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Purpose: Pseudoexfoliation syndrome is a major risk factor for the development of glaucoma. Following recent reports

of a strong association of coding variants in the lysyl oxidase-like 1 (LOXL1) gene with this syndrome but low penetrance

and variable disease frequency between different populations, we aimed to identify additional genetic factors contributing

to the disease. The clusterin (CLU) gene has been proposed as a candidate because of the presence of clusterin protein in

pseudoexfoliation deposits, its varied levels in aqueous humor of cases compared to controls, and the role of the protein

as a molecular chaperone. We investigated the association of genetic variants across CLU in pseudoexfoliation syndrome

and analyzed molecular characteristics of the encoded protein in ocular tissues.

Methods: The expression of clusterin in relevant ocular tissues was assessed using western blotting. Nine tag single

nucleotide polymorphisms (SNPs) across CLU were genotyped in 86 cases of pseudoexfoliation syndrome and 2422

controls from the Australian Blue Mountains Eye Study cohort. Each SNP and haplotype was assessed for association

with the syndrome.

Results: Clusterin was identified in normal human iris, the ciliary body, lens capsule, optic nerve, and aqueous humor.

Post-translational modification gives rise to a 100 kDa precursor protein in ocular tissues, larger than that reported in non-

ocular tissues. One CLU SNP (rs3087554) was nominally associated with pseudoexfoliation syndrome at the genotypic

level (p=0.044), although not when the age of controls was restricted to those over 73 years. Only age and the LOXL1

diplotype were significant factors in the logistic regression. One haplotype of all nine CLU SNPs was also associated

(p=0.005), but the significance decreased slightly with the use of the age-restricted controls (p=0.011).

Conclusions: Clusterin is present in ocular anterior segment tissues involved in pseudoexfoliation syndrome. Although

one haplotype may contribute in a minor way to genetic risk of pseudoexfoliation syndrome, common variation in this

gene is not a major contributor to the risk of pseudoexfoliation syndrome.

Pseudoexfoliation syndrome is characterized by an age-

dependent deposition of abnormal fibrillar material in both

ocular and non-ocular tissues. The most readily identifiable

pathological manifestation is the appearance of this

extracellular material on the aqueous bathed surfaces of the

anterior segment of the eye, particularly the anterior lens

capsule. Pseudoexfoliation syndrome is a common cause of

open-angle glaucoma. It has also been associated with

cataract, particularly of the lens cortex, as well as increased

risk of vitreous loss during cataract extraction [1]. An

association with cardiovascular disease has also been reported

[2,3].

The prevalence of pseudoexfoliation syndrome is known

to vary widely between geographic regions, and risk increases
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significantly with age. The Reykjavik Eye Study in Iceland

reported an overall prevalence of 10.6% in patients over 50

years of age increasing to 40.6% in individuals over 80 years

of age [4]. Another population-based study, which was

conducted in the Blue Mountains, west of Sydney, Australia,

found an overall prevalence of 2.3% in individuals over 49

years [5] while the reported prevalence in Greece is 27%

among age-related cataract patients [2]. Formal heritability

estimates for this condition have not been calculated.

However, the risk to relatives of patients with

pseudoexfoliation syndrome was found to be 10 times that of

the general population in Norway [6]. Recent genetic studies

in multiple populations have convincingly identified the lysyl

oxidase-like 1 (LOXL1) gene as a significant contributor to

the genetic risk of developing pseudoexfoliation syndrome

[7-11]. The common alleles of two coding variants in this gene

are strongly associated with pseudoexfoliation in multiple

populations including the Blue Mountains Eye Study cohort.
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The risk haplotype (G-G) of these two LOXL1 variants occurs
in the homozygous state at a frequency of approximately 25%
in normal individuals over the age of 50 and appears to be the
ancestral allele [8]. While the frequency of pseudoexfoliation
syndrome in Nordic populations is very high, consistent with
this allele providing the majority of the risk, the disease
prevalence is much lower in populations such as Australia and
North America despite similar gene frequencies of the
LOXL1 variants to those found in Iceland [7-9]. Moreover, in
the Japanese population, the T-G haplotype is the most
common and confers the greatest risk of disease [11,12].
Taken together, the data suggest that besides the LOXL1 risk
alleles, other genetic variants or environmental factors may
contribute to the risk of developing pseudoexfoliation
syndrome.

