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The heart evolved hundreds of millions of years ago as a tubular 
organ1. Septation of the main pumping chamber of the heart into 
distinct left and right ventricles evolved later in birds, mammals 

and some reptiles, and is under the control of conserved transcription 
factors such as TBX5 (ref. 2). Enhanced delivery of oxygen to the sys-
temic circulation—and to the heart itself—is the putative advantage of 
this separation of the circulatory system into a left-heart-driven sys-
temic circuit and a right-heart-driven pulmonary circuit3.

Left and right heart structures are derived from different progen-
itor cell populations and operate under different pressure regimes: 
the left heart faces high afterload, while the right heart generally 
faces relatively low afterload. During embryogenesis, the left ven-
tricle (LV) forms from the first heart field, while the right ventricle 
(RV), the outflow tract and portions of the atria form from the sec-
ond heart field4–7. Septation of the bilateral ventricular outflow tracts 

and the truncus arteriosus into the aorta and pulmonary artery (PA) 
also requires neuroectodermal neural crest cells8–10.

The distinct embryological origins of the right and left ventricles 
probably contribute to the occurrence of right heart-predominant 
pathologies. These include various types of arrhythmogenic right 
ventricular cardiomyopathy (ARVC)11–16, Brugada syndrome17 and 
pulmonary hypertension. In addition, right ventricular dysfunction 
can be an important determinant of outcomes for individuals with 
heart failure syndromes18–20.

A large-scale epidemiological analysis of right ventricular struc-
ture and function has been conducted using deep learning-derived 
cardiac measurements21,22. The distinct pathologies, embryology 
and physiology of the right heart motivated our efforts to quan-
tify right heart structure and function, and to probe the common 
genetic basis for their variation.
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Congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. To gain insight into 
right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, right ventricle and pul-
monary artery, measuring right heart structures in 40,000 individuals from the UK Biobank with magnetic resonance imaging. 
Genome-wide association studies identified 130 distinct loci associated with at least one right heart measurement, of which 
72 were not associated with left heart structures. Loci were found near genes previously linked with congenital heart disease, 
including NKX2-5, TBX5/TBX3, WNT9B and GATA4. A genome-wide polygenic predictor of right ventricular ejection fraction 
was associated with incident dilated cardiomyopathy (hazard ratio, 1.33 per standard deviation; P = 7.1 × 10−13) and remained 
significant after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phe-
notyping, our results yield insights into the genetic determinants of right heart structure and function.
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In this work, we developed deep learning models to determine 
the dimensions and function of the right atrium (RA), the RV and 
the PA in up to 45,000 UK Biobank participants. We then evaluated 
the epidemiologic associations, pathologic outcomes and common 
genetic basis for variation in these right heart structures.

Results
Deep learning with cardiovascular magnetic resonance images. 
We derived right heart measurements in the UK Biobank imaging 
substudy of over 45,000 people23–25 using deep learning models26,27 
trained on magnetic resonance images that were annotated manu-
ally by cardiologists (Fig. 1)24. We randomly selected 714 short axis 
images (out of over 24 million) and 445 four-chamber long axis 
images (out of over 2.2 million) for annotation. U-Net-derived 
deep learning models were then trained from these data26,28–30. The 
deep learning models were then used to produce pixel labels for the 
remaining images. Model construction, training and quality assess-
ment are detailed in Methods and the Supplementary Note31,32.

Reconstruction of right heart structures from deep learning. 
The deep learning model output was then postprocessed to extract 
measurements of the RA, the ventricles and the PA (Supplementary 
Note). In total, we were able to measure at least one cardiac struc-
ture in 45,504 individuals, of whom 41,135 contributed to at least 
one genome-wide association study after genotyping quality con-
trol and exclusion for prevalent disease (Table 1 and Supplementary 
Fig. 1). The mean and s.d. of the right atrial area measurements, 
right ventricular volumes and PA diameters are visualized in 
Supplementary Fig. 2. Standard values aggregated by sex for each of 
the phenotypes are reported in Supplementary Table 1, and by age 
bands and sex in Supplementary Table 2. Cross-correlation between 
left- and right-heart structures is represented in Supplementary Fig. 
3 and described in the Supplementary Note.

To provide a direct comparison with left heart structures within 
the same sample, we also measured the left ventricle from short 
axis images. Left ventricular measurements included end diastolic 
volume (LVEDV), end systolic volume (LVESV), stroke volume 
(LVSV) and ejection fraction (LVEF). We compared PA measure-
ments with previously reported aortic diameter measurements 
(Supplementary Note)33.

Prevalent cardiovascular diseases linked to the right heart. We 
tested for correlations between right heart phenotypes and dis-
ease. These included analyses of hundreds of PheCode-based dis-
eases prevalent at the time of imaging (Fig. 2 and Supplementary 
Table 3) and an analysis of three curated diseases with established 
chamber-specific links to the right heart diagnosed after imaging 
(atrial fibrillation, congestive heart failure and pulmonary hyper-
tension; Supplementary Table 4)20,34,35. We also probed the proper-
ties of right ventricular volume throughout the cardiac cycle in the 
presence of congestive heart failure, pulmonary hypertension or 
noncardiac disease (Fig. 3 and Supplementary Fig. 4). Pre-existing 
pulmonary hypertension was associated with elevated right ven-
tricular volumes even after accounting for the corresponding left 
ventricular volume, yielding a reduced right ventricular ejec-
tion fraction (RVEF; two-tailed P = 3.9 × 10−4 against the null 
hypothesis of no effect). Each of these findings is detailed in the 
Supplementary Note.

Heritability and genetic correlation of the right heart. The 
size-related phenotypes showed substantial heritability using 
BOLT-REML (as high as 0.36 for the maximum right atrial area, 
0.41 for RV end diastolic volume (RVEDV), and 0.44 for the pulmo-
nary root diameter)36,37. Heritabilities were lower for measurements 
of right heart function, such as RVEF, which had a heritability of 
0.24 (Supplementary Table 5).

We found strong genetic correlation between the right- and 
left-ventricular measurements (rg = 0.90 between RVEDV and 
LVEDV; rg = 0.76 between right ventricular end systolic volume 
(RVESV) and LVESV; and rg = 0.55 between RVEF and LVEF)37. 
The proximal PA diameter had a genetic correlation of 0.63 
with the ascending aortic diameter (Supplementary Table 6 and 
Supplementary Fig. 5).

Common variant genetic analysis of the right heart. To conduct 
genome-wide association studies (GWAS) of each trait, we excluded 
participants with diagnoses of heart failure, atrial fibrillation or 
myocardial infarction before their magnetic resonance imaging 
(MRI) study (participant characteristics in Table 1; sample exclu-
sion flowchart in Supplementary Fig. 1). We conducted ten primary 
right heart GWAS: maximum and minimum right atrial area; RA 
fractional area change (FAC); RVESV, RVEDV, RVSV and RVEF; 
pulmonary root diameter and proximal PA diameter in systole 
and diastole (Manhattan plots in Fig. 4; quantile-quantile plots in 
Supplementary Fig. 6). We also evaluated PA strain and the body 
surface area (BSA)-indexed versions of all traits except for those 
that are dimensionless. Where paired left heart traits were avail-
able (such as LVEDV and RVEDV), we conducted within-sample 
GWAS of the left heart traits, and GWAS of right heart traits divided 
by their left heart counterparts. In total, we conducted 5 GWAS of 
right atrial phenotypes (Supplementary Fig. 7), 11 GWAS of right 
ventricular phenotypes (Supplementary Fig. 8) and 9 GWAS of pul-
monary trunk phenotypes (Supplementary Fig. 9).

