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Cooking time of the common bean is an important trait for consumer preference, with

implications for nutrition, health, and environment. For efficient germplasm improvement,

breeders need more information on the genetics to identify fast cooking sources

with good agronomic properties and molecular breeding tools. In this study, we

investigated a broad genetic variation among tropical germplasm from both Andean

and Mesoamerican genepools. Four populations were evaluated for cooking time (CKT),

water absorption capacity (WAC), and seed weight (SdW): a bi-parental RIL population

(DxG), an eight-parental Mesoamerican MAGIC population, an Andean (VEF), and a

Mesoamerican (MIP) breeding line panel. A total of 922 lines were evaluated in this study.

Significant genetic variation was found in all populations with high heritabilities, ranging

from 0.64 to 0.89 for CKT. CKT was related to the color of the seed coat, with the white

colored seeds being the ones that cooked the fastest. Marker trait associations were

investigated by QTL analysis and GWAS, resulting in the identification of 10 QTL. In

populations with Andean germplasm, an inverse correlation of CKT and WAC, and also

a QTL on Pv03 that inversely controls CKT and WAC (CKT3.2/WAC3.1) were observed.

WAC7.1 was found in both Mesoamerican populations. QTL only explained a small

part of the variance, and phenotypic distributions support a more quantitative mode

of inheritance. For this reason, we evaluated how genomic prediction (GP) models

can capture the genetic variation. GP accuracies for CKT varied, ranging from good

results for the MAGIC population (0.55) to lower accuracies in the MIP panel (0.22). The

phenotypic characterization of parental material will allow for the cooking time trait to

be implemented in the active germplasm improvement programs. Molecular breeding

tools can be developed to employ marker-assisted selection or genomic selection,

which looks to be a promising tool in some populations to increase the efficiency of

breeding activities.

Keywords: genome-wide association mapping (GWAS), QTL, cooking, prediction, bean

Frontiers in Plant Science | www.frontiersin.org 1 February 2021 | Volume 11 | Article 622213

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.622213
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2020.622213
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.622213&domain=pdf&date_stamp=2021-02-11
https://www.frontiersin.org/articles/10.3389/fpls.2020.622213/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Diaz et al. Genetic Architecture of Cooking Time in Bean

INTRODUCTION

Common bean (Phaseolus vulgaris L.) is one of the most
important cultivated grain legumes and is consumed by millions
of people worldwide, particularly in developing countries in
the tropics (Broughton et al., 2003). Bean is one of the crops
targeted for biofortification because it is a rich and relatively
inexpensive source of proteins and micronutrients such as iron
and zinc (Beebe, 2012). The common bean is organized in two
genetically differentiated genepools: The Mesoamerican and the
Andean genepools, which diverged from a common ancestral
wild population more than 100,000 years ago. In these genepools,
independent domestication events resulted in landraces with
diverse attributes (Schmutz et al., 2014).

Grains that cook faster are preferable due to the lower time
taken for meal preparation usually carried out by women, which
would allow them to pursue other tasks (Ribeiro et al., 2014).
Another important issue is the economy of energy use. The
energy for cooking represents about 90% of all household energy
consumption in developing countries using wood as a major fuel
source. When this wood is burned, it contributes to high levels
of local air pollution (De et al., 2013). Moreover, fuelwood in
urban areas is costly, while collection in rural regions traditionally
is a task carried out by women and children and may be time
consuming and associated with risks. This has a direct impact
on the food chosen by women to cook in those countries
(Masangano and Miles, 2004).

From a nutritional perspective, cooking time is important
because it affects the content of phytochemicals with
antinutritional effects (ElMaki et al., 2007; Yasmin et al.,
2008; Wang et al., 2010). Prolonged cooking times were reported
to reduce and degrade nutrients important for the human diet
(Pujolà et al., 2007; Shiga et al., 2009; Chinedum et al., 2018).
Research also revealed that fast cooking beans retain more
minerals and proteins after being fully cooked compared to other
slow cooking beans, showing the higher nutritional value of fast
cooking beans (Wiesinger et al., 2016, 2018). Therefore, a shorter
cooking time can have a positive impact on consumers, freeing
up time, as well as improving nutrition, health, and economy,
especially in areas where beans are consumed as a primary source
of protein. Several methods have been used to evaluate cooking
time for beans. At present, the time-consuming Mattson cooker
method is mostly used (Carvalho et al., 2017).

