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Abstract

Food consumption is an essential component of animal fitness; however, excessive food intake in 

humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food 
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sensing modalities, and physiological state in regulating food intake are well understood, but not 

the genetic basis underlying variation in food consumption. Here, we applied ten generations of 

artificial selection for high and low food consumption in replicate populations of Drosophila 

melanogaster. The phenotypic response to selection was highly asymmetric, with significant 

responses only for increased food consumption and minimal correlated responses in body mass 

and composition. We assessed the molecular correlates of selection responses by DNA and RNA 

sequencing of the selection lines. The high and low selection lines had variants with significantly 

divergent allele frequencies within or near 2,081 genes and 3,526 differentially expressed genes in 

one or both sexes. A total of 519 genes were both genetically divergent and differentially 

expressed between the divergent selection lines. We performed functional analyses of the effects of 

RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that 

have human orthologs and the strongest statistical support, and confirmed that 25 (93%) affected 

the mean and/or variance of food consumption.
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Background

All animals consume food to obtain the calories and nutrients necessary for survival, 

reproduction, growth, and other biological processes. In humans, consumption of excessive 

calories is associated with an increased incidence of type 2 diabetes, obesity, cardiovascular 

disease, and other disorders and diseases (Azadbakht et al. 2012; Goncalves et al. 2012; 

Naja et al. 2012); while insufficient caloric intake is correlated with abnormal liver function 

and other disorders (Harris et al. 2012; Strumia 2013). In spite of this, little is known about 

the genetic architecture underlying naturally occurring variation in food intake. Food 

consumption is a typical quantitative trait, with phenotypic variation in populations due to 

multiple segregating loci with alleles with small and environmentally sensitive effects as 

well as direct environmental effects (Falconer and Mackay 1996; Garlapow et al. 2015). 

Dissecting the genetic and environmental contributions to variation in food consumption is 

challenging in human populations, not least due to the difficulty in accurately quantifying 

food intake (Basiotis et al. 1987; Schoeller 1990; Schoeller 1995; Kaczkowski et al. 2000; 

Bray et al. 2008; Champagne et al. 2013). These challenges can be more readily overcome 

using genetically tractable model organisms in which food consumption can be rapidly and 

accurately quantified, environmental conditions controlled, and different and complementary 

experimental designs for genotype-phenotype mapping applied. Inferences about the genetic 

architecture of food consumption gleaned from studies of model organisms may be relevant 

to human health given the evolutionary conservation of basic biological processes across 

eukaryotic taxa.

Single gene studies in D. melanogaster using mutations or manipulation of gene expression 

are yielding insights regarding the multiple genetic factors affecting food consumption in 

this species. These include genes affecting chemosensation, assessment of food quality and 

caloric content, and integration of feeding behavior with physiological state (Rajan and 
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Perrimon 2013; Padmanabha and Baker 2014; Tennessen et al. 2014a; Garlapow et al. 

2015). However, little is known about the extent to which alleles of these genes affect 

phenotypic variation in feeding behavior in natural populations. Recently, we performed a 

genome wide association study (GWAS) to identify genes and genetic variants affecting 

food intake in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference 

Panel (DGRP) (Mackay et al. 2012; Huang et al. 2014; Garlapow et al. 2015). We identified 

74 common (minor allele frequency (MAF) ≥ 0.05) variants in or near 54 genes associated 

with mean food intake and 160 variants in or near 101 genes associated with within-line 

variance of food intake at a nominal significance threshold of P ≤ 10−5. We functionally 

validated many of the candidate genes using RNAi suppression of gene expression. The 

majority of these genes were not previously implicated in Drosophila feeding behavior per 

se, but most were plausible candidates based on functions of mammalian orthologs, tissue-

specific expression patterns, and correlations in gene expression with environmental 

perturbation of feeding. From these data we infer that the genetic architecture of natural 

variation in food consumption is polygenic, that many of the effects may be mediated via 

transcriptional regulation; and that analysis of natural variation complements single gene 

perturbation studies.

Here, we complement the GWAS in the DGRP by combining sequence divergence with 

analysis of divergence in genome wide gene expression (Toma et al. 2002; Tabakoff et al. 

2003; Mackay et al. 2005; Dierick and Greenspan 2006; Edwards et al. 2006; Mulligan et al. 

2006; Jordan et al. 2007; Morozova et al. 2007; Sørensen et al. 2007; Telonis-Scott et al. 

2009; Malmendal et al. 2013; Konczal et al. 2015) to identify strong candidate genes 

affecting transcriptional regulation of food consumption and to independently functionally 

validate the DGRP association mapping results. We performed ten generations of replicated, 

divergent artificial selection for high and low food consumption using an advanced 

intercross population (AIP) derived from a subset of DGRP lines as the base population. We 

performed whole genome DNA and RNA sequencing of pools of individuals from the lines 

at selection generations (G) G9 and G10. We confirmed the effects of 29 genes previously 

identified by association mapping in the DGRP. We also performed functional tests of RNAi 

suppression of gene expression and mutations of 27 additional candidate genes implicated 

by this analysis, and confirmed effects on the mean and/or variance of food consumption for 

25 (93%) of these genes. This analysis highlights the importance of Malic enzyme (Men) in 

regulating food consumption. Men is thus a focal point for beginning to understand the 

complex and evolutionary conserved relationships between metabolism, food intake, sleep, 

lifespan and disease.

Results

Response to selection for food consumption

We used a modified version of the Capillary Feeding (CAFE) Assay (Ja et al. 2007) to 

artificially select for divergent feeding behavior from an AIP derived from 37 DGRP 

(Mackay et al. 2012; Huang et al. 2014) lines with maximal genetic diversity and minimal 

heterozygosity that were not infected with Wolbachia and that did not contain common 

segregating inversions. We derived two high (H1 and H2) and two low (L1 and L2) food 
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consumption selection lines by 10 generations of selecting the most extreme 20 males and 

females from 100 scored of each sex. We also maintained an unselected control (C) 

population at the same census population size. Responses to selection were asymmetric, 

with response to selection for increased, but not decreased food consumption (Fig. 1A). The 

realized heritability (h2 ± SE) of food intake (calculated from the regressions of cumulative 

response (∑R) on cumulative selection differential (∑S) (Falconer and Mackay 1996)) was 

h2 = 0.156 ± 0.018 (P < 0.0001) and h2 = 0.148 ± 0.031 (P = 0.0013) for H1 and H2, 

respectively; and h2 = 0.057 ± 0.038 (P = 0.17) and h2 = 0.0200 ± 0.044 (P = 0.66) for L1 

and L2, respectively (Fig. 1B, 1C). Realized heritabilities from the divergence of high and 

low lines were h2 = 0.120 ± 0.013 (P < 0.0001) and h2 = 0.097 ± 0.026 (P = 0.0056) for 

replicate 1 and replicate 2, respectively (Fig. 1D).

