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Original Article

Genetic and environmental influences on blood
pressure variability: a study in twins

Xiaojing Xu?, Xiuhua Ding®, Xinyan Zhang®, Shaoyong Su?, Frank A. Treiber®, Robert Vlietinck?,
Robert Fagard®, Catherine Derom®, Marij Gielen®9, Ruth J.F. Loos™"}, Harold Snieder®, and

Xiaoling Wang?

Obijectives: Blood pressure variability (BPV) and its
reduction in response to antihypertensive treatment are
predictors of clinical outcomes; however, little is known
about its heritability. In this study, we examined the
relative influence of genetic and environmental sources of
variance of BPV and the extent to which it may depend on
race or sex in young twins.

Methods: Twins were enrolled from two studies. One
study included 703 white twins (308 pairs and 87
singletons) aged 18-34 years, whereas another study
included 242 white twins (108 pairs and 26 singletons)
and 188 black twins (79 pairs and 30 singletons) aged
12-30 years. BPV was calculated from 24-h ambulatory
blood pressure recording.

Results: Twin modeling showed similar results in the
separate analysis in both twin studies and in the meta-
analysis. Familial aggregation was identified for SBP
variability (SBPV) and DBP variability (DBPV) with genetic
factors and common environmental factors together
accounting for 18—-40% and 23-31% of the total
variance of SBPV and DBPV, respectively. Unique
environmental factors were the largest contributor
explaining up to 82-77% of the total variance of SBPV
and DBPV. No sex or race difference in BPV variance
components was observed. The results remained the same
after adjustment for 24-h blood pressure levels.

Conclusions: The variance in BPV is predominantly
determined by unique environment in youth and young
adults, although familial aggregation due to additive
genetic and/or common environment influences was also
identified explaining about 25% of the variance in BPV.

Keywords: blacks, blood pressure variability, heritability,
meta-analysis, twin study

Abbreviations: ABP, ambulatory blood pressure; AIC,
Akaike’s information criterion; BP, blood pressure; BPV,
blood pressure variability; Cl, confidence intervals; DBPV,
DBP variability; EFPTS, East Flanders Prospective Twin
Survey; GEE, generalized estimating equations; MZm,
onozygotic; SBPV, SBP variability
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INTRODUCTION

ypertension is the major risk factor for cardiovas-
H cular disease worldwide [1]. Traditionally, it was

believed that blood pressure (BP) level on its own
could account for all the hypertension-related cardiovas-
cular risk, and for the reduction in risk due to antihyper-
tensive drug treatment [2]. In recent years, researchers have
paid more attention to BP variability (BPV), which is
generally estimated by the SD of BP assessed by 24-h
ambulatory BP (ABP) monitoring [3,4]. Increased 24-h
BPV has been shown to be associated with a greater degree
of target-organ damage [5]. Additionally, increased night-
time BPV was shown to be related with a higher rate of
cardiovascular events [6,7], carotid atherosclerosis [8] and
stroke [9]. Tts prognostic value has been confirmed by
randomized clinical trials for antihypertensive therapy that
showed reductions in 24-h BPV in addition to reductions in
mean BP in patients with normal BP levels [10,11].

It is well established that BP is a heritable trait with
genetic factors contributing about 50% of its variance
[12,13]. However, little is known about the heritability of
BPV, despite its clinical importance. In the current study, we
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analyzed ABP data from 1133 young individuals (495 twin
pairs and 143 singletons) from two twin studies, including
both white and black individuals, exploring for the first time
the relative contribution of genetic and/or environmental
sources of variance of BPV. We further examined whether
these sources of variance of BPV are independent of mean
BP. Finally, we investigated the extent to which these
sources of variance depend on race or sex.

METHODS

Patients

The present study comprised twins from the Prenatal pro-
gramming twin study, a nested study in East Flanders
Prospective twin Survey (EFPTS), and the Georgia cardio-
vascular twin study.

