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Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond

quickly to unfavorable environmental conditions such as heat, cold, drought, and

pathogen infections. In particular, heat greatly affects plant growth and development,

immunity and circadian rhythm, and poses a serious threat to the global food

supply. According to temperatures exposing, heat can be usually classified as warm

ambient temperature (about 22–27◦C), high temperature (27–30◦C) and extremely high

temperature (37–42◦C, also known as heat stress) for the model plant Arabidopsis

thaliana. The genetic mechanisms of plant responses to heat have been well studied,

mainly focusing on elevated ambient temperature-mediated morphological acclimation

and acceleration of flowering, modulation of circadian clock and plant immunity by

high temperatures, and thermotolerance to heat stress. Recently, great progress has

been achieved on epigenetic regulation of heat responses, including DNA methylation,

histone modifications, histone variants, ATP-dependent chromatin remodeling, histone

chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic

mechanisms. These epigenetic modifications regulate the expression of heat-responsive

genes and function to prevent heat-related damages. This review focuses on recent

progresses regarding the genetic and epigenetic control of heat responses in plants,

and pays more attention to the role of the major epigenetic mechanisms in plant heat

responses. Further research perspectives are also discussed.

Keywords: heat, genetic mechanism, epigenetic regulation, small RNAs, transgenerational memory

Introduction

Owing to the global warming, the annual mean maximum and minimum temperatures have been

reported to increase by 0.35 and 1.13◦C, respectively, for the period 1979–2003 (Peng et al., 2004).
It is probable that the growing season temperatures in the tropics and subtropics by the end

of the 21st century will exceed the most extreme seasonal temperatures recorded from 1900 to
2006 (Battisti and Naylor, 2009). Global warming has profound and diverse effects on plants.

Warmer temperature has advanced the average first flowering date of 385 British plant species
by 4.5 days (Fitter and Fitter, 2002). Besides, recent climate warming (2001–2008) has shifted

vascular plant species’ ranges to higher altitudes in European mountainous regions (Pauli et al.,
2012). Furthermore, it is noteworthy that climate warming poses a serious threat to the global

crop yields. Over the past three decades (1980–2008), heat has caused a decrease of 3.8 and
5.5% in the global maize and wheat production (Lobell et al., 2011). It is estimated that global
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yields of the six most widely grown crops (wheat, rice, maize, soy-

beans, barley, and sorghum) drop by 0.6∼ 8.9% for every 1◦C the
temperature increases (Lobell and Field, 2007). In the dry season,

global warming has been estimated to cause a ∼10% reduction
in rice yield for every 1◦C increase in growing-season minimum

temperature (Peng et al., 2004). Thus, it is critical to dissect the
heat sensing and signal transduction pathways in plants.

Genetic knowledge of plant responses to heat stress has
been accumulating, including several putative heat sensors, HSFs

and HSPs (heat shock factors and proteins) response pathways,
and the network of phytohormones, chaperones, and secondary

metabolites (Bokszczanin and Fragkostefanakis, 2013; Qu et al.,
2013). However, our understanding of plant responses to warm

temperature is limited, despite recent discoveries implicating the
central role of the basic helix-loop-helix (bHLH) transcription

factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in
warmth-mediated morphological acclimation and acceleration
of flowering (Proveniers and van Zanten, 2013). The modu-

lation of circadian clock and immunity by high temperature
also remains largely unknown. Recently, epigenetic regulations

of heat responses have attracted increasing interests. The epige-
netic mechanisms in response to heat include covalent modifi-

cations of DNA and histones, histone variants, ATP-dependent
chromatin remodeling, histone chaperones, small RNAs, long

non-coding RNAs (lncRNAs), and other undefined mechanisms
(Table 1). This review briefly introduces the genetic mecha-

nisms of plant responses to heat and highlights recent progresses
regarding the underlying epigenetic regulations mainly in the

Arabidopsismodel, with aspects of some important physiological
processes.

Genetic Mechanisms of Plant
Responses to Heat

Warm Temperature-Mediated Morphological
Acclimation and Acceleration of Flowering
The responses ofArabidopsis plants to warm temperature include
hypocotyl and petiole elongation, leaf hyponasty, and early flow-

ering (Gray et al., 1998; Balasubramanian et al., 2006; Koini et al.,
2009). Warm temperature promotes auxin accumulation and

activate the gibberellin (GA) and brassinosteroids (BRs) path-
way resulting in hypocotyl elongation (Gray et al., 1998; Stavang

et al., 2009). PIF4 plays a central positive role in the acclima-
tion to increased ambient temperature (Figure 1A; Proveniers

and van Zanten, 2013). Warm temperature induces transient
expression of PIF4 (Koini et al., 2009; Kumar et al., 2012). PIF4

has been demonstrated to control morphological acclimation to
warm temperature via auxin. PIF4 binds to the promoters of the

key auxin biosynthesis genes in a temperature-dependentmanner
(Franklin et al., 2011; Sun et al., 2012). PIF4 may also target the

auxin-responsive gene INDOLE-3-ACETIC ACID INDUCIBLE
29 (IAA29) at warm temperature (Koini et al., 2009). Moreover,

PIF4 directly or indirectly stimulates the expression of auxin tar-
get genes SMALL AUXIN UP RNA (SAUR) 19–24, which drive

warmth-induced hypocotyl elongation and probably petiole elon-
gation and leaf hyponasty (Franklin et al., 2011). In addition

to morphological acclimation, PIF4 controls warm temperature-

mediated floral induction through direct activation of the floral
pathway integrator gene FLOWERING LOCUS T (FT) by bind-

ing its promoter (Kumar et al., 2012). A receptor-like kinase
SCRAMBLED/STRUBBELIG (SCM/SUB) also plays a role in

coordinating cell proliferation and differentiation during leaf
development under increased ambient temperature (Lin et al.,

2012).
Besides PIF4, MADS-box genes SHORT VEGETATIVE

PHASE (SVP) and FLOWERING LOCUS M (FLM)/MADS
AFFECTING FLOWERING (MAF) 1–5modulate flowering time

in response to ambient temperature changes (Balasubramanian
et al., 2006; Lee et al., 2007; Gu et al., 2013). These genes act as

flowering repressors and loss of their function leads to accelerated
flowering independent of the photoperiod pathway. Interestingly,

the RNA processing-related gene products are enriched upon
thermal induction, suggesting that temperature might affect
RNA processing in Arabidopsis. For instance, FLM is subject

to temperature-dependent alternative splicing (Balasubramanian
et al., 2006). The SVP-FLM-β complex is predominately formed

at 17◦C and prevents precocious flowering. By contrast, the com-
peting SVP-FLM-δ complex is impaired in DNA binding and acts

as a dominant-negative activator of flowering at 27◦C (Figure 1A;
Lee et al., 2013; Pose et al., 2013). Therefore, PIF4 is an activator of

FT while the MADS-box genes are repressors. However, how the
two antagonistic pathways are integrated to modulate flowering

time at warm conditions still needs to be genetically dissected.

The Effect of High Temperature on Circadian
Clock
As a cellular time-keeper mechanism, the circadian clock allows
plants to coordinate environmental time cues, such as photo-

cycles (light/dark) and thermocycles (warm/cold), with endoge-
nous biological rhythms with a period of ∼24 h. Recent studies

have suggested that plant circadian clock consists of three inter-
locked transcriptional feedback loops, i.e., a core oscillator loop,
a morning loop, and an evening loop (Hsu and Harmer, 2014).

Key players in this interconnected network are two MYB tran-
scription factors CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)

and LATE ELONGATED HYPOCOTYL (LHY), and TIMING
OF CAB EXPRESSION1/PSEUDO-RESPONSE REGULATOR1

(TOC1/PRR1). These three components repress the activity of
each other and direct temporal regulation of most other clock

components (Hsu and Harmer, 2014).
The two key responses of circadian clock to high tem-

peratures are temperature entrainment and temperature com-
pensation (Figure 1B). Thermocycles are able to entrain the

clock in constant light with shorter periods than photocycles
in Arabidopsis (Boikoglou et al., 2011). The genes governing

temperature entrainment remain largely unknown, except for
the evening loop component EARLY FLOWERING 3 (ELF3),

and the morning loop components PRR7 and PRR9. The eti-
olated elf3-1 seedlings are unable to exhibit classic indicators

of entrainment by temperature cycles in darkness (Thines and
Harmon, 2010). The prr7-3 prr9-1 double mutants fail to entrain

to thermocycles of 22/12◦C, but can entrain to 28/22◦C ther-
mocycles without a robust oscillation (Salome and McClung,
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TABLE 1 | Different epigenetic regulations involved in different heat responses.

Plants Heat treatment Major effects Major epigenetic

regulations

Reference

Saccharina

japonica

20◦C for 3 h Regulation of tolerance to heat stress miRNAs Liu et al. (2014)

Arabidopsis

thaliana

Grown at 26◦C Elevated survival of Turnip Crinkle

Virus-infected Plants

siRNAs Zhang et al. (2012)

A. thaliana Grown at 27◦C Early flowering, hypocotyl and petiole

elongation

H2A.Z Kumar and Wigge

(2010), Kumar et al.

(2012)

Nicotiana

benthamiana

Grown at 27◦C Enhanced antiviral defense siRNAs Qu et al. (2005)

N. benthamiana

Manihot esculenta

Grown at 25–30◦C Enhanced antiviral defense siRNAs Chellappan et al.

(2005), Andika et al.

(2013)

A. thaliana Grown at 30◦C Warmth-induced PTGS release with

transgenerational memory

miRNAs and siRNAs Zhong et al. (2013)

Oryza sativa 34◦C for 48 h Smaller seed size DNA methylation,

H3K9me2

Folsom et al. (2014)

Hordeum vulgare 35.5◦C for 24 h Regulation of tolerance to heat stress miRNAs Kruszka et al. (2014)

Gossypium

hirsutum

35–39◦C /29–31◦C day/night

for 7 days

Regulation of anther development DNA methylation,

histone modifications

Min et al. (2014)

A. thaliana 37◦C for 3 h/day during the day

for 1 week

Increase in homologous recombination

frequency with transgenerational

memory

DNA methylation, small

RNAs

Boyko et al. (2010)

A. thaliana 37◦C for 1–4 h Regulation of tolerance to heat stress Ta-siRNAs and miRNAs Guan et al. (2013), Li

et al. (2014b)

Populus tomentosa 37◦C for 8 h Regulation of tolerance to heat stress miRNAs Chen et al. (2012)

A. thaliana 37◦C for 12 h Regulation of tolerance to heat stress long non-coding RNAs (Di et al., 2014)

A. thaliana 37◦C for 12 h Heat stress-induced alternative splicing

of miR400

MiR400 Yan et al. (2012)

A. thaliana 37◦C for 16 h Mediating the temporary growth arrest ATP-dependent

chromatin remodeling

Mlynarova et al. (2007)

A. thaliana 37◦C for 24 h Transgenerational retrotransposition of

ONSEN

siRNAs Ito et al. (2011)

Helianthus annuus 37◦C for 24 h Regulation of tolerance to heat stress miRNA396 Giacomelli et al. (2012)

P. trichocarpa 37◦C for 24 h Regulation of tolerance to heat stress miRNAs Lu et al. (2008)

M. esculenta 37◦C for 24 h Regulation of tolerance to heat stress miRNAs Ballen-Taborda et al.

(2013)

A. thaliana 37◦C for 30 h Release of TGS with reduced

nucleosome occupancy and loss of

chromocenter organization

CAF-1-dependent

chromatin assembly

complex

Pecinka et al. (2010)

A. thaliana 4◦C for 1 week and then 37◦C

for 15 h

Release of TGS Unorthodox and

potentially new

mechanisms

Tittel-Elmer et al. (2010)