Correlated response to selection for food consumption

Causes of genetic correlation include linkage and net directional pleiotropy, whereby 

segregating polymorphisms in a pleiotropic gene under selection affect not only the selected 

trait but also the correlated trait (Falconer and Mackay 1996). Body mass and body 

composition can be correlated with food composition (Jumbo-Lucioni et al. 2010; Reed et 

al. 2010). We assessed whether body mass, protein, glycogen, and/or triglyceride levels 

changed as correlated responses to selection. We collected flies from G9 and G10 for the 

selection and control lines and measured wet weight before flash freezing the same flies for 

body composition measurements, assessing males and females separately. We pooled the 

data for both generations to increase our ability to detect consistent correlated selection 

responses, and used Tukey’s honestly significant difference (HSD) tests to assess differences 

between lines at P < 0.05. We did not observe consistent correlated responses in body mass 

(Fig. 2A, 2B), total protein (Fig. 2C, 2D), female glycogen (Fig. 2E) or triglycerides (Fig. 

2G, 2H) between the high and low selection lines. However, glycogen was increased in 

males in the high selection lines (Fig. 2F) and the trend was for increased male body mass in 

the high lines and reduced male body mass in the low lines relative to the control (Fig. 2B).

Sequence divergence between selection lines

To identify genomic regions that are targets of selection, we obtained genome sequences of 

pools of females from the high and low lines at G9 and G10, and from G0. We identified 

1,042,033 biallelic SNPs segregating in the populations meeting coverage, frequency, and 

strand bias criteria (see Methods). We computed allele frequencies in each population, 

defining the minor allele as the less frequent allele in the AIP. We identified SNPs with 

significant allele frequency differences in the same direction in both replicate high and low 

selection lines that were unlikely to be due to sequencing error. However, these differences 

could have arisen by genetic drift given the small population size of the selection lines. To 

identify alleles with frequency changes that could be attributable to drift, we first identified 

SNPs not likely to be under selection as those with high P-values for the difference in allele 

frequency at G10. We binned these SNPs into groups defined by their allele frequency in the 

base population, and used the variance in allele frequency across all SNPs in the frequency 

bin across all selection lines to compute the variance effective population size (Ne) (Barton 

et al. 2007). The median Ne across all initial allele frequencies was 18.7; therefore, we used 

a census size of N = 10 males and 10 females to simulate drift. We validated that our 
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simulation provides an accurate estimate of drift for this experiment by comparing the values 

of Ne computed from our simulations to those originally computed from our observed data 

(Fig. 3). Note that this population size is roughly half of the actual number of progenitors 

used in the selection experiment and therefore provides a conservative estimate of drift. We 

then performed 10,000 drift simulations for starting allele frequencies between 0.01 and 0.5 

to determine an upper bound on the expected divergence of allele frequencies due to genetic 

drift, separately for autosomal and X-linked loci (Fig. 4). For each significant SNP at each 

generation, we compared the observed absolute average difference in frequency to that 

computed from the simulations with the same starting allele frequency, for the same 

chromosome type. Only SNPs with an absolute average difference in frequency greater than 

the upper bound computed from the simulation at either G9 or G10 were inferred to be 

under selection for feeding behavior.

We identified 5,544 SNPs likely to be under selection, of which 1,117 were ≥ 1 kb from the 

nearest gene, and 4,427 were near or within 2,081 genes (Fig. 5, Additional file 1). We 

performed gene ontology (GO) enrichment analysis (Huang et al. 2009a; Huang et al. 

2009b) on the significant genes (Table S2). The most significantly enriched GO terms and 

clusters involved development and function of the nervous system, as expected for a 

behavior; and the genes were enriched for immunoglobulin domains (Additional file 2). The 

most significant SNP within a gene is a synonymous T (major)/C (minor) polymorphism in 

Sorting nexin 1 (Snx1) with P = 9.94 × 10−51 with an average allele frequency of 0.113 in 

the high lines and 0.995 in the low lines. The most significant SNP ≥ 1 kb from a gene is a G 

(major)/A (minor) polymorphism at 3L_6289981, 35,999 bp downstream of Ecdysone-

inducible gene L3 (ImpL3) and 23,730 bp upstream of Odorant receptor 65a (Or65a) (P = 

9.27 × 10−43). Given the location of the latter SNP in a gene desert, it is a putative enhancer. 

ImpL3 encodes a lactate dehydrogenase involved in carbohydrate metabolism (St. Pierre et 

al. 2014) and that regulates glucose metabolism in the glycolytic pathway to coordinate 

metabolism with growth (Nirala et al. 2013; de la Cova et al. 2014; Tennessen et al. 2014b) 

and nutrient availability (Teleman et al. 2008). The mammalian orthologs of ImpL3 are 

selectively down-regulated in healthy pancreatic β cells and up-regulated in type 2 diabetes 

to induce excessive insulin secretion (Pullen and Rutter 2013).

Gene expression divergence between selection lines

Genes with significant changes in expression between the replicate selection lines are 

candidate genes affecting variation in food consumption. We assessed genome wide gene 

expression in the high and low selection lines at G9 and G10, separately for males and 

females, using RNA sequencing. All flies were at the same age and physiological state as 

during selection. We analyzed aligned read counts for all 12,991 known genes with 

sufficient expression across all samples (Additional file 3) using the generalized linear 

model (GLM)-based methods (McCarthy et al. 2012) in the EdgeR package (Robinson et al. 

2010). We included all relevant primary and interaction effect terms in our model (see 

Methods), and fit three separate models encompassing: (1) females only; (2) males only; (3) 

females and males combined with primary sex effects and secondary sex interactions 

included. For each model, we defined differentially expressed genes as those passing a 5% 
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FDR threshold from the EdgeR likelihood ratio test on the high vs. low lines across both 

replicate lines at both generations (Additional file 4).

In total, 811 (1,341) genes were down-regulated and 456 (980) were up-regulated in the high 

line females (males) relative to the low lines. In the analysis pooled across sexes, 1,033 

genes were down-regulated and 598 were up-regulated in the high lines, 338 of which are 

unique to the pooled analysis. Of the 1,267 differentially expressed genes in females and the 

2,321 differentially expressed genes in males, 400 are shared between both sexes (Additional 

file 5), which are more than predicted by chance (hypergeometric test P = 4 × 10−36). Of the 

400 shared differentially expressed genes, 74 had sexually antagonistic gene expression 

differences between high and low lines: 52 genes are down-regulated in high line females 

and up-regulated in high line males, and 22 are up-regulated in high line females and down-

regulated in high line males (Additional file 5).

