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Abstract

Variation in transcriptional regulation is thought to be a major cause of phenotypic diversity1,2. 

Although widespread differences in gene expression among individuals of a species have been 

observed3-8, few studies have examined the variability of transcription factor (TF) binding, and 

thus the extent and underlying genetic basis of TF binding diversity is largely unknown. In this 

study, we mapped differences in transcription binding among individuals and elucidated the 

genetic basis of such variation on a genome-wide scale. Whole-genome Ste12 binding profiles 

were determined using ChIP Seq in pheromone-treated cells of 43 segregants of a cross between 

two highly diverged yeast strains and their parental lines. We identified extensive Ste12 binding 

variation among individuals and mapped underlying cis- and trans- acting loci responsible for 

such variation. We showed that the majority of TF binding variation is cis-linked and that many 

variations are associated with polymorphisms residing in the binding motifs of Ste12 as well as 

those of several proposed Ste12 cofactors. We also identified two trans factors, AMN1 and FLO8, 

that modulate Ste12 binding to promoters of more than 10 genes under α-factor treatment. Neither 

of these two genes was known to regulate Ste12 previously, and we suggest that they may be 

mediators of gene activity and phenotypic diversity. Ste12 binding strongly correlates with gene 

expression for more than 200 genes indicating that binding variation is functional. Many of the 

variable bound genes are involved in cell wall organization and biogenesis. Overall these studies 
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identified genetic regulators of molecular diversity among individuals and provide novel insights 

into mechanisms of gene regulation.

Many, and possibly the majority, of phenotypic differences among individuals are likely to 

be elicited by alterations in gene expression and the underlying transcriptional regulation1,2. 

Differences in gene expression have been observed among individuals in a variety of 

species, including yeast3-8. These differences may be mediated at a variety of levels, 

including transcription, mRNA processing and mRNA stability, and the contribution of each 

level is unknown. Recently, we and others discovered a surprisingly high frequency of TF 

binding site variation among closely related species9,10, but the extent to which this occurs 

in individuals is unknown.

To investigate the extent of diversity in transcription factor binding among individual strains 

of yeast, we used ChIP-Seq to generate high-resolution Ste12 binding profiles for two 

distinct yeast strains, S96 (isogenic to S288c) and HS959 (isogenic to YJM789), and 43 

MATa genotyped segregants of these lines. For the parent strains, the profiles were 

generated in the presence and absence of the mating pheromone α-factor9, and for the 

segregants only α-factor treatment conditions were examined. At least two biological 

replicates were performed for each strain along with one input DNA control (see Methods).

From vegetatively grown cells, we found 536 and 846 binding regions in S96 and HS959 

cells, respectively (Fig. 1b; Tables S2, S3). After treatment with α factor, Ste12 bound many 

more regions using the same threshold (1179 in S96 and 1112 in HS959, Fig. 1b, Tables S4, 

S5), consistent with the role of Ste12 as a major transcriptional activator in pheromone 

response11. Assignment of binding regions revealed that many of the gene targets were 

identical in vegetative and pheromone treated cells (Fig. S1); many of these common targets 

are involved in conjugation, and may have an additional role during vegetative growth.

Comparison of the signal tracks revealed extensive differences among the different yeast 

strains and their progeny. We quantitatively identified the variable binding regions across all 

43 segregants and the two parental strains under pheromone-treatment conditions by 

calculating a Normalized Difference (NormDiff) Score and defined the genomic positions 

within the top 2.5% of binding variance across all 45 strains as variable (see Methods). 

Adjacent variable regions were grouped into 930 genomic “traits”. Inspection of the signal 

tracks revealed that the majority (~ 78%) of the variable binding regions exhibit Mendelian 

segregation in the progeny (Fig. 1a). Interestingly, a large number of transgression effects 

were observed in which the segregants either obtained or lost binding relative to the parents 

(Fig. 1a).

To identify the underlying QTLs for each binding variation trait, we used the genotype 

information from Mancera et al. which contained 53,460 markers12 (see Methods). The 

neighbouring markers with the same genotype distribution across strains were grouped, 

resulting in 2,592 nonredundant marker sets of 1,132 bp median size. We performed single 

marker regression with the 930 binding traits and the 2,592 markers and found significant 

marker-trait associations for 195 traits at a local false discovery rate (FDR) of 0.01 (see 

Methods). As shown in Figs. 2a, 166 traits were associated with cis-markers (defined as 
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markers on the same chromosome as the associated traits); 157 of these cis-traits were 

within 10kb of the associated marker. 35 traits were associated with trans-markers (defined 

as markers on different chromosome from associated traits); the trans markers each affected 

between one and 11 loci (Fig. 2b). Six traits were affected by both cis- and trans- markers. 