Several factors affecting cooking time have been studied, such
as characteristics and composition of seeds, growing location,
and storage conditions (Arruda et al., 2012; Wani et al.,
2017). However, the genetic architecture of cooking time is less
understood. Some studies indicate this is a trait controlled by
few genes and presents relatively high heritability values (Elia
et al., 1997; Jacinto-Hernandez et al., 2003; Arns et al., 2018).
Other studies report high genetic variability of the trait, and
several genomic regions may be involved in its genetic control
(Vasconcelos et al., 2012; Cichy et al., 2015; Berry et al., 2020).

Different strategies have been used for genetic mapping.
In linkage mapping, a bi-parental population is utilized to
identify the genomic regions that segregate with a trait, but
this strategy is usually low in resolution since only two

alleles per locus are analyzed, and genetic recombination is
limited (Islam et al., 2016). Genome-wide association mapping
(GWAS) directly identifies marker-trait associations in natural or
constructed populations based on linkage disequilibrium (LD).
This strategy does not demand generating populations and
uses the historical genetic recombinations available in panels.
However, the population structure can produce a high LD
between non-linked markers (Klasen et al., 2016). Lately, a multi-
parent advanced generation intercross (MAGIC) strategy has
been proposed to increase precision and resolution. In MAGIC
populations, QTLs and marker-trait associations can be detected
due to the increased level of recombination, and present more
phenotypic and genetic variability than biparental populations
(Bandillo et al., 2013). Therefore, combining GWAS and QTL
analysis not only avoids the false positives from associated loci
due to high LD but also facilitates fine mapping of a target region
with a large QTL interval (He et al., 2017). However, certain traits
display a quantitative mode of inheritance, are governed by many
different QTL of small effects across the genome, and are highly
influenced by genotype-by-environment interactions. All these
factors define the complexity of these traits, and elucidating the
underlying genetic basis proves to be a difficult task. Genomic
prediction (GP) is a recent promising tool for plant breeding
for phenotype prediction based on genomic estimated breeding
values (GEBV) estimated from information on genome-wide
markers (Crossa et al., 2017). GPs are suitable for quantitative
traits controlled bymany genes. This method has a high potential,
mainly when phenotyping is costly and laborious (Spindel et al.,
2015; Minamikawa et al., 2017; Muleta et al., 2017).

The objective of this study was to investigate the genetic
architecture of cooking time in beans in a bi-parental population,
germplasm collections, and a MAGIC population. QTL and
GWAS analysis were combined to identify genomic regions
involved in the trait. Genomic prediction methods are evaluated
to assess the predictive accuracy for genomic prediction models
for cooking time.

MATERIALS AND METHODS

Germplasm
In this study we used four different populations of common
bean to elucidate the genetic architecture of cooking time:
(1) A bi-parental population (DxG) previously described by
Blair et al. (2003) and Galeano et al. (2009), which consists
of 87 recombinant inbred lines (RIL). This population was
obtained by crossing DOR364, an improved Mesoamerican
line from the International Center for Tropical Agriculture
(CIAT), and the Andean accession G19833, a landrace from
Peru. The DxG population was advanced by a modified single-
seed descent (SSD) to F9:11 generation. (2) A multiparent
advanced-generation intercross (MAGIC) population previously
described by Diaz et al. (2020). This population used a set
of eight Mesoamerican breeding lines from CIAT as founders.
The details of the MAGIC crossing scheme are presented in
Supplementary Figure 1. This population contained 636 F4:6

RILs generated by the SSD method. (3) The “Vivero Equipo
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Frijol” (VEF) panel, previously described by Keller et al. (2020) is
composed of 380 Andean breeding lines. (4) The “Mesoamerican
Introgression Panel” (MIP) consists of 222 breeding lines of the
Mesoamerican gene-pool. This panel was assembled to study to
which extent interspecific introgressions from other species of
Phaseolus (P. acutifolious, P. dumosus, and P. coccineus) have
been introduced by the Mesoamerican breeding program over
recent decades. Therefore, the panel consists of recent breeding
lines as well as available ancestors and initial interspecific
introgression pre-breeding lines.