We used GO cluster analyses (Huang et al. 2009b) to infer processes and functions enriched 

in up- and down-regulated genes, separately for the pooled sexes, female and male analyses 

(Additional file 6). In all analyses, down-regulated genes in the high lines were enriched for 

terms involved in mitochondrial function while up-regulated genes in the high lines were 

enriched for terms involving protein synthesis and the cell cycle, mitosis, meiosis and DNA 

replication. In females, genes involved in egg production and muscle function and 

development were down-regulated in the high lines while in males, genes involved in 

metabolic processes and detoxification of xenobiotics were up-regulated in high lines. Thus, 

although the genes with divergent gene expression are largely different between males and 

females, many belong to the same enriched categories while others give enrichment clusters 

specific to each sex. These results suggest a complex genetic regulatory mechanism by 

which similar feeding outcomes are achieved between the sexes.

Integrating genetic and gene expression divergence

Causal variants affecting food consumption are among those with divergent allele 

frequencies between the high and low selection lines. However, selection introduces linkage 

disequilibrium (LD) between the selected variants and nearby genes, and hence it is not 

possible to determine which of many variants in LD are causal. Candidate genes affecting 

food consumption behavior via a transcriptional mechanism are also among the genes with 

differences in expression between the high and low selection lines. However, gene 

expression analyses alone cannot discriminate between gene expression changes causing 

phenotypic divergence in food consumption from those that are a consequence of phenotypic 

divergence; and a cis-regulatory change in expression of one gene can cause trans-regulatory 

changes in gene expression of other genes, leading to correlated gene expression modules 

(Sieberts and Schadt 2007; Ayroles et al. 2009; Jumbo-Lucioni et al. 2010; Civelek and 

Lusis 2014; Reed et al. 2014). We hypothesize that the inclusion of additional non-causal 

genes from LD in the genetic divergence analysis and from transcriptional co-regulation 

from the transcript divergence analysis led to the lack of correspondence between the 

enriched GO categories from the two analyses. Integrating the results of genetic and gene 

expression divergence should enable us to identify the most likely candidate genes affecting 

variation in food consumption. We found a total of 519 genes that overlap between the two 
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analyses (Additional file 7), which is greater than expected by chance (hypergeometric test, 

P = 0.0029).

Functional validation

We identified the top 28 candidate genes (Additional file 8) for functional evaluation using 

RNAi-mediated reduction in gene expression or analyses of insertional mutations, based on 

public availability of reagents, the strength of the signal in the genetic divergence and 

transcriptional divergence studies, existence of a one:one human ortholog, GO classification 

and gene expression pattern. We also required that at least one variant in the 3’ and 5’ UTR 

region was significant from the genetic divergence analysis, because most cis-eQTLs are 

located in these regions (Massouras et al. 2012). We performed RNAi knockdown of gene 

expression of 26 candidate genes using a weak ubiquitously expressed GAL4 driver 

(Ubi156-GAL4, Garlapow et al. 2015); all but one of the candidate genes (Ribosomal 

protein L30) yielded viable F1 progeny. We also assessed effects of two Minos-element 

insertional mutations.

Causal variants associated with response to selection for food consumption could exert their 

effects on mean food intake, but also through an increased within-genotype (residual) 

variance in food intake. Indeed, our previous GWAS for food intake using the DGRP lines 

revealed many candidate genes affecting the magnitude of the residual variance of this trait. 

Therefore we evaluated the effects of the candidate genes on both mean and variance of food 

consumption, relative to the appropriate control genotypes (Additional file 8). In total, 22 of 

the 27 RNAi and mutant genotypes had significant effects on mean food consumption in at 

least one sex (Fig. 6A, 6B), while 15 of the candidate genes had significant effects on 

variance of food intake (Additional file 8). Importantly, several of the candidate genes that 

did not have significant effects on mean food consumption were significantly different from 

the control at the level of the within-genotype variance in both sexes (CG5335 and Cyt-c-p) 

or only in one sex (CG15160, CG10924, CG10469, OstDelta, Rab9 and Rae1, Additional 

file 8). Thus, in total 25 of the 27 candidate genes tested (93%) affected the mean and/or 

variance of food intake. None of these genes have been previously associated with food 

consumption in Drosophila. They are involved in a range of biological processes, including 

metabolic processes (CG10467, CG6629, Fdh, Men, Prat2), neurogenesis (CG3964 and 

Ciao1), proteolysis (CG12374, CG10469 and Mmp2) and oxidative phosphorylation (wal) 

(Additional file 8).

RNAi suppression of gene expression of Men was associated with decreased mean food 

consumption in both sexes. Previously, we had shown that a P{GT1} insertional allele of 

Men (MenBG12824) was associated with increased resistance to the inebriating effects of 

alcohol (Morozova et al. 2011). We therefore assessed mean food consumption for 

MenBG12824,two precise revertant lines that we generated previously (Morozova et al. 2011) 

and the Canton S B co-isogenic control line (Fig. 6C). We found that P-element insertion in 

the first exon of Men caused a significant decrease in food consumption compared to the 

Canton S B control similar to the effect of Men RNAi knockdown (Figure 6A) in a 

completely different genetic background. Precise excision of the P-element restored mean 
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food consumption to control or near-control values. Thus, we have confirmed an important 

role of Men in regulating food consumption.

Discussion

The response to artificial selection for food consumption in D. melanogaster is asymmetric, 

with significant selection response in the direction of increased, but not decreased food 

consumption. The low realized heritability (h2 = 0.15) in the high lines and from the high-

low divergence (h2 = 0.11 average) as well as the asymmetric selection response is the 

hallmark of a trait closely related to fitness (Frankham 1990; Falconer and Mackay 1996). 

Food intake affects fitness (Lee et al. 2008; Reddiex et al. 2013). Traits that are components 

of fitness are expected to have reduced additive genetic variance (Falconer and Mackay 

1996; Fisher 1999), mostly attributable to alleles segregating due to mutation-selection 

balance (Falconer and Mackay 1996; Fisher 1999). Thus, there will be little selection 

response in the direction of increased fitness, but response in the direction of decreased 

fitness (Cunningham and Siegel 1978; Mackay et al. 2005; Vishalakshi and Singh 2009; 

Dobler and Hosken 2010). From this, we infer that increased food consumption is 

deleterious in D. melanogaster.