The effect for the cis markers is much stronger than for the trans markers (Fig. 2c). Thus, the 

vast majority of significantly associated markers (85%) lay cis to the variable binding site, 

indicating that most binding differences are mediated by adjacent regulatory elements. 

Changing the linkage threshold yielded similar results (Fig. S4).

We next examined the underlying genetic basis of the variable binding loci that were 

affected in cis. Searching for position weight matrix (PWM) matches of the Ste12 motif in 

the genomic regions of the 166 significant cis-variable binding traits of the two parental 

strains revealed that 102 contained at least one Ste12 motif. 36 of these Ste12 motifs in 31 

variable binding regions were affected by polymorphisms: 14 contained SNPs (Fig. 3 and 

Fig. S5) and, the majority (22) were disrupted by Indels. For the majority of SNPs (11 out of 

14), the poorer match to the Ste12 consensus motif corresponds to a lower Ste12 binding 

signal. Two examples are shown in Fig. 3a (see Fig. S5 for two exceptions). In contrast to 

that observed for the variable regions, we found 177 Ste12 motifs in the non-variable Ste12 

binding regions and only 2 out of these 177 motifs contained a SNP or Indel (Pearson's Chi-

square test, P < 0.001, Table S6).

To examine whether there are cis-mutations in the binding sequences of other TFs affecting 

Ste12 binding, we searched PWM matches of all known TF recognition consensus 

sequences13 in all Ste12 binding regions with a particular focus on the variable binding 

regions. Excluding Ste12, 38 TF consensus sequences were over-represented in Ste12 bound 

regions (Table S6, Bonferroni corrected P < 0.05; see Methods). Of the 38 TF recognition 

sequences, 219 motifs contained at least one polymorphism in the 166 cis- variable Ste12 

binding regions. In contrast, only 175 contain motifs with polymorphisms in more than 

1,000 non-variable Ste12 binding regions (Pearson's Chi-Square test, P <0.001). In total, of 

166 cis-traits, 72 traits had polymorphic motifs: 10 (6.0%) with an altered Ste12 motif, 41 

(24.7%) with altered motifs of other TFs, and 21 (12.7%) with altered motifs of both Ste12 

and other TFs. We presume that the cis-variable regions which lack polymorphisms are due 

to differences in other TF binding regions, chromatin effects, or perhaps affect other genes 

which in turn affect TF binding through feedback loops or post-transcriptional 

mechanisms14.

We next analyzed whether polymorphisms in a specific TF motif correlated with Ste12 

binding in the variable regions. The presence of polymorphisms in six TF motifs correlated 

positively or negatively with Ste12 binding (Table S6). For example, for Yhp1 which 

associates with Mcm115 (a Ste12 associated protein16), and Yap5, whose deletion causes a 

defect in haploid invasive growth17 (Fig. 3 b, c), 18 variations (4 SNPs and 14 Indels) and 

27 variations (12 SNPs and 15 Indels) lie in their respective binding motifs. In both cases the 

poorer consensus motifs match associated with reduced Ste12 binding (Binomial test, P = 

0.0096 and 0.0038 respectively, Table S6). These results suggest that Yhp1 and Yap5, along 

with four other factors, function to facilitate Ste12 binding.
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In our linkage analysis, we found 194 trans-markers significantly linked to binding variation 

traits on different chromosomes (Fig. 2b). We used an independent hierarchical clustering 

method that has greater statistical power6 to also identify trans-regulators (see Methods). 

The 930 quantitative traits were first grouped into 121 mutually exclusive clusters of high 

significance. 85 of the clusters contained three or more traits (the largest cluster had 46 

traits) and 70% of the clusters contain traits on different chromosomes. We next tested for 

association between these cluster-level traits and the genotype markers. At an FDR of 0.01 

we found significant linkages for 51 clusters (P-value < 2 × 10−5), including 16 clusters with 

traits on different chromosomes. Six distinct genotype markers from 7 trans clusters were in 

common with those identified by the linkage analysis (Figs. 2a and S6; see methods) and are 

potential trans-QTLs that affect Ste12 binding.

