e

ll-
ty

p
e

 g
ro

u
p

s
 (
n

 =
 1

0
)

Quantitative trait categories and diseases

Liver-related

Other biochemical

Hematological

Blood pressure

Echocardiographic

Anthropometric

Metabolic

Protein

Kidney-related

Electrolyte

Disease

Cell-type groups

Adrenal or pancreas

CNS

Cardiovascular

Connective or bone

Gastrointestinal

lmmune or hematopoietic

Kidney

Liver

Skeletal muscle

Other

0 21 3 4 <

FDR < 0.05

−log10(FDR)

Adrenal or pancreas
CNS

Cardiovascular
Connective or bone

Gastrointestinal
Immune or hematopoietic

Kidney
Liver

Skeletal muscle
Other

Height eGFR GGT MCVCK

0 2.5 5 7.5

−log10(FDR)

0 2.5 5 7.5

−log10(FDR)

0 2.5 5 7.5

−log10(FDR)

0 2.5 5 7.5

−log10(FDR)

0 2.5 5 7.5

−log10(FDR)

Fig. 4 | Heritability enrichment in the ten cell-type groups. a, Significance of heritability enrichment in the ten cell-type groups for the 59 quantitative traits 

and 30 diseases estimated via stratified LD score regression. b, Selected quantitative traits in five quantitative trait categories. FDR was calculated via the 

Benjamini–Hochberg method. Vertical dashed lines indicate FDR =  0.05. Definitions for trait and disease abbreviations can be found in Tables 1 and 2.

NATuRe GeNeTIcS | VOL 50 | MARCH 2018 | 390–400 | www.nature.com/naturegenetics396

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


ARTICLESNATURE GENETICS

for 44 quantitative traits and diseases (Fig. 4a and Supplementary 
Table 11). The top significant enrichments in each quantitative trait 
category included connective or bone for height (P =  4.89 ×  10−9), 
kidney for estimated glomerular filtration rate (P =  2.59 ×  10−7), 
liver for GGT (P =  2.54 ×  10−6), immune or hematopoietic for 
mean corpuscular volume (P =  6.46 ×  10−6), and skeletal muscle for 
creatine kinase (P =  2.77 ×  10−5), consistent with known biology 
(Fig. 4b and Supplementary Fig. 8). The same held true for the dis-
eases—for example, significant enrichments in immune or hemato-
poietic for rheumatoid arthritis (P =  9.19 ×  10−6) and Graves’ disease 
(P =  3.81 ×  10−5).

Although the cell-type-group-level analysis successfully identified 
a trait-relevant group for most of the quantitative traits and diseases, 
we hypothesized that more detailed assessment at the cell-type level 
would differentiate a trait-relevant cell type within the group. We thus 

assessed heritability enrichment in each of the 220 cell-type-specific 
annotations. We identified 384 significant heritability enrichments 
(FDR <  0.05) for 50 quantitative traits and diseases (Supplementary 
Table  12). To further explore the complex systems of trait-relevant 
cell types, we carried out hierarchical clustering based on the earned 
profile of heritability enrichment for the 59 quantitative traits and 30 
diseases in the 220 cell-type annotations (Fig. 5a).

We observed several distinct clusters that specifically comprised 
related traits and cell types. The most distinct cluster involved a 
great majority of immune or hematopoietic cell types enriched in 
hematological traits and in autoimmune, allergic, and infectious 
diseases, representing a wide range of immune-related diseases and 
traits (Fig. 5b). The most significant heritability enrichment was for 
mean corpuscular hemoglobin in mobilized CD34 (P =  2.01 ×  10−9; 
H3K4me1). All CD34-related epigenetic annotations also showed 
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significant enrichments for red blood cell, WBC, and Plt-related 
hematological traits. Because CD34 is recognized as a marker of 
hematopoietic progenitor cells43, our findings suggest that variants 
in the regulatory region of CD34+ primary cells affect hematopoi-
etic cell differentiation and the number of hematopoietic cells.