Field Trials
The field trials of all four populations were planted at the
CIAT Palmira experimental field station (Colombia, altitude
of 1,000 m.a.s.l., latitude 3◦32′N and longitude 76◦18′W). The
experimental unit in these trials were row plots of 2.22 m2

laid out for each replicate of each line. The DxG population
and its parental lines were established in the field following a
randomized complete block design with three replicates for each
RIL in 2011. The MAGIC population and its eight founders
were planted in 2013 in an alpha-lattice incomplete-block design
with three replicates as described by Diaz et al. (2020). A subset
of 223 MAGIC lines and its eight founders were phenotyped
for cooking time. The VEF panel was planted in 2017 with
an alpha-lattice incomplete block experimental design of three
replicates as described by Keller et al. (2020). The MIP panel was
grown in 2018 following an alpha-lattice incomplete block design
with three replicates. In this panel, 66 lines were phenotyped
for cooking time with three replicates, while only one replicate
was phenotyped of the remaining lines. In all trials, seed was
harvested manually by plot upon maturity (120–140 days after
sowing). The collected seed was cleaned to remove debris and
damaged seed, and dried until reaching an average moisture
content of 10–14% (determined with a moisture meter MT-16
Grain Moisture Tester, AgraTronix, United States). The MAGIC
population, VEF panel, and MIP panel were stored at controlled
temperature (4◦C) and low humidity (< 30%) in a cold room.
The storage conditions for the DxG population were not as
optimal as they were for the other three populations (Kinyanjui
et al., 2017). The DxG population was stored in a room without
controlled storage conditions (22–32◦C temperature room and
high humidity > 60%). This may cause the cases of hard-to-cook
(HTC) phenotypes in that population.

Cooking Time and Water Absorption
Capacity
The water absorption capacity (WAC) was measured using
the method described by Deshpande and Cheryan (1986): a
subsample of 28 seeds per replication was weighed (SdW) and
soaked in distilled water for 12 h at room temperature (25◦C).
After that, seeds were drained, blotted dry, and weighed again to
determine the water absorption during soaking with the formula:

WAC (%) =

SdW after soaking
(

g
)

−SdW before soaking(g)

SdW before soaking (g)
× 100

Cooking time (CKT) was measured on 24 seeds with the Mattson
pindrop cooker (Customized Machining and Hydraulics Co.,
Winnipeg, MB, Canada. Modified at CIAT—more information
below). Each soaked seed was placed in a well of the plate. On top
of each seed a 90-g piercing pin was set down, and the Mattson
device was placed in boiling distilled water (> 98◦C). For each
seed, the time (expressed in minutes) that it took to be completely
pierced by the pin was recorded (Wang and Daun, 2005). In this
study, CKT was defined for each sample as the 80th percentile of
the evaluated seed per experiment (usually 24 seeds). The time
between harvest to the evaluation moment was more than 2 years
for the DxG and the MAGIC population, and less than 6 months
for the VEF panel and MIP panel.

Hardware and Software Design for
Measuring Cooking Time
TheMattson cooker was modified to become partially automated
using an embedded system for taking data from each seed
individually. The system uses a custom-made printed circuit
board assembly with 24 installed micro-switches that detect if any
of the 90-g stainless steel piercing pins pierce the bean. A ribbon
cable connects the plate to a Udoo micro computer system
harboring a router for Wi-Fi communication. Furthermore, a
PT100 sensor was added to allow monitoring of the temperature
throughout the experiment. Finally, a web application was
developed to monitor and control wirelessly the process on
any computer or mobile device (for more information, see
Supplementary Document 1).