Four of the common trans clusters with Ste12 binding variation contained distinct classes of 

genes. Two clusters shown in Fig. S6a and g exhibit Ste12 binding variation in the 

promoters of DSE1, DSE2, SCW11, CTS1, and WTM1 which are enriched for the GO 

categories: “cytokinesis” (corrected P << 0.001) and “cell wall organization and biogenesis” 

(corrected P = 0.045). The cluster in Fig. S6e includes binding variation in promoters of 

several FLO genes (e.g. FLO1, FLO11), suggesting that the QTL regulates pathways 

involved in flocculation18 and/or cell-cell interaction19. The fourth cluster (Fig. S6f) 

includes 9 binding variations on chromosomes II, IV, VI, VII, XI, XIV and XV, with the 

highest association to a marker on chromosome II. The chromosome II region contains 

several interesting genes including chromatin remodelling factors. These results indicate that 

not only can trans loci be identified, but they also affect distinct classes of genes.

To identify the trans-acting genes responsible for the Ste12 binding differences, we 

disrupted 12 candidate genes in each of the parental strains. The genes were located 

primarily in three regions containing the trans-QTLs shown in Fig. S6a/g, e, and f. For two 

regions we found a single gene, AMN1 and FLO8, respectively, whose disruption 

recapitulated the Ste12 binding pattern of the other parent. AMN1 deletion increased Ste12 

binding whereas loss of FLO8 diminished Ste12 binding, indicating that these are negative 

and positive regulators of Ste12 binding, respectively (Fig. 4). Interestingly, whereas Flo8 

affects highly localized Ste12 peaks, Amn1 affects broadly bound Ste12 peaks, suggesting 

that Amn1 may operate over larger genomic regions.

AMN1 was previously shown to affect vegetative gene expression in a different set of yeast 

crosses6,7. Our data therefore indicate that AMN1 has a role in regulating transcription 

under several conditions. FLO8 is often disrupted in laboratory strains20, involved in 

pseudohyphal growth18,21, and was shown previously to have a role in Ste12/Tec1 binding 

at one promoter22. However, its binding motif is not enriched near Ste12 binding sites and it 

was not known to have role in either Ste12 function or in mating. Our data indicate that 

FLO8 is directly or indirectly important for Ste12 binding at a number of loci during α-

factor treatment. Flo8 has been reported to localize to specific loci, including the promoters 

of FLO1, FLO11, and CIN523, consistent with a direct regulatory role at these genes. Thus, 

our study revealed two novel loci affecting Ste12 binding during the pheromone response 

and yielded several other candidate regions.
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To determine if the variation in Ste12 binding is functional, we examined the correlation 

between binding and gene expression at the Ste12 target genes. Gene expression was 

measured using DNA microarrays for all 45 strains grown under the same conditions as the 

ChIP-Seq experiments. Many traits exhibit a positive correlation between binding and 

expression (permutation test, P < 0.001; Fig. 5), consistent with Ste12's role as a 

transcriptional activator. Interestingly, however, a number of traits were negatively 

correlated with gene expression (Fig. 5), suggesting that Ste12 may also function as a 

repressor, which had not been reported previously. Overall, 222 unique target genes (28%) 

had an absolute correlation coefficient for gene expression and Ste12 binding intensity 

higher than 0.335; 171 were positively correlated and 51 negatively correlated (Fig. 5). 

Although the results are highly significant (P < 0.001 from 1,000 permutations), we presume 

that the absolute correlation is not higher because of the presence of additional binding sites 

for Ste12 and/or other factors, or additional mechanism of gene regulation. The positively 

correlated genes were enriched in the GO category “cell wall organization and biogenesis” 

(P < 0.001).

We next grouped the patterns of binding variation and expression variation at individual 

genes and found 14 clusters of variable Ste12 binding regions that exhibited strongly 

correlated or anti-correlated gene expression (Fig.5a, Fig. S8). 12 of 14 clusters include cis-

binding variations on the same chromosome. For the trans-cluster affected by AMN1, all 

Ste12 binding variations are positively correlated with expression of their target genes, 

suggesting that AMN1 regulates gene expression through Ste12 binding to these genes. 

Another trans-cluster with binding traits on chromosome VI and X also positively correlated 

with gene expression. Notably, these traits correspond to a translocation between 

chromosomes VI and X in HS959, and are actually in cis for segregants inheriting the 

HS959 genotype (Fig. S8), thereby suggesting that coordinated expression patterns can 

disperse in strain diversification.

Interestingly, we often observed combinations of both positively and negatively correlated 

binding-expression patterns in the same cluster (Fig. 5a, second and third cluster; Fig. S8). 

These results suggest that Ste12 binding may act as an activator on some gene promoters 

and a repressor on others. Alternatively, the differential expression may be due to an indirect 

effect of Ste12 binding through an activator or repressor of the target genes.