A. thaliana 37◦C for 4 days or 44◦C for

30 min

Reorganization of chromatin and

release of transcriptional gene silencing,

HIT4-dependent TGS

regulation pathway

Wang et al. (2014)

A. thaliana 38◦C for 1 h Down regulation of HSFB2a involved in

gametophyte development

Long non-coding

antisense RNA

asHSFB2a

Wunderlich et al. (2014)

Apium graveolens 38◦C for 1 h Regulation of tolerance to heat stress miRNAs Li et al. (2014a)

A. thaliana 38◦C for 1.5 h per day in the

dark and then returned to

normal growth conditions; for 7

consecutive days

Modulation of pattern-triggered

immunity

Histone modifications Singh et al. (2014)

A. thaliana Several heat cycles (37◦C for

12 h in the light and 21◦C for

12 h in the dark)

Activation of the imprinted gene SDC An undefined

epigenetic mechanism

Sanchez and

Paszkowski (2014)

(Continued)
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TABLE 1 | Continued

Plants Heat treatment Major effects Major epigenetic

regulations

Reference

Triticum aestivum 40◦C for 1 h Regulation of tolerance to heat stress miRNAs and long

non-coding RNAs

Xin et al. (2010), Xin

et al. (2011)

Chlamydomonas

reinhardtii

40◦C for 1 h, for three times Regulation of tolerance to heat stress Histone modifications

and chromatin

remodeling

Strenkert et al. (2011)

O. sativa 42◦C day/36 ◦C night for 24 h Regulation of tolerance to heat stress miRNAs Sailaja et al. (2014)

T. aestivum 42◦C for 2 h Regulation of tolerance to heat stress miRNAs Kumar et al. (2014)

Brassica rapa 42◦C for 3 h per day for 7 days Stress-induced transgenerational

inheritance

miR168 and braAGO1 Bilichak et al. (2015)

A. thaliana 42◦C for 16 h Transcriptional reprogramming DNA methylation,

histone acetylation

Popova et al. (2013)

A. thaliana 42◦C for 48 h Stress-induced release of GUS

silencing

H3K9ac1 and

H3K9/14ac2

Lang-Mladek et al.

(2010)

A. thaliana BT and ATa Gene transcription activation Histone chaperone

ASF1

Weng et al. (2014)

A. thaliana BT and ATa Regulation of tolerance to recurring

environmental stress

The miR156-SPL

module

Stief et al. (2014)

Brassica rapa 46◦C for 1 h Regulation of tolerance to heat stress miRNAs, nat-siRNAs,

chloroplast small RNAs

Wang et al. (2011), Yu

et al. (2012b, 2013)

A. thaliana 50◦C for 3 h/day for 5 day Transgenerational phenotypic and

epigenetic changes

H3K9 methylation and

DNA methylation

Migicovsky et al. (2014)

Quercus suber Temperature increases by 10◦C

every 3 days from 25–55◦C

Acclimation to high temperature DNA methylation,

histone acetylation

Correia et al. (2013)

aBT, basal thermotolerance, 45◦C for 2 h; AT, acquired thermotolerance, pretreated at 37◦C for 1–1.5 h and returned to 22◦C for several hours or days for recovery,

treated at 45◦C for 2 h.

2005; Salome et al., 2010). Temperature compensation refers to
the ability of maintaining a relatively constant period over a

range of environmental temperatures. As temperature increases
from 12 to 27◦C, the periodicity has no significant changes in

Arabidopsis (Gould et al., 2006). High temperature enhances
the CCA1 binding affinity to the promoters of the oscilla-

tor genes, which is precisely antagonized by protein kinase
CASEIN KINASE2 (CK2; Portoles and Mas, 2010) and tran-

scription factor FLOWERING BASIC HELIX-LOOP-HELIX 1
(FBH1; Nagel et al., 2014) to maintain the circadian period. At

high temperatures, the activities of CCA1 and LHY are coun-
terbalanced by the temperature-dependent regulation of TOC1

and GI (Gould et al., 2006) as well as PRR7 and PRR9 (Salome
et al., 2010). REVEILLE8 (RVE8), a homolog of CCA1 and

LHY, is also required for temperature compensation, as rve8
mutants have long-period and its overexpression lines have short-
period phenotypes under high temperature (Rawat et al., 2011).

Moreover, the activity of PRR7 is regulated by HEAT SHOCK
FACTOR B2b (HsfB2b; Kolmos et al., 2014) and the evening

complex night-time repressor consisting of ELF3, ELF4, and
LUX ARRHYTHMO (LUX; Mizuno et al., 2014). The night-

time repressor also mediate temperature responses of the clock
transcriptional circuitry by regulating other targets GI, LUX and

PIF4/5. This activity of night-time repressor is antagonized by
warm temperature, suggesting that the PIF4-mediated morpho-

logical acclimation may be regulated by the night-time repressor
under warm temperature (Mizuno et al., 2014). It is notewor-

thy that heat-induced alternative splicing of clock components
such as CCA1, PRR7, TOC1, and ELF3 may be an important

mechanism in temperature compensation (Kwon et al., 2014;
Filichkin et al., 2015). Overall, our knowledge on the response of

circadian clock to high temperature is rather limited. How plants
integrate circadian clock with immunity under high temperature

remains elusive.

Modulation of Plant Immunity by High
Temperature
The effect of high temperatures on plant immunity has been

well summarized recently (Hua, 2013). Two major influences
of high temperature on plant immunity are that high tem-

perature often inhibits the effector triggered immunity (ETI)
and enhances RNA-silencing mediated resistance (Figure 1C).

In ETI, pathogen effectors are recognized by the host proteins
encoded by resistance (R) genes, of which most are nucleotide

binding-leucine rich repeat (NB-LRR) class of proteins (Martin
et al., 2003). SUPPRESSOR OF npr1-1, CONSTITUTIVE 1

(SNC1) is the first identified R gene mediating high temper-
ature inhibition of resistance (Yang and Hua, 2004), which is

negatively regulated by BONZAI1 (BON1; Zhu et al., 2010).
At 22◦C, the bon1-1 loss-of-function mutation activates SNC1,

which induces constitutive salicylic acid (SA)-mediated defense
responses and inhibits plant growth. While at 28◦C, the nuclear

accumulation of SNC1 protein is reduced by high tempera-
ture, which may inhibit the activity of SNC1 protein and sup-

press the defense responses (Zhu et al., 2010). Besides BON1,
other negative regulators of SNC1 have been identified, such as

BON1-ASSOCIATED PROTEIN 1(BAP1), BAK1-INTERACTING
RECEPTOR-LIKE KINASE 1(BIR1), SUPPRESSOR OF rps4-RLD
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FIGURE 1 | Proposed model integrating genetic and epigenetic controls

of heat responses. Genes and proteins are represented in boxes and circles,

respectively. The genes and proteins in color are involved in the epigenetic

regulation of heat responses. The four putative heat sensors, H2A.Z, the

calcium channel in the plasma membrane (CNGCs), two unfolded protein

sensors in ER (ER-UPR) and the cytosol (Cyt-UPR), are indicated. The

speculative regulatory paths are indicated with broken arrows. (A) Warm

temperature mediates the morphological acclimation and acceleration of

flowering. Under warm temperatures, the expression of PIF4 could be induced

by the eviction of H2A.Z at its promoter. PIF4 binds to the promoters of target

genes and plays a central role in the morphological acclimation and acceleration

of flowering. Warm temperature also induces the transition from SVP-FLM-β to

the competing SVP-FLM-δ complex, the latter is then released from the

promoter of FT. The inhibition of ta-siRNAs (green box) through the

down-regulation of SGS3 protein (red circle) by warm temperature may be also

involved in the morphological acclimation. (B) The genetic mechanisms of

temperature entrainment and temperature compensation are proposed. ELF3,

PRR7 and PRR9 are involved in temperature entrainment, while CCA1, LHY,

PRR7, PRR9, GI, CK2, RVE8, FBH1 and HsfB2b are proved to play roles in

temperature compensation. Note that histone modifications of LHY, CCA1,

TOC1, PRR7 and PRR9, such as H3K56ac, H3K9/14ac, H3K4me3 and

H3K4me2, may (question mark) be regulated by high temperatures. (C) High

temperature inhibits R genes-mediated ETI and enhances RNA-silencing

mediated resistance. Reduced H2A.Z-containing nucleosome occupancy or

other unknown mechanism are likely involved in the modulation of clock (B) and

immunity (C). (D) Heat sensors and main signal transduction pathways in heat

stress responses (HSR) are shown. Heat stress activates CNGCs, ER-UPR, and

Cyt-UPR, and triggers signaling through multiple kinases as well

as transcriptional regulators of the HSR, such as HSFs, MBF1c, and Rboh. RPS1

(Continued)
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FIGURE 1 | Continued

in the chloroplast also responds to heat stress, and generates a retrograde signal to activate HsfA2-dependent heat-responsive genes in the nucleus. Some csRNAs

are highly sensitive to heat stress and may regulate RPS1-mediated heat stress responses. Heat stress also affects the production of some ra-siRNAs, miRNAs,

ta-siRNAs, nat-siRNAs, and lncRNAs. These non-coding RNAs may regulate HSFs, HSPs, and other target genes that function in heat acclimation. The NRPD2 (olive

box) and HDA6 (purple box)-dependent RdDM pathway and the CMT2 (gray box)-dependent CHH methylation may be required for thermotolerance. AtASF1A/B

proteins (blue circle) are recruited onto chromatin and facilitate H3K56ac, which promotes the activation of some HSFs and HSPs. The chromatin-remodeling gene

CHR12 (light purple box) plays a vital role in mediating the temporary growth arrest of Arabidopsis under heat stress. Repetitive heat stress has also been reported to

modulate PTI in a HAC1 (yellow box)-dependent manner. Many unknown steps (?) remain to be recognized in this model.

(SRFR1), CONSTITUTIVE EXPRESSER OF PR GENES 1(CPR1)

and MAP KINASE PHOSPHATASE 1 (MKP1; Gou and Hua,
2012). These genes tightly control SNC1 activities at both the

transcriptional and posttranscriptional levels. Besides, abscisic
acid (ABA) plays a positive role in the high temperature-

mediated inhibition of disease resistance, as ABA deficiency
promotes nuclear accumulation of SNC1 and potentiates defense

responses at 28◦C (Mang et al., 2012; Zhu et al., 2012b). In
contrast, nitric oxide (NO) may act as a negative regulator

in the high temperature-mediated inhibition of disease resis-
tance (Wang et al., 2012a). It will be interesting to further dis-

sect the interplay between ABA, NO, and SA-mediated defense
responses under high temperature. Another major effect of

high temperature in plant immunity is the enhancement of
RNA-silencing mediated resistance. The underlying mechanisms

will be discussed later in this review (see Small Interfering
RNAs).