The EFPTS study is a population-based survey, which is
conducted in a homogenous white population. The EFPTS
is still ongoing and contains data on all multiple births in the
Belgian Province of East Flanders since 1964 [14]. Zygosity
was determined at birth according to sequential analysis
based on sex, fetal membranes, umbilical cord blood
groups, placental alkaline phosphatase as well as DNA
fingerprints [15]. The Prenatal programming twin study
randomly contacted 803 pairs out of 2141 twin pairs regis-
tered between 1964 and 1982. Details of the selection
process have been described previously [10]. Patients were
excluded according to the following criteria: one or both
twin pairs had died or suffered from major congenital
malformation; one or both twin pairs had moved out of
the area; participants were taking any kind of medication
that could affect BP; female patients got pregnant before the
start of the study, or twin pairs did not have accurate
zygosity information. Eventually, 768 twins of 418 pairs
(overall response, 52.1%) aged 18—34 years participated in
the Prenatal programming twin study conducted from 1997
to 2000. The study was approved by the Local Medical
Ethics Committee and all participants gave signed written
informed consents. A total of 703 twins (308 pairs and 87
singletons, aged 18-34) with valid 24-h ambulatory BP
(ABP) recordings were included in the current study.

The Georgia cardiovascular twin study was established
in 1996, including roughly equal numbers of white and
black youth (>500 twin pairs) with the purpose of explor-
ing the change in relative influence of genetic and environ-
mental factors on the development of cardiovascular risk
factors [17,18]. All twin pairs were reared together and
zygosity was determined using five standard microsatellite
markers in DNA collected with buccal swabs. All the twins
were recruited from the southeastern United States and
were overtly healthy and free of any acute or chronic illness
based on parental report. Study design, selection criteria
and the criteria to classify twins as white or black for this
study have been described previously [12,13]. During the
second visit (from January 2001 to December 2003), ABP
recording was offered to 678 twin patients between
October 2001 to December 2003 with 493 patients taking
this test. Compared with the patients who refused to take
the ABP recording (2 =185), the patients who took this test
were younger (17.3 vs. 18.2, P < 0.01) and more likely to be
black (45 vs. 33%, P<0.01). A total of 430 individuals
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including 187 pairs and 56 singletons aged 12-30 years
of both races with valid 24-h ABP data were included in this
study. The Institutional Review Board at the Medical Col-
lege of Georgia had given approval for this study. Informed
consent was provided by all patients and by parents if
patients were less than 18 years.

Measurements

For the Prenatal programming twin study, the detailed
measurement procedures have been reported for office
BP, ABP recordings, as well as other characteristics [15].
Generally, all twins had a 2-h examination in the morning.
Basic information was recorded, and clinical characteristics
were measured according to established protocols. Office
BP was measured on the right arm in triplicate, after 5 min
rest in the supine position. The reported office BP was the
average of these three recordings. The 24-h ABP monitoring
device (SpaceLlabs, Inc., Redmond, Washington, USA)
was applied for 24-h BP and heart rate recordings. The
cuff of the ABP monitor was applied to the nondominant
arm by participants themselves after the investigator’s intro-
duction. This device was worn for one full 24-h period,
starting in the morning (0600 to 0800 h) until they woke up
the next day. The frequency of ABP monitoring was every
15 min from 0800 to 2200 h, and every 30 min between 2200
and 0800 h.

For the Georgia cardiovascular twin study, the recording
procedures have also been described in detail [13,19].
Briefly, basic characteristics including height, weight and
waist were measured and BMI was calculated. Office BP
was measured at the 11th, 13th and 15th minute during a 15-
min supine relaxation period. The average of the last two
measures was reported as the office BP level. The cuff of the
ABP monitoring device (Model 90207; SpaceLabs, Inc.)
used in the Georgia cardiovascular twin study was also
fitted to the nondominant arm to obtain ABP recordings for
one full 24h period. Between 0800 and 2200 h, measure-
ments were taken every 20min, and between 2200 and
0800 h, every 30 min.