Although the trans-cluster affected by FLO8 was not among the most highly correlated for 

binding and expression, most binding traits in the FLO8 cluster are correlated with the 

expression of downstream gene targets. Specifically, four binding regions positively 

correlate with the expression of three adjacent genes, FLO1 (two regions; r = 0.554 and 

0.577), FLO11 (r = 0.574), and CIN5 (r = 0.490) and one region negatively correlates with 

the expression level of its neighbouring genes YPS6 and GTT1 (r = −0.306 and −0.340 

respectively). Furthermore, although not directly downstream, all binding traits in this 

cluster are highly correlated with the expression level of two filamentous growth genes, 

HMS1 (r = 0.600, 0.615, 0.650, 0.725, 0.715 respectively) and TMN3 (r = −0.500, −0.591, 

−0.599, −0.526, −0.643 respectively). Thus, FLO8-influenced Ste12 binding appears to be 

functional in regulating gene expression. The overall correlation of Flo8-mediated binding 
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and gene expression may not have been revealed initially because some genes are influenced 

positively and others negatively.

Overall, our studies have revealed that TF binding variation in different yeast strains is 

wide-spread and that the majority of the strongest differences can be explained by genetic 

variants acting in cis. The cis events are often mediated by variation in consensus sequences 

required for binding of Ste12 or other co-associated TFs. Through genetic analysis on Ste12 

binding, we were able to pinpoint potential causative DNA polymorphisms in TF binding 

motifs, identify novel association between TFs, and identify novel functional roles of Ste12 

in activation and repression of different genes.

Our results concerning Flo8 and the covariance of motifs of other TFs such as Yhp1 and 

Yap5 with Ste12 binding, suggest that many factors not previously known to be involved in 

mating may have direct roles in the binding of key regulators such as Ste12 at specific loci. 

This result is consistent with the analysis of TF binding during the salt response where many 

different combinations of factors were present at different gene promoters24. Our results 

suggest that although major transcriptional regulators can control the expression of many 

inducible genes, the particular combination of factors at specific loci are ultimately 

responsible for individual gene expression. Thus, gene expression is regulated both globally 

and locally by different factors. Analysis of both cis- and trans-acting factors in different 

individuals of the same species can reveal a large number of new regulators of gene 

expression, even in well-characterized processes such as yeast mating.

The observation that AMN1 and FLO8 vary in different laboratory strains6,7,18,20 and 

affect several cellular processes such as vegetative growth and mating raises the possibility 

that these genes determine not one, but several phenotypic traits. Each of these genes, along 

with many other QTLs identified in our study, affect the expression of genes involved in the 

response of cells to the environment, such as constituents of the cell wall and flocculation 

genes. Thus, we speculate that AMN1 and FLO8 and other QTLs are important for 

controlling the response to different environmental conditions and phenotypic diversity.

Methods Summary

We performed over 200 ChIP-Seq experiments to determine the Ste12 binding profiles in 43 

MATa segregants and their isogenic MATa parent strains upon α-factor treatment1; the 

parental strains were also analyzed without pheromone treatment. Ste12 bound peaks were 

identified using MACS2. To identify the variable binding regions across different strains, 

we calculated a normalized difference score (NormDiff) and then the variance of the 

NormDiff scores at each genomic position for all 45 strains, and the top 2.5% variable 

positions (variance > 10) were chosen. 930 highly variable regions were obtained, and the 

sum of NormDiff scores in each region was treated as quantitative traits. We used these 930 

variable binding traits and 2592 merged genotype markers to conduct linkage analysis and 

identify cis- and trans- factors by single marker regression. For cis-factors, motif analysis 

was performed to search for enriched TF motifs in variable Ste12 binding regions, for co-

occurrence of SNP/Indel containing motifs and differences in Ste12 binding. To identify 

trans-factors, we used two methods: a) the linkage analysis of individual traits and b) 

Zheng et al. Page 6

Nature. Author manuscript; available in PMC 2010 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hierarchical clustering of all 930 variable binding traits and linkage analysis with cluster-

level traits. The trans-associated markers passing significance threshold (FDR = 0.01) in 

both methods were considered further. Six genomic regions around most significant trans-

associated markers were examined in detail: 12 candidate genes in these regions were 

deleted in both parent strains, and ChIP-Seq experiments were used to examine Ste12 

binding profiles in the mutant strains. To determine whether Ste12 binding variation affects 

gene expression, microarray experiments were performed and compared with the Ste12 

binding data.