Thermotolerance in Plants
The mechanisms of thermotolerance to heat stress in plants

have been elaborated, including the HSFs and HSPs, ROS, phos-
pholipids and calcium signaling pathways, and the network

of hormones (Figure 1D; Qu et al., 2013). The thermotoler-
ance in Arabidopsis consists of basal and acquired thermotol-

erance. The basal thermotolerance is an inherent ability for
plants to survive in exposure to temperatures above the opti-
mal for growth, while acquired thermotolerance refers to the

ability to cope with lethal high temperatures after acclimati-
zation to mild high temperatures (Clarke et al., 2004). It is

reported that SA, jasmonic acid (JA) and ethylene signaling
pathways and ROS scavenging are required for basal thermo-

tolerance (Miller et al., 2008; Clarke et al., 2009). The tran-
scriptional co-activator MULTIPROTEIN BRIDGING FACTOR

1C (MBF1c) is required for basal thermotolerance and func-
tions upstream of SA, trehalose and ethylene signaling pathways

during heat stress (Suzuki et al., 2008). Moreover, NADPH oxi-
dases RESPIRATORY BURST OXIDASE HOMOLOGUE (Rboh)

enhances the production and maintenance of ROS, which is
important for basal thermotolerance (Miller et al., 2008). HSFs

and HSPs play central roles in the acquired thermotolerance in
plants. HSFs are the central regulators responsible for the expres-

sion of HSP genes. The Arabidopsis genome contains 21 HSF
members that can be sorted into classes A, B, and C (Baniwal

et al., 2004). HsfA1a is a master regulator for acquired ther-
motolerance that triggers the heat stress response through the

induction of HsfA1b and HsfA2 expression, while HsfA2 is a
major heat stress factor and induces the expression of HSPs under

heat stress. HsfB1 acts as a co-regulator enhancing the activity of

HsfA1a and HsfA2 (Baniwal et al., 2004). HSPs are categorized
into five classes based on their approximate molecular masses:

Hsp100, Hsp90, Hsp70, Hsp60, and small Hsps (sHsps). These
HSPs function as molecular chaperones and play complemen-

tary and sometimes overlapping roles in stabilizing proteins and
membranes and assisting in protein refolding under heat stress

(Wang et al., 2004). A variety of signaling molecules, such as
ABA, H2O2, ethylene, SA, calcium, and phospholipids, are also

involved in acquired thermotolerance as well. These signaling
molecules regulate the expression of HSFs and HSPs and protect

cells against heat stress-induced oxidative damage (Song et al.,
2012).

Although great progress has been achieved in the elucidation
of molecular mechanisms of thermotolerance, how plants sense

and transduce the signal of heat stress is still an important topic
to be addressed. It is hard to define the primary heat sensor(s)
as heat stress simultaneously poses a threat to almost all macro-

molecules and all organelles in the cells. Several putative heat
sensors have been proposed, including a plasma membrane cyclic

nucleotide gated calcium channel (CNGC) and two unfolded pro-
tein sensors in the endoplasmic reticulum (ER) and the cytosol

(Figure 1D). The CNGC2 gene in Arabidopsis and its ortholog
CNGCb from Physcomitrella patens act as the primary heat sen-

sors of land plant cells (Saidi et al., 2009; Finka et al., 2012). Heat
shock impairs the protein stability and activates the unfolded

protein response (UPR) in the ER and the cytosol. The cytoso-
lic UPR is triggered by unfolded proteins in the cytosol and is

notably regulated by HsfA2 (Sugio et al., 2009). Heat promotes
the translocation of two basic leucine-zipper domain-containing

transcription factors bZIP17 and bZIP28 to the nucleus. The
nuclear-localized bZIPs not only activate ER chaperone genes

and induce the ER-UPR, but also activate BR signaling, which
is required for heat stress acclimation and growth (Che et al.,

2010). Heat-induced cleavage of bZIP60 by the RNA splicing fac-
tor IRE1b also triggers the ER-UPR (Deng et al., 2011). Taken
together, these results suggest that the primary heat sensor may

lie in the plasma membrane, ER or cytosol. However, a heat-
responsive retrograde pathway in chloroplast has recently been

reported (Yu et al., 2012a). The photosynthetic apparatus in the
chloroplast are the primary susceptible targets of heat stress.

Through proteomic screening, the chloroplast ribosomal protein
S1 (RPS1) is also identified as a heat-responsive protein. Under

heat stress, RPS1 plays a critical role in modulating the transla-
tional efficiency of thylakoid proteins tomaintain the stability and

integrity of thylakoid membranes. The capacity of protein trans-
lation in chloroplasts generates the retrograde signals to activate
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HsfA2-dependent heat-responsive genes in the nucleus (Yu et al.,

2012a). Thus, the chloroplasts are proposed as heat sensors as
well.

Epigenetic Regulation of Heat
Responses in Plants

DNA Methylation
DNA methylation is a biological process by which a methyl
group is added to the cytosine bases of DNA to form 5-

methylcytosine. In plants, DNAmethylation occurs frequently in
all three sequence contexts: the symmetric CG and CHG contexts

(where H = A, T or C) and the asymmetric CHH context. In
Arabidopsis, overall genome-wide levels of 24% CG, 6.7% CHG

and 1.7% CHH methylation are observed (Cokus et al., 2008).
DNA methylation in plants predominantly occurs on trans-
posons and other repetitive DNA elements (Zhang et al., 2006).

Different proteins are involved in the establishment, maintenance
and removal of DNA methylation. De novo methylation in all

sequence contexts is catalyzed by DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2), and DNA methylation is

maintained by three different pathways: CGmethylation is main-
tained by METHYLTRANSFERASE 1 (MET1) and DECREASE

IN DNA METHYLATION 1 (DDM1); CHG methylation is
maintained by CHROMOMETHYLASE 3 (CMT3), a plant-

specific DNA methyltransferase; and asymmetric CHH methy-
lation is maintained by DRM2 (Chan et al., 2005). The DRM2

activity is regulated by the RNA-directed DNA methylation
(RdDM) pathway (Matzke and Mosher, 2014). The plant-specific

RNA polymerase IV (Pol IV) transcribes heterochromatic regions
to generate single-stranded RNA (ssRNAs). RNA-DEPENDENT

RNA POLYMERASE 2 (RDR2) then synthesizes double-stranded
RNA intermediates (dsRNAs) as precursors for RNase III-class

DICER-LIKE 3 (DCL3) to process into 24-nt small interfering
RNAs (siRNAs). Following incorporation into ARGONAUTE 4
(AGO4), the 24-nt siRNAs base-pair with Pol V scaffold tran-

scripts, which results in DRM2 recruitment and DNA methy-
lation at the source loci (Matzke and Mosher, 2014). In plants,

four bifunctional 5-methylcytosine glycosylases, REPRESSOROF
SILENCING 1 (ROS1), DEMETER (DME), DME-like 2 (DML2)

and DML3, have been implicated in the active removal of 5-
methylcytosine from DNA through the base excision repair

pathway (Zhang and Zhu, 2012). DNA methylation has two
main roles in plants: defending the genome against selfish

DNA elements and regulating gene expression. DNA methyla-
tion induces the transcriptional gene silencing (TGS) of trans-

gene as well as endogenous transposons and retrotransposons
to maintain genome stability (Chan et al., 2005). DNA methy-

lation of promoter regions usually inhibits transcription initi-
ation, while methylation within the gene body quantitatively

impedes transcript elongation in Arabidopsis (Zilberman et al.,
2007).

The global methylation can be differently affected by heat
in different species. Exposure of Arabidopsis plants to heat

stress results in an increased global methylation and a higher
homologous recombination frequency (HRF; Boyko et al., 2010).

The up-regulation of DRM2, NUCLEAR RNA POLYMERASE

D 1(NRPD1) and NRPE1 in response to heat stress may con-
tribute to the increased genome methylation in Arabidopsis

(Naydenov et al., 2015). An increase in global methylation is
also observed in Cork oak (Quercus suber L.) grown at 55◦C

(Correia et al., 2013). In Brassica napus, the DNA methylation
levels increase more in the heat-sensitive genotype than in the

heat-tolerant genotype under heat treatment (Gao et al., 2014).
However, in cotton (Gossypium hirsutum) anthers, high temper-

ature significantly decreases the expression of S-ADENOSYL-L-
HOMOCYSTEINE HYDROLASE1 (SAHH1) and DNA methyl-

transferases (DRM1 and DRM3), resulting in the genome-wide
hypomethylation at the tetrad stage and the tapetal degra-

dation stage (Min et al., 2014). It appears that there is no
consistent trend in the changes of DNA methylation under

heat in different species. The methylation status of certain loci
may be affected by heat stress. In developing rice seeds, the
DNA methylation level of Fertilization-Independent Endosperm1

(OsFIE1), a member of Polycomb Repressive Complex 2 (PRC2),
is reduced and the transcript abundance of OsCMT3 is repressed

by a moderate heat stress (34◦C) at 48 h after fertilization,
which may lead to the misregulation of OsFIE1 (Folsom et al.,

2014).
Heat stress induces transcriptional activation of various trans-

genes that are previously silenced via TGS, such as the 35S pro-
moter of Cauliflower Mosaic Virus and β-glucuronidase (GUS),

which occurs without detectable changes in the levels of DNA
methylation (Lang-Mladek et al., 2010; Pecinka et al., 2010;

Tittel-Elmer et al., 2010). Warm temperature slightly increases
the methylation level in some regions of GUS but decreases

it in other regions (Zhong et al., 2013). Thus, it seems that
DNA methylation is not involved in the regulation of heat

responses. However, an analysis of the heat tolerance of mutants
defective in DNA methylation reveals that the RdDM path-

way is required for basal thermotolerance (Popova et al., 2013).
Plants deficient in NRPD2, the second-largest subunit of Pol IV
and V, are hypersensitive to heat stress, while rdr2, dcl3 and

ago4 mutants are less sensitive. In nrpd2 mutants recovering
from heat, the misexpression of some protein-coding genes is

associated with the epigenetic regulation of adjacent transpo-
son remnants (transposons and retrotransposons; Popova et al.,

2013). For example, the expression of the COPIA-like transposon
At1g29475 is induced by heat but not decreases during recov-

ery in nrpd2 plants, which may repress the adjacent six highly
homologous auxin-responsive genes during recovery (Popova

et al., 2013). Another study has also reported that the expres-
sion of Calmodulin-like 41 (CML41) gene is up-regulated by

high temperature with reduced DNA methylation level in the TE
insertion very closely to the transcriptional start site (Naydenov

et al., 2015). However, the activation of ONSEN, an LTR-copia
type retrotransposon, could not be explained by the reduction of

DNAmethylation at the promoter upon heat stress (Cavrak et al.,
2014). Whether the changes in DNA methylation of TEs play a

causal role in the heat-induced activation of nearby genes needs
to be explored.

Interestingly, in a genome-wide association analysis to detect
loci with plastic response to climate, CMT2 has been found to
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be associated with temperature seasonality in Arabidopsis (Shen

et al., 2014). The accessions withCMT2STOP allele, which contains
a premature stop codon, have broader geographic distribution

than accessions with the wild-type allele. The CMT2STOP allele
can alter the genome-wide CHH-methylation pattern and cmt2

mutant plants have an improved heat-stress tolerance, suggesting
that CMT2-dependent CHH methylation may act as an impor-

tant alleviator of heat stress responses. Moreover, the CMT2STOP
allele is associated with increased leaf serration and higher dis-

ease presence after bacterial inoculation (Shen et al., 2014). In
summary, the above studies have not elaborated on the role of

DNA methylation in heat responses. cmt2 mutant plants have
an improved heat-stress tolerance while nrpd2 mutant plants

are hypersensitive to heat stress, suggesting the different roles of
CMT2-dependent CHH methylation and the RdDM pathway in

response to heat (Figure 1D). Whether DNA methylation regu-
late plant immunity and circadian clock under heat needs to be
investigated.

