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ABSTRACT 

The zebrafish (Danio rerio) possesses a vertebrate type retina that is extraordinarily 

conserved in evolution. This well organized and anatomically easily accessible part of the 

central nervous system has been widely investigated in zebrafish, promoting general 

understanding of retinal development, morphology, function and associated diseases. 

Over the recent years, genome and protein engineering as well as imaging techniques have 

experienced revolutionary advances and innovations, creating new possibilities and 

methods to study zebrafish development and function. In this review we focus on some of 

these emerging technologies and how they may impact retinal research in the future. We 

place an emphasis on genetic techniques, such as transgenic approaches and the 

revolutionizing new possibilities in genome editing. 

 

INTRODUCTION 

In recent years, the small zebrafish (Danio rerio) made a big splash as a model for vertebrate 

biology in general and nervous system development in particular. This small tropical teleost 

fish owes this honor mainly due to its favorable biological properties, combining many 

advantages of simple invertebrate models with the ones of more complex vertebrates. It 

possesses a canonical vertebrate nervous system, with evolutionarily conserved anatomical 

subdivisions, cell types, receptors, channels and neurotransmitter systems. But it also 

possesses attributes more commonly found in invertebrates, such as small body size, ease 

of maintenance and breeding, high number of offspring (one pair can produce up to 200 

progeny per week) and more compact neuronal circuits. Additional points in favor of 
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zebrafish are its rapid extra-corporal development and transparency of offspring, making 

them ideally suited for live imaging.  

The main reason for the zebrafish to join the exclusive club of the few most studied 

biomedical model species lies in its superb genetics with continuous additions to its genetic 

toolbox. The zebrafish genome is by now fully sequenced and annotated (Howe et al. 2013) 

and for more than 70% of human genes at least one zebrafish ortholog can be identified 

(Howe et al. 2013). Therefore human genetic diseases can readily be modeled in zebrafish.  

Recent years saw a massive expansion of the genetic toolbox to manipulate zebrafish. 

Transposon mediated transgenesis allows efficient insertion of DNA cassettes into the 

zebrafish genome. Spatial and temporal control of transgene expression can now be 

achieved through the use of various cell and tissue specific and inducible regulatory 

elements. 

Finally the field of genome editing has seen a revolution with the introduction of the 

CRISPR/Cas system, enabling easy and efficient site-directed mutagenesis in zebrafish.  

Equipped with this vast and growing array of tools, the vertebrate retina can be effectively 

studied in zebrafish. The zebrafish retina develops early on in development and shows all 

the features of a canonical vertebrate retina already 5 days post fertilization (dpf).  

Due to the diurnal life style of the zebrafish, its retina supports daylight vision and is 

therefore in many aspects closer related to the human retina than the retina of mostly 

nocturnal rodents.  
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In the following section we will briefly outline the structure and functionality of the 

zebrafish retina, before embarking on a description of modern genetic tools that became 

recently available for the study of the zebrafish retina. 

The Zebrafish Retina 

The zebrafish possesses a canonical vertebrate retina that is amenable to a detailed analysis 

of its development and functional output by various electrophysiological and behavioral 

means. As vision is the primary sense at larval stages used for prey capture and predator 

avoidance, strong selective pressure has been placed on the rapid development of the 

retina and downstream visual processing centers in the rest of the brain.  

Retinal Anatomy 

The zebrafish retina is a canonical vertebrate retina with the neural retina consisting of 

three nuclear layers, separated by two synaptic layers. As in all vertebrate retinas there are 

five major neuronal and one glial cell type stereotypically situated in these nuclear layers. 

The outer nuclear layer is made up of the nuclei of photoreceptors. The inner nuclear layer 

is composed of cell bodies of horizontal, bipolar, amacrine, and Müller glia cells. Finally the 

ganglion cell layer mainly consists of ganglion cell nuclei, but also of nuclei of displaced 

amacrine cells (Figure 1).  

This remarkably ordered array is already present in the early larva at 5 dpf (Figure 1a).  

These major cell types can be further subdivided into numerous subtypes, by both 

morphological and physiological criteria. The exact number of these subtypes varies 

between different vertebrates, likely reflecting adaptation to differing visual ecologies, and 

is controversially debated in most species. 
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The zebrafish outer retina contains one rod photoreceptor cell type, adapted to low light 

(scotopic) vision, and four cone types, mediating color vision at brighter (photopic) 

illumination. These photoreceptors are arranged in a distinct stereotyped mosaic pattern 

that crystalizes during larval stages (Robinson et al. 1993; Fadool 2003). The peak 

sensitivities of zebrafish cones are 360–361 nm (ultraviolet, short single cone), 407-417 nm 

(blue, long single cone), 473–480 nm and 501-503 nm for the green/red double cone 

(Allison et al. 2004; Cameron 2002; Nawrocki et al. 1985; Robinson et al. 1993). Hence the 

visual spectrum of the zebrafish reaches deeper into the infrared than the human and 

enables ultraviolet vision. Consistent with their diurnal life style, the zebrafish retina 

features a high proportion of cones. Vision is nearly exclusively cone driven up to 15 to 20 

dpf (Raymond et al. 1995; Saszik et al. 1999). In this respect, the larval zebrafish retina 

mimics cone dominant macular vision of humans.  

Horizontal cells of the inner retina receive input from and feed back to photoreceptors, 

contributing to the center-surround system that enhances contrast sensitivity. These 

interneurons can be classified into 4 groups (H1 to H4) which differ in their connectivity to 

cones and in their gene expression profiles (Klaassen et al. 2016). Bipolar cells are divided 

into two physiological types depending on their response to changes in illumination: the 

ON- and OFF-bipolar cells. They can be further subdivided into at least 17 subtypes 

(Connaughton et al. 2004; Connaughton 2011). Bipolar cells transmit the signal to ganglion 

cells, whose synapses are found in the inner plexiform layer together with synapses of 

amacrine interneurons. Amacrine cells are a diverse group of interneurons that modify the 

signal transmitted from bipolar to ganglion cells. They differ in size, arborization, size of 

receptive field and biochemistry resulting in a population of neurons that shape signal 

transmission in the inner plexiform layer in a subtype-specific way (reviewed by (Masland 
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2012)). Novel amacrine cell types are still being discovered, e.g. by transgenic techniques 

(Glasauer et al. 2016). Nuclei of ganglion cells together with displaced amacrine cell bodies, 

build the innermost ganglion cell layer. Ganglion cells are the output neurons of the retina. 

Their long axons connect the larval retina with 10 distinct regions of the brain of which the 

optic tectum is the most prominent (Burrill, Easter, JR 1994). 

 

Retinal development 

In general, zebrafish develop rapidly. However, the development of the retina is particularly 

precocious. By 60 hours post fertilization (hpf) all retinal layers are morphologically distinct 

and the vast majority of cells are post-mitotic. Following neurulation, movements of a 

diencephalic cell population result in two evaginations that form the optic bulbs (Schmitt, 

Dowling 1994). Later, an invagination in the eye primordia cell mass results in the formation 

of the optic cup at 24 hpf (Schmitt, Dowling 1994). Cell division taking place at the 

innermost layer of the optic cup will give rise to retinal cells. All retinal neurons as well as 

Müller glia cells are descendants from one common multipotent progenitor (Turner, Cepko 

1987). Ganglion cells in a ventral patch close to the choroid fissure are the first retinal 

neurons to exit the cell cycle and start differentiation at around 28 hpf (Hu, Easter 1999). All 

retinal neurons develop first in a ventro-nasal region and then distribute to more dorsal 

regions (Kljavin 1987; Schmitt, Dowling 1994). The formation of an inchoate ganglion cell 

layer at around 36 hpf is followed by differentiation of neurons located in the INL (amacrine 

and horizontal cells at 50 hpf followed by bipolar cells at 60 hpf). Photoreceptors become 

postmitotic starting from 43 hpf while the photoreceptor layer can be observed 

histologically from 48 hpf on (Schmitt, Dowling 1994; Branchek, Bremiller 1984). Müller cell 

markers HNK-1 and glutamine synthetase are first detected by 60 hpf (Peterson et al. 2001). 
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However, Müller cell maturation seems to underlie a biphasic pattern, as other typical 

markers for these cells are only found at later stages (Peterson et al. 2001). Once 

photoreceptors exit the cycle, they start to mature and express opsins. Paradoxically, rod 

photoreceptors that become functionally integrated last are the first to express rod opsin, 

followed by red, green, blue and later by UV cones (Raymond et al. 1995; Saszik et al. 1999). 