Up to 39,766 participants were included in the right heart GWAS 
(Supplementary Fig. 1), and we tested 11.6 million imputed SNPs 
with minor allele frequency (MAF) > 0.005. Additional GWAS 

Table 1 | Participant characteristics

Women Men All

n 21,946 19,189 41,135

Age at time of MRI 63.9 (7.6) 65.0 (7.8) 64.4 (7.7)

BMI (kg m–2) 26.0 (4.7) 26.9 (3.9) 26.4 (4.4)

Height (cm) 163 (6) 176 (7) 169 (9)

Weight (kg) 68.9 (13.1) 83.5 (13.3) 75.7 (15.0)

Systolic blood 
pressure (mmHg)

136 (19) 142 (17) 139 (19)

Diastolic blood 
pressure (mmHg)

77.1 (10.0) 80.9 (9.8) 78.9 (10.1)

Drinking status

Current 20,134 (92 %) 18,020 (94 %) 38,154 (93 %)

Never 901 (4 %) 439 (2 %) 1,340 (3 %)

Prefer not to answer 7 (0 %) 12 (0 %) 19 (0 %)

Previous 747 (3 %) 604 (3 %) 1,351 (3 %)

Standard drinks/week 4.72 (5.32) 5.63 (6.80) 5.15 (6.08)

Smoking status

Current 606 (3 %) 797 (4 %) 1,403 (3 %)

Never 14,343 (65 %) 11,296 (59 %) 25,639 (62 %)

Prefer not to answer 85 (0 %) 49 (0 %) 134 (0 %)

Previous 6,755 (31 %) 6,933 (36 %) 13,688 (33 %)

Smoking quantity 
(pack years)

3.40 (9.11) 5.43 (12.59) 4.35 (10.92)

Clinical characteristics of the 41,135 participants whose data contributed to at least one  
GWAS. For quantitative phenotypes, values shown represent mean (s.d.). For count data, 
values shown represent count (%). Cardiovascular phenotypes are detailed by age and sex in 
Supplementary Table 1.
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quality control results are detailed in the Supplementary Note. 
Several loci were shared by multiple traits; counting each locus 
only once, we identified 130 independent loci associated with one 
or more right heart traits at a commonly used significance thresh-
old of P < 5 × 10−8 (Supplementary Table 7). Of these 130 loci, 71 
were associated with at least two right heart traits, and one locus 
(near WNT9B/GOSR2/MYL4) was associated with 14 right heart 
phenotypes.

We conducted within-sample GWAS analyses of left ventricu-
lar and aortic traits, allowing us to identify that 58 of the 130 right 
heart loci were also associated at P < 5 × 10−8 with left heart pheno-
types, while 72 were right heart-specific (Table 2). Of the 72 right 
heart-specific loci, 12 came to significance only after adjusting the 
right heart traits for their left heart counterparts (Supplementary Fig. 
10). Of the 72 loci, 48 were associated with dimensionless right heart 
phenotypes (for example, RVEF and the RVEDV/LVEDV ratio) or 
right heart phenotypes that accounted for BSA (Supplementary 
Table 8), while 24 loci were significant only before accounting 
for body size, no longer remaining significant after BSA-indexing 
(Supplementary Table 9). In gene set enrichment analyses38,39, the 
48 loci that remained significant after accounting for body size were 
enriched for genes involved in cardiac proliferation, chamber devel-
opment and septum morphogenesis (Supplementary Table 10).

All lead SNPs associated at P < 5 × 10−8 with any left or right 
heart phenotype in this analysis, after clumping within each GWAS 
to remove SNPs in linkage disequilibrium (LD) (r2 > 0.001), are 
reported in Supplementary Table 7, where they are assigned a 
study-wide locus identifier to facilitate comparison between phe-
notypes. Those SNPs that are within 500 kb of one another are con-
sidered to be at the same locus and assigned the same study-wide 
identifier, and the strongest associated SNP at that locus is termed 
the lead SNP.

Gene-based analyses, including a transcriptome-wide associa-
tion study (TWAS), exome sequencing-based rare variant analysis, 
and OpenTargets gene set enrichment analyses, are detailed in the 
Supplementary Note.

Right ventricular loci. Among the right ventricular phenotypes, 
RVESV was linked with the greatest number of loci (20). Of these 20 
loci, 7 were also associated with the left heart counterpart (LVESV) 

of the RVESV at genome-wide significance. The effects of each SNP 
on right and left ventricular phenotypes are depicted in Fig. 5.

The strongest common variant association with RVESV was 
from a variant near BAG3; this same variant (rs72840788) was also 
the SNP with the strongest association with LVESV, with concor-
dant effects. The rs72840788 variant is in near perfect LD with 
rs2234962, which leads to the missense change p.Cys151Arg in the 
BAG3 protein (Supplementary Fig. 11).

Two SNPs at the TTN locus had association P < 5 × 10−8 with 
RVESV and were in linkage equilibrium (r2 = 0.001) with one 
another: rs955738 (P = 4.4 × 10−11) and rs2562845 (P = 4.2 × 10−8). 
Whereas both SNPs were also associated with LVESV, the pat-
tern of association strength was reversed when compared with the 
RVESV (rs2562845 was more strongly associated with LVESV than 
rs955738; Supplementary Fig. 12). It is possible that this distinction 
between primary association signals in the two ventricles is asso-
ciated with differences in the regulation of TTN between the first 
(LV) and second (RV) heart fields, but establishing this will require 
additional investigation.

Among loci that were significantly associated with RVESV but 
not LVESV, some, like the GATA4/CTSB/FDFT1 locus on chromo-
some 8, had a cluster of subthreshold SNPs for LVESV. At this locus, 
the RVESV lead SNP (rs34015932, P = 3.4 × 10−8) was correlated 
only weakly (r2 = 0.16) with the strongest LVESV-associated SNP 
near the locus (rs750190198, P = 1.1 × 10−6), also suggesting allelic 
heterogeneity (Supplementary Fig. 13). Other loci, such as that 
of OBSCN—encoding obscurin, a giant sarcomeric protein in the 
same family as titin—seemed to be right-ventricle specific, showing 
very little evidence of association with left ventricular phenotypes 
(Supplementary Fig. 14).

Finally, some loci achieved P < 5 × 10−8 only after adjustment 
of the right ventricular phenotype for its left ventricular counter-
part (Supplementary Fig. 15). These include variants near ADCY5, 
which encodes the main isoform of adenylyl cyclase in the heart; 
pathogenic variation in this gene has previously been associated 
with heart failure40.

Pulmonary artery and pulmonary root loci. Counting SNPs once 
for each associated trait, there were 172 trait-locus pairs associated 
with proximal PA diameter or pulmonary root diameter. A total of 
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Fig. 1 | Right heart measurement with deep learning. Measurement of right heart structures from cardiovascular MRI using deep learning. In all panels, the 
PA is colored turquoise, the RV is colored red and the RA is colored yellow. The magnetic resonance images in this figure are reproduced by kind permission 
of UK Biobank. a, Graphical depictions of the right heart structures in a cutaway view of the heart. The art in this panel is derived from Servier Medical 
Art (licensed under creative commons by attribution, CC-BY-3.0). b, Cardiovascular MRI. SAX, short axis view; 4ch, four-chamber long axis view. The 
RV is visible in the SAX and 4ch views, the RA in the 4ch view and the PA in the basal SAX view. c, The raw images are fed into the trained deep learning 
model, producing pixel-by-pixel output (here, colorized and laid on top of the raw images). d, The deep learning models are applied to all images, allowing 
measurement of the right heart structures. e, The right ventricular surface is reconstructed by combining data from SAX and 4ch images (Methods), 
allowing a volumetric measurement.
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82 distinct genomic loci were associated with at least one PA or pul-
monary root phenotype. Of these, 40 were exclusive to these tissues 
and were not associated with phenotypes from the other right or 
left heart compartments. Whereas 7 loci were shared by both the 
PA and pulmonary root, 16 were exclusive to PA diameter measure-
ments, and 17 were exclusive to pulmonary root measurements. No 
loci were significantly associated with PA strain. Of 28 lead SNPs for 
PA diameter that were identified in the Framingham Heart Study 
(FHS), 25 had concordant effect direction (binomial test two-tailed 
P = 2.7 × 10−5; Supplementary Table 11 and Supplementary Fig. 16). 
This external replication is detailed in the Supplementary Note.