For both of these studies, daytime was defined from 0800
to 2200 h, and night-time from 2400 to 0600 h. The transi-
tional periods from 0600 to 0800 h and 2200 to 2400 h were
not included in data analysis to diminish the interindividual
variations in bed-rest time. The inclusion criteria of accept-
able ABP recordings for both studies were based on guide-
lines from the European Society of Hypertension Working
Group on BP Monitoring: SBP recording between 70 and
180 mmHg; DBP recording between 40 and 140 mmHg;
pulse pressure between 20 and 140 mmHg; heart rate
between 40 and 180 beats/min; at least 14 readings over
the 14 h daytime period; at least six readings over the 6h
night period [20]. The 24-h weighted BP was defined as the
mean of the daytime and night-time ambulatory BP
weighted by the duration of daytime and night-time sub-
periods. Likewise, the 24-h weighted BPV was defined as
the mean of daytime and night-time ABP SDs weighted by
the duration of daytime and night-time sub-periods.

Statistical analysis

The purposes of our analyses were to estimate the genetic
and/or environmental sources of variance of BPV and the
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extent to which they depend on sex, race and 24-h ABP
level. We first conducted the analyses in each study
separately, and then performed a meta-analysis of the
two studies together. For the Georgia cardiovascular twin
study, we conducted model-fitting analyses for black and
white twins separately to estimate race-specific genetic and
environmental variance components and investigate sex
differences. Eventually, we combined both race groups into
one model to test for potential differences in blacks and
whites. For the Prenatal programming twins, sex differ-
ences were also tested.

Quantitative genetic model fitting

Structural equation modeling was used. Details of model
fitting of twin data have been described elsewhere [21]. In
short, the technique is based on the comparison of the
variance-covariance matrices in monozygotic and dizygotic
twin pairs and allows separation of the observed pheno-
typic variance into additive (A) or nonadditive (D) genetic
components and shared (C) and unique (E) environmental
components. The latter also comprises measurement error.
Dividing each of these components by the total variance
yields the different standardized components of variance,
for example, the heritability (h*), which can be defined as
the ratio of additive genetic variance to total phenotypic
variance.

Sex differences

Sex differences were examined by comparing a full model
in which parameter estimates are allowed to differ in
magnitude between men and women, with a reduced
model in which parameter estimates are constrained to
be equal across the sexes. In addition to those models, a
scalar model was tested. In a scalar model, heritabilities are
constrained to be equal across sexes, but total variances
may be different. All (nonstandardized) variance com-
ponents for women are constrained to be equal to a scalar
multiple, &, of the male variance components, such that
b =kh. 2 cF=kc,2, ef =ke,’ and dP=Fkd, > As a
result, the standardized variance components such as her-
itabilities are equal across sex, even though the unstandar-
dized components differ.

Race differences

Race differences were, similar to sex differences, examined
by comparing a full model in which parameter estimates are
allowed to differ in magnitude between blacks and whites,
with a reduced model in which parameter estimates are
constrained to be equal across race. In addition to those
models a scalar model was tested in a similar fashion as
done for sex.

Meta-analysis of the two studies

This analysis was similar to the analysis testing sex or race
differences. That is, we first examined differences between
studies by comparing a full model in which parameter
estimates are allowed to differ between the two studies,
with a reduced model in which parameter estimates are
constrained to be equal across studies. A scalar model was
also tested in a similar fashion as done for race.
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Effect of 24-h ambulatory blood pressure level

To explore whether the genetic and/or environmental
sources of variance of BPV are dependent on BP level,
we performed all model-fitting analyses before and after
adjustment for 24-h ABP levels.

Model fitting procedure

Prior to analysis, effects of age were regressed out for all
variables before using the residuals in model fitting. The
significance of variance components A, C and E was
assessed by testing the deterioration in model fit after each
component was dropped from the full model. Standard
hierarchic x?* tests were used to select the best fitting models
in combination with Akaike’s information criterion
(AIC=x? — 2df). The model with the lowest AIC reflects
the best balance of goodness of fit and parsimony.