Coinciding with the development of photoreceptor outer segments and formation of ribbon 

synapses with second order neurons at around 60 hpf, the first behavioral responses to light 

can be observed (Branchek, Bremiller 1984; Easter, Nicola 1996; Biehlmaier et al. 2003). 

Signal transmission from photoreceptors to bipolar cells sets on around 3.5 dpf, coinciding 

with the time when first electroretinogram (ERG) responses can be recorded (Branchek 

1984).  

In a sense retinal development is never finished, since the retina continues to grow in 

adulthood by adding cells in the ciliary margin of the retina (Wan et al. 2016). The retina 

also has immense regenerative properties that are increasingly investigated. Müller glia cells 

can dedifferentiate and replenish all retinal cell types after damage (reviewed by (Goldman 

2014). 

Retina function 

Given the rapid development of the zebrafish retina, it comes as no surprise that retinal 

function is already apparent at larval stages and can be assessed by both 

electrophysiological and behavior means. 

The most direct electrophysiological approach is the recording of electroretinograms (ERG), 

which records the outer retina response to light. For this purpose the electrode is placed on 

the cornea, recording sum-field potentials in response to light (Makhankov et al. 2004). 

Practically both intact larvae and eye cup preparations are suitable for such measurements. 
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The first ERG responses in the zebrafish can be recorded starting from about 3.5 dpf, 

yielding robust cone-mediated response from 5 dpf on (Brockerhoff et al. 1997; Seeliger et 

al. 2002; Makhankov et al. 2004; Saszik et al. 1999). Functional rod input starts between 15 

and 21 dpf (Bilotta et al. 2001; Branchek 1984; Saszik et al. 1999). Zebrafish display 

canonical vertebrate ERG responses consisting of a negative a-wave reflecting 

hyperpolarization of photoreceptors, followed by a positive b-wave reflecting activity of ON-

bipolar cells. Furthermore, one can readily assess the OFF-response (d-wave), reflecting OFF 

bipolar activity. The most common recordings consist of a series of white light stimuli of 

increasing light intensities to assess response thresholds and response amplitudes. 

Furthermore the flicker ERG can be used to determine the flicker-fusion-frequency, where 

single responses to a train of flashes cannot be resolved anymore (Branchek 1984). Spectral 

ERG allows to investigate the function of single cone subtypes by application of 

monochromatic light stimuli (Hughes et al. 1998), which can especially be advantageous to 

probe UV-sensitive cones as they contribute very little to the normal white light ERG (Zang 

et al. 2015). Defects in ganglion cells do not influence the ERG response (Gnuegge et al. 

2001). One way to study ganglion cell function is extracellular recordings of the optic nerve 

on isolated eyes, a method that can be combined with simultaneous ERG recordings (Emran 

et al. 2007; Li, Dowling 2000). More sophisticated electrophysiological measurements have 

been used to measure whole cell currents of ganglion cells (Gnuegge et al. 2001; Zhang et al. 

2010). Physiological properties of the remaining retinal neurons has been assessed by 

patch-clamp recordings or suction-electrode recordings for photoreceptors in isolated 

retinas or isolated cells (Enright et al. 2015; Vroman et al. 2014; Brockerhoff et al. 2003). 

However, the limited number of publications on recordings in retinal slices shows one of the 

limitations of the zebrafish model to study retinal physiology (Connaughton et al. 2008). 
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Especially at larval stages, the small zebrafish retina makes cellular electrophysiology 

challenging. However, development of different optical biosensors that visualize Ca
2+

 or Cl
-
 

concentrations or membrane voltages can, at least partially, compensate for the challenging 

cellular electrophysiology (see below). 

The other functional approach to visual system function testing is behavioral assays that 

comprehensively test visual processing of the entire visual system in a non-invasive manner. 

Zebrafish primarily use vision for prey hunting and predator avoidance, necessitating a quick 

emergence of visual guided behavior. The startle response is the first visual guided behavior 

developing at around 68 hpf (Easter, Nicola 1996), likely mimicking an escape response from 

a looming predator (Kimmel et al. 1974). While the startle response is not based on form 

vision, the optokinetic response (OKR), also seen from day 3 on represents the first visual 

guided behavior requiring form vision (Clark 1981). The OKR is a robust behavior of the fish 

eyes tracking the moving surround. For experimental purposes, the zebrafish larva is 

typically immobilized in a viscous solution surrounded by a paper drum that presents 

rotating black and white bars. The elicited behavior consists of a smooth pursuit movement 

in the direction of the presented stimulus and a fast saccadic resetting movement. Given the 

large size and dark pigmentation of the eyes, tracking of the eye movements enables 

quantitative assessment of the visual performance. Computer based OKR setups allow more 

sophisticated measurements, e.g. presentation of stripes of different intensities or different 

rotation velocities assessing contrast vision and temporal resolution respectively (Huber-

Reggi et al. 2013; Rinner et al. 2005). Since this behavior is largely reflexive it has been 

successfully used to screen for blind mutant strains (Brockerhoff et al. 1995; Neuhauss et al. 

1999; Muto et al. 2005). An alternative tool to unravel blinding disorders is the visual motor 
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response (VMR). For VMR tests the locomotor activity upon illumination changes can be 

tracked during several hours with alternating periods of darkness and light. Stereotypic 

increase and decrease in locomotor activity can be observed at light offset and onset 

respectively (Emran et al. 2008). Another powerful tool, also suitable for large-scale 

examination of visual impairment, is the optomotor response (OMR). To evoke an OMR, a 

screen displaying moving black and white bars is presented to zebrafish from below or the 

side of the tank. Zebrafish at age of 7 dpf or older will respond by swimming in the direction 

of the moving bars, either escaping a dark or following a white stripe (Neuhauss et al. 1999). 

Schooling behavior in adult zebrafish influences the OMR, hampering large scale screens at 

later stages. The adult escape response is another behavioral assay that allows probing for 

visual impairment in adult zebrafish. The fish is placed in a round tank that is surrounded by 

a white paper drum with one black stripe that is mimicking a predator and contains a pole in 

the center. Zebrafish with intact vision exhibit a robust escape response from the black bar 

and try to hide behind the central pole (Li, Dowling 1997).  

The possibility to resolve retina development and morphology at cellular resolution with 

ready functional read outs make the retina an ideal system to study neural circuit 

development and its link to behavior. Similarly mutant strains with visual impairment can 

readily be identified (reviewed in (Gestri et al. 2012; Malicki et al. 2016)). 

