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Abstract

T cell discrimination of self and non-self is the foundation of the adaptive immune response, and is orchestrated by
the interaction between T cell receptors (TCRs) and their cognate ligands presented by major histocompatibility
(MHC) molecules. However, the impact of host immunogenetic variation on the diversity of the TCR repertoire
remains unclear. Here, we analyzed a cohort of 666 individuals with TCR repertoire sequencing. We show that TCR
repertoire diversity is positively associated with polymorphism at the human leukocyte antigen class I (HLA-I) loci,
and diminishes with age and cytomegalovirus (CMV) infection. Moreover, our analysis revealed that HLA-I
polymorphism and age independently shape the repertoire in healthy individuals. Our data elucidate key
determinants of human TCR repertoire diversity, and suggest a mechanism underlying the evolutionary fitness
advantage of HLA-I heterozygosity.
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Background
The large sequence diversity of the TCR repertoire is a
hallmark of the adaptive immune system, and varies
markedly across individuals [1–4]. This diversity, esti-
mated to exceed 106 sequences in humans [5–7], is
shaped by stochastic [8] and genetic [9] effects in con-
junction with continuous immunological challenges
throughout life [9]. In the thymus, VDJ recombination
facilitates random rearrangement of the complementary
determining region 3 (CDR3) within the TCR α and β
loci, followed by random nucleotide insertion and dele-
tions at junction sites [10]. The CDR3 regions of the
TCR are primarily responsible for interacting with the
peptide presented by MHC [11], with the potential

diversity of CDR3β exceeding that of CDR3α [12].
Whether a particular TCR joins the periphery depends
on its behavior during thymic selection, in which TCRs
interact with both self peptide and MHC [13, 14]. TCRs
that fail to bind to peptide-MHC complexes and those
that bind too strongly are eliminated [15, 16]. Those
TCRs that survive thymic selection are responsible for
mounting productive immune responses through con-
tinuous interaction with self and foreign peptides bound
to MHC molecules. TCR diversity can determine how
efficiently one rejects pathogens such as viruses, and po-
tentially cancer cells. Accordingly, considerable effort
has been devoted to understanding how MHC genetic
variation impacts the TCR repertoire.
MHC restriction is the cornerstone of T cell recogni-

tion [17], and prior reports have assessed the effect of
the presence of specific MHC alleles on TCR V gene
usage [18, 19] and repertoire sharing [9, 20]. These data,
together with structural studies of the TCR-MHC inter-
face [11, 21–24], have provided key insights into how
the TCR binds MHC and peptide. However, it remains
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unknown to what extent HLA polymorphism affects
TCR repertoire diversity in humans.

Results
We sought to address this question. Thus, we studied a
cohort of 666 individuals, with annotated CMV serosta-
tus, ethnicity, age, sex, high-resolution HLA class I and
class II genotypes, and bulk TCRβ sequencing from
PBMCs [9, 25] (Additional file 1: Table S1). 85% of the
individuals were white, 52% were male, and 45% were fe-
male, with the remainder of unknown sex. We first
quantified TCR repertoire diversity by applying two
measures widely used in repertoire and ecological
studies—the number of unique CDR3β amino acid
sequences (a.k.a. richness), and Shannon entropy, a
diversity measure that is weighted by the abundance of
each CDR3 [26]. We found both measures to be highly
correlated, and observed high variability in TCR
repertoire diversity across the cohort (Fig. 1a; richness
range 1055–415,509, Shannon entropy range 8.1–18.7;
R = 0.78, P < 0.0001). Accordingly, we anticipated that
CMV—a chronic infection prevalent in 30–90% of adults
[27] and a model system for the study of public T cell
responses [28]—would be a key determinant of the
observed wide variation in repertoire diversity. Indeed,
individuals with CMV (CMV+) exhibited a reduction in
TCR repertoire diversity compared to those without
(CMV-) (Fig. 1b-c). This reduction was most striking
when using Shannon entropy (P < 0.0001, Wilcoxon test;
Fig. 1b), consistent with prior work demonstrating that
CMV alters the diversity, but not overall size of the
CD8+ T cell response [29]. Altogether, these data sug-
gest that CMV diminishes TCR repertoire diversity, and
are in line with a recent study demonstrating dramatic
reduction of the antibody repertoire after measles infec-
tion [30]—highlighting the need for widespread and con-
tinuous vaccination against infectious disease.
We next limited our analyses to individuals with