The exact composition of the pseudoexfoliative material
is unknown. However, initial work has shown that it consists
of a complex glycoprotein-proteoglycan structure [13].
Glycosaminoglycans are a prominent component along with
basement membrane proteins including laminin, fibronectin,
elastin, and fibrillin [13]. These proteins are produced
predominantly by epithelial cells of the iris, lens, and ciliary
body [1]. A study by Zenkel and colleagues [14] of differential
gene expression between these tissues from eyes with and
without pseudoexfoliation syndrome revealed several classes
of genes that may be important in the production of
pseudoexfoliative deposits. These included genes involved in
extracellular matrix metabolism and those related to cellular
stress and regulation [14]. Using a proteomics based
approach, Ovodenko et al. [15] identified extracellular matrix
proteins, tissue metalloproteases and their specific inhibitors,
cell adhesion molecules, proteoglycans, complement
proteins, and clusterin (CLU - also known as apoliprotein J)
as major components of the pseudoexfoliation deposits.

CLU is one of the most differentially expressed genes
between pseudoexfoliation and normal eyes [14], and
clusterin was found to be particularly prominent in
pseudoexfoliation material [15]. CLU is evolutionarily highly
conserved [16]. It encodes a 70–80 kDa primary glycoprotein
[17] that is cleaved into α (34–36 kDa) and β (36–39 kDa)
subunits. The subunits are linked by disulphide bonds to form
functional heterodimers that are secreted from the cell. This
glycoprotein is ubiquitously secreted by most cell types and
has been identified in most body fluids [18]. Its primary
function is to act as an extracellular molecular chaperone,
preventing the precipitation and aggregation of misfolded
extracellular proteins [18]. Clusterin is a multifunctional
protein that can bind lipids, complement factors and
membrane, and extracellular matrix proteins. Zenkel and
colleagues [19] demonstrated that CLU mRNA is found at
lower levels in anterior segment tissues of eyes with
pseudoexfoliation syndrome than in glaucomatous control
eyes by both quantitative reverse transcription polymerase
chain reaction (RT–PCR) and in situ hybridization.

Immunohistochemistry revealed that in these tissues, clusterin
is present primarily in the extracellular space, consistent with
its proposed role of preventing the deposition of
pseudoexfoliative material [17]. Moreover, lower levels of
clusterin are present in the aqueous humor of individuals with
pseudoexfoliation syndrome compared to normal individuals
[19]. Thus, CLU is an attractive candidate genetic factor that
may confer individual susceptibility to pseudoexfoliation
syndrome. We investigated the hypothesis that common
genetic variation in CLU could explain the genetic
susceptibility of individuals to pseudoexfoliation syndrome.
Though the expression of CLU mRNA in many eye tissues
has been reported, the molecular characteristics of the
encoded protein in these tissues are poorly understood. In this
study, we also analyzed clusterin in clinically relevant anterior
segment tissues by western blotting to determine its
characteristics in ocular tissues.