Histone Covalent Modification
In eukaryotic cells, genomic DNA is packaged into chromatin.
The fundamental unit of chromatin is the nucleosome composed

of ∼147 bp- DNA wrapped around a histone octamer consist-
ing of two copies of H2A, H2B, H3, and H4. Histone tails can be

covalently modified at various amino acids and via different types,
such as acetylation, mono/di/trimethylation, phosphorylation,

ubiquitination, glycosylation, ADP ribosylation, carbonylation,
sumoylation, and biotinylation. These modifications can activate

or repress transcription by generating either ‘open’ or ‘closed’
chromatin configurations, respectively, thereby regulating the

accessibility of chromatin to transcriptional regulators (Li et al.,
2007). In plants, histone methylation and acetylation have been

well characterized. As one of the most complex modifications,
histone methylation not only occurs at distinct sites of lysine and

arginine residues but also differs in the number of methyl groups
added. In Arabidopsis, histone methylation mainly occurs at Lys4
(K4), Lys9 (K9), Lys27 (K27), Lys36 (K36), and Arg17 (R17) of

histone H3, and Arg3 (R3) of histone H4 (Liu et al., 2010). These
methylation types have different roles. H3K4me and H3K36me

mainly generate ‘open’ chromatin configurations and activate
transcription, whereas H3K9me and H3K27me create a “closed”

chromatin and transcriptional repression. H3K9me2 functions as
a silencing mark linked to DNA methylation, while H3K27me3

represses the expression of many genes targeted by PRC2. The
effects of histone methylation on genome management, tran-

scriptional regulation, and development in plants have been well
reviewed (Liu et al., 2010; He et al., 2011). Histone acetylation and

deacetylation are catalyzed by histone acetyltransferases (HATs)
and histone deacetylases (HDACs), respectively. Histone acety-

lation are directly connected with transcriptional activation and
affect a variety of biological processes in plant growth and devel-

opment as well as biotic and abiotic stress responses (Chen and
Tian, 2007).

Similar to DNA methylation, the histone modifications can
be differently affected by heat in different species. In the uni-

cellular green alga Chlamydomonas reinhardtii, there are higher
levels of histone H3/4 acetylation and lower levels of H3K4me1

at promoter regions of active genes compared with inactive pro-

moters and transcribed and intergenic regions after heat stress
(Strenkert et al., 2011). The transcription factor HSF1may medi-

ate the acetylation of histones H3/4, remodeling of the H3K4
methylation, and transcription initiation/elongation upon heat

stress (Strenkert et al., 2011). However, temperature shift from
25 to 45◦C decreases the acetylated histone H3 levels in the for-

est tree Cork oak (Correia et al., 2013). The deacetylated H3
may be responsible for repressive chromatin in gene promoters

and repression of gene transcription. Histone modifications are
also involved in rice seed and cotton anther development at high

temperature. The H3K9me2 level of OsFIE1 is sensitive to mod-
erate heat stress and may be an important component involved

in regulating OsFIE1 when developing rice seeds are exposed to a
moderate heat stress (Folsom et al., 2014). In cotton anthers, one

histone methyltransferase, one histone monoubiquitination gene
and two jumonji C (jmjC) domain-containing genes are down-
regulated upon high temperature (Min et al., 2014). The roles of

the differently regulated histone modifications in heat responses
remain unknown.

After heat stress, the levels of H3K9me2, H3K27me1 and
H3K4me3 at a transcriptionally silenced GUS transgene (TS-

GUS) and a non-LTR retrotransposon LINE039 showed only
minor changes or remain unchanged (Lang-Mladek et al., 2010).

But the amounts of H3K9ac1 and H3K9/14ac2 significantly
increased in response to heat. The histone deacetylase HDA6

may be involved in this process as the TS-GUS activity showed
a pronounced increase in hda6 mutants (Lang-Mladek et al.,

2010). Similarly, another study also demonstrates that levels of
H3K4me3, H3K9me2, H3K27me2, and H3K27me3 were unaf-

fected by temperature shift from 4 to 37◦C for 15 h while
a modest enrichment in H3K9ac-K14ac was detected at 5S

rDNA, 106B long terminal-like dispersed repeats and aMutator-
like transposable element related locus MULE-F19G14 (Tittel-

Elmer et al., 2010). Thus, the heat-induced release of silencing
seems to be associated with histone acetylation but not his-
tone methylation. However, similar to the wild-type control, the

transcripts from these three targets over-accumulated in hda6
mutants exposed to temperature shift, but reverted to the initial

level after 2 days of recovery. These results exclude the pos-
sibility that HDA6 activity is required for the release of gene

silencing (Tittel-Elmer et al., 2010). Interestingly, both the lev-
els of repressive H3K9me2 and active H3K4me3 significantly

reduced directly after long heat stress (37◦C for 30 h) and
returned to the initial level after 7 days of recovery (Pecinka

et al., 2010). After long heat stress, nucleosomes and all the
histone modifications on them were partially removed through

unknown mechanisms, and then reloaded to the chromatin upon
returned to ambient temperatures, while the levels of histone

modifications on the remaining histones remained relatively
unchanged (Pecinka et al., 2010). Thus, histone modifications

may not play an important role in the heat-induced release of
silencing.

Recently, environmental history of repetitive heat stress has
been reported to modulate Arabidopsis pattern-triggered immu-

nity (PTI) in a HISTONE ACETYLTRANSFERASE1 (HAC1)-
dependent manner (Figure 1D; Singh et al., 2014). Arabidopsis
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plants exposed to repetitive heat stress were more resistant to

virulent bacteria than plants grown in a more stable environ-
ment. The enhanced resistance in repetitively stress-challenged

plants occurred with priming of PTI-responsive genes and the
potentiation of PTI-mediated callose deposition. The transcrip-

tional activation of PTI-responsive genes was associated with
enrichment of H3K9/14ac, H3K4me2 and H3K4me3, indicat-

ing a positive relationship between the bacterial resistance and
histone modifications after heat stress. In hac1-1mutants, repeti-

tively heat stress failed to induce enhanced resistance to bacteria,
priming of PTI, and enrichment of H3K9/14ac, H3K4me2 and

H3K4me3. These findings reveal that HAC1 is a necessary com-
ponent for bacterial resistance, priming of PTI, and open chro-

matin configurations mediated by repetitive heat stress exposure.
Whether H3K4 methylation have a similar role needs to be fur-

ther analyzed (Singh et al., 2014). Multiple histone modifications,
such as H3K56ac, H3K9/14ac, H3K4me3, and H3K4me2, have
been found to closely correlate with the rhythmic expression of

LHY, CCA1, TOC1, PRR7, and PRR9 in Arabidopsis (Seo and
Mas, 2014). Histone acetylation may contribute to the circadian

peak of expression by influencing transcription factor accessibil-
ity under different temperature conditions, while H3K4me3 may

antagonize clock repressor binding, ensuring a proper timing and
duration of gene activation (Figure 1B). Overall, the roles of his-

tone modifications in response to heat stress are largely obscure
and need to be further recognized.

Histone Chaperones

Histone chaperones are a group of proteins that bind his-
tones and prevent non-productive aggregation between highly

positive charged histones and highly negative charged DNA
without using the energy of ATP (Zhu et al., 2012a). They

play a crucial role in nucleosome assembly during differ-
ent processes such as DNA replication, repair, and transcrip-
tion. In general, histone chaperones can be classified as either

H3–H4 or H2A–H2B chaperones on the basis of their prefer-
ential histone binding. In plants, the well-studied chaperones

include H3–H4 chaperones ANTI-SILENCING FUNCTION 1
(ASF1), CHROMATIN ASSEMBLY FACTOR-1 (CAF-1) and

HISTONE REGULATORY HOMOLOG A (HIRA), and the
H2A–H2B chaperones NUCLEOSOME ASSEMBLY PROTEIN1

(NAP1), NAP1-RELATED PROTEIN (NRP) and FACILITATES
CHROMATIN TRANSCRIPTION (FACT; Zhu et al., 2012a).

Only a few studies have reported the role of histone chap-
erones in heat responses. The reload of nucleosome, whose

occupancy is reduced by long heat stress, requires the CAF-1-
dependent chromatin assembly complex (Pecinka et al., 2010).

Wild-type plants lost nucleosomes immediately after heat stress
and restored the original level during recovery. By contrast, the

fasciata1 (fas1) and fas2 mutants that lack different subunits of
CAF-1, had the already reduced nucleosome occupancy before

heat treatment. The nucleosome occupancy was further reduced
by long heat stress in the mutants, and there was no restora-

tion even after 7 days of recovery. The heat stress-induced loss
of nucleosomes and heterochromatin decondensation led to the

activation of transcriptionally silenced repetitive elements. The

CAF-1-dependent chromatin assembly complex may provide a
safeguarding mechanism to minimize the heat-induced epige-

netic damage in the germ line (Pecinka et al., 2010). AtASF1A
and AtASF1B have also been reported to participate in basal and

acquired thermotolerance (Figure 1D; Weng et al., 2014). Upon
heat stress, AtASF1A/B proteins were recruited onto chromatin,

and their enrichment was correlated with nucleosome removal
and RNA polymerase II accumulation at the promoter and cod-

ing regions of some HSF and HSP genes. Moreover, AtASF1A/B
facilitated H3K56ac, which also promotes the activation of some

HSFs and HSPs (Weng et al., 2014).

Histone Variants
In addition to the conventional histones, which are deposited

mostly during the S phase of the cell cycle, all eukaryotes
have non-allelic histone variants that can be incorporated into
nucleosomes in a DNA replication-independent manner dur-

ing the entire cell cycle. Histone variants can alter the prop-
erties of the nucleosomes they occupy and play important

roles in maintenance of genome stability, transcriptional acti-
vation and repression (Kamakaka and Biggins, 2005). There

are 15 histone H3 genes in the Arabidopsis genome, including
six canonical H3.1 or H3.1-like genes, eight H3.3 or H3.3-

like genes and one centromeric histone H3 gene (Okada et al.,
2005). The roles of H3 variants in heat responses have not

been reported hitherto. Thirteen H2A-encoding genes have been
identified in Arabidopsis, including four canonical H2A genes,

two H2A.X genes, three H2A.Z genes and other four less cat-
egorized genes (March-Diaz and Reyes, 2009). Recently, an

important study revealed that H2A.Z-containing nucleosomes
mediate the thermosensory response in Arabidopsis (Kumar

and Wigge, 2010). In a genetic screen of mutants defective
in heat sensing, the ARP6 gene was identified to mediate the

response to increased temperature. The APR6 protein is an
essential component of the SWR1 complex required for H2A.Z
incorporation into chromatin (March-Diaz and Reyes, 2009).

When grown at 22◦C, the arp6 mutants display phenotypes
similar to wild-type plants grown at 27◦C, such as hypocotyl

and petiole elongation, leaf hyponasty, and early flowering. It
is proposed that H2A.Z occupancy represses gene expression

by creating a physical block to transcription or by prevent-
ing the binding of transcription activators at cooler temper-

atures, and eviction of H2A.Z at higher temperatures would
thereby facilitate transcription of target genes. This temperature-

induced H2A.Z nucleosome dynamics has been proved to reg-
ulate the binding of PIF4 to the FT promoter, thereby con-

trolling the thermosensory activation of flowering. Based on
these results, H2A.Z-containing nucleosomes are recognized

as temperature sensors in the nucleus (Figure 1A; Kumar
et al., 2012). However, it is unclear whether this mechanism

is also responsible for the regulation of other heat-induced
genes, such as auxin biosynthesis genes required for warm

temperature-mediated morphological acclimation, HSF andHSP
genes in acquired thermotolerance, and genes involved in the

modulation of plant immunity and circadian clock by high
temperature.
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ATP-Dependent Chromatin Remodeling
ATP-dependent chromatin remodeling complexes use the energy
of ATP hydrolysis to alter the structure of chromatin by desta-

bilizing histone–DNA interactions, moving histone octamers or
catalyzing the incorporation of histone variants. According to

ATPases used, the complexes can be grouped into four main
classes: the SWItch/Sucrose Non-Fermentable (SWI/SNF) class,
the imitation switch (ISWI) class, the inositol requiring 80

(INO80) class, and the chromodomain and helicase-like domain
(CHD) class (Clapier and Cairns, 2009). The SWI/SNF complex

is the first ATP-dependent chromatin remodeling complex iden-
tified, and 41 SNF2 proteins in Arabidopsis have yet been iden-

tified. Functional analysis indicates that many of these proteins
play important roles in plant development and stress response.