Several loci had putative connections to vascular tone. A 
locus associated with both pulmonary root and PA diameter, but 
via distinct SNPs (r2 between artery-associated rs79013608 and 
root-associated rs10770612 = 0.006) was found in an intergenic 
region whose nearest protein-coding gene is PDE3A. The protein 
product of this gene is inhibited by milrinone and cilostazol, which 
are in clinical use and have been shown in humans to reduce PA 
pressure41,42. A locus associated exclusively with PA diameter was 
tagged by a lead SNP intronic to KCNMA1, which encodes the 
channel-forming alpha subunit of the BKCa or the large conductance 
calcium- and voltage-activated potassium channels43. In a rat model, 
activation of endothelial BKCa channels in pulmonary endothelial 
cells was previously reported to cause pulmonary vasodilation44.

Some of the loci that were associated predominantly with the 
pulmonary root rather than the PA had previously been associated 
with aortic root or aortic valve phenotypes. For example, a pulmo-
nary root-specific locus near CFDP1 from our study has previously 
been linked to aortic valve stenosis45. Another locus near GOSR2 
has an association with the pulmonary root that is 35 orders of mag-
nitude stronger than its association with the PA; it has been linked 
previously to aortic valve area46. The PALMD locus has been associ-
ated previously with the diameter of the aortic root and with aortic 
valve stenosis in humans47,48. The SNPs at the PALMD locus identi-
fied in our analysis were in tight LD with those from Wild et al. 
(r2 = 0.96-1.0)49. In fact, of the 12 aortic root-associated loci in Wild 
et al. achieving P < 5 × 10−8 in their discovery analysis, 7 were asso-
ciated significantly with the pulmonary root in our present analy-
sis, including loci near CDFP1, CEP120 (previously CCDC100), 
GOSR2, PALMD, HMGA2, PDE3A and the KCNRG/DLEU1 locus.

Right atrial loci. There were 42 trait-locus pairs associated with 
right atrial size and function. Accounting for multiple phenotypes 
having an association at the same locus, 20 genomic loci were asso-
ciated with at least one right atrial phenotype. Of these, five were 
identified only in association with right atrial phenotypes and not 
other compartments: the lead SNPs at these loci were nearest to 
HDGLF1, CCNL1, NRG1, FOXP1 and ZFPM2. The latter three are 
notable for their established roles in cardiovascular development 
and disease.

The protein product of ZFPM2 interacts with GATA tran-
scription factors, particularly GATA4, and plays a role in cardiac 
development50,51. Variants in ZFPM2 have previously been linked 
to congenital heart defects52–54. In mice, Foxp1 has been shown to 
play a role in cardiac morphogenesis and, in humans, FOXP1 vari-
ants have been linked to congenital heart defects55–57. Finally, NRG1 
encodes neuregulin-1, which participates in signaling through 
receptor tyrosine kinases and ErbB signaling in particular58–60. 
Clinical trials are ongoing to assess the effects of recombinant neu-
regulin on heart failure61. The rs112852637-T allele is associated 
with reduced right atrial area during atrial systole; reduced atrial 
area is associated inversely with arrhythmias and heart failure (Fig. 
2 and Supplementary Table 3). This same allele is directionally asso-
ciated with increased NRG1 expression in the right atrial append-
age, although this expression signal is not statistically significant in 
GTEx v.8 (ref. 62).
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Fig. 2 | Right heart structures are associated with PheCode-based disease 
definitions. PheCode-based disease labels (x axis) are plotted against a 
transformation of their association P value (y axis) with three right heart 
phenotypes: minimum right atrial area, RVESV and proximal PA diameter. 
The values are derived from a linear model that associates the presence or 
absence of a PheCode-based disease with the right heart measurement, 
after adjustment for anthropometric covariates and genetic principal 
components. The direction of the arrow indicates whether the presence of 
the disease is associated with an increase (upward arrow) or a decrease 
(downward arrow) in the right heart measurement. The color indicates 
the disease grouping (as labeled on the x axis). All values are available in 
Supplementary Table 3. AV, atrioventricular.
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As a sensitivity analysis, we also assessed right atrial vol-
umes. The GWAS results from those analyses are reported in  
Supplementary Table 12.

Right heart polygenic score analyses and external validation. We 
used PRScs-auto to compute around 1.1 million-SNP polygenic 
scores for RVEDV, RVESV and RVEF63, finding the RVEF score to 
be correlated most strongly with dilated cardiomyopathy (DCM; 
Supplementary Table 13). There were 603 DCM events and 359,296 
nonevents among UK Biobank participants unrelated to the MRI 
cohort; hazard ratio (HR) 1.33 per s.d. decrease; P = 7.1 × 10−13. Even 
after adjustment for a 1.1 million SNP polygenic score derived from 
the previously reported BSA-indexed left ventricular end systolic 
volume (LVESVi) GWAS, the RVEF score remained significantly 
associated with DCM (HR 1.21 per s.d. decrease; P = 1.2 × 10−5; 
Fig. 6). These findings were replicated, with attenuation, in the 
Mass General Brigham (MGB) Biobank and BioBank Japan (BBJ; 
Supplementary Note)64–66.

We performed the same PRScs-auto procedure to generate 
1.1 million SNP scores for the PA phenotypes. Of these, only the 
score for the proximal PA diameter in systole was associated with pul-
monary hypertension in the UK Biobank (1,405 cases and 371,985 
controls; HR 1.09 per s.d.; P = 2.2 × 10−3; Supplementary Table 13).  
This association remained significant in MGB, but not in BBJ 
(Supplementary Note). This polygenic score explained approximately  

6.5% of the heritability of PA diameter based on an external analysis 
in FHS (Supplementary Note).

A PRScs-auto polygenic score for RA FAC was weakly inversely 
associated with the risk of atrial fibrillation or flutter (for 13,928 
events and 353,311 nonevents; HR 0.98 per s.d.; P = 1.9 × 10−2). The 
evidence was slightly stronger when considering only atrial flutter 
as the outcome of interest (841 atrial flutter events and 372,565 non-
events; HR 0.91 per s.d.; P = 4.9 × 10−3).