Methods

Strains and Plasmids

Parental yeast strains are S96 (isogenic to S288c) and YJM789. YHS959 is an isogenic 

MATa derivative of YJM789. MATa segregants obtained from S96/YJM789 cross3 were 

selected by two criteria: 1) a relatively even distribution of breakpoints over the genome so 

that loci are as dissociated as possible; 2) a relatively even distribution of STE12 

polymorphisms over the segregants. All strains were genotyped previously with high-

resolution tiling array at 55958 SNP and Indel markers3. STE12 loci were tagged with c-

myc at the 3′ end using one-step gene replacement with plasmid pFA6a (9X-myc, KanMX4). 

Successful tagging for all strains was confirmed by colony PCR. To identify causative genes 

in 3 trans-QTLs, 12 candidate genes AMN1, ICS2, SLI15, FLO8, GLE2, CTF19, HIR1, 

LDB7, PDR3, SCT1, ALK2, SLA1 were deleted from each parental strain by homologous 

recombination.

Pheromone treatment of yeast culture

Yeast strains were grown in 500ml YPAD media to mid-log phase (O.D.600 = 0.6), and then 

0.5 ml 5 mM alpha factor (solution in 0.1M sodium acetate pH 5.2, GenScript) was added. 

Cultures were incubated for 30 minutes at 30°C with vigorous shaking. The optimal 

pheromone concentration and incubation time were determined by measuring the expression 

levels of four known STE12 target genes (AFR1, FIG1, FUS2, PCL2) using PCR.

ChIP-sequencing

Pheromone-treated yeast cultures were cross-linked with 1% formaldehyde for 15min at 

room temperature. Cells were harvested using filtration, and washed twice with water. 

Chromatin immunoprecipitation (ChIP) were performed as described in 4, using 160 uL of 

50% anti-myc EZ-view affinity gel (Sigma). At least two independent biological replicates 

grown at different times were completed for each strain. Before adding antibody, 10% 

volume of the sonicated cell lysate was used to prepare input DNA from each sample that 

was not subjected to immunoprecipiation. Illumna sequencing libraries were made from 

ChIP and input DNAs and sequencing using multiplexing barcoded adapters as described in 

1. The background signal for the input DNA in our experiments was quite low. The number 

of uniquely mapped sequencing reads determined for each segregant is summarized in Table 

S1.
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In total, over 200 ChIP-Seq experiments were performed. For each strain, an average of 3.4 

and 1.8 million uniquely mapped reads of 30 bp were obtained for ChIP and Input 

sequencing, respectively (Supplementary Table 1). At this sequencing depth, we expect to 

identify over 95% of the TF binding sites with more than 2-fold enrichment of sequencing 

tags1. Approximately 61.6% of the sequencing reads uniquely mapped to the S288c 

reference genome.

Identifying Ste12 binding peaks and target genes in parental strains

To quantify the binding differences between the two parent strains, we first identified the 

Ste12 binding regions in parental strains by comparing each ChIP dataset against its 

corresponding control data using the peak scoring algorithm MACS2. We scored Ste12 

binding peaks in parental strains S96 and YJM789 under vegetative growth; S96 and HS959 

under pheromone treatment. The parameters used are: effective genome size = 1.20e+07; 

band width = 15; model fold = 4; pvalue cutoff = 1.00e-05. Output from MACS and the raw 

sequencing data are available in the GEO database.

We assigned binding regions to the nearest genes and found statistically significant overlap 

between the gene sets identified in the two parental strains: 302 (39.27%) and 616 (53.94%) 

overlap in vegetative growth and pheromone-treated cells, respectively (hypergeometric P < 

0.001 in both cases). Within a strain 311 (31.19%) and 376 (32.84%) of the vegetative gene 

targets overlapped with targets in the pheromone treated condition for S96 and HS959, 

respectively (Supplementary Fig.1). GO analysis revealed that many of the shared genes for 

both vegetative and pheromone treated cells are enriched in conjugation genes (Fig. 1c and 

Fig. S1)

Identification of quantitative Ste12 binding differences

After scaling ChIP and Input data, at every genomic position, we calculated a normalized 

difference (NormDiff) score to represent the scale-adjusted, background extracted ChIP 

signal. Detailed steps are as follows.

We first used Eland to uniquely mapped sequencing reads and generate signal maps, using a 

similar strategy as 5 and 6. Let x1, … , xn be genomic positions covering an entire 

chromosome. We observe A (xi) and B (xi) be the signal at position xi, i = 1, … , n for our 

experimental signal map and the control signal map. Assume the model A(xi) ~ Poisson(f + 

g), B(xi) ~ Poisson(cg) where f (xi) is the signal caused by TFBS, g(xi) is the non-random 

background signal, potentially caused open chromatin status, or other systematic bias. From 

Poisson model assumption, we have the following properties: E(A − B/c) = f; Var(A − B/c) = 

f + g + g/c. Our purpose is to evaluate f (xi).