Moreover, some of these proteins are involved in epigenetic reg-
ulation, such as TGS (dependent or independent of DNA methy-

lation), H2A.Z deposition and histone modifications (Knizewski
et al., 2008).

The Swi2/Snf2-related (SWR1) complex regulates transcrip-
tion by replacing the H2A–H2B histone dimers in nucleosome

with dimers containing the H2A.Z variant. As mentioned above,
the ARP6 protein, which is an essential component of the

SWR1 complex, plays an important role in temperature sens-
ing (Figure 1A; Kumar and Wigge, 2010). The SNF2/Brahma-

type chromatin-remodeling gene CHROMATIN REMODELING
(CHR12) also plays a vital role in mediating the temporary

growth arrest of Arabidopsis under heat, drought and salinity
stresses (Figure 1D; Mlynarova et al., 2007). When exposed
to stress conditions, a gain-of-function mutant overexpressing

AtCHR12 showed growth arrest of normally active primary buds
and reduced growth of the primary stem. In contrast, the loss-

of-function mutant showed less growth arrest than the wild-
type when exposed to moderate stress (Mlynarova et al., 2007).

In Chlamydomonas reinhardtii, heat stress induces low nucleo-
some occupancy at promoter regions of active genes, which is

mediated by HSF1 and other unknown chromatin remodeling
complexes (Strenkert et al., 2011). However, the heat stress-

mediated release of TGS is at least partly independent of the
activity ofMORPHEUS’MOLECULE 1 (MOM1)/CHR15, a well-

known DNA methylation-independent transcriptional silencer,
and DECREASED DNA METHYLATION 1 (DDM1)/CHR1,

a component required for DNA methylation and H3K9me2
(Tittel-Elmer et al., 2010).Whether other ATP-dependent chro-

matin remodeling complexes play roles in heat responses remains
elusive.

Small RNAs
Small RNAs are 18–30 nt non-protein-coding RNAs, which have
emerged as key guide molecules in the control of gene expression.

Two major types of small RNAs in plants, microRNAs (miRNAs)
and siRNAs, are distinguished by the different proteins involved

in their biogenesis and the modes of regulation (Ghildiyal and
Zamore, 2009).

microRNAs

Plant miRNAs are a class of 20–24 nt endogenous small RNAs
that derive from the miRNA genes (MIR; Rogers and Chen,

2013). MIR genes are transcribed by Pol II to generate primary

miRNA transcripts called pri-miRNAs. The pri-miRNAs are pro-
cessed into stem–loop precursor pre-miRNA and further excised

as miRNA/miRNA∗ duplex by the endonuclease activity of the
DCL1 protein complex in the nucleus. The mature miRNAs are

exported to the cytoplasm and incorporated into AGO proteins,
mediating posttranscriptional gene silencing (PTGS) through

slicing or translational inhibition, or TGS by targeting chromatin
for cytosine methylation (Rogers and Chen, 2013).

A diversity of conserved and non-conserved heat-responsive
miRNAs have been identified by small RNA deep-sequencing

in different species, but few of them have been validated by
either northern blots or real time PCR. As listed in Table 2,

most of the conserved heat-responsive miRNAs are differently
regulated in various species, except for miR159, 166 and 472

families. miR159 has been found to be down-regulated by
heat in Arabidopsis (Zhong et al., 2013), wheat (Triticum aes-
tivum; Wang et al., 2012b; Kumar et al., 2014) and cassava

(Manihot esculenta; Ballen-Taborda et al., 2013). The main tar-
gets of miR159 are MYB transcription factors. Tae-miR159 has

been demonstrated to direct the cleavage of TaGAMYB1 and
TaGAMYB2 (Wang et al., 2012b). The tae-miR159 overexpres-

sion rice lines and Arabidopsis myb33myb65 double mutants are
more sensitive to heat stress relative to the wild-types, indicat-

ing that the down-regulation of miR159 and up-regulation of
its targets after heat stress might participate in a heat stress-

related signaling pathway and contribute to heat stress toler-
ance (Wang et al., 2012b). MiR166, which targets HD-Zip tran-

scription factors, is up-regulated by heat in Arabidopsis (Zhong
et al., 2013), wheat (Xin et al., 2010), and barley (Hordeum vul-

gare; Kruszka et al., 2014). The heat-induced up-regulation of
hvu-miR166a and down-regulation of its targets, PHAVOLUTA

(PHV), REVOLUTA (REV) and a homeobox-leucine zipper
protein HOX9-like gene, might influence the leaf morphology

(Kruszka et al., 2014). miR472 may be down-regulated by heat
in Arabidopsis (Zhong et al., 2013) and Chinese white poplar
(Populus tomentosa; Chen et al., 2012), but need to be further

validated.
Several miRNA families seem to be responsive to heat in at

least four species, including miR156, 160, 167, 168, 169, 171,
395, 398, 408, and 827 families (Table 2). Some members of the

miR156 family are induced by heat in Arabidopsis (Zhong et al.,
2013; Stief et al., 2014), Brassica rapa (Yu et al., 2012b), and wheat

(Xin et al., 2010; Kumar et al., 2014), but are repressed by heat
in rice (Sailaja et al., 2014) and cassava (Ballen-Taborda et al.,

2013). In Arabidopsis, miR156 isoforms are highly induced after
heat stress and target SQUAMOSA-PROMOTER BINDING-LIKE

(SPL) transcription factor genes (especially SPL2 and SPL11) that
are master regulators of developmental transitions (Stief et al.,

2014). AGO1 acting through miR156 and its target SPLs appears
to mediate the adaptation to recurring heat stress (HS mem-

ory) by inducing the expression of HS memory–related genes
(Stief et al., 2014). Bra-miR156h and bra-miR156g were also heat-

induced and their putative target BracSPL2 was down-regulated
(Yu et al., 2012b). The up-regulation of tae-miR156 and down-

regulation of its putative target SPL genes Ta3711 and Ta7012
were also validated in wheat (Xin et al., 2010). However, the roles
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TABLE 2 | The conserved heat-responsive miRNAs in different plant species.

Family miRNAa Heat treatment Regulation Validationc Target proteins

156 ath-miR156h ATb Up-regulation Yes SPL transcription factor

ath-miR156g,h Grown at 30◦C Up-regulation No

bra-miR156g,h 46◦C for 1 h Up-regulation Yes BracSPL2

osa-miR156a,g,h 42◦C day/36◦C

night for 24 h

Down-regulation in roots

and shoots

Yes SPL transcription factor

tae-miR156a-g 40◦C for 2 h Up-regulation Yes SPL transcription factor

tae-miR156 42◦C for 2 h Up-regulation Yes Heat shock protein 90

mes-miR156a 37◦C for 24 h Down-regulation Yes SPL transcription factor

159 ath-miR159a,b Grown at 30◦C Down-regulation No MYB and TCP transcription factors

tae-miR159 40◦C for 2 h Down-regulation Yes GAMYB1 and GAMYB2

tae-miR159a,b 42◦C for 2 h Down-regulation Yes WRKY transcription factor; MYB3; alkaline

phosphatase family protein, cytochrome P450,

cobalamine adenosyl transferase, Mob1-like

protein and TLD family protein

mes-miR159a 37◦C for 24 h Down-regulation Yes myb-like HTH transcriptional regulators

160 ath-miR160a-c Grown at 30◦C Up-regulation No Auxin response factors

osa-miR160a 42◦C day/36◦C

night for 24 h

Down-regulation in roots,

up-regulation in shoots

Yes

pto-miR160a-d 37◦C for 8 h Down-regulation No

tae-miR160 40◦C for 2 h Up-regulation No Heat shock protein 70; ARF; tetratricopeptide

repeat (TPR)

tae-miR160 42◦C for 2 h Down-regulation Yes

hvu-miR160a 35.5◦C for 24 h Up-regulation Yes ARF17 and ARF13

mes-miR160a 37◦C for 24 h Down-regulation Yes Auxin response factor

celery-miR160 38◦C for 1 h Up-regulation Yes Auxin response factor

162 osa-miR162a 42◦C day/36◦C

night for 24 h

Down-regulation in both

roots and shoots

Yes Endoribonuclease DCL1

164 ath-miR164a-c Grown at 30◦C Up-regulation No NAC domain containing transcription factors

tae-miR164 42◦C for 2 h Down-regulation Yes Small heat shock proteins 17; NAC

transcription factor; target genes involved in

mitogen-activated protein kinase (MAPK)

signaling pathways

celery-miR164 38◦C for 1 h Up-regulation Yes NAC domain containing transcription factors

166 ath-miR166a Grown at 30◦C Up-regulation No HD-Zip transcription factors including PHV and

REVOLUTA

tae-miR166a-d 40◦C for 2 h Up-regulation Yes Unknown

hvu-miR166a 35.5◦C for 24 h Up-regulation Yes HD-Zip transcription factors including PHV and

REVOLUTA; a homeoboxleucine zipper protein

HOX9-like gene

167 ath-miR167c,d Grown at 30◦C Up-regulation No HD-Zip transcription factors including PHV and

PHB

ath-miR167d ATb Down-regulation No

bra-miR167 42◦C for 3 h per

day for 7 days

Up-regulation No TOM1-like protein 2; Tudor domain-containing

protein 3

bra-miR167∗ 42◦C for 3 h per

day for 7 days

Up-regulation No GDSL esterase/lipase; Ribulose bisphosphate

carboxylase/oxygenase activase

bra-miR167 46◦C for 1 h Up-regulation No BracARF6

osa-miR167a,c,d 42◦C day/36◦C

night for 24 h

Down-regulation in both

roots and shoots

Yes Class III HD-Zip protein 4; heat repeat family

protein

sja-miR167a 20◦C for 3h Down-regulation No Unknown

pto-miR167c,d,f,g 37◦C for 8 h Up-regulation Yes Unknown

tae-miR167 42◦C for 2 h Up-regulation Yes Dnaj heat shock n-terminal domain-containing

protein

hvu-miR167h 35.5◦C for 24 h Up-regulation Yes ARF8 and a serine/threonine-protein kinase

Nek5-like gene

(Continued)
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TABLE 2 | Continued