Limitations. This study is subject to limitations. The study popu-
lation is largely of European ancestries, similar to the remainder 
of UK Biobank, limiting generalizability of the findings to other 
populations. In future work, genetic analyses of these phenotypes 
in people of globally diverse ancestries will be important. Future 
work will be required to understand whether polygenic scores are 
associated with disease progression. The transcriptional data used 
in the TWAS came from left-sided structures (aortic gene expres-
sion for the PA and left ventricular gene expression for the RV), 
which may not capture right-sided expression patterns. The disease 
gene enrichment analyses account for local genomic context and 
gene density, but not for other features such as chromatin interac-
tions. We focused on the genes nearest to the strongest association 
signals; future work will be required to determine the causal fac-
tors driving each association. OpenTargets scores are determined 
algorithmically and can change between versions. Because we used 
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Fig. 3 | Alterations in right ventricular volume with prevalent disease. Disease diagnoses that occur before the date of MRI are linked with distinct changes 
in the volume of the RV throughout the cardiac cycle. For all panels, the x axis represents fractions of a cardiac cycle (divided evenly into 50 components, 
starting at end-diastole). a–c, The y axis represents volume. Values are generated with a linear model for each time point accounting for the left ventricular 
volume at that time point, as well as clinical covariates; gray line, population without disease; orange line, population with disease. In the UK Biobank, 
participants with pulmonary hypertension (a) have elevated right ventricular volume throughout the cardiac cycle, even after accounting for left ventricular 
volume. Those with heart failure (b) predominantly have elevated left ventricular volume, with relative sparing of their right ventricular volume (see 
Supplementary Fig. 4 for right ventricular volume without adjustment for left ventricular volume). Cataract (c) is used as a control to demonstrate little 
association between a noncardiovascular disease and RV volume. d–f, For pulmonary hypertension (d), heart failure (e) and cataract (f), at each time point 
the right ventricular volume of individuals with disease is subtracted from the volume without disease and divided by the volume without disease. This 
represents the percentage above or below the disease-free right ventricular volume for those with disease.
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Table 2 | Loci specific to the right atrium and right ventricle

Trait CHR BP SNP Effect allele Other allele EAF BETA s.e. P value Nearest gene

RVEDV 3 99779984 rs57848867 A T 0.526 –0.034 0.0053 9.90 × 10–11 FILIP1L

RVEDV 6 34205465 rs202228093 G GGAGCCC 0.106 0.05 0.0087 1.30 × 10–8 HMGA1

RVEDV 6 130349119 rs6569648 C T 0.238 0.034 0.0062 3.80 × 10–8 L3MBTL3

RVEDV 17 45128762 rs1056064 T C 0.833 –0.047 0.0071 2.60 × 10–11 GOSR2

RVEDV 20 32987687 rs62212171 T C 0.859 0.05 0.0076 1.30 × 10–10 ITCH

RVESV 1 228556788 rs3738685 C T 0.626 –0.031 0.0056 1.80 × 10–8 OBSCN

RVESV 2 26922062 rs1314982 G A 0.261 0.039 0.0062 2.80 × 10–10 KCNK3

RVESV 3 99779984 rs57848867 A T 0.526 –0.031 0.0055 7.70 × 10–9 FILIP1L

RVESV 5 35191701 rs67209755 T C 0.813 0.038 0.007 3.80 × 10–8 PRLR

RVESV 8 145018354 rs11786896 C T 0.951 0.071 0.0126 1.10 × 10–8 PLEC

RVESV 17 40023617 rs781797066 T TA 0.826 –0.041 0.0073 3.10 × 10–8 ACLY

RVESV 17 45013271 rs17608766 T C 0.858 –0.046 0.0077 2.20 × 10–9 GOSR2

RVEF 8 145018354 rs11786896 C T 0.951 –0.095 0.0159 3.60 × 10–9 PLEC

RVEF 13 114075109 rs76382172 G C 0.964 –0.101 0.0185 3.10 × 10–8 ADPRHL1

RVEF 14 81171138 rs34540535 T C 0.958 0.098 0.0175 2.60 × 10–8 CEP128

RA Max 5 172664163 rs6882776 G A 0.712 –0.041 0.0071 4.20 × 10–9 NKX2-5

RA Max 6 22613847 rs7757005 G A 0.642 –0.046 0.0067 1.70 × 10–11 HDGFL1

RA Max 12 115162091 GTGTGCCCC G 0.623 0.04 0.0067 6.10 × 10–9 TBX3

RA Max 17 45280802 rs117154502 T G 0.94 –0.089 0.0134 3.10 × 10–11 MYL4

RA Max 17 61772449 GA G 0.636 –0.041 0.007 2.80 × 10–9 MAP3K3

RA Min 3 156827227 rs11928162 C T 0.53 –0.037 0.0065 1.40 × 10–8 CCNL1

RA Min 5 172662024 rs2277923 T C 0.703 –0.053 0.0071 1.10 × 10–13 NKX2-5

RA Min 6 22613847 rs7757005 G A 0.642 –0.045 0.0068 7.00 × 10–11 HDGFL1

RA Min 8 32413240 rs112852637 T C 0.529 –0.038 0.0065 7.60 × 10–9 NRG1

RA Min 12 114835428 rs1895602 G T 0.545 –0.037 0.0067 4.90 × 10–8 TBX5

RA Min 12 115162091 GTGTGCCCC G 0.623 0.043 0.0068 4.30 × 10–10 TBX3

RA Min 17 45280802 rs117154502 T G 0.94 –0.091 0.0136 2.30 × 10–11 MYL4

RA FAC 5 172644017 rs12652726 C T 0.856 0.066 0.0105 2.10 × 10–10 NKX2-5

RVEDV Indexed 3 99779984 rs57848867 A T 0.525 –0.046 0.0063 3.20 × 10–13 FILIP1L

RVEDV Indexed 10 30332445 rs4749523 A G 0.634 0.037 0.0066 3.60 × 10–8 KIAA1462

RVEDV Indexed 11 57771538 rs10526240 T A 0.704 0.044 0.007 2.50 × 10–10 OR9Q1

RVEDV Indexed 17 45013271 rs17608766 T C 0.858 –0.064 0.0089 6.30 × 10–13 GOSR2

RVESV Indexed 1 228556788 rs3738685 C T 0.626 –0.038 0.0064 7.50 × 10–10 OBSCN

RVESV Indexed 2 26922062 rs1314982 G A 0.26 0.046 0.0071 2.60 × 10–11 KCNK3

RVESV Indexed 3 99779984 rs57848867 A T 0.525 –0.038 0.0062 1.50 × 10–9 FILIP1L

RVESV Indexed 4 169847115 TA T 0.2 0.044 0.0079 1.70 × 10–8 PALLD

RVESV Indexed 8 9287587 rs28549922 G A 0.861 –0.05 0.0089 4.20 × 10–9 TNKS

RVESV Indexed 8 145018354 rs11786896 C T 0.951 0.083 0.0144 7.00 × 10–9 PLEC

RVESV Indexed 14 81171138 rs34540535 T C 0.958 –0.095 0.0158 8.40 × 10–10 CEP128

RVESV Indexed 17 45013271 rs17608766 T C 0.858 –0.056 0.0088 7.40 × 10–11 GOSR2

RVSV Indexed 3 99779984 rs57848867 A T 0.525 –0.039 0.007 2.40 × 10–8 FILIP1L

RVSV Indexed 11 57771538 rs10526240 T A 0.704 0.045 0.0077 8.10 × 10–9 OR9Q1

RA Max Indexed 3 71599571 rs7640614 C G 0.606 –0.044 0.0075 7.40 × 10–9 FOXP1

RA Max Indexed 8 32413240 rs112852637 T C 0.529 –0.042 0.0074 1.10 × 10–8 NRG1

RA Max Indexed 8 106379363 rs201748964 T G 0.691 –0.043 0.0079 4.20 × 10–8 ZFPM2

RA Max Indexed 12 115162091 GTGTGCCCC G 0.623 0.045 0.0077 5.20 × 10–9 TBX3

RA Max Indexed 17 45280802 rs117154502 T G 0.94 –0.092 0.0154 3.10 × 10–9 MYL4

RA Min Indexed 5 172664163 rs6882776 G A 0.712 –0.052 0.0081 1.50 × 10–10 NKX2-5
Continued
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the hospital-based International Classification of Diseases, tenth 
revision (ICD-10) and procedural codes to identify individuals with 
disease, our study lacks an ARVC-specific analysis (which does not 
have a unique ICD-10 code), and our disease definitions are suscep-
tible to misclassification. We describe technical limitations related 
to MRI acquisition and deep learning in the Supplementary Note.