To estimate scaling factor c, we calculated a series of ratios ri = B(xi)/A(xi) for positions x1, 

… , xn, i = 1, …, n. At each position, the ratio ri is an estimate for the scaling factor c. 

However if the position is in a TFBS, ri will be an underestimate for c. For sequence-

specific transcription factors, there are usually less than half of the genomic regions enriched 

for a ChIP signal; therefore we use the median of ratios to estimate c. In case A(xi) = 0, we 

flag the position by assigning a large number to ri. We denote  and define 
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normalized difference score (NormDiff) as , Under H0 : f(xi) = 0, 

we have Z(xi) ~ N(0,1). Inspired by the dynamic parameter selection in 2, we estimate the 

unknown standard deviation σ by average signal densities from local or global ranges.

where Āw and B̄
w are average ChIP and Input signal densities per window, from 2w+1 

positions centered at position xi. The default settings we use are w = 10 bp, w = 10 bp, and 

all positions across the chromosome. Comparing to a naïve estimate of σ that only uses 

information at position xi, this dynamic estimate σ͡ is robust to both very low signal densities 

and very high signal densities caused by random fluctuations in a small local region.

To summarize NormDiff score into quantitative traits, we first calculated Z(xi) for each 

strain at each genomic position and the variance of Z(xi) across 45 strains, denoted as 

var(Z(xi)). Then we defined xj as a highly variable position when var(Z(xj)) is one of the 

largest 2.5% among all the variances {var(Z(xi)), i=1, …, n}. Finally we merged all selected 

xj to highly variable regions at least 20 bp apart from each other and at least 20 bp in length, 

and used the sum of Z(xj) in each highly variable region as a quantitative trait. Selection of 

high variance regions implies that in some of the strains, the ChIP signal is highly different 

from the background, therefore they correspond to “peaks” caused by Ste12 binding instead 

of small increases over the background.

84% of the 930 variable traits overlap with binding regions in at least one parental strain, 

and 51% of binding regions in at least one parental strains overlap with the 930 variable 

traits.

Investigation of transgressive inheritance

We define transgressive score as the ratio between standard deviation of NormDiff scores 

among 43 segregants and absolute difference between NormDiff scores of two parental 

strains. Biologically, if transgressive score is low, the phenotypes are likely to follow 

Mendelian inheritance, otherwise they exhibit transgressive inheritance. We calculated the 

transgressive score for each of the 930 variable binding traits, and found that 78% binding 

variation traits have transgressive score less than 3, and thus exhibit Mendelian inheritance.

Linkage analysis

To test for linkage between an individual quantitative trait and a genetic marker, we 

performed simple linear regression to compare the quantitative trait differences between 

genotype groups. The genotype information was obtained from Mancera et al.3. In their 

original study, 55958 markers were genotyped. We removed 2498 markers with less than 5 

occurrences of either parental genotype. A major chromosome region filtered by this step is 

chrIII:177396..210630, which due to our selection of MATa segregants for pheromone 

treatment, caused a biased representation of the S96 parental genotype in markers near the 

Zheng et al. Page 9

Nature. Author manuscript; available in PMC 2010 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATa locus. The genotype of the markers was evenly distributed across the 43 segregants: 

50.7% inherited the S96 allele, and 49.3% inherited the HS959 allele.

Neighboring markers tend to segregate together due to strong linkage. These markers are 

redundant in QTL analysis and were consolidated into 2592 nonredundant marker sets 

spanning 9.15 Mb in physical distance, and 6995 cM in genetic distance. To compute the 

empirical false discovery rate, we randomly shuffled the columns of quantitative traits for 45 

strains (therefore maintaining the correlation structure among different traits), and repeated 

the linkage analysis. To test for linkage between a cluster of quantitative traits and a genetic 

marker, we first computed the average trait for the cluster (trait with negative correlations to 

other traits in the same cluster was subtracted from others), and applied the same approach 

on linkage analysis.

Motif Analysis

We used TAMO package7 to search for 124 position weight matrices (PWM) of fungi 

transcription factors8 in sequences of variable Ste12 binding regions using a best match 

cutoff of 0.9 fold. To test whether the motif occurrence frequency is different between two 

sets of non-overlapping genomic regions, we compared motif PWM occurrence frequency 

of the set of interest and the control set, and then calculated Binomial p-value with edge 

effects taken into consideration7.