Statistical software

Prior to analyses, all BPV parameters were log-transformed
to obtain a better approximation of the normal distribution.
Generalized estimating equations (GEEs) were used to
analyze the sex and race difference in basic characteristics.
Data management and the above statistics were performed
by Stata SE, version 12 (StataCorp, College Station, Texas,
USA). Genetic modeling was carried out with OpenMx
Version 1.2 (http://openmx.psyc.virginia.edu/). OpenMx
is a free and open source R-based software package, which
is specifically designed for twin data analysis and allows
estimation of a wide variety of advanced structural equation
models [22].

RESULTS

The general characteristics of these two twin studies are
presented in Table 1. In both twin studies, men had higher
office BP, 24-h SBP and BPV than women. Men in the
Georgia cardiovascular twin study also had higher 24-h
DBP than women. In the Georgia cardiovascular twin
study, blacks showed higher BMI, office BP and 24-h BP
levels than whites. No significant differences were found for
BPV between whites and blacks.

Table 2 presents intratwin pair correlation coefficients of
BPV by race and zygosity. In both studies, twin correlations
in monozygotic twin pairs were higher than those in dizy-
gotic twin pairs, indicating there may be some genetic and/
or common environment effect on BPV. We present the
correlations collapsed over sex, because models that best
explained the variance and covariance of BPV did not show
any sex differences (see below).

The model fitting results were shown in Table 3. For both
SBPV and DBPV, the model fitting suggested that there
were no significant race or sex differences in variance
component estimates (results not shown). In the Prenatal
programming twin study, model fitting of SBPV showed
ACE was the best-fitting model, which means the variance
of SBPV depends on additive genetic factor (A), common
environmental factor (C) as well as unique environmental
factor (E). Although the model assuming the absence of the
genetic component (CE vs. ACE model, P=0.39) and the
model assuming the absence of the common environmental
factor fitted the data well (AE vs. ACE model, P=1.00), the
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TABLE 1. General characteristics of study subjects by sex and race for each of the two twin studies

Prenatal programming
twin study (n=703)

Georgia cardiovascular
twin study (n=430)

White White White Black Black
Characteristics male female female male female
n 352 351 119 123 81 107
Age (years) 25.6+4.7 254+46 0.89 17.0+£3.6 17.0+£3.0 16.8+3.0 17.6+3.8 0.80 0.69
BMI (kg/m?)? 222429 22.0+34 0.14 23.2+6.0 223+46 232448 245455 0.53 0.03
Office BP (mmHg)®
SBP 129.8+11.1 120.0£11.1 <0.001 112.8+10.6 106.1+£8.5 117.3+£10.8 1M1.2+£11.5 <0.001 <0.001
DBP 70.1+10.0 65.7+86 <0.001 56.6+6.5 58.24+5.8 60.2+7.1 62.6+8.2 0.001 <0.001
24-h weighted BP (mmHg)?
SBP 119.3+7.6 1143+7.8 <0.001 102.8+6.9 97.3+5.7 103.6+6.1 100.1+7.8 <0.001 0.01
DBP 68.2+6.0 68.7+6.2 0.30 81.7+6.1 79.7£5.2 829+53 82.0+t74 0.01 0.01
SBPV 9.8+2.0 86+1.7 <0.001 9.6+2.0 85+1.7 95+1.7 89+1.8 <0.001 0.26
DBPV 87+17 82+16 <0.001 93+22 85+16 93+1.7 8.6+1.4 <0.001 0.50

BP, blood pressure; DBPV, diastolic blood pressure variability; SBPV, systolic blood pressure variability.