We did not observe consistent correlated responses to selection for body mass, total protein, 

triglycerides, and female glycogen content. It is possible, though unlikely, that genes 

affecting food consumption do not have directional pleiotropic effects on these traits and 

selection response is not directly related to body size or lipid energy storage. However, it is 

important to note that correlated responses to selection depend on the narrow sense 

heritability of both the directly selected and correlated traits, the genetic correlation between 

these traits, the phenotypic standard deviation of the correlated trait and the selection 

intensity (Falconer and Mackay 1996). Thus, if the heritabilities of both the selected and 

correlated traits are low, we do not expect much correlated response after only ten 

generations of direct selection even with moderately high genetic correlations. We did 

observe a correlated response in male glycogen content, suggesting a sex-specific effect of 

selection on increased energy stores; and a trend in the direction of increased male body size 

in the high-consuming lines and in the direction of decreased male body size in the low-

consuming lines, suggesting the latter explanation is correct. Glycogen levels are both sex- 

and sucrose-concentration-dependent (Rovenko et al. 2015). While we did not vary the 

sucrose concentration, the individuals of the high selection lines consumed more sucrose. At 

G10 the average food consumption (± SD) was 2.12 ± 0.75 µL/fly for the high lines vs. 0.64 

± 0.42 µL/fly for the control and low lines, a threefold difference.

To gain insight into the genetic and genomic correlates of response to selection for food 

consumption, we assessed genetic divergence between the high and low selection lines at G9 

and G10 by DNA sequencing of pools of females (which are diploid for all chromosomes) 

and the differences in genome wide gene expression by RNA sequencing of males and 

females. The two approaches are complementary. Causal variants associated with food 

consumption are among the genetically divergent variants, but there is additional noise from 

genetic drift and LD arising from both drift and selection. Genes affecting food consumption 

via a transcriptional mechanism are among those with differences in expression between the 
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selection lines, but a single cis-regulatory variant can affect the expression of modules of co-

regulated genes. Therefore we also integrated information from genetic divergence and 

divergence in gene expression to identify candidate genes with putative cis-regulatory 

variants affecting natural genetic variation in food consumption. The candidate genes 

implicated in each of these analyses indicate that genes previously known to affect feeding 

behavior by analysis of induced mutations are also associated with natural genetic variation 

in food consumption; confirm our previous GWAS of food consumption in the DGRP inbred 

lines; and implicate novel and plausible candidate genes for future study.

Some of the genetic mechanisms affecting food consumption in D. melanogaster have been 

revealed from effects of induced mutations and manipulation of gene expression (Rajan and 

Perrimon 2013; Padmanabha and Baker 2014; Tennessen et al. 2014a). Notably, variants in 

some of these genes had different allele frequencies in the high and low selection lines, 

suggesting these genes also affect natural variation in food consumption. Specifically, we 

identified genetic divergence in genes previously known to affect food intake, such as two 

genetically divergent SNPs in the Insulin Receptor (InR) gene, four in the gene encoding the 

Leucokinin receptor (Lkr), one upstream of the gene encoding Tryptophan hydroxylase 

(Trh), one in the gene encoding 5-hydroxytryptamine receptor 1A (5-HT1A), two near the 

Serotonin Transporter (SerT) gene (one upstream, one in the 3’UTR), two in the gene 

encoding short neuropeptide F (sNPF), and one in the gene encoding the sNPF receptor, 

sNPF-R (Britton et al. 2002; Lee et al. 2004; Wu et al. 2005; Al-Anzi et al. 2010; 

Neckameyer 2010; Hong et al. 2012; Huser et al. 2012; Kapan et al. 2012; Nässel et al. 

2013; Luo et al. 2014; Liu et al. 2015). These results suggest that variants in genes 

previously known to affect feeding from single gene studies may partially underlie natural 

genetic variation in food intake.

We did not identify any of these variants in genes previously known to affect feeding 

behavior in our GWAS for food consumption in the DGRP lines (Garlapow et al. 2015). This 

could be because the alleles were too rare to be included in the GWAS, which used common 

(MAF > 0.05) variants only. However, effects of low frequency alleles can be detected by 

selection if they are present in the AIP and have large effects. A second possibility is that the 

alleles are common in the DGRP, but their effects are too small to be detected in a 

population of ~200 lines, or they interact epistatically with other loci (Huang et al. 2012; 

Mackay 2015; Shorter et al. 2015). In the latter case, differences in allele frequency at the 

interacting loci between the DGRP and AIP used to derive the selection lines can cause a 

difference in the additive effects of the focal allele between the two populations (Huang et 

al. 2012; Mackay 2015; Shorter et al. 2015). We therefore compared the frequency of the 

genetically divergent SNPs in these genes between the DGRP and the AIP. One of four 

SNPs in Lkr, 3L_5519044 (minor allele frequency = 0.029 in the DGRP), and one of two 

SNPs in sNPF, 2L_20038844 (minor allele frequency = 0.041 in the DGRP), are not 

sufficiently frequent to be evaluated for association in the DGRP. The remaining eleven 

SNPs have high P-values (P < 10−1 to P < 10−2) and correspondingly small effect sizes in 

the DGRP. The selection experiment may have had increased power to detect these variants, 

in part because we used a DGRP-derived AIP such that all founder haplotypes are known 

(Franssen et al. 2015), and we have a smaller multiple testing penalty than with GWAS; 

alternatively, the effects of these SNPs in the AIP could be greater in the AIP than the DGRP 
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because allele frequencies of epistatic partners are different between the two populations 

(Huang et al. 2012; Mackay 2015; Shorter et al. 2015).

The genetic and genomic responses to selection can also serve as a functional validation for 

genes and additive variants implicated by the GWAS for food consumption using the inbred 

DGRP lines. Of the 54 candidate genes identified in the GWAS for mean food consumption, 

24 were identified in one or both analyses reported here. Eleven of the DGRP candidate 

genes were identified in the analysis of genetic divergence (CG13229, CG2121, CG30287, 

lilli, LRP1, Mp, mspo, Nipped-A, SKIP, Spn, tinc); nine in the analysis of expression 

divergence (CG1136, CG11929, CG15653, CG32107, G34356, CG42788, Grp, tmod, trp); 

and four in both analyses (Egfr, Lmpt, MESR3, retn). In addition, five candidate genes 

affecting the within line variance in food consumption were identified in both analyses in 

this study (CG1136, CG42747, Cpr97Ea, fz, kdn). We had previously assessed the effects on 

food intake of 13 of these 24 overlapping candidate genes between the DGRP GWAS and 

this study, and found that 11 affected food consumption (CG2121, CG32107, Egfr, Grp, lilli, 

Lmpt, LRP1, Spn, tinc, tmod, trp).