complete HLA-I (HLA-A, B, & C) and II (HLA-DRB,
DPB, DQB, DQA, & DPA) genotypes, and given the im-
pact of CMV on the TCR repertoire described above,
considered CMV+ and CMV- individuals separately
(Additional file 2: Fig. S1). We used a linear model to
test the association between HLA polymorphism—mea-
sured here as the number of different HLA-I alleles in
each individual—and TCR repertoire diversity in CMV-
individuals. Strikingly, we observed that TCR repertoire
diversity was positively associated with the number of
HLA-I alleles (P = 0.02; Fig. 1d). Furthermore, we ob-
served that CMV- individuals fully heterozygous at
HLA-I genes had higher TCR repertoire diversity than
individuals who were homozygous at least in one HLA-I
locus (P = 0.02; Fig. 1e). We found the same associations
when considering Shannon entropy instead of richness

(Additional file 2: Fig. S2a-b). Importantly, these results
were independent of age, previously shown to be nega-
tively correlated with TCR repertoire diversity [31–33]
and shown here to be independent of the number of
HLA-I alleles. Interestingly, we found no association
between HLA-II polymorphism and TCR repertoire
diversity (Fig. 1f-g and Additional file 2: Fig. S2c-d).
These data may suggest that heterozygosity at HLA-II
may be disadvantageous given the strong associations
between many HLA-II haplotypes and susceptibility to
autoimmune disease [34]. Finally, we repeated these
analyses in CMV+ individuals, and observed no
association between HLA polymorphism and TCR
repertoire diversity (Additional file 2: Fig. S3). Notably,
we found no association between age and number of
unique CDR3s in CMV+ individuals either (P = 0.41;
Fig. 2a), whereas in CMV- negative individuals, we
observed that the number of unique CDR3s diminished
with age (P = 0.002; Fig. 2b). When considering Shannon
entropy instead of richness, the effect of age was weaker
in CMV+ individuals (P = 0.03; Additional file 2: Fig.
S4a) than in CMV- individuals (P = 0.0005; Additional
file 2: Fig. S4b). These results suggest a dominant role of
chronic infection over host genetics and age in signifi-
cantly altering the TCR repertoire. However, HLA diver-
sity may affect antigen-specific TCRs rather than the
whole repertoire as suggested by past studies [35], and
should be the subject of future complementary analyses
focused on the diversity of CMV-specific expanded
clones.
We next sought to assess the combined effect of age

and HLA-I polymorphism on repertoire diversity. We
developed three separate linear models in CMV- individ-
uals—one with age alone, one with number of unique
HLA-I alleles alone, and one with both age and number
of unique HLA-I alleles. We selected the most strongly
supported model based on the Akaike information cri-
terion (AIC), i.e., the best-fit model yields the smallest
AIC value [36]. We found that the best model that ex-
plained the observed TCR repertoire diversity in these
individuals included both variables, (AIC = 4601.28; Fig.
2c; AIC = 575.11, Additional file 2: Fig. S4c). As
expected, the combined effect of age and HLA-I
polymorphism was not observed in CMV+ individuals
(Additional file 2: Fig. S4d).
Recent studies have demonstrated that HLA-I evolu-

tionary divergence (HED), a continuous and granular
metric of HLA-I polymorphism, measures the breadth of
the immunopeptidome bound by an individual’s MHC-I
molecules [37, 38]. Therefore, we sought to investigate
the association between mean HED, an aggregate
measure of HED across the three classical HLA-I loci
[37, 38], and TCR repertoire diversity. High mean
HED—defined here as mean HED greater than the
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median—was associated with increased TCR repertoire
diversity in CMV- individuals, and was independent of
age (P = 0.03; Additional file 2: Fig. S5a). These results
suggest that individuals with more divergent HLA geno-
types, and correspondingly broader immunopeptidomes,
have increased TCR repertoire diversity. Moreover, con-
sistent with our earlier analysis, the best model of TCR
repertoire diversity included both high mean HED and
age (AIC = 577.6; Additional file 2: Fig. S5b). This effect
was not observed in CMV+ individuals (Additional file
2: Fig. S5c-d). These data thus provide further evidence
for the notion that TCR repertoire diversity is increased
in individuals with greater HLA diversity.