TRANSGENESIS BASED APPROACHES 

Transgenesis, the introduction of an exogenous piece of DNA into the genome of the host 

organism, is a powerful technique to label, ablate, and monitor cells in a living animal. This 

approach is particularly fruitful in the zebrafish with its transparent embryos and rapid 

development. The optical clarity of zebrafish embryos and larvae allow sophisticated live 
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imaging to directly follow cell movements during development, fate map developmental 

lineages, ablate specific cells, and study neuronal activity related fluorescent changes. A 

number of transgenic approaches have been applied in the past, while the adaptation of the 

host factor independent Tol2 transposon system, originally discovered in the Medaka, has 

greatly facilitated transgenesis in zebrafish (Kawakami et al. 2000).  

Application of Tol2-mediated transgenesis to study retinal development and function is 

booming, in no small part due to the ever increasing number of marker genes (usually GFP 

(green fluorescent protein) derivatives) and activity markers (GCaMP variants).  

Transposon based transgenesis 

A number of transposon system work in the zebrafish, such as the salmonid fish sleeping 

beauty (Balciunas et al. 2004), Caenorhabditis elegans Tc3 (of the Tc-1/mariner family) (Raz 

et al. 1998; Fadool et al. 1998), Medaka Tol2 and Tol1 (Koga et al. 2008; Kawakami et al. 

2000) and the maize Ac/Ds transposable elements (of the hAT family) (Quach, Helen Ngoc 

Bao et al. 2015). The efficiency of Tol2-mediated transgenesis, permitting insertion of 

genetic material of more than 100 kb into the zebrafish genome, have now replaced most 

other transgenic systems (Suster et al. 2011).  

The Tol2 injection mix consisting of transposase-encoding mRNA and a transposon donor 

plasmid containing a Tol2 flanked reporter gene of interest fused to cell type specific 

regulatory elements. This mix is injected into the one cell stage zebrafish embryo, enabling 

transposase mediated excision of the Tol2 construct from the donor plasmid and integration 

into the genome (Figure 2a) (Kawakami 2007). Cells will experience random integration at 

multiple sites at different times during early embryogenesis resulting in a genetically mosaic 
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animal. This applies also to the germ line necessitating inbreeding at the next generation to 

yield stable transgenic lines (Kawakami 2007).  

The randomness of integration may in few cases lead to the disruption of endogenous genes 

or regulatory elements, which can be exploited to induce mutations (see section on 

Insertional Mutagenesis).  

The Gateway cloning based Tol2kit, greatly facilitates generation of Tol2 donor plasmids 

where 3 entry vectors are converted to a destination vector by att site specific 

recombinational cloning (Kwan et al. 2007). This kit has greatly advanced Tol2 mediated 

transgenesis, allowing selection of an expanding variety of existing clones 

(http://tol2kit.genetics.utah.edu/index.php/Main_Page). 

Random integration of the Tol2 construct at multiple insertion sites can be circumvented by 

using phiC31-mediated site directed transgenesis. This approach is based on phiC31 

integrase-mediated single insertion of a transgene vector into attP (attachment site Phage) 

landing sites (Mosimann et al. 2013; Hu et al. 2011; Roberts et al. 2014). A number of lines 

with attP landing site at defined genomic locations have been generated. Injection of phiC31 

integrase mRNA together with an attB (attachment site Bacterium) site containing donor 

plasmid allows single integration of the cassette at the attP landing site by recombination 

with high efficiency in both somatic and germ cells (Figure 2b) (Mosimann et al. 2013; 

Roberts et al. 2014). Germline transmission rate was reported to reach values between 10% 

(Roberts et al. 2014) and 34% (Mosimann et al. 2013). Integration events create attR and 

attL (right and left) sites which are incompatible for phiC31 mediated recombination thus 

irreversible transgene integration is ensured (Groth et al. 2000). attP flanked reporter genes 

can be used to establish transgenic lines via recombinase-mediated cassette exchange, 
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allowing generation of a single-insertion transgenic line within one generation (Mosimann 

et al. 2013; Roberts et al. 2014; Hu et al. 2011). This single integration approach reduces 

variability due to position effects and multiple insertions. The future will likely see more use 

of this approach with the availability of more transgenic lines with defined landing sites.  

Two-component systems 

An important advance of the described transgenic technology is the use of binary systems, 

pioneered in Drosophila and the mouse. These systems allow additional flexibility and ease 

of generating cell specific expressing strains. They allow crossing driver lines with various 

reporter or switch lines generating new transgenic lines purely by crossing existing strains. 

One widely used system, originally established in Drosophila, is the Gal4/Upstream 

Activating Sequence (UAS) system (Figure 2c). Gal4 is a yeast transcriptional activator that 

specifically recognizes the UAS sequence and drives expression of any ORF immediately 

downstream of it (Guarente et al. 1982). The two-component system consists of a Gal4 

driver line that expresses Gal4 under the control of a tissue specific regulatory region and a 

UAS reporter line harboring a cassette of UAS sequence and a downstream open reading 

frame (ORF). By crossing the driver with the reporter line, the ORF is expressed in all cells 

that have promoter activity (Figure 2c). In order to obtain stronger Gal4 activity a number of 

modified Gal4 variants have been generated. One commonly used variant is Gal4-VP16 

which possesses the transcriptional activation domain of the herpes simplex virus VP16 

(Sadowski et al. 1988) and variants thereof, such as the weaker Gal4FF (Asakawa et al. 

2008). One drawback of the Gal4/UAS system is that UAS transgenes are prone to show 

position effects which may result in gene silencing or variegated transgene expression levels 
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(Asakawa, Kawakami 2008). This limitation may be overcome in the near future by using the 

PhiC31 system.  

The Cre/Lox system, pioneered in rodents, is another popular two component system, 

which is especially suitable for lineage-tracing, connectome analyses and conditional gain- 

and loss-of-function studies. It is based on the bacteriophage P1 Cre recombinase, which 

catalyzes recombination between locus of X-ing over (lox) sites (Sauer 1987). For spatial 

control of transgenesis, the Cre driver line expresses Cre recombinase under the control of a 

specific promoter X. This line is then crossed with switch transgenic line that harbors a 

cassette of a promoter Y upstream of a lox site flanked (floxed) ORF or a stop cassette 

followed by a second cargo ORF. Lox sites can be in tandem, wherein Cre-mediated 

recombination results in circularization and excision of the cassette or in a head-to-head 

orientation that promotes inversion of the floxed cassette (Branda, Dymecki 2004). In cells 

where promoter X is active, Cre recombines lox sites leading to excision of the floxed ORF or 

stop cassette ceasing its expression and thus allowing promoter Y to drive expression of the 

downstream cargo (Figure 2d).  

Multicolor labelling of cells mediated by Cre mediated recombination of a cassette of three 

different floxed fluorescent proteins (Brainbow, see below) provides a prime example for 

the application of the Cre/Lox system in lineage analysis or connectome analyses (Pan et al. 

2011). 

Temporally controlled inducible transgenesis 
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While spatially controlled transgenesis can be achieved by cell type specific promoters and 

the use of the described two-component systems, additional temporal control by exogenous 

induction is often desirable. A number of systems have been established in zebrafish. 

Temporal control over transgene expression can be achieved by using heat shock promoters 

(the hsp70 promoter is commonly used) (Halloran et al. 2000). Taking Cre recombinase 

under heat shock control enables both spatial and temporal control of gene expression 

(Thummel et al. 2005; Le et al. 2007). This method is somewhat limited by the observed 

leakiness of the hsp70 promoter, resulting in basal activation of Cre at permissive 

temperatures and hence non-conditional recombination (Hans et al. 2009). 