Finally, to highlight shared cell types involved in human diseases 
and traits, we constructed a directed network matrix of cell-type-
specific heritability annotations (Fig. 6; details are also presented in 
the Methods section). We identified several independent networks 
of cell-type specificity. The largest network was composed of three 
major clusters connected via the significant enrichment of adipose 
nuclei for (i) WBC count, (ii) lymphocyte count, and (iii) height. 
In addition to the contribution of CD34, we observed heritability 
enrichments in regulatory regions of CD14+ and CD15+ primary 
cells for WBC counts and WBC subtypes (i.e., monocytes and neu-
trophils), representing their specificity in myeloid lineages (CD14 
for monocytes and macrophages44, and CD15 for granulocyte series 
cells45). Primary cells expressing CD19 and CD20, surface markers of 
B cells46, also showed enrichment for non-albumin protein and albu-
min/globulin ratio, potentially reflecting immunoglobulin-synthesis  
functions of B cells. Moreover, various CD4+ and CD8+ T cells 

showed enrichment for autoimmune diseases such as Graves’ dis-
ease and rheumatoid arthritis. We note that the enrichment of regu-
latory T cells (Treg cells) in Graves’ disease, a human autoimmune 
thyroiditis, is concordant with the biological finding that Treg-cell-
depleted mice develop thyroiditis47. Other observed links between 
allergic diseases (atopic dermatitis and asthma) and helper T cells, 
or about the contribution of fetal or chondrogenic tissues to height, 
also supported biological and medical findings.

These results demonstrate that ‘individual cell-type level’ analy-
sis can successfully recapture the biology of human traits, without 
prior knowledge of ‘consolidated cell-type group-level’ analysis. 
The cell-type-specificity networks pinpoint potent causal cell types 
that cooperatively affect human phenotypes, providing promising 
resources for novel therapeutic targets. Nevertheless, integration 
of cell-type specificity in addition to polygenic genetic correlations 
clearly expanded the current knowledge of cross-phenotype rela-
tionships and underlying genetic mechanisms of diseases.

Discussion
We have presented one of the largest non-European GWASs of 
quantitative traits so far, identifying 1,407 trait-associated loci for 53 
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traits in 162,255 Japanese individuals. By incorporating additional 
GWAS results for 32 complex diseases and traits in Japanese indi-
viduals, we further identified numerous pleiotropic loci, wide-rang-
ing genetic correlations, and distinct cell-type specificity among the 
quantitative traits and diseases that confirmed or expanded our cur-
rent understanding of biology.

Our findings suggest that there are complex inter-relations 
between clinical measurements and diseases, demonstrating the 
value of GWASs for a variety of traits in a single large-scale cohort 
with detailed clinical information. We report novel genetic correla-
tions, some of which are consistent with the results of epidemio-
logical studies. These findings substantially expand the knowledge 
of genetic relationships across clinical measurements and diseases. 
We also highlight shared cell-type specificity by linking cell types to 
diseases. These results shed light on the underlying genetic mecha-
nisms, revealing shared etiology and pathogenesis of complex dis-
eases by using clinical measurements as an intermediate phenotype.

Although our work provided various insights into the genetics cor-
responding to clinical measurements in Japanese subjects, we should 
address several limitations of this study. First, we did not have a rep-
lication cohort for validation of the identified loci, but the majority 
of the trait-associated loci were previously reported (n =  728; 51.7%). 
This issue partly reflects a dilemma in the present study, namely, that 
extensive phenotypes were covered simultaneously, which makes rep-
lication more challenging. Second, our subjects for each trait mostly 
overlapped. Although bivariate LD score regression has elegantly 
modeled overlapping samples and their phenotypic correlation15, such 
sample overlap might exert an upward bias in interpretation of the 
genetic overlaps. Third, although we adopted a linear regression model 
for unrelated subjects, the application of a linear mixed model for both 
related and unrelated subjects could potentially have increased the 
statistical power of the study48. Fourth, the causal inference of clinical 
measurements for complex diseases in the present study could be lim-
ited because of the handling of the single cohort. Further application 
of Mendelian randomization17 in independent validation cohorts is 
warranted. Finally, our cell-type analysis was inevitably limited by the 
availability of the cell-type-specific annotations regarding the variety 
of cell types and epigenetic markers. More acquisition and integration 
of cell-type-specific resources would further facilitate the exploration 
of causal cell types in human diseases.

In conclusion, we conducted a large-scale GWAS of 58 quantita-
tive traits in Japanese individuals and demonstrated complex inter-
relations with human diseases via pleiotropy, genetic correlation, 
and cell-type-specificity analyses. We further visualized the results 
as networks, depicting the genetic links among clinical measure-
ments, human diseases, and relevant cell types. Our findings will 
contribute to future studies and serve as a fundamental resource for 
understanding the genetics and biology underlying clinical mea-
surements and human diseases.