Conclusions
To our knowledge, our study is the first to show
empirically that HLA-I polymorphism increases TCR

repertoire diversity in humans, and has several import-
ant implications. First, our results add an important
dimension to the HLA heterozygote advantage hypoth-
esis, which states that HLA-heterozygous individuals
present a broader immunopeptidome for recognition by
cytotoxic T cells [17, 35, 37–41]. In particular, our data
suggest that an additional potential consequence of
enhanced peptide presentation in HLA-heterozygous in-
dividuals is a more diverse TCR repertoire, which could
improve immune protection and evolutionary fitness.
An important consideration is the direction of the

association between HLA polymorphism and TCR
repertoire diversity, which has remained controversial.
The TCR depletion hypothesis suggests that increasing
individual MHC polymorphism—leading to more self
peptides presented during negative selection—creates
“holes” in the TCR repertoire, thereby decreasing its

Fig. 1 CMV serostatus and HLA-I genotype are associated with TCR repertoire diversity. a Variation in number of unique CDR3s and Shannon
entropy, two measures of TCR repertoire diversity, across the cohort. b Association of CMV seropositivity (CMV+) with reduced TCR repertoire
diversity (Shannon entropy). P = 6.43e-14, two-sided Wilcoxon test. c Association of CMV seropositivity (CMV+) with reduced TCR repertoire
diversity (number of unique CDR3s). P = 0.07, two-sided Wilcoxon test. d Association of HLA-I polymorphism with increased number of unique
CDR3s in CMV- individuals; HLA-I P = 0.02, estimate = 18,787.8; age P = 0.002, estimate − 1326.3. P-values are from a linear model incorporating
number of unique HLA-I alleles and age. e Association of full HLA-I heterozygosity (6 different HLA-I alleles) with number of unique CDR3s in
CMV- individuals; full HLA-I heterozygosity P = 0.02, estimate = 29,248.4; age P = 0.002, estimate = − 1342.6. P-values are from a linear model
incorporating a binary variable encoding full HLA-I heterozygosity, and age as a continuous variable. f No association between HLA-II
polymorphism and number of unique CDR3s in CMV- individuals; HLA-II P = 0.82, estimate = 1224.9; age P = 0.006, estimate = − 1182.1. P-values
are from in a linear model incorporating number of unique HLA-II alleles and age. g No association between full HLA-II heterozygosity (10 unique
HLA-II alleles) and number of unique CDR3s in CMV- individuals; HLA-II P = 0.21, estimate = − 17,362.9; age P = 0.006, estimate = − 1153.4. P-values
are from a linear model incorporating a binary variable encoding full HLA-II heterozygosity, and age as a continuous variable
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diversity in the periphery [42–45]. However, there is no
experimental evidence for the TCR depletion hypothesis
in humans. Our results may suggest a dominant role for
positive selection in influencing TCR repertoire diversity.
This idea is in line with prior theoretical work suggest-
ing that additional MHC variants enhance positive selec-
tion, and consequently the number of T cells that can
survive negative selection [46]. Indeed, our study moti-
vates empirical investigation of how each step of thymic
selection affects the TCR repertoire in an MHC-
dependent fashion, which remains unclear.
Finally, while our study demonstrates that HLA-I poly-

morphism, age, and chronic infection shape the TCR
repertoire, a full account of the determinants of TCR
repertoire diversity remains unknown. Of note, variation
in TCR repertoire diversity across individuals may be
driven in part by differences in T cell sampling. The
sample size variation in our cohort spans an order of
magnitude, and may be driven in part by uncontrolled
factors in the sequencing process. As a possible control
for sample size variation, we quantified TCR repertoire
diversity in CMV- individuals using a normalized form
of the Shannon entropy, (Methods). Using this slightly
corrected measure, we still observed a positive associ-
ation between HLA-I polymorphism and TCR repertoire
diversity (Additional file 2: Fig. S6). Indeed, our analyses
suggest that despite confounding variation in TCR rep-
ertoire sample sizes across individuals, biological factors
such as age and HLA-I polymorphism independently
affect TCR repertoire diversity. In addition, prior studies