METHODS
Western blotting: Ocular tissues from post-mortem human
eyes were obtained through the Eye Bank of South Australia
(Flinders Medical Centre, Adelaide, Australia) and aqueous
humor from patients undergoing cataract surgery at Flinders
Medical Centre, Adelaide, Australia. All samples were
collected following approval of the Human Research Ethics
Committee (Flinders Medical Centre, Adelaide, Australia).
Human corneas from the Eye Bank eyes are used for
transplantation and therefore were not available for analysis.
For protein extraction, the iris, ciliary body, lens capsule, and
optic nerve were homogenized in 6 M urea, 2% DTT, 2%
CHAPS, and 0.1% SDS-containing buffer using the
TissueLyser (Qiagen, Doncaster, VIC, Australia). The
homogenized lysates were cleared by centrifugation and
protein concentration was estimated by the Bradford method
[20]. Each protein extract (30 μg) and 20 µl of aqueous humor
were size-fractionated on a 12% polyacrylamide gel by SDS–
PAGE and transferred onto Hybond C Extra (GE Healthcare,
Rydalmere, NSW, Australia). The blot was hybridized with
1:500 dilution of the rabbit anti-CLU primary antibody (Santa
Cruz Biotechnology Inc., Santa Cruz, CA) and 1:20,000
dilution of the horseradish peroxidase-conjugated goat anti-
rabbit IgG secondary antibody (Rockland Immunochemicals
Inc., Gilbertsville, PA). Antibody binding was detected with
the ECL Advance Western Blotting Detection Kit (GE
Healthcare).
Subject recruitment: Subjects were recruited from the Blue
Mountains Eye Study (BMES), which has been described in
detail previously [21]. Briefly, the BMES is a population-
based cohort study of individuals aged over 49 years living in
the Blue Mountains region, west of Sydney, Australia, and the
study is designed to investigate common ocular diseases. The
majority of participants are of Northwestern European
descent. The study included three main surveys held between
1992 and 2004 and an ancillary survey to include individuals
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who had moved into the area or had reached the required age
between 1998 and 2000. The baseline survey recruited 3,654
participants, 2,564 (70.2%) of whom were re-examined at the
5- and 10-year follow-up surveys. The ancillary study added
1,174 individuals during 1999–2000. The age of participants
used in the analyses is at the time of the most recent
examination. DNA was extracted from peripheral whole
blood obtained at the five-year follow-up surveys. Ethics
approval was obtained from the relevant committees of the
Westmead Millennium Institute at the University of Sydney
(Sydney, Australia), Flinders Medical Centre and Flinders
University (Adelaide, Australia). Each participant gave
informed consent. This study adhered to the tenets of the
Declaration of Helsinki.

Pseudoexfoliation syndrome was specifically examined
by slit-lamp as part of a comprehensive ocular examination
by an experienced ophthalmologist (P.M.) for all participants.
Lens photographs were taken of both eyes for each participant,
and these were graded for the presence and sub-type of
cataract and other signs including pseudoexfoliation to
confirm slit-lamp examination findings. Given the inherent
difficulties in detection following cataract surgery, the
presence of pseudoexfoliation was deemed not to be
classifiable in participants who had undergone cataract
surgery (n=334). Analysis was performed comparing the
diagnosed pseudoexfoliation cases against both the sub-
population where pseudoexfoliation had been clinically
excluded (phakic individuals) and the total unselected control
population (phakic and pseudophakic individuals). The
significance of the results was not affected, and thus the data
presented here represent the entire cohort. Furthermore, there
were no significant differences in genotype frequencies
between the two control groups.

Genotyping and data analysis: Using the software program
Tagger, implented in Haploview 4.0 [22], single nucleotide
polymorphisms (SNPs) across CLU including the promoter
region were selected on the basis of linkage disequilibrium
patterns observed in the Caucasian (CEU) samples genotyped
as part of the International HapMap Project [23,24]. Nine
tagging SNPs, which captured all alleles with an r2 of 0.8, were
selected. A previous study has shown that this population is a
suitable surrogate for the selection of tag SNPs to be used in
Australian samples with predominantly Northwestern
European descent [25].

Genotyping was performed on 2,508 individuals with the
use of iPLEX GOLD chemistry (Sequenom, Inc., Herston,
QLD, Australia) on an Autoflex Mass Spectrometer
(Sequenom, Inc.) at the Australian Genome Research Facility
(Brisbane, QLD, Australia). The SNP name designations
given are those used in dbSNP and HapMap. SNP genotyping
in control samples was checked for compliance with the
Hardy–Weinberg equilibrium. Linkage disequilibrium
between markers was calculated using Haploview 4.0 [22].