Family miRNAa Heat treatment Regulation Validationc Target proteins

168 bra-miR168 42◦C for 3h per

day for 7 days

Up-regulation Yes BraAGO1

osa-miR168a 42◦C day /36◦C

night for 24 h

Down-regulation in

shoots, no expression in

roots

Yes AGO1

sja-miR168a 20◦C for 3 h Down-regulation No Unknown

pto-miR168a,b 37◦C for 8 h Down-regulation Yes Unknown

tae-miR168 40◦C for 2 h Up-regulation No Unknown

celery-miR168 38◦C for 1 h Up-regulation Yes Unknown

169 ath-miR169a,d-n Grown at 30◦C Down-regulation No CCAAT Binding Factor (CBF) and HAP2-like

transcription factors

ath-miR169d,e,k,i,m ATb Down-regulation No

ath-miR169b,c Grown at 30◦C Up-regulation No

osa-miR169a,b,g 42◦C day/36◦C

night for 24 h

Down-regulation in roots,

up-regulation in shoots

Yes Nuclear transcription factor Y subunit

pto-miR169j-m 37◦C for 8 h Up-regulation No Unknown

pto-miR169n-t 37◦C for 8 h Down-regulation No Unknown

tae-miR169a-d 40◦C for 2 h Up-regulation No Unknown

171 ath-miR171a-c Grown at 30◦C Up-regulation No Scarecrow-like transcription factors

ath-miR171b,c ATb Up-regulation No

bra-miR171a-1 42◦C for 3 h per

day for 7 days

Up-regulation No 26S protease regulatory subunit 6A homolog

pto-miR171a-i 37◦C for 8 h Down-regulation No Unknown

tae-miR171a 42◦C for 2 h Down-regulation Yes Scarecrow-like protein

ptc-miR171l-n 37◦C for 24 h Down-regulation Yes SCL, clathrin assembly protein

172 ath-miR172b∗ Grown at 30◦C Down-regulation No Eukaryotic translation initiation factor 5,

putative; calcium-transporting ATPase

ath-miR172c,d,e Grown at 30◦C Up-regulation No AP2 transcription factors

ath-miR172a,e ATb Up-regulation No

tae-miR172a,b 40◦C for 2 h Down-regulation Yes AP2 transcription factors; floral homeotic

protein

319 ath-miR319a,b Grown at 30◦C Up-regulation No MYB and TCP transcription factors

ath-miR319a,c ATb Up-regulation No

ath-miR319c Grown at 30◦C Down-regulation No

tae-miR319 42◦C for 2 h Down-regulation Yes MYB3; histone protein-associated genes

393 ath-miR393a,b Grown at 30◦C Down-regulation No F-box proteins and bHLH transcription factors

tae-miR393 40◦C for 2 h Up-regulation Yes Genes involved in auxin signaling pathway and

basal defense

394 ath-miR394a,b Grown at 30◦C Down-regulation No F-box proteins

celery-miR394 38◦C for 1 h Up-regulation Yes Unknown

pto-miR394a,b 37◦C for 8 h Down-regulation No Unknown

395 ath-miR395a-f Grown at 30◦C Up-regulation No ATP sulphurylases; leucine-rich repeat family

protein

ath-miR395d ATb Up-regulation No

pto-miR395a-j 37◦C for 8 h Down-regulation Yes Unknown

sja-miR395x 20◦C for 3 h Up-regulation No Unknown

tae-miR395b 42◦C for 2 h Up-regulation No sulfur transporters and ATP sulphurylases

celery-miR395 38◦C for 1 h Up-regulation Yes Unknown

396 ath-miR396a Grown at 30◦C Up-regulation No Growth-regulating factor (GRF) transcription

factors; rhodenase-like proteins; kinesin-like

protein B

han-miR396 37◦C for 24 h Down-regulation Yes HaWRKY6

397 ath-miR397a,b Grown at 30◦C Up-regulation No Laccases and beta-6 tubulin

osa-miR397b.2 42◦C for 8 h Up-regulation Yes L-ascorbate oxidase

(Continued)
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TABLE 2 | Continued

Family miRNAa Heat treatment Regulation Validationc Target proteins

osa-miR397 42◦C day/36◦C

night for 24 h

Down-regulation in

shoots, no epression in

roots

Yes L-ascorbate oxidase precursor; F-box domain

containing protein

mes-miR397a 37◦C for 24 h Down-regulation Yes Laccase/Diphenol oxidase family protein

398 ath-miR398b Grown at 30◦C Up-regulation No CSD1, CSD2 and CCS

ath-miR398 37◦C for 4 h Up-regulation Yes

bra-miR398a,b 46◦C for 1 h Down-regulation Yes BracCSD1

osa-miR398 42◦C day/36◦C

night for 24 h

Down-regulation in both

roots and shoots

Yes Superoxide dismutase (SOD) gene family

sja-miR398a-5p 20◦C for 3 h Up-regulation No Unknown

tae-miR398 42◦C for 2 h Up-regulation Yes Superoxide dismutase (SOD) gene family

399 ath-miR399b-d, f Grown at 30◦C Up-regulation No Phosphatase transporter

ath-miR399c,d ATb Down-regulation No

bra-miR399b 46◦C for 1 h Down-regulation No BracPHO2

400 ath-miR400 37◦C for 12 h Down-regulation Yes Pentatricopeptide (PPR) repeat-containing

protein

408 ath-miR408 Grown at 30◦C Up-regulation No Peptide chain release factor; plantacyanin

sja-miR408b-5p 20◦C for 3 h Down-regulation Yes An unknown conserved protein

pto-miR408 37◦C for 8 h Down-regulation Yes Unknown

mes-miR408 37◦C for 24 h Down-regulation Yes Plantacyanin

celery-miR408 38◦C for 1 h Up-regulation Yes Unknown

472 ath-miR472 Grown at 30◦C Down-regulation No RFL1 (RPS5-LIKE 1)

pto-miR472a,b 37◦C for 8 h Down-regulation No Disease resistance protein; F-box protein

482 pto-miR482 37◦C for 8 h Down-regulation Yes Unknown

827 ath-miR827 Grown at 30◦C Down-regulation No SPX (SYG1/Pho81/XPR1) domain-containing

protein; DNA-binding storekeeper

protein-related

ath-miR827 ATb Down-regulation No

bra-miR827 46◦C for 1 h Down-regulation Yes Unknown

tae-miR827 40◦C for 2 h Up-regulation No Unknown

ptc-miR827 37◦C for 24 h Down-regulation Yes Sec14 cytosolic factor family protein

1117 tae-miR1117 42◦C for 2 h Down-regulation Yes Calcium dependent protein kinase 1

1450 pto-miR1450 37◦C for 8 h Up-regulation No Unknown

ptc-miR1450 37◦C for 24 h Down-regulation Yes Leucine-rich repeat transmembrane protein

kinase

The miRNA family, kinds of heat treatment, up or down-regulation, validated by either northern blot or realtime PCR, and their target proteins are presented. aath:

Arabidopsis thaliana (Yan et al., 2012; Guan et al., 2013; Zhong et al., 2013; Stief et al., 2014); bra: Brassica rapa (Yu et al., 2012b; Bilichak et al., 2015); celery: Apium

graveolens (Li et al., 2014a); han: Helianthus annuus (Giacomelli et al., 2012); hvu: Hordeum vulgare (Kruszka et al., 2014); mes: Manihot esculenta (Ballen-Taborda et al.,

2013); osa: Oryza sativa (Jeong et al., 2011; Sailaja et al., 2014); ptc: Populus trichocarpa (Lu et al., 2008); pto: P. tomentosa (Chen et al., 2012); sja: Saccharina japonica

(Liu et al., 2014); tae: Triticum aestivum (Xin et al., 2010; Wang et al., 2012b; Kumar et al., 2014). bAT: acquired thermotolerance, pretreated at 37◦C for 1 h and returned

to 22◦C for 1.5 h for recovery, treated at 44◦C for 45 min. cvalidated by either northern blot or realtime PCR.

of the down-regulated miR156 in rice (Sailaja et al., 2014) and
cassava (Ballen-Taborda et al., 2013) remain unknown. The reg-

ulation of miR160 family by heat is quite different in various
species, although they all target auxin response factors (ARFs).

After heat stress,miR160was up-regulated inArabidopsis (Zhong
et al., 2013), barley (Kruszka et al., 2014) and celery (Apium grave-

olens; Li et al., 2014a), but down-regulated in cassava (Ballen-
Taborda et al., 2013) and Chinese white poplar (Chen et al., 2012).

An increase in barleymiR160a during heat stress down-regulated
the expression level of ARF17 and ARF13, which might affect
shoot morphology and root growth (Kruszka et al., 2014).miR160

as well as miR169 in rice showed differential expression in roots
and shoots under heat stress, suggesting the different regulation

of the target genes by heat in this two different tissues (Sailaja

et al., 2014). It is also amazing that miR160 in wheat was up-
regulated by 40◦C for 2 h in the heat tolerant genotype TAM107

(Xin et al., 2010), but down-regulated with the up-regulation of
its putative target HSP70 by 42◦C for 2 h in another heat toler-

ant cultivar HD2985 (Kumar et al., 2014). miR167 was proved
to be up-regulated in Chinese white poplar (Chen et al., 2012),

wheat (Kumar et al., 2014) and barley (Kruszka et al., 2014) but
down-regulated in rice (Sailaja et al., 2014). Heat stress enhanced

the miR167h-guided cleavage of the ARF8 and NEK5 transcript
in barley (Kruszka et al., 2014). miR168 has also been shown to
be up-regulated by heat in Brassica rapa (Bilichak et al., 2015)

and celery (Li et al., 2014a), but down-regulated in Chinese white
poplar (Chen et al., 2012) and rice (Sailaja et al., 2014). A differen-

tial expression of bra-miR168 following heat shock in the parental
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tissues was observed to be negatively correlated with transcript

levels of its putative target braAGO1 in the corresponding tissues,
suggesting the important role of bra-miR168 in heat responses

(Bilichak et al., 2015).
The miR398 family have been validated to be up-regulated in

Arabidopsis (Guan et al., 2013) and wheat (Kumar et al., 2014),
but down-regulated in rice (Sailaja et al., 2014) and Brassica

rapa (Yu et al., 2012b). Heat stress rapidly induced ath-miR398
and reduced transcripts of its target genes COPPER/ZINC

SUPEROXIDE DISMUTASE 1(CSD1), CSD2 and COPPER
CHAPERONE FOR SOD 1 (CCS) that control ROS accumula-

tion (Guan et al., 2013). The altered redox status contributed to
the consequent accumulation of HSFs and HSPs that are critical

for thermotolerance. Transgenic plants overexpressing miR398-
resistant versions of CSD1, CSD2, or CCS under the control of

their native promoters were hypersensitive to heat stress, and
the expression of many HSF and HSP genes under heat stress
was reduced in these plants. In contrast, csd1, csd2, and ccs

plants were more tolerant to heat stress than wild-type plants
with the increased expression levels of HSF and HSP genes.

Moreover, HSFA1b and HSFA7b were found to be responsi-
ble for heat induction of miR398. Thus, HSFs, miR398 and its

target genes CSD1, CSD2, and CCS form an essential regula-
tory loop for thermotolerance in Arabidopsis (Guan et al., 2013).

However, in Brassica rapa, heat stress reduced the expression of
the conserved miRNAs bra-miR398a and bra-miR398b, which

guides heat response of their target gene BracCSD1 (Yu et al.,
2012b).The expression of most members in miR169, 171, 395,

and 827 families have not been experimentally validated, and
their targets remain largely unknown (Table 2). In addition to

the above miRNA families, a lot of conserved miRNA families
response to heat only in 1–3 species (Table 2). Among them,

han-miR396 in sunflower (Helianthus annuus) was found to be
repressed by high temperature, which results in the up-regulation

of the putative target HaWRKY6 (Giacomelli et al., 2012). But
plants overexpressing miR396-resistant versions of HaWRKY6
were hypersensitive to heat shock, indicating that HaWRKY6 is

involved in a fine modulation in response to heat (Giacomelli
et al., 2012).