Data Analysis
Statistical analysis of the phenotypic data was conducted with
statistical software R (v3.3.2). A Grubbs test (Grubbs, 1950) was
used to identify and remove outliers in each dataset of 24 time
values of each pin in a given experiment using the R package
“outliers” (v0.14) (Komsta, 2011). Best linear unbiased estimators
and predictors (BLUEs/BLUPs) were calculated for CKT and
WAC using the “lme4” Package (Bates et al., 2015). The data from
each trial were modeled using the following formula:

ymijk = µ + Gm + Mi + Rj + (RB)jk + εmijk (1)

where y is a vector with the phenotypic responses, µ is
the overall intercept, Gm is the effect of the mth genotype,
Miis the effect of the ith machine, Rj is the effect of the jth

replicate, (RB)jk is the effect of the kth block nested within

the jth replicate (which was only included for alpha designs),
and εmijk is the error term corresponding to ymijk. In this
model, the terms Mi, Rj, and (RB)jk were treated as random
effects. The Gm term effects were treated either as fixed (to
calculate BLUEs) or random (to get an estimate of the genetic
variance and calculate BLUPs). We assumed that every random
term u and the residual ε adjusts to a normal distribution
with mean 0 and independent variances u ∼ N

(

0, σ
2
uI

)

and
ε ∼ N(0, σε

2 I).
To determine the proportion of the genetic variance

controlling CKT and WAC for each population, broad-sense
heritability (H2) estimates were calculated using the method
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proposed by Cullis et al. (2006). Trait H2 estimates were
computed using the equation below:

H2
= 1 −

υBLUP

2σ2genotype
(2)

where υBLUP is the mean variance of a difference of two BLUPs
of genotypic effects, and σ

2
genotype is the genetic variance. The

phenotypic correlation between traits of interest was expressed
as Pearson’s correlation coefficients among BLUEs, and their
significance was tested using a two-tailed t-test.

The differences between seed color groups with regard to CKT
were modeled as:

yij = µ + ci + εij (3)

where yij is a vector of BLUEs obtained from equation 1, µ is the

intercept, ci is the effect of the i
th color group, εij is the error term,

and we assumed ε ∼ N(0, σε
2 I).

Genotyping
The development of molecular markers and construction of a
genetic linkage map for the DxG population was described in
detail in previous studies (Blair et al., 2003, 2006, 2008; Galeano
et al., 2009) where 561markers were mapped to 11 linkage groups
with a 2,731 cM distance. The map was developed with the
Kosambi mapping function using the MapDisto Software (v1.7)
(Lorieux, 2012). The graphic visualization of the DxG genetic
map was created in MapChart (v2.32) (Voorrips, 2002).

Genotyping of the MAGIC population and its founders (629
RIL + 8 lines), the VEF panel (330 lines), the MIP panel
(210 lines), and each founder genotype of the DxG population
was obtained using the ApeKI-based genotyping-by-sequencing
(GBS) protocol (Elshire et al., 2011), as previously described
(Perea et al., 2016; Gil et al., 2019; Keller et al., 2020; Diaz
et al., 2020). Briefly, DNA was extracted using the urea buffer-
based DNA extraction midi prep protocol. GBS libraries were
sequenced at the HudsonAlpha Institute for Biotechnology1 and
the Institute of Biotechnology of Cornell University2. Each 96-
well plate was sequenced in one lane of an Illumina HiSeq
platform device using single-end or paired-end reads ranging
between 100 and 150 bp.

The mapping and variant calling processes for GBS reads is
described in detail by Perea et al. (2016), Gil et al. (2019), and
Keller et al. (2020). In brief, the GBS reads were demultiplexed
using NGSEP (v3.3.2) (Tello et al., 2019). Adapters and low-
quality bases from the raw sequencing data were trimmed using
Trimmomatic (v0.36) (Bolger et al., 2014), and reads were aligned
to the reference genome of P. vulgaris G19833 v2.1. (Schmutz
et al., 2014) using Bowtie2 (v2.2.30) (Langmead and Salzberg,
2012) with default parameters. The variant calling process was
performed using NGSEP following recommended parameters for
GBS data (Perea et al., 2016). The resulting genotype matrix was
filtered to remove genotype calls with quality below 40, remove
markers with more than 6% heterozygote calls, minor allele
frequency (MAF) below 0.02, and remove markers in repetitive