Discussion
We produced measurements of the right heart, including the 
RA, RV and PA, analyzed their relationships with their left heart 
counterparts and with cardiovascular diseases, and identified 130 
distinct genetic loci that were associated with these right heart mea-
surements. We drew several conclusions from these findings.

First, right heart phenotypes, including structural and functional 
measurements of the RA, RV and PA, are heritable. While they 
share strong epidemiological and genetic correlation with the corre-
sponding left heart structures, our findings of partial genetic corre-
lation and distinct genome-wide significant loci also imply distinct 
drivers of variation between right and left heart structures. Of the 

72 right heart-specific loci, 48 remained significant after accounting 
for the corresponding left heart structure or overall body size via 
BSA-indexing (Supplementary Table 8) and were associated with 
dozens of gene sets involved in cardiac morphogenesis and car-
diomyocyte proliferation (Supplementary Table 10). A total of 12 
loci achieved significance in neither left nor right heart GWAS in 
isolation, but instead only after indexing the right heart phenotype 
for its left heart counterpart (Supplementary Fig. 10). Developing 
a better understanding of these distinct drivers of right and left 
heart structure may ultimately permit more targeted therapies for 
RV-predominant heart failure syndromes and primary cardiomy-
opathies such as ARVC.

Second, we found that the GWAS loci were enriched for genes 
associated with developmental diseases. In addition to the GATA4, 
ZFPM2, FOXP1 and NRG1 loci addressed above, several others 
were notable for connections to cardiovascular development. Right 
heart structures were associated with SNPs near NKX2-5, which 
plays a key role in maintaining the progenitor pool of cells of the 
secondary heart field, resulting in outflow tract defects in people 

Fig. 5 | Right heart loci. Right heart loci are shown grouped by trait. Where a paired left-heart phenotype is available, the effect size and P value for the 
same SNP are shown next to its corresponding right heart trait. Each grid region represents the lead SNP (sorted in chromosomal order and tagged by its 
nearest gene, labeled on the y axis) for each trait (x axis). The effect magnitude (Beta) is represented with shades of orange (increase) and blue (decrease), 
and the effect direction is oriented with respect to the minor allele within the study population. Black boxes within a grid region indicate that the association 
between the SNP and the trait has BOLT-LMM P < 5 × 10−8; those with a smaller gray box indicate BOLT-LMM P < 5 × 10−6. Exact effect sizes and P values are 
provided in Supplementary Table 7 for traits with BOLT-LMM P < 5 × 10−8, and in the publicly available summary statistics where BOLT-LMM P ≥ 5 × 10−8. 
‘PA/Ao’ is the ratio of the PA diameter to the ascending aortic diameter. ‘Indexed’ traits have been divided by body surface area. Genes may be represented 
multiple times for the same trait when multiple variants at the same locus are in linkage equilibrium with one another (r2 < 0.001).

Trait CHR BP SNP Effect allele Other allele EAF BETA s.e. P value Nearest gene

RA Min Indexed 8 32413240 rs112852637 T C 0.529 –0.045 0.0074 6.80 × 10–10 NRG1

RA Min Indexed 12 115164024 rs11067264 G A 0.623 0.05 0.0076 6.60 × 10–11 TBX3

RA Min Indexed 17 45280802 rs117154502 T G 0.94 –0.094 0.0153 8.60 × 10–10 MYL4

RVEDV/LVEDV 
Ratio

2 42145432 rs2374381 T C 0.7 0.044 0.0077 6.20 × 10–9 C2orf91

RVEDV/LVEDV 
Ratio

6 126068914 rs1935983 C T 0.391 –0.048 0.0072 3.80 × 10–11 HEY2

RVEDV/LVEDV 
Ratio

7 136636260 rs112206296 A C 0.985 0.178 0.0299 4.30 × 10–9 CHRM2

RVEDV/LVEDV 
Ratio

9 73049120 rs61634638 G GT 0.41 –0.041 0.0072 1.30 × 10–8 KLF9

RVEDV/LVEDV 
Ratio

12 123639539 rs67657805 T TA 0.238 –0.049 0.0087 1.50 × 10–8 MPHOSPH9

RVESV/LVESV 
Ratio

3 123105119 rs62262391 C T 0.777 –0.053 0.0086 7.60 × 10–10 ADCY5

RVESV/LVESV 
Ratio

6 73906746 rs10943078 A T 0.757 –0.047 0.0083 1.50 × 10–8 KCNQ5

RVESV/LVESV 
Ratio

6 126090377 rs9388451 T C 0.486 –0.04 0.0072 4.10 × 10–8 HEY2

RVESV/LVESV 
Ratio

10 76089763 TA T 0.263 –0.046 0.0083 2.60 × 10–8 ADK

RVESV/LVESV 
Ratio

12 123493123 rs12820906 A G 0.755 0.05 0.0083 1.80 × 10–9 PITPNM2

RVEF/LVEF Ratio 3 123110581 rs55968914 C G 0.777 0.057 0.0088 1.40 × 10–10 ADCY5

Shown are clumped SNPs with BOLT-LMM P < 5 × 10−8 from the right atrial and right ventricular GWAS, excluding those that were also found in left ventricular or aortic GWAS within the same participants. 
PA and pulmonary root loci are too numerous to represent here; all right and left-heart loci with P < 5 × 10−8 can be found in Supplementary Table 7. For ratio phenotypes (for example, ‘RVEDV/LVEDV,’ which 
represents the RVEDV-to-LVEDV ratio), the SNPs listed here must additionally not be found within 500 kb of SNPs from a nonratio phenotype. When multiple SNPs with P < 5 × 10−8 are found within 500 kb 
of one another and are in linkage equilibrium (r2 < 0.001), each independent SNP is displayed; an example is at the TBX5/TBX3 locus for the ‘RA Min’ phenotype. In the Trait column, suffix -S represents 
‘systole,’ -D represents ‘diastole,’ and Idx represents ‘indexed to body surface area’. CHR, chromosome; BP, GRCh37 position; SNP, single nucleotide polymorphism (where a dbSNP ID was not available, this 
field was left empty because the SNP is uniquely identified by its position and alleles); EAF, effect allele frequency; BETA, effect size; s.e., standard error of effect size; P value, BOLT-LMM P value.

Table 2 | Loci specific to the right atrium and right ventricle (continued)
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with NKX2-5 variants5,67; MYL4, which encodes atrial light chain 
1, missense variants in which have been linked to familial atrial 
fibrillation68 and TBX3, which controls the formation of the sinus 
node and loss of which leads to outflow tract malformations and 
septal defects69–71. The TBX5/TBX3 locus also stands out because of 
the diversity of signals revealed in the data, with links to variation 
in RA, RV and PA (Supplementary Fig. 17). Two distinct signals 
drive the observed associations with right atrial size (rs1895602 
near TBX5, and rs71447956/rs11067264 near TBX3). A third set 
of SNPs (rs4767282/rs10850409/rs35514224) is associated with the 
right-versus-left proportions of the ventricles and outflow tract. 
For example, at rs4767282, the C allele is associated with a slightly 
smaller RVESV and a slightly larger LVESV, achieving P < 5 × 10−8 
only for the ratio of RVESV/LVESV. Given the proximity of these 
SNPs to TBX5, which plays a key role in atrial and ventricular sep-
tal placement2,72,73, and TBX3, which is required for outflow tract 
development, and variants in which cause conotruncal defects74,75, 
it is tempting to speculate that these signals may influence the 
left–right localization of the site of septation during development. 
Indeed, the right heart-specific loci are enriched for genes that 
play roles in cardiac septum development (near NKX2-5, TBX3, 
TBX5, HEY2 and ZFPM2; Supplementary Table 10). We hypoth-
esize that chamber-specific associations may be attributable to the 
different embryological origins of the right and left ventricles and 
their respective proximal conduction systems76, the distinct after-
load regimes they face or differences in physiological inputs during 
adult life. Future studies across the human lifespan will be helpful to 
answer this question.