The Epidermal Growth Factor (EGF) signaling pathway previously has been shown to 

regulate the insulin-like signaling pathway in post-prandial metabolism (Zhang et al. 2011b; 

Brankatschk et al. 2014), though components of EGF signaling had not been known to affect 

food intake volume per se. Previously, we showed that an RNAi knockdown of the Egf 

receptor (Egfr) elicited a male-specific increase in food intake (Garlapow et al. 2015). Here, 

we observe down-regulation of Egfr expression in the high selection lines in the pooled 

analysis of differential gene expression (FDR = 0.011), and five intronic SNPs within Egfr 

have divergent allele frequencies (the most significant is SNP 2R:17419950, P = 1.6 × 

10−09). Similarly, LDL receptor protein 1 (LRP1), a component of the EGF signaling 

pathway, was identified in the DGRP GWAS and elicited increases in male food intake when 

knocked down with RNAi (Garlapow et al. 2015). Here, we observe thirteen SNPs (twelve 

intronic, one non-synonymous with lowest P = 7.25 × 10−24) of LRP1 with differences in 

allele frequency consistent with selection. LRP1 is involved in modulating post-prandial 

insulin signaling in Drosophila (Brankatschk et al. 2014) and mammals (Hofmann et al. 

2007; Liu et al. 2011) and here further implicated in underlying natural variation in food 

consumption.

The remaining genes identified by divergence in allele frequencies between the high and low 

selection lines and/or that overlap between the genetic and genomic analyses are plausible 

and interesting candidate genes for future analyses. Two of these genes further implicate 

aspects of EGF signaling with the regulation of food consumption. The most significant SNP 

from the DNA sequencing analysis lies in Snx1, which is also up-regulated in females from 

the high selection lines. Snx1 is an essential component of the retromer complex and is a 

positive regulator of Wnt protein secretion (Zhang et al. 2011a). In mammals, SNX1 

interacts with the EGFR as part of the mechanism by which EGFR is degraded (Kurten et al. 

1996). We also observed ten SNPs (nine intronic, one non-synonymous, smallest P = 7.77 × 

10−13) in rugose (rg), a known modulator of EGF and Notch signaling (Shamloula et al. 

2002). The mammalian orthologues of rg are Neurobeachin (Nbea) and LPS-responsive, 

beige-like anchor (Lrba) (Volders et al. 2012). Mice heterozygous for an Nbea null allele 
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increased food intake and white adipose, while in humans, variants in Nbea are significantly 

associated with an increased body mass index (Olszewski et al. 2012). NBEA interacts with 

the glycine receptor β subunit in the central nervous system, where it may help traffic 

neurotransmitters (del Pino et al. 2011). In D. melanogaster, glycine cleavage has been 

implicated in the cessation of eating (Zinke et al. 1999; Melcher et al. 2007) and glycine 

levels in larvae are predictive of a variety of metabolically related phenotypes, including 

adult heart arrhythmia, sugar levels, and lipid levels (Reed et al. 2014). Recently, rg was 

shown to affect microbiome-dependent triacylglycerol and glucose levels (Dobson et al. 

2015). Previous research on Drosophila and mammals positions rg as a plausible candidate 

gene directly affecting food intake. Future work is necessary to assess whether rg directly 

regulates food intake and whether it interacts with glycine perception to do so.

Finally, we functionally assessed the effects of 27 top candidate genes that overlapped 

between the genetic and gene expression divergence analyses, finding that 25 affected the 

mean and/or residual variance of food consumption. Many of these genes affect aspects of 

metabolism. In particular, both RNAi suppression of Men gene expression and a P-element 

insertional mutation in the first exon of Men cause a reduction in food intake in both sexes, 

and precise revertant alleles restore food consumption at or near control levels. Thus, the 

effect of Men on food intake is supported by association analyses of inbred DGRP lines and 

outbred populations derived from a subset of these lines; changes in gene expression as a 

correlated response to selection; and functional tests in two different genetic backgrounds. 

Men encodes Malic enzyme, a key component of intermediary metabolism, and affects 

lifespan (Paik et al. 2012), regulation of cell death (Yang et al. 2010), sleep (Harbison and 

Sehgal 2008) and alcohol resistance (Morozova et al. 2011) in Drosophila. In mammals, 

Malic enzyme 3 (ME3) is important for appropriate pancreatic β-cell glucose-stimulated 

insulin secretion (Hasan et al. 2015). Thus, this gene may be one key to understanding the 

complex and evolutionary conserved relationships between metabolism, food intake, sleep, 

lifespan and disease.

Methods

Drosophila stocks

We created an advanced intercross outbred population (AIP) from 37 of the 205 sequenced, 

wild-derived, inbred DGRP lines (Mackay et al. 2012; Huang et al. 2014). These 37 lines are 

minimally related (polygenic relatedness < 0.08), maximally homozygous (genome-wide 

heterozygosity < 5%), have the standard karyotype for all common polymorphic inversions, 

and are not infected with Wolbachia. The lines were first crossed in a round robin design 

(Huang et al. 2012) to ensure equal representation of each genotype. At generation (G) zero, 

one virgin F1 female and one F1 male from each of the 37 lines was placed into each of 10 

bottles. The AIP was maintained by random mating by mixing progeny from all bottles and 

distributing 40 females and 40 males into each of 10 new bottles, for a census population 

size of 800. To minimize natural selection via larval competition, egg-laying was restricted 

to 24 hours. We initiated the selection experiment at AIP G24. The AIP and selection lines 

were reared in bottles on cornmeal/molasses/agar medium under standard culture conditions 

(25°C, 12:12 hour light/dark cycle).
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We obtained RNAi transgenic fly lines (Cep97103357, CG10467103787 CG10924107092, 

CG12374101566, CG15160107028, CG3964102197, CG5335101295, CG6629106108, 

Ciao1105939, Cyt-c-p106759, Drip106911, Ef1alpha48D104502, Fdh110071, Ih110274, Lk6109663, 

Men104016, Mmp2107888, OstDelta107068, Prat2108948 Rab9107192, Rae1101338 RpL30101391, 

SelR110755, Sod2110547, TfIIFβ110569 and wal103811) and the corresponding progenitor line 

with the empty vector site (60010) from the Vienna Drosophila RNAi Center (VDRC) 

(Dietzl et al. 2007). We crossed these lines to a weak, ubiquitously expressed driver 

(Ubiquitin-GAL4), and we crossed the driver to the progenitor RNAi controls (v60010) to 

serve as our experimental controls (Garlapow et al. 2015). Mi{ET1} mutants (CG911925661, 

CG1046927875) (Bellen et al. 2011) and a P{GT1}Men12824 mutant (Norga et al. 2003) were 

obtained from the Bloomington Drosophila stock center. The corresponding Mi{ET1} 

(w1118) and P{GT1} isogenic control lines (Canton S B) are maintained in our laboratory. 

Men revertant alleles were generated using crossing schemes that preserved the co-isogenic 

background of the revertant lines by Morozova et al. (2011) and are maintained in our 

laboratory.