All analyses were conducted in the full data set as well as
by restricting controls to a minimum age of 73 years (range
73–98 years, mean 79.9±5.1 years). This age was not only
chosen to retain a significant number of controls (n=1,106)
but also to ensure the mean age of controls was older than the
mean age of cases (76.4±8.1 years), which would reduce the
chance of the control cohort containing “yet to develop cases.”
Association analysis of each SNP with pseudoexfoliation was
performed using the χ2 test implemented in Haploview 4.0
[22] and SPSS (v14.0 SPSS Inc., Chicago, IL). Logistic
regression was used to assess the role of CLU variants as well
as known risk factors for pseudoexfoliation in a multifactorial
model in SPSS. The most likely haplotypes of the two
LOXL1 SNPs associated with pseudoexfoliation [7,26] were
estimated in HAPLO.STATS [27] for each individual and re-
coded to a diplotype (a genotype consisting of two
haplotypes). This diplotype was then used as a factor in the
analysis along with each CLU SNP, age, and sex. All variables
were added to the model as a single block. Haplotypes across
all nine SNPs in CLU for each individual were estimated using
the expectation maximization algorithm in HAPLO.STATS,
and association with pseudoexfoliation was tested with and
without adjustments for the covariates (age, gender, and
number of LOXL1 risk alleles carried [0, 1, or 2]). Analyses
were conducted for all nine CLU SNPs in a single haplotype
as well as for SNPs in linkage disequilibrium blocks.

Power calculations were conducted using the online
Genetic Power Calculator [28]. The disease prevalence was

Figure 1. CLU protein expression in human ocular tissues.
Expression of the CLU protein in the human iris, ciliary body, lens
capsule, optic nerve, and aqueous humor was analyzed by western
blotting with an anti-clusterin antibody. Lens capsules from three
eyes were pooled for protein extraction. Sizes of molecular weight
markers in kiloDaltons (kDa) are indicated. Arrows point to specific
protein bands.
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set at 2.3% as previously reported in our population [5].
Unselected controls were simulated and the case:control ratio
was set at 1:28 to reflect the numbers in this study. The risk
allele frequency was varied from 0.2 to 0.4 and always set to
the same as that for the marker. Linkage disequilibrium
between the marker and the risk allele was set at D’=0.8 or
1.0. The genotype relative risks for the heterozygous/high risk
homozygous genotypes were set to 1.5/2.0 and 2.0/3.0 to
reflect an additive model.

RESULTS
Western blotting: We determined CLU protein expression in
human ocular tissues of the anterior segment as well as the
optic nerve by western blotting under reducing conditions. A
protein band of approximately 100 kDa, which is higher than
the expected size of the uncleaved primary protein, was
detected in the iris, ciliary body, lens capsule, and optic nerve

(Figure 1). A prominent protein band of approximately 36 kDa
corresponding to the reduced α and β subunits of CLU was
identified in the ciliary body and lens capsule. The reduced
protein forms were only weakly observed in the iris and optic
nerve. A smaller than 36 kDa protein band in the lens capsule
may represent a smaller isoform of the α subunit. A protein
band of approximately 80 kDa corresponding to the size of
the secreted heterodimer was detected in the aqueous humor.
Genetic analyses: Genotyping was obtained for 2,508
individuals, 57% of whom were male. Pseudoexfoliation
syndrome was reported in 86 participants, 63% of whom were
male. The mean age of the cohort was 70.1 years with males
being slightly older than females (mean±SD; 70.3±10.5 years
and 69.8±10.0 years in males and females, respectively), but
this was not statistically significant (t-test p=0.25). The mean
age at examination of pseudoexfoliation cases was 76.4±8.1

Figure 2. Gene schematic and linkage
disequilibrium of genotyped SNPs. The
gene schematic is taken from HapMap.
Exons are displayed as boxes and
introns as connecting lines, and
untranslated regions are shaded gray.
Linkage disequilibrium structure across
CLU calculated in Haploview is shown.
D′ values are given in the cell
intersecting for each pair of SNPs. A
blank cell indicates D′=1.0. The darker
the cell, the greater the linkage
disequilibrium between the SNPs.
Haplotype blocks are outlined and were
defined using the confidence interval
method of Gabriel et al. [29].
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years and that of controls was 69.9±10.3 years (p=5.6x10−9).