Third, we observed links between cardiovascular disease and 
right ventricular measurements—as well as polygenic predictions 
of these measurements. Individuals with pre-existing diagnoses of 
pulmonary hypertension had enlarged right ventricular volumes 
throughout the cardiac cycle even after accounting for left ventricu-
lar volumes (Fig. 3). In UK Biobank participants, a polygenic pre-
dictor of RVEF was associated with incident dilated cardiomyopathy 
(Fig. 6). The RVEF polygenic score remained significantly associ-
ated with incident dilated cardiomyopathy even after accounting  

for a left ventricular polygenic score—implying a shared genetic 
basis for right ventricular dysfunction and dilated cardiomyopathy. 
These results were validated in external biobanks including MGB 
and BBJ—an external biobank of Japanese-ancestry participants. 
The role of right ventricular size and function as prognostic mark-
ers in individuals with dilated cardiomyopathy is well established77. 
Consistent with emerging clinical evidence, right ventricular struc-
ture and function are not merely of anthropometric interest, but 
instead represent endophenotypes for cardiomyopathy. Our find-
ings suggest that earlier consideration of abnormalities of right ven-
tricular function may afford the opportunity for earlier diagnosis of 
ensuing left ventricular dysfunction.

Fourth, we found epidemiological and genetic associations 
between proximal PA diameter and pulmonary hypertension. We 
produced a genome-wide polygenic prediction of PA diameter 
that was modestly associated with incident pulmonary hyperten-
sion in the UK Biobank; this finding was replicated externally 
in MGB. The genetic prediction of PA diameter accounted for 
approximately 6.5% of the heritability of PA diameter in an external 
cohort (FHS). A previous version of this score produced from only 
clumped, genome-wide significant SNPs did not find a significant 
association with pulmonary hypertension; we suspect that this dis-
crepancy may be because variation in PA diameter is driven most 
strongly by genetic variants affecting size during development, 
and more weakly by the pressure of the pulmonary circuit—whose 
contributions may be mostly subgenome-wide significant at the 
current sample size. In future work, distinguishing the anatomical 
and developmental drivers of variation in cardiovascular structures 
from pathophysiological drivers may assist in the development of 
more clinically relevant polygenic scores78. As demonstrated by the 
lack of replication of the association between the PA score and pul-
monary hypertension in BBJ, future ancestrally diverse discovery 
efforts will also be critical.

Finally, machine learning enables the derivation of complex traits 
in a manner that is scalable. This permits biobank-wide investiga-
tion of previously understudied human phenotypes, and promises 
to accelerate our understanding of cardiovascular disease.
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Fig. 6 | Cumulative incidence of dilated cardiomyopathy stratified by genetic prediction of RVEF. A total of 359,899 UK Biobank participants were 
unrelated within three degrees of the participants who underwent MRI. A total of 603 participants were diagnosed with DCM after enrollment. Those in 
the bottom 5% of genetically predicted RVEF are depicted in red and the remaining 95% are depicted in gray. The darker shades of red and gray represent 
the central estimate of the cumulative incidence (defined as 1 – the Kaplan-Meier survival estimate). The lighter shades of red and gray represent the 
respective 95% confidence intervals (based on the standard error). The x axis depicts years since enrollment in the UK Biobank; the y axis depicts 
cumulative incidence of dilated cardiomyopathy. a, Strata based on genetic prediction of RVEF. Those in the bottom 5% had an elevated risk of DCM (62 
incident cases; Cox HR 2.2; P = 7.6 × 10−9). b, Strata based on genetic prediction of RVEF after residualization for genetic prediction of LVESVi. Those in the 
bottom 5% had an elevated risk of DCM (52 incident cases; Cox HR 1.8; P = 5.4 × 10−5). The Schoenfeld global P value for both models was 0.26, indicating 
no violation of the proportional hazards assumption.
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Methods
Study design. Except where otherwise stated, all analyses were conducted in the 
UK Biobank, which is a richly phenotyped, prospective, population-based cohort 
that recruited 500,000 individuals aged 40–69 years in the UK via mailer from 2006 
to 2010 (ref. 25). We analyzed 487,283 participants with genetic data and who had 
not withdrawn consent as of February 2020. Informed consent was obtained from 
all participants. Access to UK Biobank was provided under application no. 7089 
and approved by the MGB institutional review board (IRB; protocol 2019P003144). 
MGB Biobank analyses were also approved by the MGB IRB. FHS participants were 
ascertained and enrolled with written informed consent as described previously 
and approved by the IRBs of Boston University Medical Center and Massachusetts 
General Hospital79. BBJ analyses were approved by the Institute of Medical Science, 
the University of Tokyo, as well as the cooperating hospitals65. Here, we provide an 
overview of the methods used in this manuscript, as explained in more detail below.

We manually annotated pixels from magnetic resonance images from the UK 
Biobank: the pulmonary artery and the left and right ventricles were annotated in 
the short axis view, and the RA and RV were annotated in the four-chamber long 
axis view. We then trained two deep learning models (one for each of the views) 
with our manual annotations, and applied this model to the remaining images in 
the UK Biobank. For the RV, we integrated the data from the four-chamber view 
and the short axis view to generate a surface mesh and derived the ventricular 
volumes from this mesh. We analyzed the relationships between each of these 
derived quantitative measurements of the right heart. We also analyzed their 
relationships with diseases and other phenotypes in the UK Biobank.

Then, we excluded people with prevalent heart failure, pulmonary 
hypertension, atrial fibrillation or coronary artery disease at time of enrollment 
and conducted GWAS of the right heart phenotypes. We performed 
transcriptome-wide association studies (TWAS) that incorporated publicly 
available gene expression data with our GWAS results to prioritize genes at most 
genomic loci. We analyzed the GWAS results in light of the four-chamber single 
nucleus sequencing data that is publicly available. We also performed a rare 
variant association test in UK Biobank participants with both imaging and exome 
sequencing data. Polygenic scores produced from SNPs associated with right 
heart phenotypes in the UK Biobank GWAS were used to predict incident atrial 
fibrillation or flutter, dilated cardiomyopathy and pulmonary hypertension in the 
UK Biobank participants whose data did not contribute to the GWAS. Replication 
of the polygenic analysis was pursued in external biobanks.

Statistical analyses were conducted with R v.3.6 (R Foundation for  
Statistical Computing).

Semantic segmentation and deep learning model training. Semantic 
segmentation is the process of assigning labels to pixels of an image. Here, we 
labeled pixels within specific anatomical structures (the right atrial blood pool, the 
right ventricular blood pool and the PA blood pool), using a process similar to that 
described in our previous work evaluating the thoracic aorta33. Segmentation of 
cardiovascular structures was annotated manually in four-chamber and short axis 
images from the UK Biobank by a cardiologist (J.P.P.). To produce the model used 
in this manuscript, 714 short axis images were chosen, segmented manually, and 
used to train a deep learning model with PyTorch v.1.6 and fastai v.1.0.61  
(refs. 26,27). The same was done separately with 445 four-chamber images.