have suggested that the TCR repertoire differs by sex
[42, 47]. We also detected a trend towards reduced TCR
repertoire diversity in CMV- males in our cohort (P =
0.09, Additional file 2: Fig. S7). However, larger numbers
may be required to clarify this association. Future work
may investigate how the TCR repertoire is shaped by
vaccination, or how HLA polymorphism and TCR reper-
toire diversity act in concert to influence overall
mortality.

Methods
Cohort assembly
We analyzed all individuals in the cohort from Emerson
et al and Dewitt III et al [9, 25] (Additional file 1: Table
S1). This cohort represents the largest dataset generated
to date with bulk TCRβ-sequencing from PBMCs and 4-
digit HLA-I & II genotypes. Full details of the TCRβ-
sequencing and HLA genotyping are available in the
original studies. Briefly, CMV serostatus was tested at
Fred Hutchinson Cancer Center following protocol
approval by an institutional review board, and written
informed consent. The CDR3 region of the TCRβ locus
was amplified and sequenced from PBMCs as described
previously [6] (raw files available at https://clients.adapti-
vebiotech.com/pub/Emerson-2017-NatGen). The HLA
genotypes for these individuals were generated and
validated via molecular typing methods (specific oligo-
nucleotide probe typing, Sanger sequencing, or next
generation sequencing) together with SNP imputation in
DeWitt/Bradley et al [9] (raw files available at doi:

Fig. 2 Age and HLA-I polymorphism independently affect TCR repertoire diversity in CMV- individuals. a No association between age and
number of unique CDR3s in CMV+ individuals; age P = 0.41, estimate = − 378.5; HLA-I P = 0.70, estimate = − 3318.9. P-values are from a linear
model incorporating age and number of unique HLA-I alleles. b Association between age and number of unique CDR3s in CMV- individuals; age
P = 0.002, estimate = − 1326.3; HLA-I P = 0.02, estimate = 18,787.8. P-values are from a linear model incorporating age and number of unique HLA-
I alleles. c AIC analysis of three linear models with number of unique CDR3s as the dependent variable, and either age alone, number of unique
HLA-I alleles alone, or both as the independent variables. All models were fit in CMV- individuals. Data show that the best model that explains
the observed TCR repertoire diversity across these individuals is the one with both age and number of unique HLA-I alleles (AIC = 4601.28)
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https://doi.org/10.5281/zenodo.1248193). In particular,
their study genotyped the 3 classical HLA-I loci (HLA-
A, B, & C), and 5 HLA-II loci (HLA-DRB, DPB, DQB,
DQA, & DPA). Thus, the range of unique HLA-I alleles
for HLA-I was 3 (fully homozygous) to 6 (fully heterozy-
gous), and 5–10 for HLA-II.

Calculation of repertoire diversity metrics
Two metrics were used to measure TCR repertoire di-
versity- richness and Shannon entropy. For richness, we
counted the total number of unique productive CDR3β
amino acid sequences for each individual. The Shannon
entropy of each individual’s repertoire was calculated
using all CDR3β sequences, defined as:

H ¼ −
X

s
f sð Þ log f sð Þ

where the sum is taken over all clones s and f(s) is the
frequency of clone s. The normalized Shannon-Wiener
index was calculated using the vdjtools package [48].