URLs. BBJ, https://biobankjp.org/english/index.html; JENGER, 
http://jenger.riken.jp/en/; 1000 Genomes Project, http://
www.1000genomes.org/; GWAS catalog, https://www.ebi.ac.uk/
gwas/; PLINK 1.9, https://www.cog-genomics.org/plink2; ldsc, 
https://github.com/bulik/ldsc/; LD score, http://data.broadinsti-
tute.org/alkesgroup/LDSCORE/; MACH, http://csg.sph.umich.
edu//abecasis/MaCH/; Minimac, https://genome.sph.umich.edu/
wiki/Minimac; ANNOVAR, http://annovar.openbioinformatics.
org/en/latest/; R, https://www.r-project.org/; Locuszoom, http://
locuszoom.sph.umich.edu/locuszoom/; Circos, http://circos.ca/; 
NBDC Human Database, https://humandbs.biosciencedbc.jp/en/.
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Methods, including statements of data availability and any asso-
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Methods
Subjects. All the subjects enrolled in this study were collected under the BioBank 
Japan Project (BBJ). �e BBJ is a multi-institutional hospital-based registry 
that collected DNA, serum, and clinical information of approximately 200,000 
patients from 66 hospitals a�liated with 12 medical institutes between �scal years 
2003 and 2007. All study participants had been diagnosed with one or more of 
47 target diseases by physicians at the cooperating hospitals as described in the 
previous reports18,19. Written informed consent was obtained from all participants, 
as approved by the ethics committees of RIKEN Center for Integrative Medical 
Sciences and the Institute of Medical Sciences, the University of Tokyo. Detailed 
characteristics of the subjects for each trait are shown in Supplementary Table 1.

Phenotype. BBJ collected baseline clinical information through interviews and 
reviews of medical records using a standardized questionnaire. Among the 
quantitative traits included in this study, age, height, and weight were retrieved 
from the self-reported questionnaire for all participants. Laboratory measurements 
were retrieved from medical records of routine laboratory examination for all 
participants. Because dyslipidemia and diabetes were the most common diseases 
registered in the BBJ, around half of the study participants (41.8%) had these two 
diseases. Echocardiographic traits were retrieved from medical records only for the 
subjects with cardiovascular diseases, dyslipidemia, and diabetes. The measured 
values of each quantitative trait (or common log-transformed values if required, 
to achieve normality) were adjusted for age, sex, top ten principal components 
of genetic ancestry, disease status (affected versus non-affected) for the 47 target 
diseases in the BBJ, and any necessary trait-specific covariates in a linear regression 
model. We then normalized the resulting residuals by applying an appropriate trait-
specific transformation (Z-score or rank-based inverse normal transformation) as 
detailed in Supplementary Table 2.

Genotyping and imputation. We genotyped samples with the Illumina 
HumanOmniExpressExome BeadChip or a combination of the Illumina 
HumanOmniExpress and HumanExome BeadChips. We excluded samples with 
(i) sample call rate <  0.98, (ii) closely related individuals identified by identity-
by-descent analysis, and (iii) non–East Asian outliers identified by principal 
component analysis of the studied samples and the three major reference 
populations (Africans, Europeans, and East Asians) in the International HapMap 
Project49. We then applied standard quality-control criteria for variants, excluding 
those with (i) SNP call rate <  0.99, (ii) minor allele frequency <  1%, and (iii) 
Hardy–Weinberg equilibrium P value ≤  1.0 ×  10−6. We prephased the genotypes 
with MACH50 and imputed dosages with minimac and the 1000 Genomes Project 
Phase 1 (version 3) East Asian reference haplotypes20. For the X chromosome, we 
performed prephasing and imputation separately for females and males. Imputed 
SNPs with an imputation quality Rsq <  0.7 were excluded from the subsequent 
association analysis.

Genome-wide association analysis. For each quantitative trait, we conducted a 
GWAS using a linear regression model under the assumption of additive allelic 
effects of the SNP dosages via mach2qtl50. We set a genome-wide significance 
threshold at the level of P =  5.0 ×  10−8 (ref. 51) and a study-wide significance 
threshold at the level of P =  8.6 ×  10−10 (=  5.0 ×  10−8/58) by applying Bonferroni 
correction based on the number of studied traits. We defined independent 
associated loci on the basis of genomic positions at least 1 Mb apart from each 
other. We call such independent associated loci for each trait ‘trait-associated loci’, 
and these could overlap other trait-associated loci (i.e., multiple trait-associated 
loci could be mapped to one unique locus). We considered a trait-associated locus 
as novel when it was (i) located at a distance of > 500 kb from the nearest locus 
and (ii) not in LD (r2 <  0.1) in both East Asians and Europeans with the previously 
reported loci of the same quantitative trait. For the X chromosome, we conducted 
GWASs separately for females and males, and meta-analyzed association results. 
We performed stepwise conditional analysis to identify additional independent 
signals around associated loci (each region ±  500 kb) by adjusting the most 
significant variant of the region in each step until none met the genome-wide 
significance threshold. For extremely significant variants showing P <  1.0 ×  10−300, 
we calculated P values in R (ver. 3.3.1) with the Rmpfr package. We calculated 
the genomic inflation factor λGC in R. The variance explained by the significantly 
associated SNPs was estimated with the formula 2 f (1− f) β2, where f represents 
the allele frequency and β represents the additive effect. We then summed the 
resulting values to calculate the total variance explained by the significant SNPs for 
each of the 53 quantitative traits that showed at least one genome-wide significant 
locus. We carried out LD score regression21 with ldsc (v. 1.0.0; commit 23a94fc) to 
estimate confounding bias and heritability explained by the genome-wide high-
quality common SNPs present in the HapMap 3 reference panel. We generated 
regional plots with LocusZoom52 (v. 1.3) and R.