Trait clustering

We performed hierarchical clustering on 930 quantitative traits with Cluster3.0 9, using 

absolute centered correlation and complete linkage. The correlation threshold to divide 

clusters was determined using similar strategy as in Yvert et al.10. The highest pair-wise 

correlation between traits is 0.98, whereas the value obtained from a 100 permutation 

average is only 0.73. For clusters with three or more traits, we defined the cluster-wise 

correlation value as the smallest pair-wise correlation value in the cluster. The highest 

cluster-wise correlation of the 3-trait cluster is 0.97, while the maximal value obtained from 

100 permutations is only 0.53. We therefore used 0.53 as cut-off (where we expect 0 false 

positive clusters with more than two traits), and obtained 121 mutually exclusive clusters.

Microarray experiment and data analysis

Microarray experiments were performed for 43 segregants and 2 parental strains in 

pheromone treated cells, and also for 2 parental strains and 1 segregant (SEG8) without 

pheromone treatment. Ambion Ribopure-yeast kit was used to extract total RNA from 10 ml 

yeast cultures. RNA integrity was examined by Agilent Bioanalyzer, and all samples had 

260/280 ratios ~2.2, and 260/230 ratios >2.0. mRNA purification, cDNA synthesis and 

hybridization to Agilent Yeast Gene Expression 8x15K Array steps were performed at 

Microarray Core Facility at Cornell University.

To check alpha factor specific pattern of differential gene expression, quantile normalization 

was performed across 48 samples, data were log-transformed and results subjected to 

Principal Component Analysis (PCA). Alpha factor treated and untreated groups were 

clearly separated along the direction of first principal component. Gene set enrichment 
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analysis (GSEA)11 was performed, and exhibited significant concordance between our lists 

of differentially expressed genes and Ste12 binding target genes.

To determine the correlation between gene expression level and Ste12 binding strength, we 

first updated 6233 annotated ORFs on the array with the newest SGD annotation, and 

obtained 6217 unique ORF targets. Pearson's correlation of log-transformed gene expression 

data and NormDiff scores of nearest target gene across 45 strains were calculated. The 

histogram is compared with background histogram calculated from 1,000 permutations of 

correlation between Ste12 binding and expression of a randomly chosen gene (Fig. 5).

Investigation of potential artefact

To ensure that the Ste12 binding variation observed from the ChIP-Seq data are not due to 

experimental artefacts, we performed several types of analyses. We first examined the 

reproducibility between biological replicates. We divided the entire nuclear genome into 

500bp bins, counted the number of sequencing reads in each bin for each strain, and 

calculated pair-wise Pearson's correlation between replicates and different strains. The 

correlations between two biological replicates of the same strain are significantly higher 

than those obtained from two different strains (Fig. S2b, median correlation between 

replicate is 0.96 and that between different strains is 0.89; Wilcoxon rank-sum P < 0.001). 

We also repeated this analysis on 930 variable binding regions, and reached similar results 

(Fig. S2c, median correlation between replicates is 0.98 and that between different strains is 

0.95; Wilcoxon rank-sum P < 0.001). This indicates that the variations we observed are 

mostly related to the differences in genetic background.

Second, we examined the effect of alignment bias. Since the ChIP-Seq data were aligned 

against the S288c reference genome, which is a perfect match to one parental strain (S96), 

but different from the other parental strain (YJM789), it is possible that some sequencing 

reads were not aligned. We expect this effect to be small because the alignment algorithm 

(Eland) allows up to two mismatches for each 30 bp read and YJM789 only has an average 

of 5 single nucleotide polymorphisms (SNPs) per kb and 0.5 insertion/deletions (Indels) 

with respect to the S288C genome12. To estimate the mappability due to polymorphisms 

between S288c and YJM789, we simulated the case that a 30bp read is randomly drawn 

from the genome, and used location information of 55958 SNP and Indel markers to 

determine whether the 30bp region contains more than one Indel or more than two SNPs, 

and thus not mappable. We randomly drew 1,000,000 reads, and recorded the percentage of 

non-mappable reads. Through simulation, we estimated that the probability of a read unable 

to match due to the presence of a polymorphism is as low as 2.05%. Nonetheless, we also 

aligned sequencing reads from each individual strain against the genomic DNA sequence of 

YJM78912. We then counted the number of reads that mapped to the 930 variable regions in 