The analyses were also conducted by restricting the control

group to persons aged 73 years or over (average age 79.9±5.1

years), which is significantly older than the cases

(p=1.23x10−9). This reduced the number of controls to 1,106.

All SNPs were in Hardy–Weinberg equilibrium. The

linkage disequilibrium between each marker is shown in

Figure 2. Using the confidence intervals method of Gabriel et

al. [29] incorporated in Haploview 4.0, two haplotype blocks

were identified, consistent with the data obtained from

HapMap for the original selection of the SNPs from the CEU

population, although SNP 8 was also included in block 2 in

that data set.

Allele and genotype frequencies along with the p value

for the χ2 test of independence for allele and genotype counts

for each SNP are displayed in Table 1. No significant

association was detected at the allele level. A nominally

significant genotypic association (p=0.044) observed for SNP

rs3087554 did not remain significant following Bonferonni

correction (corrected p=0.396). Additionally, this nominal

genotypic association was not identified in the age-restricted

control group (p=0.072).

Each CLU SNP was included in a logistic regression

along with the age, gender, and diplotype observed at the

LOXL1 locus. Age and the LOXL1 diplotype were

significantly associated with pseudoexfoliation syndrome as

previously reported (p<0.001; Table 2) [7]. No CLU SNP was

a significant factor in either the full study cohort or in the age-

restricted control subgroup. As expected in the full study

cohort, the risk of pseudoexfoliation increased with age

(OR=1.068; Table 2). However, in the age restricted control

group, the direction of association with age was opposite with

an increase in age correlating with a decrease in

pseudoexfoliation risk (OR=0.886; Table 2).

Haplotype analyses revealed a nominally significant

association of haplotype 4 as shown in Table 3 with p=0.005

under the dominant model (OR=1.63, 95% CI 0.81–3.26).

This finding remained of borderline significance after

Bonferonni correction for the multiple (10) haplotypes

considered. It is important to note that the odds ratio and

associated confidence interval presented should be interpreted

with caution. It is calculated using the estimated haplotype

frequencies (based on weighted probabilities of the possible

haplotypes for each individual) to infer the theoretical count

data for each group. Haplotype 4 is also nominally significant

after adjusting for age (p=0.006), indicating that the observed

association is independent of this covariate. The significance

was further reduced when the age-restricted control set was

TABLE 1. ALLELE AND GENOTYPE FREQUENCIES FOR CASES (N=86) AND CONTROLS (N=2422) AND P-VALUES FOR χ2 TEST OF INDEPENDENCE FOR ALLELE OR

GENOTYPE COUNTS.

SNP Name Allele Cases Controls p value Genotype Cases Controls p value

1 rs7821500 T 0.76 0.69 0.054 T/T 0.56 0.48 0.072

G 0.24 0.31 T/G                  0.40                 0.42

G/G 0.05                 0.10

2 rs17466684 G 0.83 0.82 0.845 G/G 0.67 0.67 0.848

A 0.17 0.18 G/A                  0.30                0.30

A/A 0.02 0.03

3 rs2279591 C 0.71 0.73 0.560 C/C                  0.50                 0.53 0.801