*Traits were adjusted for age prior to evaluation of sex and race differences.

model assuming the absence of both components (E vs.
ACE model, P<0.01) was significantly worse. The ACE
model was also the best model for DBPV in the Prenatal
programming twin study. The Georgia cardiovascular twin
study showed very similar results. Therefore, as expected,
the meta-analysis for SBPV and DBPV of these two studies
also showed similar results. That is, the model assuming
either the absence of A component or the absence of C
component fitted the data well (e.g, for SBPV, ACE vs. AE
model, P=0.26, ACE vs. CE model, P=0.63), but the model
assuming the absence of both components fitted the data
significantly worse (e.g. for SBPV, ACE vs. E model,
P <0.01). This indicates that BPV did show familial aggre-
gation to some degree, either due to additive genetic and/or
common environment influence and its variation in the
population could not be explained by unique environment
effects alone. The modeling fitting results remained the
same after adjusting for 24-h BP levels (Table 3), indicating
the familial aggregation identified in BPV is not caused by
average BP levels. A scalar effect was identified for the
meta-analysis of these two cohorts on 24-h SBPV with
the Georgia twin cohort showing larger variability than
the EFPTS cohort (Table 3).

As Table 3 demonstrates, the best fitting models in both
the Prenatal programming twin and the Georgia cardiovas-
cular twin study were ACE models for both BPV traits.
Variance component parameters estimated from the best
models before and after adjustment for 24-h ABP level are
shown in Table 4 including 95% confidence intervals (95%
CIs). The variances of BPV were predominantly due to
unique environmental components (e.g. for SBPV, * = 0.82

Prenatal programming

TABLE 2. Intra twin pair correlation coefficients of 24-h weighted ambulatory and blood pressure variability by race and zygosity

in the Prenatal programming twin study, e*=0.60 in the
Georgia cardiovascular twin study). The additive genetic
component had a small contribution to BPV (e.g. for SBPV,
a*=0.18 in the Prenatal programming twin study, a* = 0.17
in the Georgia cardiovascular twin study), as did the shared
environmental component (e.g., for SBPV, ¢*=0.00 in the
Prenatal programming twin study, ¢* = 0.26 in the Georgia
cardiovascular twin study). However, as the 95% CI of
unique environmental component does not include zero
in both traits, the other part of the BPV variance must be
genetic and/or common environmental components. This
small influences of A and/or C combined did have a
significant contribution to the total variance of BPV,
accounting for 18-40% and 23-31% of the total variance
of SBPV and DBPV, respectively. Meta-analysis of these two
studies confirmed these results (for SBPV, a®=0.08,
?=0.16, ¢*=0.75; for DBPV, a*=0.21, *=0.05,
e*=0.73). The results remained unchanged after adjust-
ment for BP levels. A figure (Supplementary Figure 1,
http://links.Iww.com/HJH/A230) was also provided dis-
playing the source of variance in 24-h BPV before adjust-
ment for 24-h BP level in each study as well as in the meta-
analysis.

DISCUSSION

To our knowledge, this is the first study evaluating the
relative impact of genetic and environmental influences on
24-h BPV. In this study, we used 24-h ABP data from
two twin studies, the Prenatal programming twin and the
Georgia cardiovascular twin study, to avoid regional

Georgia cardiovascular

twin study twin study
White MZ White DZ White MZ White DZ Black MZ Black DZ
n (pairs) 194 114 52 56 34 45
24-h weighted BPV
SBPV 0.27 0.22 0.29 0.51 0.38
DBPV 0.26 0.10 0.40 0.29 0.21
DZ, dizygotic; MZ, monozygotic.
Journal of Hypertension www.jhypertension.com 693
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TABLE 4. Parameters estimates of best fitting models of blood pressure variability before and after adjustment of 24-h ABP level

24-h weighted BPV
Prenatal programming twin study

Best model

SBPV ACE

DBPV ACE
Georgia cardiovascular twin study

SBPV ACE

DBPV ACE
Meta-analysis

SBPV ACE

DBPV ACE
24-h weighted BPV after adjustment of BP
Prenatal programming twin study