Another way to accomplish temporal control of recombination is provided by the CreER
T2

 

system wherein Cre recombinase is fused to a mutated version of the human estrogen 

receptor (ER
T2

) (Feil et al. 1997). Administration of the estrogen derivatives Tamoxifen or 4-

OHT results in activation of CreER
T2

-mediated recombination by induction of conformational 

changes in the ER ligand-binding domain (Feil et al. 1997). This leads to shedding of 

endogenous Hsp90 protein and translocation of CreER
T2

 to the nucleus, where 

recombination is catalyzed (Hans et al. 2009). Fusing mCherry and CreER
T2

 in a single ORF 

separated by a viral T2A peptide sequence results in production of mCherry and CreER
T2

 in a 

stoichiometric ratio, which allows visual screening of low-expressing CreER
T2

 driver lines 

thus decreasing probability of non-conditional Cre activity (Hans et al. 2011).  

Another system for spatial and temporal control over gene expression is achieved by the 

Tet-ON binary system. This system consists of a transcription factor, the reverse 

tetracycline-controlled transcriptional activator (rtTA) and the tetracycline response 

element (TRE) upstream of the gene to be transgenically expressed (Gossen, Bujard 1992; 
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Gossen et al. 1995). Spatial control over gene expression is achieved by placing the 

transgene cassette (containing rtTA and TRE) under the control of a tissue-specific promoter 

(Huang et al. 2005). Gene expression can now be controlled by the addition of tetracycline 

or doxycycline which both induces expression of rtTA (Gossen, Bujard 1992; Gossen et al. 

1995). Without application of tetracycline or doxycycline, the gene downstream of TRE is 

not expressed. Due to leakiness in transgene expression in zebrafish, the system had to be 

improved by fusion of the rtTA to a mutated glucocorticoid receptor or a domain of the 

ecdysone receptor that resulted in abolishment of the leakiness and also made the system 

reversible (Knopf et al. 2010). Employing this technique, two zebrafish retina Tet-ON driver 

lines were generated, one driving rtTA expression specifically in UV cones and the other one 

in rods (West et al. 2014; Campbell et al. 2012).  

 

Application of transgenic approaches 

The presented transgenic technology hands the retinal researcher a large variety of tools to 

study all aspects of retinal development and function. Recent advances in protein 

engineering of stable fluorescent proteins, photo-convertible fluorophores and dyes that 

allow neuronal activity monitoring complement this tool box. The parallel development of 

advanced microscopic techniques, such as multi-photon, selective planar illumination (SPIM) 

and super resolution microscopy unlocks the full power of these approaches. 

Gene overexpression 

Overexpression assays provide (additionally to loss-of-function assays) a tool for gene 

function analysis. In such a gain-of-function experiment, a gene of interest is overexpressed 

and subsequent phenotype analysis is performed. Gene overexpression can be achieved in 
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two ways: injection of expression constructs in form of DNA or mRNA. mRNA injection has 

the advantage that it leads to uniform expression over the whole embryo, while DNA leads 

to mosaic expression (Malicki et al. 2002). Nonetheless, mRNA gets degraded over time and 

dilutes with cell divisions.  

One application in retinal research is the generation of a disease model by overexpressing a 

gene of choice containing the diseases causing mutation. For instance the expression of a 

mutated form of retinal guanylate cyclase lead to altered retinal morphology providing a 

model for the corresponding human cone-rod dystrophy (Collery et al. 2013). 

Cell labeling and fate mapping 

Labelling of cells with fluorescent reporters has greatly contributed to our understanding of 

cell-cell interactions, cell proliferation, cell migration and the embryonic origins of tissues. 

This area of retinal research is probably the most advanced with numerous studies 

describing the development of cell types and their connections.  

Transgenic lines labeling specific cell types can be used to follow this cell type throughout 

development. A beautiful example is the Spectrum of Fates technique that allows the 

monitoring of all retinal cell types simultaneous during development (Almeida et al. 2014). 

Connectome studies are facilitated by using transgenic lines with fluorescently tagged cell 

types. For instance the connection between photoreceptors and second order neurons 

(bipolar cells and horizontal cells) has been described in detail using fluorescent transgenics 

that label all photoreceptor subtypes in combination with lipophilic dyes to mark bipolar or 

horizontal cells (Li et al. 2012; Li et al. 2009). These studies revealed that red cones are 

exclusively contacted by H1 horizontal cells, while blue, green and UV cones are contacted 
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by two or even all three cone horizontal cell subtypes (H1 to H3) (Li et al. 2009). 

Furthermore, transgenic labelling of photoreceptors has nicely contributed to the our 

understanding how the stereotyped crystalline photoreceptor mosaic emerges during 

development (Allison et al. 2010; Fadool 2003). 

In the inner retina, the trajectory of ganglion cells has been studied in detail in transgenic 

larvae with red labelled RGCs (expressing mCherry) and green synapses (EGFP-tagged 

synaptic protein synaptophysin) which allowed analysis of the RGC connectome and the cell-

type specific projection pattern (Robles et al. 2014). 

Finally transgenic technology allowed the in vivo imaging of cell division and migration of 

newborn cells in the retina. Lineage tracing experiments using transgenics demonstrated 

that cone precursor cells in the ciliary marginal zone (CMZ) are dedicated to produce a 

single type of cone. Hence each of the four cone subtypes has its own dedicated precursor 

(Suzuki et al. 2013).  

Transgenic labeling can also lead to the identification of previously unknown cell types. For 

instance a transgenic line expressing GFP under the control of the mGluR6b promoter 

identified a novel cholinergic, non-GABAergic, non-starburst amacrine cell type (Glasauer et 

al. 2016).  

One current limitation of these labelling approaches is the paucity of well characterized 

regulatory elements that drive cell type specific expression. Furthermore, labelling of a 

dense population of cells often prevents tracing trajectories of single cells. This problem can 

either be solved by mosaic expression of a transgene or by the multicolor brainbow system. 

Brainbow is a Cre/lox based transgenic approach consisting of a promoter that controls 

expression of a cassette of three different fluorescent reporters, RFP, CFP and YFP (Gupta, 
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Poss 2012; Pan et al. 2011; Pan et al. 2013). Mutually incompatible lox site pairs are used to 

yield a stochastic choice of expression of only one of the three fluorescent proteins per copy 

of construct (Pan et al. 2011). Different lines have been generated, with only single 

insertions leading to expression of 3 different colors in heterozygotes and 6 colors in 

homozygotes or multi insertion animals that express a wide range of different hues (Pan et 

al. 2013). Furthermore by using different promoters or combining the system with the 

Gal4/UAS system, tissue specific labelling can be achieved. Work in mosaic animals allows 

sparse labelling of cells facilitating tracking of trajectories. In a recently published work, 

authors availed themselves of the brainbow system (Tg(UAS:Zebrabow)) to characterize 

three different clones of retinal stem cells within the CMZ. They showed the CMZ to consist 

of dormant CMZ tip cells (Type I), a Type II clone of proliferating cells and a Type III clone 

giving rise of differentiating clones (Tang et al. 2017). 

Another useful technique is the use of photoconvertible fluorescent proteins, such as Kaede, 

Dendra2, and Dronpa. Both, Kaede and Dendra2 irreversibly photoconvert when activated 

with UV-light of 400 nm (Kaede) or light of 488 nm (Dendra2) (Ando et al. 2002; Wachter et 

al. 2010). Dronpa on the other hand is a GFP-like fluorophore and can be reversibly switched 

from dim irradiance to a bright state with 405 nm light. The bright state can be switched off 

to the dim state by 488 nm light irradiation (Habuchi et al. 2005). By either switching on 

fluorescence (Dronpa) or switching color (Kaede and Dendra2) one can visualize cells in a 

background of non-labelled or differentially labelled cells, facilitating fate-mapping and 

observation of cell-division and migration. An application of this approach led to a 

description how variable clones can give rise to a invariant retina, a discovery of importance 

not only for retinogenesis (He et al. 2012).  
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Cell ablations 

Transgenic tools can be used to ablated specific cell, e.g. by expressing toxins or laser 

ablating labeled cells. The Nitroreductase cell ablation method has been popular in the 

zebrafish, since it allows spatial control via transgene expression and temporal control by 

prodrug addition to the water. The bacterial enzyme Nitroreductase (NTR) converts the 

prodrug Metronidazole (Mtz) into a cytotoxic agent that causes DNA damage and 

subsequent cell death of NTR expressing cells (Curado et al. 2007). 