T 0.29 0.27 C/T 0.42                 0.40

T/T 0.08 0.07

4 rs17057444 C 0.96 0.95 0.755 C/C 0.93 0.91 0.231

G 0.04 0.05 C/G 0.06 0.09

G/G 0.01                 0.00

5 rs3087554 T 0.84 0.82 0.515 T/T 0.73 0.66 0.044*

C 0.16 0.18 T/C 0.21 0.31

C/C 0.06 0.02

6 rs7812347 G 0.77 0.72 0.168 G/G 0.58 0.51 0.458

A 0.23 0.28 G/A 0.37 0.41

A/A 0.05 0.08

7 rs11136000 C 0.53                 0.60 0.061 C/C 0.26 0.35 0.242

T 0.47                 0.40 C/T 0.55                0.50

T/T                  0.20                 0.15

8 rs9331888 C 0.74 0.72 0.445 C/C 0.53 0.51 0.632

G 0.26 0.28 C/G 0.42 0.41

G/G 0.05 0.08

9 rs9314349 A 0.60                0.61 0.782 A/A 0.34 0.36 0.808

G 0.40                0.39 A/G 0.52                0.50

G/G 0.14 0.14
The asterisk indicates that p=0.072 when the age of controls is restricted.
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used (p=0.011), likely due to the loss of power in the reduced

sample size. An adjustment for LOXL1 diplotype did not

significantly change this result (data not shown). Haplotype

analyses were also performed across a three SNP sliding

window, and no significant associations were observed (data

not shown). As the linkage disequilibrium structure suggested

two haplotype blocks in this region, the haplotype analysis

was conducted for each block yet no significant associations

were observed (data not shown).

Power calculations demonstrate that this study had 80%

power to detect a reasonable effect size (genotypic relative

risk of 2.0 for Aa genotype and 3.0 for AA). As LOXL1 is

known to contribute a significant proportion of the genetic risk

of pseudoexfoliation syndrome, it is possible that another

genetic modifier locus could have only minor relative risks.

The current study design still has power (up to ~60%) at the

nominal significance level under a relative risk model of 1.5

in the heterozygote, depending on the frequency of the marker

allele (Table 4).

DISCUSSION

A common haplotype of the LOXL1 gene has recently been

shown to be a major genetic factor associated with

pseudoexfoliation syndrome [7]. However, given that the

disease-associated haplotype is not fully penetrant,

particularly in non-Nordic populations [8,9], and that a

TABLE 2. RESULTS OF LOGISTIC REGRESSION FOR THE OUTCOME OF PSEUDOEXFOLIATION SYNDROME FOR EACH CLU TAGGING SNP, AGE, GENDER, AND LOXL1

DIPLOTYPE.

Variables

All controls Oldest controls (>73 years)

   p value                  Odds                  95% CI for OR

(Wald test)               ratio

   p value

(Wald test)

Odds                 95% CI for OR

ratioLower Upper                                                                     Lower                Upper

Age <0.001 1.068 1.043 1.094 <0.001 0.886 0.846 0.927

Sex 0.283 0.779 0.493 1.23 0.204 0.734 0.455 1.183

LOXL1 diplotype                    <0.001 1.908 1.504 2.42 <0.001 1.792 1.421 2.259

rs7821500 0.152 1.05 0.982 1.123 0.199 1.047 0.976 1.122

rs17466684 0.923 0.999 0.969 1.029 0.861 1.003 0.971 1.036

rs2279591 0.414 1.018 0.975 1.062 0.396 1.02 0.975 1.067

rs17057444 0.178 1.176 0.929 1.488 0.06 1.324 0.989 1.774

rs3087554 0.338 1.015 0.984 1.047 0.494 1.012 0.979 1.046

rs7812347 0.761 0.994 0.956 1.034 0.916 0.998 0.956 1.041

rs11136000 0.855 1.003 0.97 1.037 0.85 0.997 0.961 1.033

rs9331888 0.483 0.97 0.892 1.056 0.637 0.979 0.894 1.071

rs9314349 0.989 1 0.968 1.032 0.655 0.992 0.96 1.026

Constant <0.001 0 0.382 0.027

All variables were added to the model as a block. Significant factors are highlighted in bold. Results are shown for both the
whole study and the age-restricted control set.

TABLE 3. HAPLOTYPE ASSOCIATION BETWEEN VARIANTS ACROSS THE CLU GENE AND PSEUDOEXFOLIATION SYNDROME.