Pleiotropy analysis. We assessed pleiotropy at a unique locus using the following 
criteria: top-associated variants of different quantitative traits were (i) in LD (r2 ≥  
0.5) or (ii) closely located (physical distance within 25 kb). We calculated r2 of two 
variants using PLINK 1.9053 and the 1000 Genomes Project Phase 3 (version 5) 
East Asian dataset20. We used Circos54 to visualize the results.

Additional GWAS results for anthropometric traits and diseases in Japanese 
subjects. We additionally obtained two quantitative trait GWAS results for 
anthropometric traits (BMI3 and height), and 30 case–control GWAS results 
for complex diseases in the Japanese population from both published25–30 
and unpublished studies in the BioBank Japan Project (Table 2). For the two 
anthropometric traits, results for most of the subjects overlapped with those from 
the present study (n =  152,667 (94.1%) and 153,456 (94.6%) for BMI and height, 
respectively). For the 30 complex diseases, the 26 disease cases were recruited 
through BBJ, whereas subjects with rheumatoid arthritis, bipolar disorder, 
schizophrenia, and adolescent idiopathic scoliosis were recruited by collaborators 
as described elsewhere26,28,29. The controls were constructed from three population-
based cohorts (the Tohoku Medical Megabank organization, the Japan Public 
Health Center–based Prospective study, and the Japan Multi-Institutional 
Collaborative Cohort Study) or a mixture of the cases in BBJ as detailed in 
Supplementary Note 1. We incorporated these additional GWAS results into the 
original GWAS results for the 58 quantitative traits in the subsequent analyses.

Genetic correlation. We conducted bivariate LD score regression15 to quantify 
genetic correlations across the 59 traits and 30 complex diseases in the Japanese 
population. To maintain sufficient statistical power15, we excluded one GWAS 
result (E/A ratio of echocardiographic trait) for which the sample size was far less 
than 10,000. For the regression, we used the East Asian LD score and summary 
statistics of high-quality common SNPs present in the HapMap 3 reference 
panel for each available trait or disease. We excluded SNPs found in the major 
histocompatibility complex (MHC) region (chromosome 6: 25–34 Mb) from the 
analysis because of its complex LD structure27,39,55,56. We defined significant genetic 
correlations as those with FDR <  0.05, calculated via the Benjamini–Hochberg 
method to correct multiple testing of all 3,916 pairwise correlations among the  
59 quantitative traits and 30 diseases.

For network visualization, we constructed a network from the genetic 
correlation matrix of the 59 traits and 30 diseases. Specifically, each phenotype 
was represented as a node, and the nodes were connected by edges if they 
were genetically correlated. We assigned a weight to each edge based on the 
magnitude of the corresponding genetic correlation. To highlight biological 
patterns in the network and to prevent it from becoming too dense, we used only 
significant genetic correlations (FDR <  0.05). Node layout was determined by the 
Fruchterman–Reingold algorithm given edge weights, with strongly correlated 
phenotypes placed closer together. We used R (ver. 3.3.1) with the igraph package 
for this network analysis.

Mendelian randomization. Given the 68 significant genetic correlations between 
clinical measurements and complex diseases, we carried out a Mendelian 
randomization analysis for each pair of them to evaluate potential causal effects 
of clinical measurements on complex diseases. Because most of the samples 
overlapped in the present study and the disease GWAS, we excluded overlapping 
samples from disease cases with clinical measurements available for each pair, to 
avoid potential bias. We selected 53 pairs on the basis of the following criteria: (i) 
raw genotypes of disease cases were available (i.e., the cases were recruited through 
BBJ (Table 2 and Supplementary Note 1)), (ii) more than three loci were identified 
in clinical measurement GWASs, and (iii) unique samples remained after the 
removal of overlapping samples. We note that this sample exclusion might have led 
to decreased statistical power compared with that of the original disease GWAS. 
For each pair, we calculated a weighted genetic risk score by summing the product 
of risk allele dosage and the effect sizes of the identified alleles influencing each 
clinical measurement. Associations between the genetic risk score and disease were 
quantified via a logistic regression model. To further test pleiotropy, we applied 
MR-Egger regression38 as sensitivity analysis. We used R (ver. 3.3.1) with the 
MendelianRandomization package57.