This method was used to selective ablate a specific subset of bipolar cells, originally 

identified in a Gal4 based gene trap approach (Zhao et al. 2009). 

Such ablation studies are particularly important to further our knowledge on regeneration 

studies. Ablated cells of the retina are usually replenished by stem cells origination from 

dedifferentiated Müller glia (reviewed by (Goldman 2014)). 

Rod photoreceptors can be replenished by either dedifferentiated Müller glia cells or by rod 

precursor cells that reside in the ONL. One study using the aforementioned cell ablation 

technique could show that the extent of rod loss predicts which precursor pool is used. 

When only a subset of rod cells are ablated the rod precursor pool is used to replenish 

them. Conversely, the regenerative response of Müller glia cells is trigger by large scale and 

rapid loss of rods (Montgomery et al. 2010). 

Another question that can be asked with current technology is if regenerated neurons 

reconnect with the synaptic partner of the originally ablated cell. By ablation of a distinct 

subset of bipolar cells (xfz43), D’Orazi and colleagues showed that the regenerated neurons 

do not reconnect with the exact same cells as the ablate cells. Hence regenerated neurons 

employ a distinct synaptic matching strategy (D'Orazi et al. 2016).  
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Neuronal Activity Monitoring 

Traditionally, electrical activity of neurons is measured by electrophysiology using either 

sharp electrode, patch clamp or extracellular electrode recording techniques. These 

technically challenging experiments achieve insight into the function of single (or small 

groups of) neurons at high temporal resolution. The parallel measurements of many 

neurons by multi-electrode arrays are impossible for most many neural circuits and 

necessitate ex-vivo preparations. 

Recent developments in protein engineering have led to the establishment of genetically 

encoded sensors of neuronal activity, such as Ca
2+

 indicators that can partially compensate 

for the challenging electrophysiology, even though temporal resolution is not comparable to 

electrophysiology. Importantly, functional neuronal imaging enables the concomitant 

analysis of potentially thousands of cells, potentially covering the complete neural network.  

This approach is particularly well suited for the small and transparent zebrafish brain, which 

more than compensates for the difficulties to perform cellular physiology in the small larva. 

 

Intracellular calcium concentration is a good proxy for a neuron’s excitable state. 

Monitoring Ca
2+

 dynamics in neurons using genetically encoded calcium indicators (GECIs) is 

therefore a powerful tool to visualize not only general neuronal activity, but also Ca
2+

 

homeostasis in healthy and diseased neurons. Synaptic Ca
2+

 dynamics are crucial for 

synaptic vesicle release and thus signal propagation. A great advantage of neuronal activity 

monitoring by Ca
2+

 imaging is that it can be performed non-invasively in living larvae and 

can even be combined with consequent behavioral output. A variety of GECIs have been 

engineered. The two most commonly used GECIs are FRET (Förster Resonance Energy 
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Transfer) based sensors and GCaMP calcium indicators. The later ones are the most popular 

ones used in zebrafish.  

GCaMPs are fusion proteins consisting of a circularly permuted EGFP (enhanced GFP) which 

is linked at the N-terminus to the M13 peptide of the myosin light chain kinase and on the C-

terminus to Calmodulin (Nakai et al. 2001). When Ca
2+

 binds Calmodulin, Calmodulin 

interacts with its target sequence M13 which induces a conformational change in EGFP that 

results in enhanced fluorescence (Nakai et al. 2001). These sensors are constantly improved 

in terms of their sensitivity and kinetics (reviewed by (Broussard et al. 2014)).  

In comparison to GCamps, FRET sensors like Cameleon are dual fluorophore based. Binding 

of Ca
2+

 to the Calmodulin of Cameleon leads to a Calmodulin-M13 interaction and resulting 

conformational changes allow fluorescent resonant energy transfer from one fluorophore to 

another one (Miyawaki et al. 1999). This results in a change of the emitting color (Miyawaki 

et al. 1999). 

Synaptic activity can be monitored using the genetically encoded reporter SyGCamp, a GECI 

that localizes to the synapse. During neuronal activity, Ca
2+

 entering the synapse through 

voltage-gated Ca
2+

 channels induce the release of neurotransmitter filled vesicles into the 

synaptic cleft. SyGCamp consists of a GCamp fused to the synaptic protein synaptophysin. In 

vivo Ca
2+

 imaging using encoded SyGCamps enables monitoring the brief presynaptic Ca
2+

 

transient thus allowing detection of synapse activation (Dreosti et al. 2009). This approach is 

especially suitable for monitoring neuronal activity in the retina, since retinal neurons do 

not transmit information in an all-or-none action potential fashion but rather by graded 

voltage changes. Hence in contrast to most central nervous system neurons, where action 

potential firing neurons can be images as nicely “blinking” neurons, retinal neurons only 

show subtle changes in fluorescent intensity (Dreosti et al. 2009).  
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Hence Ca
2+

 imaging on retinal neurons in zebrafish have greatly advanced the understanding 

on synaptic function in the retina, such as how amacrine cells modulate synaptic output of 

bipolar cells (Rosa et al. 2016) or how the volume of bipolar cell terminals influences signal 

transmission (Baden et al. 2014). 

Ca
2+

 imaging experiments can further be employed to monitor degenerating cells and have 

led to the insight that increased cytoplasmic Ca
2+

 might not be the underlying cause for 

photoreceptor degeneration in a phosphodiesterase (pde6c) mutant fish (Ma et al. 2013). 

One drawback of Ca
2+

 imaging is the limitation in the field of view. One might miss 

interesting events, simply because they are outside of the region being imaged. A solution 

to that is the so called Campari method. It allows to permanently labelling active neurons in 

a timely controlled manner. Campari has a similar structure as GCamps, but instead of a 

circularly permuted EGFP, EosFP is used as the fluorescent protein, which is bright green 

and converts to red emission upon exposure to violet light (Fosque et al. 2015). Active 

neurons are labelled by a green-to-red conversion only under violet illumination, allowing 

precise timing of activity-mapping.  

While GECIs are widely used in zebrafish to monitor visual processing its use in the retina is 

restricted by the prevalence of non-spiking neurons. 

Hence the advance of imaging methods to monitor extracellular glutamate, the sole 

neurotransmitter of photoreceptors, constitutes an important advance for zebrafish retinal 

research. Since photoreceptors and bipolar cells modulate the tonic release rate of 

glutamate in response to graded changes in membrane potential via specialized ribbon 

synapses, synaptic glutamate concentrations are a good proxy for neuronal activity.  

iGluSnFr is a glutamate biosensor consisting of circularly permutated GFP and GltI, a 

bacterial glutamate transporter (Marvin et al. 2013). Glutamate transients lead to binding of 
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glutamate to iGluSnFr and induce a conformational change evoking an increase in 

fluorescence emission. Fast kinetics, its robust specificity to glutamate and high signal-to-

noise ratio make it a powerful tool to monitor neuronal activity (Marvin et al. 2013). 

Glutamate dynamics in the zebrafish retina can now be directly observed using the recently 

introduced transgenic line Tg(gfap:iGluSnFR), that expresses the glutamate sensor in Müller 

glia cells (MacDonald et al. 2016).  