An earlier developmental model was produced from 250 training samples 
for the short axis images, and the errors produced by that model informed 
the structures that we segmented in the 714 short axis training examples; see 
Supplementary Note for additional detail. For both the short axis and the 
four-chamber long axis views, the models were based on the U-Net-derived 
architecture from fastai v.1.0.61 constructed with a ResNet34 encoder, which was 
pretrained on ImageNet28–30,80. The U-Net design incorporates skip connections 
between downsampling and upsampling layers, allowing more precise pixel 
labeling. During training, random perturbations of the input images, known 
as augmentations, were applied; these included affine rotation, zooming and 
modification of the brightness and contrast. The Adam optimizer was used81. The 
models were trained with a cyclic learning rate training policy82. We used 80% of 
the samples to train the model, and 20% for validation.

For the short axis images, all images were resized initially to 104 × 104 pixels 
during the first half of training, and then to 224 × 224 pixels during the second half 
of training. The model was trained with a mini-batch size of 16 (with small images) 
or 8 (with large images). Maximum weight decay was 1 × 10−3. The maximum 
learning rate was 1 × 10−3, chosen based on the learning rate finder26,83. Because the 
RV and PA blood pools occupied very little of the overall short axis image area, a 
focal loss function was used (with alpha 0.7 and gamma 0.7), which can improve 
performance in the case of imbalanced labels84. When training with small images, 
60% of iterations were permitted to have an increasing learning rate during each 
epoch, and training was performed over 30 epochs while keeping the weights for 
all but the final layer frozen. Then, all layers were unfrozen, the learning rate was 
decreased to 1 × 10−7, and the model was trained for an additional ten epochs. 
When training with large images, 30% of iterations were permitted to have an 
increasing learning rate, and training was done for 30 epochs while keeping all 
but the final layer frozen. Finally, all layers were unfrozen, the learning rate was 
decreased to 1 × 10−7, and the model was trained for an additional ten epochs.

For the four-chamber long axis images, all images were resized initially to 
76 × 104 pixels during the first half of training, and then to 150 × 208 pixels during 
the second half of training. The model was trained with a mini-batch size of four 
(with small images) or two (with large images). Maximum weight decay was 
1 × 10−2. Cross entropy loss was used85. We permitted 30% of iterations to have 
an increasing learning rate during each epoch. When training with small images, 
the maximum learning rate was initially 1 × 10−3, and training was performed 
over 50 epochs while keeping all weights frozen except for the final layer. Then, 
all layers were unfrozen, the learning rate was decreased to 3 × 10−5, and the 
model was trained for an additional 15 epochs. When training with large images, 
the maximum learning rate was set to 3 × 10−4, and the model was trained for 50 
epochs while keeping all but the final layer frozen. Finally, all layers were unfrozen, 
the learning rate was decreased to 1 × 10−7, and the model was retrained for an 
additional 15 epochs.

Held-out test sets that were not used for training or validation were used to 
assess the final quality of both models (as detailed in the Supplementary Note). The 
final short axis and four-chamber long axis models were then applied, respectively, 
to all available short axis images and four-chamber long axis images available in 
the UK Biobank as of November 2020. The techniques used to postprocess the 
deep learning output to measure right atrial area and PA diameter, and to perform 
Poisson surface reconstruction to compute right ventricular volume, are detailed in 
the Supplementary Note.

Genotyping, imputation and genetic quality control. UK Biobank samples were 
genotyped on either the UK BiLEVE or UK Biobank Axiom arrays and imputed 
into the Haplotype Reference Consortium panel and the UK10K+ 1000 Genomes 
panel86. Variant positions were keyed to the GRCh37 human genome reference. 
Genotyped variants with genotyping call rate <0.95 and imputed variants with 
INFO score <0.3 or minor allele frequency ≤0.005 in the analyzed samples were 
excluded. After variant-level quality control, 11,631,796 imputed variants remained 
for analysis.

Participants without imputed genetic data, or with a genotyping call rate <0.98, 
mismatch between self-reported sex and sex chromosome count, sex chromosome 
aneuploidy, excessive third-degree relatives or outliers for heterozygosity were 
excluded from genetic analysis86. Participants were also excluded from genetic 
analysis if they had a history of pulmonary hypertension, atrial fibrillation, heart 
failure or coronary artery disease documented by ICD code or procedural code 
from the inpatient setting before the time they underwent cardiovascular MRI 
at a UK Biobank assessment center. Our definitions of these diseases in the UK 
Biobank are provided in Supplementary Table 4.

Heritability and GWAS. For the RA, we assessed maximum area, minimum area 
and fractional area change. For the RV, we assessed end diastolic volume, end 
systolic volume, stroke volume, and ejection fraction. For the pulmonary system, 
we assessed the diameter of the proximal PA diameter in systole and in diastole, 
strain, and the pulmonary root diameter. In addition, we analyzed body surface 
area-indexed values for all areas and volumes (that is, excluding strain, RA FAC 
and RVEF, which are dimensionless). Where paired left heart phenotypes were 
available, we also analyzed those left heart phenotypes alone, as well as the ratio of 
the right heart phenotype to its corresponding left heart phenotype. The ascending 
aortic diameter was paired with the PA diameter; the left ventricular end diastolic 
volume, end systolic volume, stroke volume and ejection fraction were paired with 
their corresponding right ventricular counterparts.

BOLT-REML v.2.3.4 was used to assess the SNP-heritability of the phenotypes, 
as well as their genetic correlation with one another using the directly genotyped 
variants in the UK Biobank36.

Before conducting GWAS, a rank-based inverse normal transformation 
was applied to the quantitative right heart traits87. Therefore, effect estimates 
are reported in dimensionless units that represent approximately 1 s.d. of the 
underlying trait. All traits were adjusted for age at enrollment, age and age 
squared at the time of MRI the first ten principal components of ancestry, sex, the 
genotyping array and the MRI scanner’s unique identifier.

GWAS for each phenotype were conducted using BOLT-LMM v.2.3.4 to 
account for cryptic population structure and sample relatedness36,37. We used the 
full autosomal panel of 714,558 directly genotyped SNPs that passed quality control 
to construct the genetic relationship matrix (GRM), with covariate adjustment 
as noted above. Associations on the X chromosome were also analyzed, using all 
autosomal SNPs and X chromosomal SNPs to construct the GRM (n = 732,193 
SNPs), with the same covariate adjustments and significance threshold as in the 
autosomal analysis. In this analysis mode, BOLT treats individuals with one X 
chromosome as having an allelic dosage of 0/2 and those with two X chromosomes 
as having an allelic dosage of 0/1/2. Variants with association P < 5 × 10−8—a 
commonly used threshold—were considered to be genome-wide significant.

We used the following procedure to identify distinct GWAS loci and lead 
SNPs for each trait. We performed LD clumping with PLINK-1.9 (ref. 88) using 
the same participants used for the GWAS, rather than a generic reference panel. 
We outlined a 5-Mb window (–clump-kb 5000) and used a stringent LD threshold 
(–r2 0.001) to account for long LD blocks such as those near the Williams–Beuren 
locus on chromosome 7 and the Noonan syndrome locus on chromosome 12 
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(refs. 89–91). With the independently significant clumped SNPs, distinct genomic 
loci were then defined by starting with the SNP with the strongest P value, 
excluding other SNPs within 500 kb, and iterating until no SNPs remained. The 
independently significant SNP with the strongest association P value at each 
genomic locus are termed lead SNPs.

Lead SNPs were tested for deviation from Hardy-Weinberg equilibrium 
(HWE) at a threshold of P < 1 × 10−6 using the exact test88,92. To assess whether 
the HWE violations affected the association signals, SNPs with HWE P < 1 × 10−6 
were reanalyzed with glm in R after excluding samples that were not within the 
UK Biobank’s centrally adjudicated subset of individuals who self-reported British 
ancestry and were found to be genetic inliers for the European ancestry cluster, 
using the same covariates as used in the BOLT-LMM model.