Partitioning heritability. We carried out stratified LD score regression39 to 
partition heritability into multiple functional categories. We used the 220 cell- 
type-specific and the 10 cell-type-group-specific annotations constructed based on 
the Roadmap Epigenomics Project42 available at the authors’ website (see “URLs”). 
Because only European references are provided for partitioning heritability 
analysis, we generated the East Asian LD Score reference for each annotation  
using the 1000 Genomes Project Phase 3 (version 5) East Asian reference 
haplotypes20 according to standard procedures. For each annotation, we  
calculated the P value of the regression coefficient τc of the annotation. We defined 
significant heritability enrichments as those with FDR <  0.05, calculated via the 
Benjamini–Hochberg method.

We performed hierarchical clustering on the matrix of enrichment significance 
for the 59 quantitative traits and 30 diseases in the 220 cell-type-specific 
annotations, using Spearman’s correlation distance and the group average method. 
We also constructed a network from the matrix to represent the heritability 
enrichment of cell types to phenotypes. We assigned each phenotype and cell type 
to a node, and linked a pair of them with an arrow if a cell type was enriched for  
a phenotype. We assigned a weight to each arrow on the basis of the corresponding 
enrichment significance. For the sake of clarity, we used only highly significant 
enrichments (FDR <  0.01). Node layout was determined with the Fruchterman–
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Reingold algorithm given edge weights, with significantly enriched pairs of 
phenotypes and cell types placed closer together.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. GWAS summary statistics of the 58 quantitative traits are 
publically available at our website (JENGER; see “URLs”) and the National 
Bioscience Database Center (NBDC) Human Database (Research ID: hum0014)  
as open data without any access restrictions. GWAS genotype data from the 
subjects was deposited at the NBDC Human Database (Research ID: hum0014).
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Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to 

promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 

manuscript, all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, 

including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design

1.   Sample size

Describe how sample size was determined. The BioBank Japan Project was started in 2003 and has recruited 

approximately 200,000 participants. Clinical information were retrieved 

from medical records. DNA/serum samples were also collected. Most of 

them were genotyped by genome-wide SNP genotyping array. We 

selected as many subjects as possible if their genotype and phenotype (at 

least, one of the studied 58 quantitative traits) were both available.

2.   Data exclusions

Describe any data exclusions. We excluded samples and variants based on the standard quality 

control procedure in GWAS. Detailed information on quality controls were 

described in our manuscript.

3.   Replication

Describe whether the experimental findings were reliably reproduced. We searched for all of the identified loci in GWAS Catalog as well as 

previous literatures, and confirmed that around half of them robustly 

replicated the previous findings (51.7%). Because the BioBank Japan is the 

largest cohort in Japan and we simultaneously investigated more than 50 

traits to illustrate a comprehensive landscape, to the best of our 

knowledge, there are no Japanese or east Asian replication cohort which 

covers all of the studied traits with enough sample sizes.

4.   Randomization

Describe how samples/organisms/participants were allocated into 

experimental groups.

We applied quantitative genetics approach and treated the whole sample 

set as a single population, not allocated into groups.

5.   Blinding

Describe whether the investigators were blinded to group allocation 

during data collection and/or analysis.

Not applicable.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 

section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 

was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 

complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software

Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. We used publicly available softwares for the analyses. The used softwares 

were listed and described in the Method section in our manuscript.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 

request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents

Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 

materials or if these materials are only available for distribution by a 

for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 

the system under study (i.e. assay and species).

Not applicable.

10. Eukaryotic cell lines

a.  State the source of each eukaryotic cell line used. Not applicable.

b.  Describe the method of cell line authentication used. Not applicable.

c.  Report whether the cell lines were tested for mycoplasma 

contamination.
Not applicable.

d.  If any of the cell lines used in the paper are listed in the database 

of commonly misidentified cell lines maintained by ICLAC, 

provide a scientific rationale for their use.

Not applicable.

    Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in 

the study.

Not applicable.
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Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the 

human research participants.

We used 162,255 Japanese individuals from the BioBank Japan Project. For 

each of the studied 58 quantitative traits, GWAS was separately conducted 

using the subjects whose phenotype of the trait was available.  We 

summarized detailed characteristics of the subjects for each trait in 

Supplementary Table 1.
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