A number of additional optic sensor are currently developed that may benefit zebrafish 

retinal research in the future. For instance an optical synaptic pH sensor was used to study 

the still elusive feedback mechanism of horizontal cells to photoreceptors in the zebrafish 

retina (Wang et al. 2014).  

MUTAGENESIS 

The traditional genetic approach to understand gene networks is the removal of gene 

function followed by inspection of the resulting phenotype. This approach has been 

pioneered more than 100 years ago and its impact on biology can hardly be overestimated. 

Historically forward genetic approaches were first used by randomly inducing mutations 

followed by the description of the resulting phenotypes. More recently the advent of 

modern molecular genetics enabled researchers to use reverse genetics by first inactivating 

a known gene of interest before studying the resulting phenotype. 

Forward genetics 

The strength of forward genetics is that this approach is completely unbiased and needs no 

prior knowledge of genes and pathways potentially affecting the biological process of 

interest. Zebrafish was the first vertebrate model organism where large scale mutagenesis 

screens aiming at saturating mutagenesis was attempted.  
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Chemical mutagenesis 

Inspired by successful saturating chemical screens in C. elegans and Drosophila (Hirsh, 

Vanderslice 1976; Nusslein-Volhard, Wieschaus 1980), two large-scale (Driever et al. 1996; 

Haffter et al. 1996) as well as several small-scale genetic screens were performed. All these 

screens are based on chemical mutagenesis approaches using the chemical N-Ethyl-N-

nitrosourea (ENU) to induce point mutations and small deletions in the germline of male 

zebrafish. These mutations were bred to homozygosity in a simple inbreeding scheme 

(Mullins et al. 1994; Solnica-Krezel et al. 1994). Alternative screening methods based on 

parthenogenesis were also used to a lesser extent (reviewed by (Patton, Zon 2001)). These 

screens proved to be very powerful and were basically limited only by the observational 

capabilities of the screener and the logistics of such a large scale operation. More than a 

thousand loci have been identified, including many affecting retina morphology and 

function (Brockerhoff et al. 1995; Malicki et al. 1996; Neuhauss et al. 1999; Muto et al. 

2005). Besides locomotion and hearing, the visual system was the first system where 

behavioral screens have been performed. However, the molecular identification of the 

responsible loci proved to be a bottleneck, demanding tedious genetic mapping and 

positional cloning efforts. Exome sequencing only recently became an alternative 

(Kettleborough et al. 2013). Therefore, even 20 years after the initial description, there are 

still a number of interesting mutant strains that have not been linked to the underlying 

genetic defect.  

Insertional mutagenesis 

The challenge of positional cloning of mutated genes motivated efforts to achieve 

insertional mutants where the mutation is caused by the insertion of a DNA element. Such 
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an insertion does not only disrupt the affected gene, but also tag it, facilitating subsequent 

identification.  

This was first achieved by utilizing a pseudotyped retrovirus (Amsterdam et al. 1999). These 

viruses contain a genome based on the Moloney murine leukemia virus and are 

pseudotyped with the envelope of a vesicular stomatitis virus, allowing them to infect all 

cells. Virus particles are injected into 1000-2000 cell stage embryos with the aim of targeting 

primordial germ cells present at this stage (Amsterdam et al. 1999; Gaiano et al. 1996a; 

Gaiano et al. 1996b). Founder fish are in-crossed to generate F1 families that are tested for 

inserts by Southern blot analysis. Multi-insert F1 fish are inbred and sibling F2 fish are 

crossed to allow identification of phenotypes of recessive mutations in the resulting F3 

generation (Amsterdam et al. 1999). Although the mutation rate was quite low, the 

underlying mutated genes could be very efficiently identified. Some retinal mutations and 

their underlying genetic defect were identified by this route (Gross et al. 2005). 

The expertise needed for handling of pseudotyped virus that are difficult to produce in high 

titers and are a potential biohazard by being infectious for humans, prevented the wide 

spread use of this technique.   

Transposon based insertional mutagenesis became a possibility with the advent of efficient 

transgenesis. Additionally to gene disruption, insertion of a marker gene (e.g. GFP) readily 

provides information on the expression pattern of the disrupted gene (Balciunas et al. 2004; 

Kawakami et al. 2004; Kotani et al. 2006). The mutation rate is low compared to chemical 

mutagenesis, but the identification of the disrupted locus is straight forward (Nagayoshi et 

al. 2008; Balciuniene et al. 2013). Due to the low mutagenesis rate only few mutant strains 

have been identified. 
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Reverse genetics 

While forward genetics is unbiased, reverse genetics is hypothesis driven by manipulating a 

gene with a prior suspected function. This is of particular interest with gene orthologs that 

have been linked to human diseases, since disease mechanisms can potentially be 

uncovered in a direct genetic zebrafish model of a genetic disease of interest. 

Due to the lack of an efficient reverse genetics mutagenesis tool, antisense mediated gene 

knockdown was for a long time the only method available and thus extensively used to 

target a gene of interest. Strictly speaking this is not a reverse genetic technique, since no 

heritable change is induced. Gene function was downregulated by the injection of 

morpholino antisense nucleotides at the one cell stage. These antisense nucleotides are 

modified to make them more stable in a cellular environment and less toxic. The sequences 

are either designed to block the translational start sites or splice sites. Knockdowns allow 

rapid assessment of gene function in larvae up to 5 dpf (Nasevicius, Ekker 2000). At later 

stages no efficient knockdown can be achieved due to dilution by increased cell numbers of 

the growing fish. Morpholino injections allow for a sometimes deceptively quick analysis of 

gene function. As in all proper experiments, morpholino effects need to be carefully 

controlled to avoid premature conclusion on phenotypes that may be caused by toxic 

effects. This is particularly pertinent for phenotypes involving degeneration (Kok et al. 

2015). An additional advantage of morpholinos is that also maternally provided mRNA is 

targeted, that may mask phenotypic effects at earlier stages in embryonic lethal mutants. 

One of the first realized real heritable reverse genetic approach is TILLING (Targeting 

Induced Local Lesions in Genomes) pioneered by plant geneticists (McCallum et al. 2000; Till 

et al. 2007; Gilchrist et al. 2006; Winkler et al. 2005). This technique is somewhat placed 

between forward and reverse genetics in that initially mutants are randomly generated by 
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chemical mutagenesis. The originally mutated male fish are outcrossed, essentially 

generating a swimming library of numerous mutations, with each fish carrying a multitude 

of heterozygous mutations. By sequencing or by an endonuclease cleaving heteroduplex 

DNA (Cel1) approach, mutations are identified and recovered by mating the fish carrying 

mutations in the gene of choice (Wienholds et al. 2003; Draper et al. 2004; Wienholds et al. 

2002; Oleykowski et al. 1998). Many mutant libraries have been generated, with the biggest 

one at the Welcome Trust Sanger Center carrying roughly 36’000 alleles in more than 730 

genes (https://www.sanger.ac.uk/sanger/Zebrafish_Zmpbrowse). Although many mutant 

lines that are used around the world have been generated in this way, the effort to breed 

lines containing only the desired mutation and the logistics necessitating dedicated centers 

are drawbacks of this method. Thus, with the emergence of efficient reverse genetic 

mutagenesis tools, TILLING based approaches are losing popularity.  