In addition to the conserved miRNAs, many non-conserved
and novel heat-responsive miRNAs have been validated. For

instance, ptc-miR1445, 1446a-e and 1447 were down-regulated by
heat in P. trichocarpa (Lu et al., 2008); pto-smR7, 8, and 9 were

down-regulated by heat in P. tomentosa (Chen et al., 2012); osa-
miR1884 was down-regulated in roots but up-regulated in shoots

by heat (Sailaja et al., 2014); tae-candidate_3466 and 5064 were
up-regulated in wheat by heat (Kumar et al., 2014). Interestingly,

the splicing of introns hosting miR160a and miR5175a in bar-
ley was heat induced, but the roles of these spliced isoforms

in response to heat stress are unclear (Kruszka et al., 2014).
Such heat stress-induced alternative splicing also regulates the

miR400 expression in Arabidopsis (Yan et al., 2012). The intronic
MIR400 is co-transcribed with its host gene At1g32583. Upon

heat stress, a specific alternative splicing occurred at the first
intron of At1g32583 containing the miR400 hairpin, which led

to a decrease of mature miR400, but did not affect the host gene
expression. This alternative splicing event may be favorable for

thermotolerance, as overexpression of MIR400 made the plants

more sensitive to heat stress (Yan et al., 2012). These findings
extend our view about the regulatorymechanism linking miRNAs

and heat stress.
It is worth noting that some heat-responsive miRNAs also

function in other biotic and abiotic stresses. The miR156-
SPL pathway in rice also functions in other stresses such

as cold, salt and drought stress, suggesting a vital role of
miR156 in modulating plant development and responses to abi-

otic stress (Cui et al., 2014). tae-miR827 and 2005 were up-
regulated in wheat by both powdery mildew infection and heat

stress (Xin et al., 2010). ptc-miR 171l-n, 530a, 1445, 1446a-
e, and 1447 were down-regulated in response to heat as well

as cold, salt and dehydration in P. trichocarpa (Lu et al.,
2008). mes-miR156a, 159a, 160a, 397a, and 408 were down-

regulated by heat and drought stresses in cassava (Ballen-Taborda
et al., 2013). Thus, miRNAs may integrate the regulatory net-
works of heat stress with that of other biotic and abiotic

stresses.

Small Interfering RNAs

Plant siRNAs are processed by DCL2-4 from long dsRNAs,

which are generated directly from virus replication and inverted
repeats (IRs), or converted from ssRNAs by RDRs, or by

annealing of two complementary and separately transcribed
RNA strands (Bologna and Voinnet, 2014). SiRNAs guide a

silencing effector complex to homologous DNA loci to trig-
ger TGS or target mRNAs for transcript cleavage. Several

exogenously triggered PTGS pathways resulting in transcript
cleavage have been reported. These PTGS pathways can be

induced by sense transgenes (S-PTGS), antisense transgenes (A-
PTGS), inverted-repeat transgenes (IR-PTGS) and virus repli-

cation (VIGS). The diverse PTGS pathways play important
roles in plant immunity and silencing of transgenes (Brodersen

and Voinnet, 2006). In Arabidopsis, several distinct classes
of endogenous siRNAs have also been uncovered, includ-
ing repeat-associated siRNAs (ra-siRNAs), trans-acting siRNAs

(ta-siRNAs), natural antisense transcript-derived siRNAs (nat-
siRNAs), endogenous IR-derived siRNAs, and double-strand-

break-induced RNAs (diRNAs; Bologna and Voinnet, 2014). Ra-
siRNAs are typically 24-nt small RNAs that are derived from

genomic repetitive sequences, which usually direct DNA methy-
lation through the RdDM pathway (Matzke and Mosher, 2014).

The ta-siRNAs arise from eight recognized Arabidopsis TAS
loci (TAS1a-c, TAS2, TAS3a-c, and TAS4) through a miRNA-

dependent biogenesis pathway (Fei et al., 2013). Ta-siRNAs
are distinguished for the ability to function in trans to sup-

press the expression of target genes, such as disease resistance
genes and transcription factors. Nat-siRNAs, which originate

from the overlapping region of a pair of natural antisense
transcripts (NAT), have been found a role in stress responses.

In the case of two published nat-siRNAs, one transcript of
the NAT pair is constitutively expressed and the other is

induced by salt or bacterial pathogen, which induce the pro-
duction of nat-siRNAs (Borsani et al., 2005; Katiyar-Agarwal

et al., 2006). Nat-siRNAs target the constitutive expressed tran-
script for cleavage, which confers tolerance to the inductive
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stress. Endogenous IR-derived siRNAs are processed by DCLs

from genomic loci rearranged to form extended IRs that pro-
duce perfect or near-perfect dsRNA molecules (Dunoyer et al.,

2010). IR-derived siRNAs can drive non-cell-autonomous silenc-
ing at both transcriptional and posttranscriptional levels and

may have adaptive value by integrating temporally and/or spa-
tially restricted stresses or environmental signals at the whole-

plant level and perhaps in progenies (Dunoyer et al., 2010).
DiRNAs derive from both sense and antisense strands around

double-strand-break sites and may function as guide molecules
directing chromatin modifications or the recruitment of pro-

tein complexes to source sites to facilitate repair (Wei et al.,
2012).

In addition to miRNAs, the diverse exogenous and endoge-
nous siRNAs are affected by heat. An increase in growth tem-

perature from 22 to 30◦C effectively inhibited S-PTGS and A-
PTGS but not IR-PTGS in Arabidopsis (Zhong et al., 2013).
The warmth-induced PTGS release most likely occured dur-

ing a critical step that leads to the formation of stable dsR-
NAs involving RDR6 and SUPPRESSOROF GENE SILENCING

3 (SGS3). The abundance of many endogenous tasiRNAs was
also significantly reduced by the 30◦C growth, consistent with

increased transcript levels of TAS and tasiRNA-target genes,
which may affect the morphological acclimation (Figure 1A).

The temperature increase reduced the protein abundance of
SGS3, as a consequence, attenuating the formation of stable

dsRNAs. Overexpression of SGS3 could release such warmth-
triggered inhibition of siRNA biogenesis (Zhong et al., 2013).

Heat shock (37◦C for 1 h) also decreased the accumulation
of TAS1-derived siRNAs, whereas their target genes HEAT-

INDUCED TAS1 TARGET1 (HTT1) and HTT2 were highly up-
regulated by heat shock (Li et al., 2014b). Meanwhile, HTT1

and HTT2 were directly activated by HsfA1a through bind-
ing to their promoters. HTT1 mediated thermotolerance by

acting as a cofactor of Hsp70-14 complexes (Li et al., 2014b;
Figure 1D). Some nat-siRNAs are responsive to heat stress
in Brassica rapa and Arabidopsis. For example, nat-siRNAs

derived from Bra018216/Bra018217 and its homologous NAT
pair AT3G46230/AT3G46220 were induced by heat, leading to

the induction of the former gene (Bra018216 and AT3G46230)
and the repression of the latter gene (Bra018217 and AT3G46220;

Yu et al., 2013; Figure 1D). A novel class of heat-responsive
small RNAs derived from the chloroplast genome of Brassica

rapa has been reported (Wang et al., 2011). Many members
of chloroplast small RNAs (csRNAs) families are highly sensi-

tive to heat stress, and some csRNAs respond to heat stress by
silencing target genes (Wang et al., 2011). It will be interest-

ing to investigate the role of these csRNAs in RPS1-mediated
heat-responsive retrograde pathway (Figure 1D). Although ra-

siRNAs-mediated RdDM pathway is required for basal thermo-
tolerance (Popova et al., 2013), the underlying mechanism is

still not clear (Figure 1D). The study of ONSEN reveals a novel
regulation mechanism via siRNAs in heat responses (Ito et al.,

2011). In Arabidopsis seedlings, ONSEN is transiently activated
by heat stress and re-silenced during the recovery period. A sur-

prisingly high frequency of retrotransposition, which produces
new ONSEN insertions, is observed in the progeny of stressed

nrpd1 plants but not of the wild-type plants, suggesting a cru-

cial role of the ra-siRNA pathway in restricting transgenerational
retrotransposition triggered by heat stress. Moreover, natural and

experimentally induced variants in endogenous loci harboring
new ONSEN insertions confer heat responsiveness to nearby

genes. Therefore, heat-induced mobility bursts of ONSEN may
generate novel, stress-responsive regulatory gene networks (Ito

et al., 2011). A recent study in maize has also demonstrated that
allelic variation for insertions of the TEs associated with heat

stress-responsive expression can contribute to variation in the
regulation of nearby genes, probably by providing binding sites

for transcription factors or influencing chromatin (Makarevitch
et al., 2015). The roles of endogenous IR-derived siRNAs and

diRNAs in heat responses remain to be investigated.
High temperatures often enhance the VIGS-mediated dis-

ease resistance (Figure 1C). The temperature shift from 25 to
30◦C induced the accumulation of siRNAs and increases the cas-
sava geminivirus-induced RNA silencing in plants (Chellappan

et al., 2005). Temperature-dependent survival of Turnip crinkle
virus-infected Arabidopsis plants relies on an RNA silencing-

based defense that requires DCL2, AGO2, and HEN1 (Zhang
et al., 2012). The activity of DCL2 was up-regulated by high tem-

perature, suggesting that DCL2 protein may be a temperature-
sensitive component responsible for modulation of RNA silenc-

ing pathway (Zhang et al., 2012). In addition, RDR6 may be
closely related to the temperature sensitivity of the silencing

pathway in Nicotiana benthamiana (Qu et al., 2005). Plants
with reduced expression of NbRDR6 were more suscepti-

ble to various viruses and this effect was more pronounced
at higher growth temperatures (Qu et al., 2005). Moreover,

NbRDR6 plays a root-specific role in the inhibition of Chinese
wheat mosaic virus (CWMV) accumulation and biogenesis of

CWMV siRNAs at higher temperatures (Andika et al., 2013).
It will be interesting to investigate whether other compo-

nents of RNA silencing also affect virus resistance under high
temperatures.

Other Epigenetic Regulation of Heat
Responses
In recent years, new epigenetic mechanisms have been revealed
to regulate the heat responses, including lncRNAs, HEAT

INTOLERANT 4 (HIT4)-mediated non-canonical TGS regula-
tion and other two unorthodox pathways. LncRNAs, with size

larger than 200 nt, are precursors for siRNA biogenesis and act as
scaffolds for the establishment of DNA methylation and histone

modifications (Wierzbicki, 2012). In Arabidopsis, the expression
ofHSFB2awas counteracted by a natural and heat-inducible long

non-coding antisense RNA, asHSFB2a (Wunderlich et al., 2014).
In leaves, the antisense RNA gene was only expressed after heat

stress and dependent on the activity of HSFA1a/HSFA1b.HSFB2a
and asHSFB2a RNAs were also present in the absence of heat

stress in the female gametophyte. HSFB2a activity temporarily
repressed vegetative growth during development and after heat

stress, the antisense regulation by asHSFB2a counteracted this
effect to restore growth and further development (Figure 1D;

Wunderlich et al., 2014). Other 15 heat-responsive lncRNAs have
been found in Arabidopsis, but their functions are still unknown
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(Di et al., 2014). Seventy-seven putative heat-responsive lncR-

NAs, which are not conserved among plant species, have been
identified in wheat (Xin et al., 2011). Among them, TahlnRNA27

and TalnRNA5 are the precursors of tae-miR2010 and tae-
miR2004, respectively. These two lnRNAs and miRNAs were

up-regulated after heat stress in heat sensitive genotype Chinese
Spring (CS) and heat tolerant genotype TAM107. Nine heat-

responsive lncRNAs such as TalnRNA21 may be precursors of
siRNAs. TalnRNA9 and TalnRNA12 are identified as signal recog-

nition particle (SRP) 7S RNA variants and can be regulated
by siRNAs. Besides, three lncRNAs (TahlnRNA12, TahlnRNA23,

and TahlnRNA29) are characterized as U3 snoRNAs (Xin et al.,
2011). Interestingly, lnc-508 was down-regulated by heat and

cold, while lnc-168 was down-regulated by heat and salt in
Arabidopsis (Di et al., 2014). Twenty-three lncRNAs respond to

both powdery mildew infection and heat stress in wheat (Xin
et al., 2011). These results suggest that like miRNAs, lncRNAs
may also integrate the regulatory networks of heat stress with that

of other biotic and abiotic stresses.
HIT4 has been reported to mediate heat-induced deconden-

sation of chromocenters and release from TGS with no change
in the level of DNA methylation (Wang et al., 2013, 2014). HIT4

acts independent of MOM1 at the level of heterochromatin orga-
nization and this activity is essential for basal thermotolerance

in plants. Thus, HIT4 delineates a novel TGS regulation path-
way, involving a currently unidentified component that links

HIT4 relocation and the large-scale reorganization of chromatin
(Wang et al., 2013, 2014). A special inductive temperature shift

released the heterochromatin-associated silencing in Arabidopsis
plants in a genome-wide manner (Tittel-Elmer et al., 2010).