Calculation of HLA evolutionary divergence
HLA evolutionary divergence (HED) was calculated for
each individual as described previously [37, 38]. First,
the protein sequences corresponding to the peptide
binding domain of each allele of each patient’s HLA-I
genotype (exons 2 and 3, obtained from the ImMunoGe-
neTics/HLA [49] and Ensembl [50] databases) were
extracted. The divergence between allele sequences was
calculated using the Grantham distance [51], which con-
siders the physiochemical properties of amino acids, and
thus the functional similarity between sequences. First,
given a particular HLA-I locus, the sequences of the
peptide-binding domains of each allele are aligned [52]
and the Grantham distance is calculated as the sum of
amino acid differences along the sequences of the
peptide-binding domains:

Grantham Distance ¼
X

Dij

¼
X

α ci − c j
� �2 þ β pi − pj

� �2
þ γ vi − v j

� �2
� �1=2

where i and j are the two homologous amino acids at a
given position in the alignment and D is the Grantham
distance between them. c, p and v represent compos-
ition, polarity and volume of the amino acids, respect-
ively, and α, β and γ are constants. All values are taken
from the original study. The final Grantham distance is
calculated by normalizing the value from equation above
by the length of the alignment between the peptide-
binding domains of a particular HLA-I genotype’s two
alleles. An analysis presented in Pierini & Lenz of
multiple common sequence divergence measures
showed that the correlation of Grantham distance with

the number of peptides bound by both alleles of a
heterozygous genotype exceeded that of the other
distance measures. Mean HED was calculated as the
mean of divergences at HLA-A, HLA-B and HLA-C.

Statistical analyses
All analyses involving associations between number of
unique HLA-I & II alleles and TCR repertoire diversity
were conducted using a linear model with the lm()
function in the R Statistical Computing Environment
v3.6.1 (http://www.r-project.org). The numbers of
unique HLA-I and II alleles were considered ordinal data
for linear modeling. Akaike Information Criteria (AIC)
for comparisons of linear models with age and/or HLA-I
polymorphism were calculated using the AIC() function
in R.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12979-020-00195-9.

Additional file 1: Table S1. Individuals from Emerson et al and Dewitt
III et al and all variables analyzed in the present study.