We performed LD score regression analysis using ldsc v.1.0.0 (ref. 93). With 
ldsc, the genomic control factor (lambda GC) was partitioned into components 
reflecting polygenicity and inflation, using the software’s defaults.

Locus plots were produced with LocusZoom94.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA) was 
conducted with the online GSEA platform39 including all nine main Molecular 
Signatures Database (MSigDB) collections38. The nearest gene to each locus 
from Supplementary Table 8 was input into the online platform at https://www.
gsea-msigdb.org/gsea/msigdb/annotate.jsp and the top 100 results were returned. 
The same procedure was repeated for the nearest genes from Supplementary Table 9.

Stratified LD score regression. To identify putative cell types most relevant for 
each GWAS trait, we performed stratified LD score regression analysis using 
single nucleus RNA sequencing data from Tucker et al.93,95,96. Cell-type-specific 
markers within the RA and RV were calculated separately for the nine main cell 
types using a limma-voom differential expression model on aggregated counts 
per individual97. Only individuals with greater than 25 nuclei of a given cell type 
were considered. Genes were sorted by t statistic per cell type and the top 90% of 
genes were used to generate LD score regression annotations95. SNPs within 100 kb 
of any gene from a specific cell type were annotated for the respective cell type 
using 1000 Genomes European individuals98. We then performed stratified LD 
score regression with these annotations in combination with the baseline model 
described in Finucane et al.99, only including high quality HapMap3 SNPs. We used 
the RA cell-type-specific annotations and RV cell-type-specific annotations for the 
RA- and RV-specific GWAS traits, respectively.

Replication of PA diameter GWAS results in the FHS. For external replication 
of the UK Biobank GWAS results, we analyzed SNP associations with PA diameter 
in FHS, measured on computed tomography (CT) images. The genetic profiles 
of FHS participants were measured by the Affymetrix GeneChip 500 K Array Set 
and 50K Human Gene Focused Panel, and genotyping was called using BRLMM 
as previously described100,101. Variants with call rate <0.97, HWE P < 10−6, n > 100 
Mendelian errors or MAF < 0.01 were excluded. The remaining variants were then 
imputed to the TOPMed imputation panel using Michigan Imputation Server 
(https://imputationserver.sph.umich.edu/index.html)102.

A multidetector CT scanner (General Electric Lightspeed plus eight 
detector scanner) was used to assess the PA in FHS participants79,103. The PA 
measurements and genotyping data were available from dbGaP (phs000007.
v32.p13 and phs000342.v20.p13, respectively). The association between each 
genetic variant and CT traits was tested with linear mixed effects models using 
the kinship package in R, and adjusted for sex, age, age squared, cohort (original 
cohort, offspring cohort or third generation cohort) and the first five principal 
components of ancestry.

SNPs from the UK Biobank PA diameter in systole GWAS were clumped based 
on insample LD within the UK Biobank using an LD r2 cutoff of 0.001 to identify 
independent signals in PLINK-1.9 (ref. 88). A lookup of SNP effect sizes in FHS was 
then conducted. We applied a variety of UK Biobank GWAS P value cutoffs (from 
5 × 10−3 to 5 × 10−10) and then used SNPs below those cutoffs in linear models, 
recording the correlation between the FHS and UK Biobank SNP effect sizes and 
plotting the results.

For the SNPs associated in UK Biobank at P < 5 × 10−8, a two-tailed binomial 
test was performed to compare the number of directionally concordant SNP effects 
with that expected by chance (an expectation of 0.5 probability of concordance at 
each SNP).

Polygenic score analysis. For RVEDV, RVESV and RVEF, we computed polygenic 
scores using the software program PRScs (v.sha1@43128be) with a UK Biobank 
European ancestry LD panel made publicly available by the software authors63. 
The PRScs method applies a continuous shrinkage before the SNP weights. PRScs 
was run in ‘auto’ mode on a per chromosome basis. This mode places a standard 
half-Cauchy prior on the global shrinkage parameter and learns the global 
scaling parameter from the data; as a consequence, PRScs-auto does not require 
a validation data set for tuning. Based on the software default settings, only the 
1,117,425 SNPs found at HapMap3 sites that were also present in the UK Biobank 
were permitted to contribute to the score. These scores were applied to the entire 
UK Biobank.

The three RV scores were tested for association with dilated cardiomyopathy 
using Cox proportional hazards models as implemented by the R survival 
package104. Participants related within three degrees of kinship to those who had 
undergone MRI, based on the precomputed relatedness matrix from the UK 
Biobank, were excluded from analysis86. We conducted these analyses in individuals 
who were ‘genetic inliers’ for European ancestry based on the first three pairs of 
genetic principal components (PC1&2, PC3&4, PC5&6) by using the aberrant 
package as described previously86,105. We also excluded individuals with disease 
that was diagnosed before enrollment in the UK Biobank. We counted survival 
as the number of years between enrollment and disease diagnosis (for those who 
developed disease) or death, loss to follow-up or end of follow-up time (for those 
who did not develop disease). We adjusted for covariates including sex, the cubic 
basis spline of age at enrollment, the interaction between the cubic basis spline of 
age at enrollment and sex, the genotyping array, the first five principal components 
of ancestry and the cubic basis splines of height (cm), weight (kg), body mass index 
(BMI) (kg m–2), diastolic blood pressure and systolic blood pressure.

The single strongest right ventricular score was also analyzed jointly in a 
model that additionally accounted for a polygenic score produced using the same 
PRScs-auto method for the left ventricular end systolic volume indexed to body 
surface area (LVESVi), chosen because this phenotype was the trait that produced the 
strongest left ventricular polygenic score for predicting dilated cardiomyopathy106.

The same procedure, including the application of PRScs-auto, was repeated to 
produce polygenic scores for the PA phenotypes, which were tested for association 
with pulmonary hypertension. It was also repeated to produce polygenic scores for 
right atrial phenotypes, which were tested for association with atrial fibrillation 
and flutter.

Cumulative incidence curves were plotted to demonstrate the relationship 
between the RVEF polygenic score and dilated cardiomyopathy, using the 
survminer v.3.1-8 package. The population was split into the top 5% of the score 
and the remaining 95%. Another plot was produced after residualizing the RVEF 
polygenic score for the LVESVi polygenic score and then splitting into the top 
5% and the remaining 95%. To identify violations of the proportional hazards 
assumptions, Schoenfeld residuals were computed for both of these models.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
UK Biobank data are made available to researchers from research institutions 
with genuine research inquiries, following IRB and UK Biobank approval. GWAS 
summary statistics are available at the Broad Institute Cardiovascular Disease 
Knowledge Portal (http://www.broadcvdi.org). Single nucleus RNA sequencing 
data are publicly available at the Single Cell Portal (https://singlecell.broadinstitute.
org/single_cell accession no. SCP498). The dbGAP study accession numbers used 
for FHS replication were phs000007.v32.p13 for PA diameter measurement and 
phs000342.v20.p13 for genotyping. BBJ data are available to bona fide researchers 
for approved research by application to the Japanese Genotype-phenotype Archive. 
MGB data are available to MGB investigators. All other data are contained within 
the article and its Supplementary information, or are available upon reasonable 
request to the corresponding author.

Code availability
The code used to perform Poisson surface reconstruction from segmentation 
output is located at https://github.com/broadinstitute/ml4h and is available  
under an open-source BSD license. The code used to perform permutation  
testing to assess enrichment of disease-related genes near GWAS loci is located at 
https://github.com/carbocation/genomisc and is available under an open-source 
BSD license. The code used to annotate magnetic resonance images is located  
at https://github.com/carbocation/traceoverlay and is available under an 
open-source BSD license.
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