Food consumption assays

We used virgin 3–7 day old flies in all assays, placing each fly in an individual vial with 

food following CO2 anesthesia. After a minimum recovery period of 24 hours, we placed 

each fly into individual vials containing 2 mL 1.5% agar medium and one 5 µL capillary 

tube (Kimble Glass Inc.) containing a 4% sucrose solution (w/v) inserted through a foam 

plug. Beginning at G8, we inserted two capillaries per vial for the high consumption 

replicate populations. Our modified version of the CAFE assay (Ja et al. 2007) includes the 

agar medium to prevent desiccation from affecting food consumption. We placed the CAFE 

vials in a transparent plastic container in which high humidity is maintained with open 

containers of water to minimize evaporation from the capillary tubes. In addition, we 

assessed evaporation by placing CAFE vials with capillary tubes containing 4% sucrose but 

without flies in the same humid chamber. We measured total food consumption in each 

CAFE vial after 24 hours, between 10 A.M. and 12 P.M, and then transferred the flies into 

individual vials containing standard culture medium to allow them to continue eating while 

we determined which individuals to select. We adjusted the total amount of food consumed 

by the average evaporation that occurred in the negative control vials to give the phenotype 

of each fly.

Mass selection

At G0 for each of the divergent selection replicates, we scored 100 virgin females and males, 

and selected the 20 individuals of each sex with the highest and lowest food consumption to 

establish the two high (H1, H2) and two low (L1, L2) selection lines. In each subsequent 

generation, we selected the 20 highest (or lowest) males and females from 100 scored of 

each sex as parents of the next generation. We established a control population (C) 

maintained with 20 unselected males and females each generation. We scored 100 males and 

females from the control line every two generations. Selection was continued for 10 

generations. We estimated h2, the narrow sense (realized) heritability, for each selection 

replicate as the regression of the cumulative response to selection (ΣR) on the cumulative 

selection differential (ΣS) (Falconer and Mackay 1996). At G9 and G10, we assessed 
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correlated responses to selection for body mass, molecular metabolites, and genome wide 

genetic and gene expression divergence for all selection lines.

Body weight

We used three-to-five day-old virgin flies for body weight measurements to reduce 

variability due to egg production and egg-laying in mated flies. Pools of ten flies were 

measured on an analytical scale in a pre-weighed Eppendorf tube. We measured six 

replicates per line per sex per generation. We flash-froze the flies after weighing for 

subsequent body composition analyses.

Molecular metabolites

We measured triglyceride, protein, free glucose, and glycogen in the pooled, weighed tubes 

of flash-frozen flies. Frozen flies were homogenized in 250 µl PBS buffer using ceramic 

beads and Tissuelyser (Qiagen.Inc). The homogenate was centrifuged under low speed for 5 

minutes at 4°C to remove fly cuticle, and 170 µl supernatant was taken and aliquoted for 

different measurements. All molecular traits were measured on a SpectraMax Microplate 

Reader. For measurements of total protein, the homogenate was diluted 10 times and 

measured using the Quant-iT Protein Assay Kit from Thermo Fisher Scientific. For 

glycogen measurements, the homogenate was diluted 10 times and heated at 99 °C for 10 

minutes to stabilize glycogen. Total glucose hydrolyzed from glycogen including free 

glucose was measured using the Glycogen Fluorometric Assay kit from BioVision. Baseline 

free glucose was measured using aliquots of the same sample without adding the hydrolysis 

enzyme. Glycogen abundance was calculated as total glucose minus free glucose. For 

triglyceride measurements, undiluted homogenate was measured using Serum Triglyceride 

Determination Kit from Sigma-Aldrich with longer a incubation time (10 minutes incubation 

at 37 °C at Step 7, and 60 minutes incubation at 37 °C at Step 9) for a better hydrolysis 

result. Both free glycerol and total triglycerides were measured from the same sample and 

the true triglyceride abundance was calculated by subtracting the two measurements.

DNA sequencing

We flash froze 100 female flies from the selection lines at each of generations nine and ten 

and 173 female flies from the AIP base population used to initiate the selection lines on 

clean CO2 pads, producing nine samples. We homogenized flies from each sample using 

Tissuelyser (Qiagen.Inc) in lysis buffer. Genomic DNA was extracted using magnetic beads 

and fragmented to 300–400bp using Covaris S220. Fragmented DNA was used to produce 

barcoded DNA libraries using NEXTflex™ DNA Barcodes (Bioo Scientific, Inc.) with an 

Illumina TrueSeq compatible protocol. Libraries were quantified using Qubit dsDNA HS 

Kits (Life Technologies, Inc.) and Bioanalyzer (Agilent Technologies, Inc.) to calculate 

molarity. Libraries were then diluted to equal molarity and re-quantified, and all samples 

were pooled together. Pooled library samples were quantified again to calculate final 

molarity and then denatured and diluted to 14pM. Pooled library samples were clustered on 

an Illumina cBot and sequenced on two Hiseq2500 high throughput lanes using 125 bp 

paired-end v4 chemistry.
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DNA-seq analysis

Barcoded paired-end sequence reads were demultiplexed using the Illumina pipeline v1.9, 

and aligned to the D. melanogaster reference genome (BDGP5) using BWA v0.7.10 (MEM 

algorithm with parameters ‘-v 2 –t 4’) (Li and Durbin 2010). GATK (McKenna et al. 2010) 

was used to locally realign regions around a universal set of indels merged from all libraries, 

remove duplicate sequence reads, and recalibrate base quality scores. Replicate libraries 

corresponding to the same population were then merged, and the number of unique base 

calls for each possible nucleotide at each known SNP was calculated using SAMtools (Li et 

al. 2009). We considered all biallelic SNPs segregating in the selection lines meeting the 

following criteria: (1) coverage of Q13 bases ≥ 10 in each population, including the starting 

population; (2) at least 80% of coverage had quality of Q13 or better; (3) the two most 

frequent alleles constituted ≥ 95% of all observed alleles; (4) the minor allele frequency was 

≥ 5% in at least one selected population; (5) the Chernoff bound of the P-value for the null 

hypothesis that the observed minor alleles were caused by sequencing error (Bansal 2010) 

was < 10−5 whenever the allele frequency was ≥ 5%; and (6) strand bias was not significant 

(Fisher’s exact test, P < 10−5) in any population. For the SNPs passing these criteria, the 

minor allele was defined as the less frequent allele in the starting population, and allele 

frequencies in each population were computed as the number of unique base calls 

corresponding to the minor allele divided by the number of unique base calls corresponding 

to either the minor or major alleles.