SNPs Frequency p values

Hap 1 2 3 4 5 6 7 8 9 Controls Cases Additive Dominant

1 T G C C T G T C A 0.24 0.28 0.23 0.12

2 G G C C T A C C A 0.17 0.15 0.347 0.246

3 T A T C C G C G G 0.09 0.08 0.931 0.64

4 T G C C T G T C G 0.07 0.11 0.008 0.005

5 T A T C T G C G G 0.04 0.05 0.444 0.42

6 G G C C T A C C G 0.04 0.02 0.448 0.453

7 T G C C T G C C A 0.03 0.05 0.488 0.458

8 G G C G T A C C G 0.03 0.03 0.923 0.971

9 T G C C T G C G G 0.03 0.01 0.157 0.156

10 T G T C T G T C G 0.02 0.04 0.22 0.22

Haplotypes (Hap) with frequency greater than 2% in the total cohort (n=2508) are shown with the p values for association under
additive and dominant models. The nominally associated haplotype 4 is highlighted in bold. SNPs forming the haplotype are
numbered as in Table 1.
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different LOXL1 risk haplotype may be active in Japanese
populations [11,12], we hypothesized that other genes are
likely to contribute to the risk of developing this disorder.
Given its expression in the anterior segment of the eye and the
association of the protein with pseudoexfoliation material,
CLU is a potential genetic factor of susceptibility to
pseudoexfoliation syndrome. Different levels of clusterin in
aqueous humor of cases when comparing to controls support
the hypothesis that genetically determined differences in
clusterin expression or stability could contribute to the
pathophysiology of pseudoexfoliation.

Expression of CLU in the human eye has been previously
reported in the cornea, ciliary body, lens, retina, retinal
pigment epithelium, and aqueous and vitreous humor
[30-33]. In these studies, mRNA expression was detected by
RT–PCR and in situ hybridization and protein expression by
immunohistochemistry. Protein in aqueous and vitreous
humor was revealed by western blotting. The CLU protein
undergoes several modifications before the formation of a
functional heterodimer. Previous studies were not able to
reveal these characteristics of the protein in ocular tissues.
Hence, to gain an insight into its various molecular forms, we
analyzed CLU protein expression in ocular tissues by western
blotting. Consistent with earlier reports, the CLU dimer of
expected size was detected in the aqueous humor [33]. This
also verified antibody specificity. Presence of the protein in
the ciliary body in this study is consistent with its previous
immunohistochemical detection in this tissue [33]. Its
presence in the lens capsule correlates with it being one of the
prominent components of pseudoexfoliation material as
identified by proteomics analysis [15]. This is the first report
of expression of CLU protein in the human iris and optic
nerve. The ciliary body is believed to be the major site of CLU

expression in the anterior segment. The present data for the
first time reveal that it is also expressed in the human iris and
may be secreted into the aqueous humor from this tissue. The
molecular mass of the uncleaved primary protein (100 kDa)
in the ocular tissues analyzed here (Figure 1) is higher than
that detected in non-ocular tissues by others [34]. Tissue
specific post-translational modification of the CLU protein
can give rise to protein forms of variable molecular masses in
different tissues [35-37]. Hence, post-translational
modification in ocular tissues may result in a ~100 kDa
primary protein. This hypothesis requires further
investigation. Furthermore, the western blot data suggest that
the majority of the CLU protein in the optic nerve is uncleaved
(Figure 1). The biological significance of the predominance
of this protein form is as yet unknown.

Allelic and genotypic analyses revealed that common
variants in CLU and its promoter region do not contribute in
a substantial way to the risk of pseudoexfoliation syndrome.
The genotype of SNP rs3087554 was nominally associated.
However, this association was not significant following
Bonferonni correction for the relatively small number of tests
or after analysis was restricted to the subset of unaffected
controls over 73 years of age. Haplotype 4 was also nominally
associated, but the significance was reduced upon restriction
to the older controls. This haplotype has a frequency of around
7% in our population and may contribute a small risk of
pseudoexfoliation. Haplotype 4 differs only from the most
common haplotype 1 at SNP 9 (rs9314349) for which there is
no allelic or genotypic association. Thus, there is no obvious
consistency between haplotype and single SNP analyses,
although these analyses should be considered as
complementary because additional information is tested with
the haplotypes (i.e. tagging of the causative variant by the

TABLE 4. POWER CALCULATIONS.