S288c and their homologous regions in YJM789. The pairwise Pearson's correlation 

between different aligning schemes for the same strain were significantly higher than inter-

strain correlations (Fig. S2d, median correlation between mapping schemes is 0.98 and that 

between different strains is 0.93; Wilcoxon rank-sum P < 0.001). This result indicates that 

the mappability of the reads with YJM789 genotype is not a major source of TF binding 

variation.
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Finally, for each of the 930 variable binding regions, we inspected whether the two 

alignment schemes yielded a similar variation pattern across all 45 strains by calculating the 

correlations between different mapping schemes for each region across the 45 strains. In this 

scenario, the correlation between two mapping schemes of the ChIP sample should deviate 

from 1.0 due to the composite effect of Ste12 binding differences across strains and 

mappability issue caused by polymorphisms between S288c and YJM789; whereas the 

correlations between two mapping schemes of the Input sample deviate from 1.0 only due to 

the mappability issue. Therefore by comparing the correlation histograms of ChIP and Input 

samples, we can estimate to what extent mappability issue confounds the binding differences 

we are interested in. The correlations from Input samples are extremely high, (median r = 

0.95), whereas the correlation from ChIP samples of different strains are lower but still 

reasonably high (median r = 0.70). Thus, we conclude that few binding sites differences are 

likely to be due to read alignment issues. Importantly, the significantly associated cis- and 

trans- traits exhibit high correlations from Input samples (median r = 0.93 for cis- traits and 

0.94 for trans- traits), suggesting the robustness of our results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Extensive Ste12 binding variations among S288c × JM789 derivatives
a, ChIP-Seq signal tracks showing Ste12 binding sites that segregate in a Mendelian (Left) 

or transgressive fashion (Middle and Right). The color indicates genotype background in the 

depicted regions: red (S96), green (HS959). Asterisks indicate peaks of interest. b, Overall 

genomic positions of Ste12 binding regions in S96 or HS959 under vegetative growth 

condition (green), pheromone treatment (blue), and most variable binding regions across 

segregants (red). c, Overlap of target genes (from 6644 annotated genes) between parent 

strains with pheromone treatment. Enriched GO categories are listed.
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Figure 2. Whole-genome linkage analysis of variable Ste12 binding traits
a, Chromosomal position of significantly associated binding traits (X axis) relative to 

markers (Y axis) passing threshold (FDR = 0.01). See Fig. S4 for results with different 

thresholds. Trans-QTL regions validated by the clustering method are shown on the right. 

Two experimentally validated causative genes (AMN1 and FLO8) underlying the trans-

QTLs are also shown. b, Histogram of markers significantly associated with multiple 

binding traits. c, Effect size (explained variance in quantitative traits) of cis-QTLs < 10kb to 

the trait (black), cis-QTLs > 10kb to the trait (red), and trans-QTLs (green).
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Figure 3. Motif analysis of cis-variable binding regions
a-c, Ste12 binding signals (NormDiff scores) against the genotypes of Ste12 motif, Yhp1 

motif and Yap5 motif in two target loci. Each dot plot shows strains with S96 inheritance 

(red dot), strains with HS959 inheritance (green dot). The mean and standard error of each 

group, and Ste12 consensus sequence are also shown (Red, S96; green, HS959). d-f, ChIP-

Seq signal tracks of the depicted regions in dot plots a-c. The color in each track indicates 

genotype background in the depicted regions: red (S96), green (HS959). Additional 

examples are in Fig. S5.

Zheng et al. Page 17

Nature. Author manuscript; available in PMC 2010 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Validation of two causative quantitative trait genes
a, ChIP-Seq signal tracks showing Ste12 binding of wild-type, amn1Δ, and ics2Δ parent 

strains, corresponding to variable binding trait B12S708456E710089. b, ChIP-Seq signal 

tracks showing Ste12 binding of wild-type, flo8Δ, and gle2Δ parent strains, corresponding to 

variable binding traits B1S202520E202741. ics2Δ and gle2Δ strains have no effect on 

binding. c, d, Comparison of Ste12 binding across 10 and 5 associated variable binding 

regions in WT and knockout strains rspectively. Error bar represents s.e.m. Additional 

results are in Fig. S7.
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Figure 5. Ste12 binding significantly correlates with downstream gene expression
a, Examples of high correlation between binding variation and gene expression variation. 

Columns in the heat maps are ordered by the genotype of markers with highest association 

to the Ste12 binding traits. 10 additional clusters are shown in Fig. S8. b, Histogram (blue) 

and background histogram (yellow) of correlation coefficients between Ste12 binding and 

expression of nearest gene. Regions with absolute Pearson's correlation |r| > 0.335 are 

shaded.
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