To identify SNPs with significant changes in allele frequency between the high and low lines 

from each replicate that were unlikely to be due to sequencing error/variation, we performed 

the following test. Let i denote each pair of high and low selection lines, with allele 

frequencies pH[i] and pL[i], and base coverage CH[i] and CL[i], respectively. Let NH[i] and 

NL[i] denote the number of unique chromosomes (2 × number of flies) in each DNA pool. 

Let  denote the common allele frequency under the null hypothesis, 

and let  denote the expected variance due to sequencing 

in each population (defined similarly for ), and let w[i] = (CH[i]+CL[i])/∑i(CH[i] + 

CL[i]) denote the relative weight for each population pair based on base coverage. We then 

compute test statistic:

The corresponding P-value is calculated using the one-tailed probability density function for 

the standard χ2 distribution with one degree of freedom. Individual P-values are then 

corrected for multiple testing by the Bonferroni method. We only rejected the null 

hypothesis of equal allele frequency in each pair of high and low selection lines when the 

Bonferroni-corrected P-value was ≤ 0.01. Note that this test only identifies SNPs for which 

there is a significant difference in allele frequency in one or more population pairs that is 
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unlikely to be due to random fluctuations in the sequencing process, but it does not address 

the question of whether the frequency difference occurred due to selection or genetic drift.

To identify allele frequency differences that are not likely to be due to genetic drift among 

the variants surviving the above test, we applied several additional filters. First, we removed 

all SNPs for which the sign of (pH[i] − pL[i]) for at least one pair i of high and low lines 

differs from that of the other replicate pairs of high and low lines. In other words, we require 

that the directionality of the allele frequency difference between the high and low lines must 

be the same in each replicate population, at each generation, which is based on the 

assumption that selection acts in the same direction for each population, while drift causes 

changes in allele frequency independently in each population.

Drift simulations

To further estimate the expected allele frequency differences occurring due to drift in our 

experiment, we performed forward simulations of a single biallelic SNP in a population with 

a fixed equal number N of male and female flies for 10 generations. Given a starting minor 

allele frequency q0, we randomly and independently sample the identity of the allele on each 

haplotype in each fly. For each subsequent generation, the genotype of each fly is 

determined by randomly selecting a male and female mating pair from the previous 

generation, and randomly selecting which haplotype is inherited from each parent. For each 

simulation, this process is repeated for 4 independent replicates, arbitrarily assigned as high 

and low lines. We then record the allele frequency for each replicate population at G9 and 

G10, corresponding to the generations sequenced in our experiment, and compute the 

average difference in allele frequencies between high and low lines at each generation.

To determine an appropriate population size for simulations of genetic drift, we first 

estimated effective population size based on the background variance in allele frequency 

observed across the genome in our DNA-seq samples from G10. We first selected all 

autosomal SNPs with sufficient minor allele frequency and sequence coverage, as in our 

primary selection analysis. We then selected the 80% of SNPs with the least significant P-

values in our χ2 test, reasoning that the majority of these SNPs should be free of selection 

effects. We then binned SNPs by their approximate starting allele frequency (rounded to the 

nearest hundredth) in the G0 control sample, ranging from 0.05 to 0.49. We excluded SNPs 

with starting frequency < 0.05 as these tend to have higher technical noise in the estimate of 

starting frequency. We also excluded SNPs with starting allele frequency = 0.5 because there 

were too few SNPs in this bin. For each bin with starting allele frequency q0, we computed 

the variance σ2 of allele frequencies across all SNPs and lines (H1, H2, L1, L2) measured at 

G10. We estimated the variance effective population size using the following equation 

(Barton et al. 2007):
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The median of these estimates across all starting allele frequencies was 18.7. Based on this 

value, we performed forward simulations of genetic drift for populations of flies with 10 

males and 10 females (total N = 20).

We repeated the simulation procedure 10,000 times for each starting allele frequency q0 in a 

uniform grid of values ranging from 0.01 to 0.5. For each starting allele frequency, we then 

computed the 0.999 quantile of absolute average difference between high and low selection 

lines to determine a reasonable upper bound on the expected divergence of allele frequencies 

due to drift in our experimental setup. This entire simulation procedure was repeated 

separately for autosomal and X-linked loci. For each SNP at each generation, we compared 

the observed absolute average difference in frequency to that computed from our simulations 

of the same starting allele frequency, for the same chromosome type. Only SNPs with 

absolute average difference greater than the upper bound computed from our simulation at 

either G9 or G10 were inferred as under selection for feeding behavior. These SNPs were 

then assigned to all genes within 1kb or overlapping.

RNA sequencing

We flash froze at −80 °C three-to-five day-old virgin flies at generations nine and ten, with 

at least thirty flies per replicate and two replicates per sex per selected population per 

generation (32 samples) such that each generation of each population and each sex had two 

biological replicates that were processed separately. All flies were collected between 1 PM 

and 3 PM. Total RNA was extracted with Trizol using the Quick-RNA MiniPrep kit (Zymo 

Research; R1055). rRNA was depleted using the Ribo-Zero™ Gold rRNA Removal Kit 

(Illumina, Inc.) with 5ug total RNA input. Depleted mRNA was fragmented and converted to 

first strand cDNA. During the synthesis of second strand cDNA, dUTP instead of dTTP was 

incorporated to label the second strand cDNA. cDNA from each RNA sample was used to 

produce barcoded cDNA libraries using NEXTflex™ DNA Barcodes (Bioo Scientific, Inc.) 

with an Illumina TrueSeq compatible protocol. Library size was selected using Agencourt 

Ampure XP Beads (Beckman Coulter, Inc.) and centered around 250 bp with the insert size 

~130 bp. Second strand DNA was digested with Uracil-DNA Glycosylase before 

amplification to produce directional cDNA libraries. Libraries were quantified using Qubit 

dsDNA HS Kits (Life Technologies, Inc.) and Bioanalyzer (Agilent Technologies, Inc.) to 

calculate molarity. Libraries were then diluted to equal molarity and re-quantified. Two 

pools of 16 libraries were made, one of the 16 libraries from replicate 1 high and low lines; 

and one of the 16 libraries from replicate 2 high and low lines. Pooled library samples were 

quantified again to calculate final molarity and then denatured and diluted to 14pM. Pooled 

library samples were clustered on Illumina cBot; each pool was sequenced on one lane of 

Illumina Hiseq2500 using 125 bp single-read v4 chemistry.