Genotypic relative risk Aa/
AA

Linkage Disequilibrium D’ Risk and marker allele
frequency

Power at α=0.05

1.5/2.0 0.8 0.2 0.4
0.3 0.44
0.4 0.44

1.5/2.0 1 0.2 0.57
0.3 0.62
0.4 0.61

2.0/3.0 0.8 0.2 0.83
0.3 0.84
0.4 0.8

2.0/3.0 1 0.2 0.96
0.3 0.96
0.4 0.94

Power in this population-based study to detect a significant genetic association for pseudoexfoliation syndrome at the α=0.05
level for different degrees of linkage disequilibrium and allele frequency. Aa=heterozygote, AA=high risk homozygote.
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combination of alleles). Additionally, logistic regression
failed to identify any factors other than age and the LOXL1
diplotype that were associated with pseudoexfoliation
syndrome in this study. Interestingly, the direction of the
relationship with age changed when controls were restricted
to those over 73 years. This is possibly due to a “healthy
survivor” effect and requires further investigation.

The study does not have sufficient power to detect very
small genetic effects. This makes it difficult to draw a firm
conclusion in relation to SNP rs3087554 and haplotype 4. A
weakness of the entire cohort is the difference in age between
the cases and controls with the mean age of cases being six
years greater than the controls. Therefore, all analyses were
also conducted by restricting the age of controls to 73 years
or older. This provided a mean age of the controls of 79.9
years, which is older than the cases, and still allowed inclusion
of 1,106 controls. Some control participants who could have
gone on to develop pseudoexfoliation syndrome as they
became older would have been excluded in these analyses,
improving homogeneity. However, the power of this test is
reduced due to the decrease in the numbers. Our findings will
therefore need to be investigated in additional large cohorts.

The methodology used in this study involves the use of
“tagging” SNPs. In this approach, the variations selected for
genotyping “tag” the known variation in the gene and reduce
the amount of genotyping necessary to assess the gene for
association. Previous reports have investigated the utility of
the Caucasian HapMap data set in Australia and found good
correlation [25], indicating that if an association with a
common variant exists we would be likely to detect it with this
method. This method is particularly adept at detecting
pathogenic mutations that fit the “common variant, common
disease” hypothesis. However, it is less efficient at detecting
multiple rare variants that may have arisen on different genetic
backgrounds [38]. SNP rs3087554 could partially tag a
functional variant that is not yet included in the HapMap data
set from which these SNPs were chosen. In this scenario, the
as yet undetermined variant would likely be found on
haplotype 4. The SNPs typed in this study cover the immediate
5′ promoter of the gene, but there could be additional upstream
or downstream control elements not adequately assessed here.
This possibility is important to consider given the reported
lower levels of CLU in the aqueous humor of eyes with
pseudoexfoliation.

In summary, CLU is present in ocular tissues relevant to
pseudoexfoliation syndrome, and others have shown that its
titer is reduced in the aqueous humor of eyes with
pseudoexfoliation [19]. We demonstrate a previously
undocumented expression of CLU in the optic nerve and iris
as well as in other ocular tissues relevant to pseudoexfoliation
and ocular tissue with specific post-translational modification
of the protein. Our data suggest that common variants in this
gene are not strong genetic modifiers of the risk of developing

pseudoexfoliation in the Australian population. However, one
haplotype with a frequency of around 7% may confer some
increased risk. Further analysis in other data sets is needed to
clarify this. Further work is also required to elucidate which
genetic factors in addition to LOXL1 are responsible for
pseudoexfoliation syndrome.
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