Additional file 2: Fig. S1. Cohort assembly and filtering. Flowchart
depicting the studies in which TCR sequencing and HLA genotyping
were performed, and steps used to select individuals for analysis. Fig. S2.
Association of HLA-I and II polymorphism with TCR repertoire Shannon
entropy in CMV- individuals. a Association of HLA-I polymorphism with
increased Shannon entropy in CMV- individuals; HLA-I P = 0.008, estimate
= 0.33; age P = 0.0005, estimate = -0.02. P-values are from a linear model
incorporating the number of unique HLA-I alleles and age. b Association
of full HLA-I heterozygosity (6 unique HLA-I alleles) with increased
Shannon entropy; full HLA-I heterozygosity P = 0.01, estimate = 0.46; age
P = 0.0005, estimate = -0.02. P-values are from a linear model
incorporating a binary variable encoding full HLA-I heterozygosity, and
age as a continuous variable. c No association between HLA-II
polymorphism and Shannon entropy; HLA-II P = 0.24, estimate = 0.1; age
P = 0.002, estimate = -0.02. P-values are from a linear model
incorporating number of unique HLA-II alleles and age. d No association
between full HLA-II heterozygosity (10 unique HLA-II alleles) and Shannon
entropy; full HLA-II heterozygosity P = 0.65, estimate = -0.10; age P =
0.002, estimate = -0.02. P-values are from a linear model incorporating a
binary variable encoding full HLA-II heterozygosity, and age as a
continuous variable. Fig. S3. Neither HLA-I nor HLA-II polymorphism is
associated with TCR repertoire diversity in CMV+ individuals. a No
association between HLA-I polymorphism and number of unique CDR3s;
HLA-I P = 0.70., estimate = -3318.9; age P = 0.41, estimate = -378.5. P-
values are from a linear model incorporating the number of unique HLA-I
alleles and age. b No association between HLA-I polymorphism and
Shannon entropy; HLA-I P = 0.80, estimate = -0.04; age P = 0.03, estimate
= -0.02. P-values are from a linear model incorporating the number of
unique HLA-I alleles and age. c No association between HLA-II
polymorphism and number of unique CDR3s; HLA-II P = 0.45, estimate =
3918.7; age P = 0.37, estimate = -414.3. P-values are from a linear model
incorporating the number of unique HLA-II alleles and age. d No
association between HLA-II polymorphism and Shannon entropy; HLA-II P
= 0.70, estimate = 0.04; age P = 0.03, estimate = -0.02. P-values are from
a linear model incorporating the number of unique HLA-II alleles and
age. Fig. S4. Age and HLA-I polymorphism independently affect TCR
repertoire Shannon entropy in CMV- individuals. a Association between
age and Shannon entropy in CMV+ individuals; age P = 0.03, estimate =
-0.02; HLA-I P = 0.80, estimate = -0.04. P-values are from a linear model
incorporating age and number of unique HLA-I alleles. b Association
between age and Shannon entropy in CMV- individuals; age P = 0.0005,
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estimate = -0.02; HLA-I P = 0.008, estimate = 0.33. P-values are from a
linear model incorporating age and number of unique HLAI alleles. c AIC
analysis of three linear models with Shannon entropy as the dependent
variable, and either age alone, number of unique HLA-I alleles alone, or
both as the independent variables. All models were fit in CMV-
individuals. Data show that the best model that explains the observed
TCR repertoire diversity across these individuals is the one with both age
and number of unique HLA-I alleles (AIC = 575.11). d AIC analysis of
three linear models with Shannon entropy as the dependent variable,
and either age alone, number of unique HLA-I alleles alone, or both as
the independent variables. All models were fit in CMV+ individuals. Data
show that number of unique HLA-I alleles adds no effect beyond the
effect of age alone. Fig. S5. Mean HLA evolutionary divergence is
associated with increased TCR repertoire diversity in CMV- individuals. a
Association of high mean HED (Mean HED >= median) with increased
Shannon entropy in CMV- individuals; high mean HED P = 0.03, estimate
= 0.37; age P = 0.001, estimate = -0.02. P-values are from a linear model
incorporating corresponds a binary variable encoding high mean HED,
and age as a continuous variable. b AIC analysis of three linear models
with number of unique CDR3s as the dependent variable, and either age
alone, high mean HED alone, or both as the independent variables. All
models were fit in CMV- individuals. Data show that the best model that
explains the observed TCR repertoire diversity across these individuals is
the one with both age and high mean HED (AIC = 577.6). c No
association of high mean HED (Mean HED >= median) with Shannon
entropy in CMV+individuals; high mean HED P = 0.87, estimate = -0.04;
age P = 0.03, estimate = -0.02. P-values are from a linear model
incorporating a binary variable encoding high mean HED, and age as a
continuous variable. d AIC analysis of three linear models with Shannon
entropy as the dependent variable, and either age alone, high mean HED
alone, or both as the independent variables. All models were fit in CMV+
individuals. Data show that high mean HED adds no effect beyond the
effect of age alone. Fig. S6. Association of HLA-I diversity with TCR
repertoire diversity measured using the normalized Shannon-Wiener
index in CMV- individuals. a Association of HLA-I polymorphism with
normalized Shannon-Wiener index in CMV- individuals; HLA-I P = 0.07,
estimate = 0.006; age P = 0.0002, estimate -0.0007. P-values are from a
linear model incorporating number of unique HLA-I alleles and age. b
AIC analysis of three linear models with TCR normalized Shannon-Wiener
index as the dependent variable, and either age alone, number of unique
HLA-I alleles alone, or both as the independent variables. Data show that
the best model that explains the observed TCR repertoire diversity across
these individuals is the one with both age and number of unique HLA-I
alleles (AIC = -727.0241). c Association of high mean HED (Mean HED >=
median) with increased normalized Shannon-Wiener index in CMV-
individuals; high mean HED P = 0.01, estimate = 0.01; age P = 0.01,
estimate = -0.0006. P-values are from a linear model incorporating
corresponds a binary variable encoding high mean HED, and age as a
continuous variable. d AIC analysis of three linear models with TCR
normalized Shannon-Wiener index as the dependent variable, and either
age alone, high mean HED alone, or both as the independent variables.
Data show that the best model that explains the observed TCR repertoire
diversity across these individuals is the one with both age and high
mean HED (AIC = -729.9617). Fig. S7. Association of sex with TCR
repertoire diversity in CMV- individuals. a Linear model testing the
association of sex with number of unique CDR3s in CMV- individuals. b
Linear model testing the association of sex with Shannon entropy in
CMV- individuals.
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