RNA analysis

Barcoded sequence reads were demultiplexed using the Illumina pipeline v1.9. Adapter 

sequences were trimmed using cutadapt v1.6 (Martin 2011) and trimmed sequences shorter 

than 50bp were discarded from further analysis. Trimmed sequences were then filtered for 

ribosomal RNA sequences by aligning against a database containing the complete 5S, 

18S-5p8S-2S-28S, mt:lrRNA, and mt:srRNA sequences using BWA v0.7.10 (MEM 
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algorithm with parameters ‘-v 2 –t 4’) (Li and Durbin 2010). The remaining sequences were 

aligned to the D. melanogaster genome (BDGP5) and known transcriptome (FlyBase v5.57) 

using STAR v2.4.0e (Dobin et al. 2013). Read counts were computed for known gene 

models using HTSeq-count (Anders et al. 2015) with the ‘intersection-nonempty’ 

assignment method. Tabulated read counts were then analyzed for all known genes across all 

samples using EdgeR (Robinson et al. 2010) as follows. First, genes with low expression 

overall (<10 aligned reads in >75% of the libraries) were excluded from the analysis. 

Library sizes were recomputed as the sum of reads assigned to the remaining genes, and 

further normalized using the Trimmed Mean of M-values (TMM) method (Robinson and 

Oshlack 2010). We then used the generalized linear model (GLM)-based methods 

(McCarthy et al. 2012) for estimating tagwise dispersion and fit model parameters to the 

following model design: X = L + G + LxG + B + ε, where X = observed log2(read count), L 

= effect of selection line (H1, H2, L1, L2), G = generation effect (G9 vs G10), LxG = line by 

generation interaction effect, B = batch effects (each generation of each population was 

analyzed using two biological replicates, with the first replicates processed in a separate 

batch from the second replicates), and ε = model error following a negative binomial 

distribution with estimated gene-wise dispersion as described in (McCarthy et al. 2012). We 

applied this model separately to data from males and females. We also fit a full model 

pooled across males and females: X = L + S + G + LxS + LxG + SxG + LxSxG + B + SxB + 

ε, where S is the effect of sex and other terms are as defined above. For each model, we 

selected genes with differential expression as those passing a 5% FDR threshold (based on 

Benjamini-Hochberg corrected P-values) from the EdgeR likelihood ratio test on the contrast 

of model terms comparing high vs. low selection lines across both replicate populations: 

[(H1+H2)/2-(L1+L2)/2].

Functional validation

We selected 28 genes with top associations for food consumption in the selected lines. We 

functionally tested 25 genes with available RNAi knock down alleles using the CAFE assay 

described above, with one alteration. For these experiments, we assessed total consumption 

for ten groups of eight single sex flies for each sex and genotype. We could not obtain 

behavioral measurements for RpL3010139 due to poor viability of F1 GAL4-Ubi156/UAS-

RNAi offspring. In addition, we tested two MiET1 insertional mutations and a P{GT1} 

insertional mutation for Malic enzyme gene and its precise revertants. We assessed whether 

differences in mean food intake between mutant lines and the controls were significant using 

Dunnett’s tests or Student’s t tests, separately for males and females. We also assessed 

differences in residual variance between mutant alleles and the controls with pairwise 

Levene’s tests, separately for males and females. Statistical tests were performed using SAS 

(9.0) solftware.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Response to selection for food consumption

(A) Mean food consumption of selection lines. Red squares indicate H lines, blue diamonds 

indicate L lines, black circles indicate the C line. Solid lines indicate Replicate 1 and dashed 

lines indicate Replicate 2. Error bars are ±SE. (B) Regressions of cumulative response on 

cumulative selection differential for high lines. The solid line and solid squares indicate 

Replicate 1, and the dashed line and patterned squares indicate Replicate 2. (C) Regressions 

of cumulative response onto cumulative selection differential for low lines. The solid line 

and solid diamonds indicate Replicate 1, and the dashed line and patterned diamonds 

indicate Replicate 2. (D) Regressions of high-low divergence of cumulative response on 

cumulative selection differential for Replicates 1 and 2. The solid line and solid triangles 

indicate Replicate 1, and the dashed line and patterned triangles indicate Replicate 2.
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Figure 2. Body mass and molecular metabolites

All scores are pooled over G9 and G10. Red and blue bars denote H and L lines, 

respectively; the black bar is the C line. Solid bars indicate Replicate 1 and patterned bars 

indicate Replicate 2. Lines with the same letter are not significantly different from each 

other at P < 0.05. Error bars are ±SE. (A) Female body mass (mg/fly). (B) Male body mass 

(mg/fly). (C) Female total protein (µg/fly). (D) Male total protein (µg/fly). (E) Female 

glycogen (µg/fly). (F) Male glycogen (µg/fly). (G) Female triglyceride (µg/fly). (H) Male 

triglyceride (µg/fly).
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Figure 3. Comparison of effective population size estimated from observed SNP data and 
simulation

We ordered all segregating SNPs by their χ2 P-value and selected 80% of SNPs with larger 

P-values to represent genomic background behavior in the absence of selection. We then 

binned these SNPs by their starting allele frequency in the base population and computed the 

effective population size based on the variance of allele frequency for these SNPs at 

generation 10 in both replicates. Black dots show the effective population size computed for 

each bin, and the dashed black line shows the median estimate across all bins. Grey dots 

show the effective population size based on the observed variance of allele frequencies in 
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our simulation with N = 10 males and 10 females for each starting allele frequency, and the 

dashed grey line shows the median of these estimates.
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Figure 4. Upper bounds on absolute average frequency difference inferred from drift simulations

For each starting allele frequency, we performed 10,000 simulations of genetic drift in our 

experimental design for both autosomal and X-linked SNPs. For each simulation, we 

computed the absolute average difference between high and low lines, and used the 0.999 

quantile of these values across all simulations as an upper bound on the value expected to 

occur in the absence of selection. Light blue dots/lines show the inferred upper bounds for 

each starting allele frequency at G9 for both autosomal (circles/solid lines) and X-linked 

SNPs (diamonds/dashed lines). Similarly, purple dots/lines show the inferred upper bounds 

for G10.
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Figure 5. Genetic divergence of selection lines

Each dot represents a SNP, arranged by genomic coordinate on the x-axis and -log10(χ2 P-

value) on the y- axis. Grey dots indicate SNPs that are not significantly different between 

high and low lines averaged across replicates. Light red dots indicate SNPs that are 

significantly different between high and low lines, but may be the result of genetic drift 

based on comparison to drift simulations. Dark red dots indicate SNPs with significant 

differences in allele frequency between high and low lines averaged across replicates, for 

which the magnitude of the allele frequency difference exceeds that expected from drift 

alone.

Garlapow et al. Page 29

Behav Genet. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Functional validation of 27 candidate genes associated with mean food intake in 
selection lines

Grey bars: P > 0.05. Red Bars: Red bars: P < 0.05 in females. Blue bars: P < 0.05 in males. 

(A) RNAi suppression of gene expression. (B) Mi{ET1} element insertional mutations. (C) 

P{GT1} insertional mutation in Men and two precise revertant alleles. Error bars are ± SE.
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