This occurred without alteration of repressive epigenetic mod-
ifications and did not involve common epigenetic mechanisms.

Such induced release of silencing was rapidly restored, without
the involvement of factors known to be required for silenc-

ing initiation. Therefore, stress-induced destabilization of het-
erochromatic TGS and its re-establishment may involve novel
mechanisms that repress transcription (Tittel-Elmer et al., 2010).

In a recent study, long-term heat stress activated the Arabidopsis
imprinted gene SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC),

which encodes a putative F-Box protein and is silent dur-
ing vegetative growth due to DNA methylation (Sanchez and

Paszkowski, 2014). The heat-mediated transcriptional induction
of SDC occurred only above a particular window of absolute tem-

perature and was proportional to the level of stress. After heat
stress, SDC was slowly re-silenced, allowing a temporal extension

of SDC activity to contribute to the recovery of plant biomass.
The SDC activation seems to occur independently and in paral-

lel to canonical heat-shock perception and signaling, but rely on
a yet undefined epigenetic mechanism (Sanchez and Paszkowski,

2014).

Transgenerational Memory and
Evolutionary Adaptation

Transgenerational memory, also known as epigenetic inher-
itance, refers to the transmittance of epigenetic states and

certain environmental responses from one generation to the

next. These transgenerational effects may offer the offspring
an adaptive advantage or genomic flexibility for better fitness.

Recent evidence suggests that some abiotic and biotic stress
responses are transgenerational in plants. For example, expo-

sure of Arabidopsis plants to UV-C and flagellin can induce
transgenerational increases in HRF (Molinier et al., 2006). Heat

responses also exhibit transgenerational epigenetic inheritance
(Boyko et al., 2010; Lang-Mladek et al., 2010; Ito et al., 2011;
Zhong et al., 2013; Iwasaki and Paszkowski, 2014; Migicovsky
et al., 2014). The immediate progeny of heat-stressed Arabidopsis

plants have fewer, but larger leaves, and tend to bolt earlier
(Migicovsky et al., 2014). These plants have increased expres-

sion of HSFA2, but reduced expression of ROS1 and several
Su(var)3–9 homologs (SUVH) genes involved in H3K9 methy-

lation and DNA methylation. These phenotypic and epigenetic
changes are partially deficient in the offspring of heat-stressed
dcl2 and dcl3mutants (Migicovsky et al., 2014). It is also reported

that transgenerational adaptation ofArabidopsis to stress requires
DNAmethylation and the function of Dicer-like proteins (Boyko

et al., 2010). However, the transgenerational retrotransposition of
ONSEN is prevented by the siRNAs pathway (Matsunaga et al.,

2012), while SGS3 overexpression could decrease the warmth-
induced transgenerational memory (Zhong et al., 2013). Thus,

the role of siRNAs pathway in transgenerational memory of heat
responses remains controversial. The involvement of AGO1 and

the miR156-SPL pathway has been demonstrated to maintain
the short memory of acquired thermotolerance in the adapta-

tion to recurring heat stress at the physiological and molecular
level in Arabidopsis (Stief et al., 2014). Bra-miR168 and its tar-

get braAGO1 are also suggested to be putative messengers that
mediate meiotic epigenetic inheritance in Brassica rapa (Bilichak

et al., 2015). Further experiments on transgenerational heat stress
in the hypomorphic ago1 mutants may shade a new light on the

contribution of AGO1 and the miRNA pathway to epigenetic
inheritance in plants.

The role of DNA methylation in transgenerational memory is

also obscure. It is reported that there seems no consistent corre-
lation between DNA methylation changes of transgene and the

warmth-induced transgenerational release of PTGS (Zhong et al.,
2013). Similarly, DNA methylation may be also not involved

in the release of transgene TGS by heat stress (Lang-Mladek
et al., 2010; Pecinka et al., 2010; Tittel-Elmer et al., 2010).

However, it remains a possibility that changes in DNA methy-
lation at certain sites of a silenced target gene or at certain

loci of the genome are responsible for the transgenerational
memory, as CG methylation plays a central role in transgener-

ational stability of the Arabidopsis epigenome (Mathieu et al.,
2007). Loss of CG methylation triggers genome-wide aberrant

de novo non-CG methylation by interfering with the RdDM
process and expression of DNA demethylases, as well as pro-

gressive H3K9 remethylation of heterochromatin. It is proposed
that immediate, non-heritable stress responses may be associ-

ated with alteration of non-CG methylation patterns mediated
by siRNAs/RdDM and ROS1/DME, while long-term, heritable

adaptation to a changing environment would require modula-
tion of CG patterns (Mathieu et al., 2007). Recently, a forward
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genetic screen revealed that DDM1 and MOM1 act redun-

dantly in preventing the transmission of stress-induced transcrip-
tional changes to progeny of the stressed plants (Iwasaki and

Paszkowski, 2014). Such DDM1- and MOM1-mediated or other
mechanisms of chromatin resetting could prevent the transgen-

erational transmission of environmentally induced epigenetic
traits. The roles of other epigenetic mechanisms in transgenera-

tional memory, such as H2A.Z andH3K27me3, are worth further
investigation.

Although the mechanisms remain to be elucidated, the trans-
generational memory of heat responses may contribute to evo-

lutionary adaptation. The warmth-induced epigenetic memory
was maintained for at least three generations with gradually

declining (Zhong et al., 2013). Heat stress also induced trans-
generational phenotypic changes over three generations (Suter

and Widmer, 2013a,b). Ancestral exposure to elevated tem-
peratures over P and F1 generations resulted in increased fit-
ness in the F3 heat-treated Arabidopsis plants (Whittle et al.,

2009). Thus, the transgenerational memory of heat responses
may allow potentially long-term adaptation and rapid evolu-

tion, as chromatin modifications can be mitotically or meiot-
ically heritable. Stress-induced epigenetic changes may lead to

the formation of heritable epialleles and transcriptional acti-
vation of TEs (Mirouze and Paszkowski, 2011). The epialle-

les and transposon-driven variation in gene expression may
contribute to the phenotypic diversity of different individuals

in a population or a species that can be subject to natural
selection (Mirouze and Paszkowski, 2011). The transgenera-

tional retrotransposition of ONSEN may reshape gene regula-
tory networks and potentially create novel traits for adapta-

tion to heat stress, as genes in the vicinity of ONSEN neo-
insertions aquired heat-responsiveness (Ito et al., 2011). Given

that the activity of transposable element is important for adap-
tive plant evolution (Lisch, 2013), and ONSEN is evolution-

ary conserved and transcriptionally activated by environmen-
tal heat stress in some Brassicaceae species (Ito et al., 2013),
it will be interesting to explore the possible role of ONSEN

and other TEs in plant evolution. Whether heat mediates the
formation of heritable epialleles still needs to be investigated.

Random RdDM-mediated epiallele formation is suggested to
play a greater role in evolution than genetic variation (Matzke

and Mosher, 2014). Epigenetic variation in DNA methylation
among epigenetic recombinant inbred lines (epiRILs) that are

nearly isogenic but highly variable at the level of DNA methy-
lation, can cause substantial heritable variation of drought tol-

erance and nutrient plasticity (Zhang et al., 2013). It will be
worth investigating whether heat-induced changes of global

methylation creates potential for the evolution of phenotypic
plasticity.

Concluding Remarks

Heat greatly affects the growth, development, and productiv-
ity of plants. Several heat sensors have been reported, including

the calcium channel in the plasma membrane, H2A.Z-containing
nucleosomes in the nucleus, and two unfolded protein sensors in

ER and the cytosol. Importantly, different epigenetic regulations

may also be involved in the responses to different heat treatments
(Table 1). The epigenetic regulation of warm and high temper-

atures mainly involves warmth-induced PTGS release, enhanced
VIGS-mediated resistance, and H2A.Z-mediated morphological

acclimation and acceleration of flowering. Various epigenetic
mechanisms (known or unknown) are involved in response to

heat stress. It is notable that different lengths (from 1 h to 4 days)
of heat treatment at 37◦C have diverse effects on the epigenome,

suggesting the complexity in the epigenetic regulation of heat
stress.

Despite recent advances in our understanding of the genetic
and epigenetic mechanisms involved in heat stress sensing in

plants, many questions remain to be answered by future research
(Box 1). Perhaps the most important questions in the genetic

mechanisms of heat responses are: what are the primary heat
sensors? In addition to the four heat sensors mentioned above,
a list of other components like mRNAs, miRNAs and hormonal

import and antiport channels may also be plausible thermome-
ters based on physical capacities (McClung and Davis, 2010).

Systematic analysis of the changes in the genome, transcrip-
tome, microme, and proteome by omic approaches may help

to identify novel transcriptional, translational, and posttrans-
lational regulation components and underlying mechanisms in

plant heat responses (Bokszczanin and Fragkostefanakis, 2013;
Hasanuzzaman et al., 2013). Perhaps plants sense heat through

different organelles in different phases of the response, and then
these signaling pathways are integrated and work synergisticly

or differentially to defend plants from heat-induced deleterious
effects.

As listed in Box 1, a set of questions concerning the epi-
genetic regulations of heat responses are proposed. One of the

major challenge ahead may be to discover the mechanisms of
transgenerational memory heat responses. Systemic screening

for factors regulating transgenerational memory of heat may
address the long-term controversial issue. Besides, the roles of

BOX 1 | Proposals of future researches.

• What are the primary heat sensors? Are the CNGCs, H2A.Z or the

unfolded protein sensors the true heat sensor?

• How are the different heat-sensing pathways integrated in plant cells?

• What are the roles of the RdDM pathway in response to heat in crop

plants?

• How do the different histone modifications regulate the heat responses

in different plants?

• Do histone modifications regulate the response of circadian clock to high

temperature and heat stress?

• By which precise mechanism is the H2A.Z occupancy regulated by high

temperature? Is H2A.Z occupancy regulated by heat stress? Is H2A.Z

occupancy involved in the modulation of plant immunity and circadian

clock by high temperature?

• How are the heat-responsive miRNAs, siRNAs and lncRNAs regulated

by heat? What are the regulatory networks of their targets in plants?

• How is the epigenetic regulation of heat responses integrated with the

epigenetic regulation of other biotic and abiotic responses?

• How is the transgenerational memory of heat responses controlled?

• How to improve the thermotolerance of crops without sacrificing

growth?
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DNA methylation and histone modifications in response to

heat need to be defined. miRNAs, lncRNAs and the chromatin-
remodeling gene AtCHR12 have been suggested to integrate the

epigenetic regulation of heat stress with the regulation of other
biotic and abiotic stresses. Other epigenetic regulations may also

have similar functions. Further investigations should be focused
on the epigenetic regulatory networks between heat stress and

other biotic and abiotic stresses. We should note that most exper-
iments on the role of genetic and epigenetic regulation in heat

responses are limited to the model Arabidopsis plants in labora-
tory conditions with short-term heat treatment. As temperatures

in the field change seasonally and fluctuate daily, further studies

should also be centered on the genetic and epigenetic regulations
of heat responses in crop plants in the field, which may pro-

duce practical approaches to develop crop plants with improved
thermotolerance.
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