SBPV ACE

DBPV ACE
Georgia cardiovascular twin study

SBPV ACE

DBPV ACE
Meta-analysis

SBPV ACE

DBPV ACE

Genetic and environmental impact on blood pressure variability

Variance component estimates (95% confidence intervals)

a2

0.18 (0.00-0.25)
0.23 (0.00-0.35)

0.17 (0.00-0.55)
0.05 (0.00-0.46)

0.08 (0.00-0.35)
0.21 (0.00-0.36)
0.16 (0.00-0.30)

0.23 (0.00-0.35)

0.03 (0.00-0.49)
0.00 (0.00-0.43)

0.01 (0.00-0.32)
0.18 (0.00-0.36)

c2

0.00 (0.00-0.25)
0.00 (0.00-0.25)

0.23 (0.00-0.46)
0.26 (0.00-0.42)

0.16 (0.00-0.31)
0.05 (0.00-0.30)
0.01 (0.00-0.25)

0.00 (0.00-0.25)

0.29 (0.00-0.43)
0.29 (0.00-0.42)

0.21 (0.00-0.30)
0.08 (0.00-0.29)

e2

0.82 (0.69-0.96)
0.77 (0.65-0.90)

0.60 (0.44-0.78)
0.69 (0.53-0.84)

0.75 (0.64-0.86)
0.74 (0.64-0.84)
0.83 (0.70-0.97)

0.77 (0.65-0.90)

0.68 (0.50-0.83)
0.71 (0.55-0.84)

0.78 (0.67-0.88)
0.74 (0.64-0.85)

A/a’, additive genetic; C/c?>, common environment; E/e?, unique environment; BPV, blood pressure variability.

influence. The Georgia cardiovascular twin study also
included blacks and whites that enables us to compare
racial differences. Despite the major contribution of unique
environment factors to the variance of BPV, some familial
aggregation (explaining about 25% of the variance) either
due to additive genetic and/or common environment influ-
ences was identified for 24-h SBPV and DBPV. The Prenatal
programming twin and the Georgia cardiovascular twin
study showed similar results, which were confirmed by
the meta-analysis of these two studies. The model fitting
results remained virtually the same after adjusting for 24-h
BP levels, which indicates that the familial aggregation
identified in BPV is not caused by BP levels.

Twenty-four-hour BPV plays an important role in trig-
gering vascular events [23]. Despite its great importance,
this is the first study focusing on the genetic and/or environ-
mental sources of variance of 24-h BPV. Previously we [24]
reported a 15-year longitudinal study on BPV from child-
hood to early adulthood and observed that 24-h BPV
showed low tracking stability with the tracking coefficient
ranging from 0.08 to 0.28. This observation is consistent
with our results, which found that unique environment
plays the most important role in BPV variance. Although
precise mechanisms responsible for BPV are not fully
understood, it is proposed that behavioral, neural, reflex
and humoral factors all participate in this phenomenon [25].
In this context, the unique environmental factors may
include the frequent behavioral changes during the ABP
recordings during which patients are free to go about their
normal daily activities and the responsiveness of BP to
external demands and internal homeostatic requirements
unique to the patients [26]. Previous studies have identified
several environmental factors related to 24-h BPV including
alcohol intake [27], outdoor temperature, seasonal changes
[28], and activity [29]. Nevertheless, BPV is still a trackable
trait [24], which explains why we found a certain degree of
familial aggregation of BPV.

Journal of Hypertension

BPV is a multifaceted trait influenced by BP, age, sex,
and heart rate [30—32]. Among these, BP, a clearly heritable
trait, is the major determinant of BPV with higher BP levels
associated with higher BPV [33]. The heritability of 24-h BP
is about 30-70% for SBP and 28-73% for DBP [34-37].
However, we adjusted for 24-h ABP levels in our model
fitting process and the results remained virtually
unchanged, which indicates that the familial aggregation
identified for BPV is independent of BP level.