Two FokI based genome editing techniques have been successfully established in zebrafish 

(Figure 3). FokI is an endonuclease that induces double strand breaks when dimerized 

(Bitinaite et al. 1998). Both approaches use fusion proteins that fuse FokI with specifiable 

DNA binding domains. These sequences specific domain direct FokI to the genomic target of 

choice. If two FokI proteins are in this way joined at a genomic site, a double strand break is 

induced in the DNA. The error-prone - repair mechanism (non-homologous end-joining, 

NHEJ) relegates the two DNA strand frequently introducing small insertions or deletions 

(indels). The two methods differ by the nature of the DNA targeting protein, suing zinc 

fingers domains (Figure 3a) or TALE (Transcription-Activator-Like Effectors) domains (Figure 

3b) (Meng et al. 2008; Doyon et al. 2008; Moore et al. 2012). Transcription-Activator-Like 
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Effector Nucleases (TALENs) proved to be more user-friendly and efficient in inducing 

targeted mutations (Huang et al. 2012). 

Although a number of mutants affecting the development of the retina and the eye (e.g. 

(Deml et al. 2015; Miesfeld et al. 2015)) have been generated by these methods, the more 

efficient CRISPR/Cas9 method is quickly replacing them. 

Genome editing has been revolutionized not only in the zebrafish with by the application of 

the CRISPR/Cas system. The clustered regularly interspaced short palindromic repeats 

(CRISPR) – CRISPR-associated (Cas) system in bacteria and archaea targets and cleaves 

foreign intruding virus and plasmid DNA (Gasiunas et al. 2012). The type II CRISPR/Cas9 

system of the bacterium Streptococcus pyogenes is one of the most extensively studied 

members of the endonuclease family and has been successfully adapted for directed 

genome manipulation in a variety of species, where a guide RNA directs target-specific 

induction of double strand breaks by the Cas9 endonuclease. The active CRISPR/Cas9 

holoendonuclease in vivo consists of the endonuclease, transcribed from the cas9 gene and 

a complex of two small RNAs, the trans-activating CRISPR RNA (tracrRNA) and CRISPR RNA 

(crRNA). The system was modified to be used as a mutagenesis tool. The two small RNAs are 

fused to one single guide RNA (sgRNA) mimicking the tracrRNA:crRNA complex (Figure 4a) 

(Jinek et al. 2012). Target recognition of the CRISPR/Cas9 complex is ensured by specific 

Watson-Crick base pairing of complementary 20 nucleotides on the sgRNA with the genomic 

target DNA (Figure 4a). CRISPR/Cas9 system is the only mutagenesis method to date that 

relies on Watson-Crick base pairing rather than potentially less specific DNA recognition by 

proteins (Gaj et al. 2013). A NGG protospacer-adjacent motif (PAM) is required by the Cas9 

to be the 3’ end of the 23 nucleotide target in order to cleave the DNA (Jinek et al. 2012). 
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Binding of the sgRNA to the genomic target induces endonuclease activity of Cas9 and leads 

to DNA cleavage. 

In theory, any sequence of 23 nucleotides harboring a 3’ NGG PAM can serve as a target. If 

using T7 RNA polymerase for in vitro transcription of the sgRNA, the sgRNA must start with a 

5’ GG. Together with the restriction of a 3’ NGG PAM, such targets (GG-N18-NGG) are found 

in the zebrafish exome one every 128 nucleotides (Hwang et al. 2013). However, methods 

to increase the target range have been suggested, like mismatching the two 5’ nucleotides 

to GG (GG-N18-NGG), adding additional GG at the 5’ end (GG-N20-NGG) or using SP6 RNA 

polymerase (5’-G(A/G)) (Hwang et al. 2013; Gagnon et al. 2014). Also, enzymes with 

different targeting requirements are now being increasingly engineered. Target selection is 

facilitated by several online tools based on empirical testing that predict possible guides 

(e.g. (Moreno-Mateos et al. 2015; Montague et al. 2014)). It is recommended to either 

target the beginning of a gene, where a potentially resulting truncated protein in the 

mutant lacks most functional domains or directly target regions coding for functional 

domains. These restrictions, besides the required PAM, the recommended high G/C content 

further decreases number of possible target sites and can be limiting if targeting smaller 

genes. 

sgRNAs can either be injected into the one cell stage embryo together with nuclear 

localizing Cas9 encoding mRNA or with Cas9 protein. Successful mutagenesis results in 

induction of double-strand breaks by the Cas9 endonuclease at the target site. Error-prone 

NHEJ refuses the two free ends often introducing small insertions or deletions (Figure 4a) 

(Thyme, Schier 2016; He et al. 2015). The CRISPR/Cas9 system is able to induce somatic 

mutations at very high frequencies (up to 100%) and also germline-transmission is very 



 

31 

 

efficient (Burger et al. 2016). CRISPR injected fish (F0 fish) are highly mosaic, but when out-

crossed to wildtype fish, the sibling progeny (F1 generation) shows limited mutation 

complexity, suggesting that Cas9 is active in the first 4 hours, when only 4 germline 

progenitor cells are present (Jao et al. 2013). Two different breeding schemes (Figure 4b) 

are used to create stable homozygous mutant lines: Outcross of F0 fish to wildtype fish, 

resulting in first homozygous mutants in the F2 generation or a direct F0 incross, resulting in 

transheterozygous F1.  

Counterintuitively, the main workload for generating CRISPR mutants does not fall on target 

selection or sgRNA /Cas9 mRNA synthesis, but rather on genotyping. The targeted region 

has to be PCR amplified and sequencing following cloning is required to detect animals 

harboring frame-shift mutations. Injecting two sgRNAs in parallel may decrease the 

genotyping efforts, as often the genomic region between the targets gets excised resulting 

in deletions that can be detected by gel-electrophoresis, making cloning and sequencing 

redundant.  

The high efficiency of the CRISPR/Cas9 system can induce such a high load of somatic 

mutations that embryonic lethality may occur. This can be prevented by fusing the cas9 

open reading frame to the 3’ untranslated region of nanos1 to target Cas9 to the germline, 

thereby avoiding somatic mutations. This approach eases the generation of mutants with 

embryonic lethal mutations (Moreno-Mateos et al. 2015). 

The CRISPR/Cas9 system has been further tweaked to induce mutations in a spatially or 

temporally controlled fashion by transgenic expression of cas9 and sgRNA. Two approaches 

have been successfully implemented, both relying on Tol2 transposon based insertion of 

constructs. One relies on a one vector system that contains a cassette containing the tissue 
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specific promoter upstream of cas9 and the zebrafish specific U6 promoter upstream of a 

sgRNA (Ablain et al. 2015). The second approach is based on a two vector system where one 

cassette containing cas9 under the control of a tissue-specific promoter is injected into a 

fish that later will be crossed with another fish that was injected with a construct containing 

one or several specific sgRNAs under the control of a U6 promoter (Yin et al. 2015). Both 

studies proved that transgenic expression of cas9 and sgRNA is sufficient to induce somatic 

biallelic mutations that result in a phenotype, despite highly varying mutation rate and 

phenotype severity between siblings (Yin et al. 2015).  

Tissue specific mutagenesis was also achieved by ubiquitous transgenic expression of cas9 

and injection of sgRNA into a specific tissue followed by electroporation. Yin et al. showed 

that targeting ascl1a, a gene involved in retinal regeneration by Müller glia cell 

dedifferentiation and proliferation, resulted in decreased regeneration measured by the 

number of proliferating cells after light-induced photoreceptor degeneration (Yin et al. 

2015). 

Temporal control of mutagenesis can be achieved by temporal control of Cas9 expression, 

e.g. by a heat-shock promoter (hsp). Heat-shock induced tyrosinase inactivation led to 

hypopigmentation in the eye, however of different extents (Yin et al. 2015).  

Although no successful application of these tissue specific mutagenesis regimes have been 

reported for studies of the retina, they hold great promise for the future. 