Traditionally, BPV is indexed by the SD of the ABP
recordings over the entire 24 h [38]. However, this definition
includes the circadian BP variation and will mainly reflect
the day-night variation. As the magnitude of the nocturnal
BP fall is positively related with 24-h BPV [31] and the
clinical significance of these two parameters is opposite,
with an increased BPV [39] and a reduced degree of
nocturnal BP fall [40] both being associated with a greater
degree of end-organ damage and cardiovascular events, we
did not focus on the 24-h BPV in the present study. Instead,
to account for the influence of the nocturnal BP fall on the
24-h BP SD and quantify 24-h BPV without including the
circadian component, the weighted 24-h BP SD was used in
this study, which is the mean of the daytime BPV and
nighttime BPV weighted for the duration of daytime and
nighttime sub-periods. Separate calculation of daytime BPV
and night-time BPV were also suggested [41] and more
recently, night-time BPV was considered as a more prom-
inent risk factor for cardiovascular events compared with
daytime BPV [6]. In consideration of the fact that nighttime
BPV may be less influenced by physical activity and other
external factors, we conducted the variance component
analysis on daytime and nighttime BPV separately (Results
shown in supplementary Table 1, http://links.lww.com/
HJH/A230). However, we did not observe that genetic
factors played a more important role in nighttime BPV.
Results were similar to those for 24-h BPV with unique
environment the primary determinant of both daytime BPV
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and nighttime BPV. Recently, another BPV index, average
real variability (ARV) of BP that calculates the average of the
absolute differences between consecutive BP measure-
ments over 24h, was also observed to be a predictor of
target organ damage and cardiovascular risk [42]. There-
fore, we also conducted the variance component analysis
on ARV of SBP and DBP. However, the results remained
largely unchanged. That is, unique environment remained
the primary determinant of ARV (Supplementary Table 1,
http://links.lww.com/HJH/A230).

Consistent with our previous longitudinal study in youth
[24], we observed that men had higher mean BPV values
than women in both twin studies. The classic twin study is
established as the ideal study design to estimate the relative
importance of genetic and environmental factors to the
variance of traits and diseases in human populations, but
our study shows that the observed sex difference in mean
values did not translate into differences in genetic and
environmental variability in BPV between men and women.
In our previous longitudinal study in youth, we also
observed that blacks had higher BPV values than whites,
but this difference disappeared after the adjustment for BP
levels, which indicates that the higher BPV values observed
are caused by the higher BP levels in blacks in comparisons
with whites. In the current study, we did not observe that
blacks had higher BPV values, which does not exclude the
possibility that genetic or environmental factors contribute
differently to the variance of BPV. However, we did not
observe any race differences either.

Several limitations of the present study need to be recog-
nized. First, although this study included data from two large
twin studies with 24-h ABP recording, an even larger sample
size is required to tease out the relative contribution of
genetic or common environmental factors to the variance
of BPV. Second, BPV in the present study represented 20-min
or 15-min (daytime)/30-min (nighttime) intermittent BP var-
iability, not beat-to-beat BP variability. Short-term BP varia-
bility, including sporadic and random variations as well as
physiological variations, should be examined by beat-to-
beat measurements of BP [31,43], although the BPV obtained
by intermittent measurements was not significantly different
from those from beat-to-beat measurements when the period
between the intermittent measurements ranged from 5 to
20 min. [43]. Third, as both twin studies comprised youth and
young adults, the generalizability of these results to adult
populations remains to be determined.

In conclusion, 24-h BPV is predominantly determined by
unique environmental factors in youth and young adults. In
addition, BPV does show some familial aggregation that
might be attributed to genetic and/or common environ-
mental influence.
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Genetic influences on cardiovascular hemodynamics have
always been a question remaining open for debate. In this
study, the authors had the unique opportunity to study BP
variability and the link to genetics in twins, followed over
years in a superb protocol realized by the late Professor
Robert Derom. Remarkably, results did only show a rela-
tively minor influence of genetics on variability which
showed to be much more influenced by all stimuli occur-
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studying BP variability in ‘controlled’ conditions will be a
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