In comparison to overexpression assays, where a DNA sequence is expressed in addition to 

endogenous gene expression, targeted knock-ins have the advantage to simultaneously 

disrupt an endogenous locus while introducing an ORF of interest. This is of particular 
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importance for modeling human retinal diseases, where the exact nucleotide change found 

in a human mutation could be introduced to the fish. While targeted knock-in based on 

CRISPR/Cas9 is widely and successfully used in cultured cells, its application in zebrafish is 

only emerging and technical refinements are required in order to achieve efficient in-frame 

knock-ins. Depending on the experimental approach, a variety of genetic material, reaching 

from fluorescent reporter genes, mutated genes, stop codon cassettes to antibody 

recognition tags can be inserted (Auer et al. 2014; Armstrong et al. 2016; Hruscha et al. 

2013; Gagnon et al. 2014). So far, genetic material to be integrated was of different length 

and kind (plasmid versus oligonucleotides) and contained homology arms of different 

lengths reaching from only a few nucleotides to several hundred bps (reviewed by (Albadri 

et al. 2017)). The different strategies resulted in successful integration of the donor DNA, 

however at rather low efficiencies and with high frequencies of out-of-frame integrations or 

additional indel mutations (Auer et al. 2014; Armstrong et al. 2016; Hruscha et al. 2013), 

reviewed by (Albadri et al. 2017). At the current pace of innovation it is to be expected that 

in the near future efficient ways to introduce precise knock-ins will become available in the 

zebrafish. This would allow retina researcher to recreate heritable retinal disease of humans 

with single nucleotide precision in the zebrafish.  

OUTLOOK 

The retina as an accessible part of the brain has always fascinated neuroscientist by 

providing compact neural circuits with a defined function. The highly visual zebrafish is an 

ideal model to advance our understanding of retinal development and function by providing 

a compact cone dominant retina with numerous genetic and imaging approaches available. 

In this review we have sketched some of the latest technological development that will 
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strongly influence retinal research. While many these techniques are rapidly and constantly 

improved, their full impact for our understanding of the vertebrate retina has not been fully 

realized yet. We are entering exciting times for retinal research with emerging genetic and 

imaging technologies that only a few years ago were unthinkable.   
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Zebrafish retinal anatomy. 

Zebrafish possess a vertebrate type retina. a) Already at 5 days post fertilization, the larval retina is considered 

fully functional and consists of three nuclear and two synaptic layers, typical for a canonical vertebrate retina. 

b) Section of an adult zebrafish retina (left) with a schematic illustration (right) depicting retinal organization. 

The outer nuclear layer contains nuclei of rod and cone photoreceptors. Photoreceptors transmit the signal to 

interneurons called bipolar cells whose nuclei are located in the inner nuclear layer, together with cell bodies 

or horizontal and amacrine cells. Bipolar cells in turn project to ganglion cells, the retinal output cells. 

Horizontal and amacrine cells are inhibitory interneurons laterally modulating the signal in the synaptic layers, 

outer and inner plexiform layer respectively. Müller cells are the main glia cell type in the zebrafish retina. 

They span from the optic nerve layer to the basal end of photoreceptor inner segments. R Rods, C Cones, H 

Horizontal cell, B Bipolar cell, A Amacrine cell, G Ganglion cell, M Müller glia cell. 
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Figure 2:  

 

Schematic illustration of transgenesis approaches used in zebrafish.  
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a) Tol2-mediated transgenesis has become the standard technique to insert exogenous DNA into the zebrafish 

genome. Transposase mRNA is injected together with a donor plasmid containing a Tol2 site flanked tissue 

specific promotor upstream of a reporter gene. Transposase mediated excision of the cassette from the 

plasmid and integration into the genomic DNA occurs in a randomized way. b) Random or multiple integrations 

into the genome can be bypassed by using the phiC31 system. Zebrafish lines carrying a single landing (attP) 

site can be injected with phiC31 encoding mRNA and a donor plasmid containing a reporter gene (here GFP) 

downstream of a promoter and an attB site. A single integration event occurs at the attP site, catalyzed by the 

phiC31 integrase. The introduction of the cassette results in GFP expression in all cells with promoter activity. 

c) The Gal4/ Upstream activation system (UAS) is a dual transgenesis system where a Gal4 driver line is crossed 

to a UAS reporter line. The Gal4 driver fish expresses Gal4 under a tissue specific promoter. The UAS reporter 

harbors a transgene in which a reporter gene (here GFP) is downstream of the UAS. If driver and reporter fish 

are crossed, all cells of the progeny with promoter activity express the reporter gene, due to specific binding of 

Gal4 transcription activating protein to the UAS enhancer. d) Cre/Lox constitutes another powerful dual 

transgenesis system, where a Cre driver line is crossed to a switch line. The cre driver transgenically expresses 

Cre recombinase under the control of promoter X (e.g. a ubiquitous promotor like ubiquitin). The switch line 

contains a transgene of a promoter Y upstream of a floxed ORF (e.g. GFP or a stop cassette) and a cargo (e.g. 

RFP). By crossing driver and switch lines, progeny will show cargo (RFP) expression in cells with promoter Y 

activity, due to Cre mediated recombination of the floxed ORF.  

 

 

Figure 3: 

 

Schematic illustration of reverse genetic mutagenesis approaches based on FokI endonuclease. 

Zinc Finger Nucleases (ZFNs) and Transcription-Activator-Like Effector Nucleases (TALENs) both consist of a 

DNA binding domain linked to a FokI endonuclease. FokI nucleases only induce double strand breaks into the 

genome if they dimerize. Thus, both ZFNs and TALENs are used in pairs, where proper spacing between the 

two DNA binding domains is crucial double strand breaks to be induced. a) The DNA binding domain in ZFNs 

consists of a zinc-finger protein that is engineered to recognize different target sequences. Many Cis2His2 

fingers can be arranged of which the α-helix of each finger recognizes 3 to 4 base pairs (Pavletich, Pabo 1991). 

Zinc-fingers that recognize about 49 out of the 64 existing base pair triplets have been described, however 
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specificity is remains problematic. b) Target recognition in TALENs is mediated by the DNA binding domain that 

consists of tandem repeat units of which each unit specifically binds one nucleotide. One TALEN half-side 

generally recognizes 16 to 17 nucleotides. 

 

Figure 4:  

 

Illustration of a CRISPR/Cas9 complex inducing double strand breaks at the genomic target. 

a) The sgRNA targets the Cas9 endonuclease to the genomic DNA, where 20 nucleotides of the sgRNA bind the 

genomic target by Watson-Crick base pairing. A genomic target consists of 20 nucleotides and an additional 3’ 
NGG protospacer-adjacent motif (PAM) that is required for Cas9 activity. Binding of the sgRNA to the genomic 

target induces endonuclease activity in the two catalytically active domains RuvC and HNH of Cas9, inducing 

site specific nicks between the third and fourth base-pair upstream of the PAM on each strand (Gasiunas et al. 

2012; Jinek et al. 2012). A repair mechanism prone to errors ligates the ends of the DNA by non-homologous 

end joining (NHEJ), resulting in deletions or insertions at the site of the double strand breaks. b) sgRNA with 

Cas9 mRNA or protein is injected into the one cell stage embryo. F0 founder fish harbor many different 

mutations (depicted by different colors). Two different breeding schemes are used to generate mutant lines. 

Mosaic F0 fish can be outcrossed to WT fish to generate a heterozygous F1 generation (left). Two F1 fish 

harboring the same mutation can be incrossed which results in a partially (1/4) homozygous F2 generation. If 

high mutation rates are obtained in founder fish, these mosaic F0 fish can directly be incrossed, resulting in a 

heterogeneous F1 generation (right). This generation needs to be genotyped as both homo- and heteroallelic 

mutants can be found. Phenotype analysis in homozygous mutants (most likely transheterozygous) can be 

conducted already in the F1 generation. 

 

 