1https://hudsonalpha.org/
2https://www.biotech.cornell.edu/core-facilities-brc/services

regions of the reference genome (Lobaton et al., 2018). Markers
were selected so that the overall missing data rate in the matrix
does not surpass 20%. The process to construct a genotype matrix
was carried out for each population separately. The final matrices
contained 17,654 SNP markers for the MAGIC population, 9,421
SNP markers for the VEF panel, and 26,500 SNP markers for the
MIP panel. These matrices were used thereafter for the GWAS
analysis (with an independent principal components analysis
and kinship calculation for each population) and for single-
trait assessment of prediction ability. In addition, the same SNP
calling and matrix filtering processes were repeated combining
the sequencing data of the DxG founder genotypes and all
three populations (MAGIC, VEF, and MIP). The resulting joint
genotype matrix contained 17,508 SNP markers and was used
to assess the population structure by performing a principal
component analysis (PCA) using GAPIT (v3.0) (Tang et al., 2016)
and to perform the second case of the cross-prediction scenario
(detailed in section “Genomic Prediction Models”).

The construction of the geneticmap of theMAGIC population
was described in detail by Diaz et al. (2020) using the method for
haplotype prediction reported in anArabidopsis thalianaMAGIC
population (Kover et al., 2009). Briefly, the inferred haplotypes
were used to transform the GBS matrix with allele information
into a matrix with founders’ source information for each marker.
Themarker set in this matrix was reduced by a binning procedure
based on their recombination frequency, generating a subset of
5,738 non-redundant markers. This filtered matrix was used to
construct the genetic map with the Kosambi mapping function
using the integrated genetic analysis software for multi-parental
pure-line populations (GAPL) (v2.1) (Zhang et al., 2019) (for
more details about the methods applied for each population, see
Supplementary Figure 2).

QTL and Genome-Wide Association
Mapping Analysis
QTL analysis for the DxG and MAGIC populations was
conducted using the genetic maps of each population and
the calculated BLUEs. Detection of QTLs and estimation of
genetic parameters for CKT and WAC were performed using
the composite interval mapping (CIM) procedure of the software
IciMapping (v4.1) (Meng et al., 2015) with 10 cM windows and
a sliding parameter of 1 cM for DxG population. Significant
QTL were considered by defining the logarithm of odds (LOD)
score at a genome-wide type I error rate of a α = 0.05 after
1,000 permutation tests for each trait, obtaining a significance
threshold of 3.24 LOD for the DxG population. For the MAGIC
population, the composite interval mapping was carried out with
the procedure for additive effects (ICIM-ADD) of the software
GAPL (v1.2) (Zhang et al., 2019), employing the forward and
backward regression model, with 5 cM windows and a sliding
parameter of 0.5 cM. Significant QTL were defined at 6.68 LOD
for the MAGIC population following the same permutation tests
defined for the DxG population.

The association analysis was carried out in the MAGIC
population, VEF, and MIP panels using the R package GAPIT
(v3.0) (Tang et al., 2016), providing the genotypic matrix that
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was produced for each population independently, and their
corresponding BLUEs. The association analysis was conducted
using a mixed linear model (MLM) approach. This model
accounts for population structure using the top five principal
components (described previously) as fixed effects. It also
accounts for random polygenic effects with a kinship matrix
as variance–covariance structure, calculated using the method
proposed by VanRaden (2008) implemented in the GAPIT
package. Significant associations were defined when the p value
was equal to or smaller than the Bonferroni-corrected threshold
(2.38× 10−6 for MAGIC population, 5.30× 10−6 for VEF panel,
and 1.88× 10−6 forMIP panel) (Johnson et al., 2010).Manhattan
and QQ plot graphics were made using the qqman R package
(Turner, 2018).

Genomic Prediction Models
A single-trait assessment of prediction ability was performed
for each population individually using the R package BGLR
(v1.0.8) (Pérez and De Los Campos, 2014), with 10,000 iterations,
using the first 2,000 for burn-in and default parameters. In each
case, 70% of the individuals in the population were assigned
to the training set, while the remaining 30% were assigned
to the validation set, following the results from Keller et al.
(2020). This random assignment was repeated 100 times for each
population. Prediction ability (PA) was defined as the Pearson
correlation coefficient (r) between the observed (true breeding
values or TBVs) and the predicted values (genomic estimated
breeding values or GEBVs) of the validation set. Different priors
for parametric regressions on the SNP markers were tested,
including the Bayesian ridge regression (BayesRR), BayesA,
BayesB, BayesC, Bayesian Lasso (BLasso), and a GBLUP model.
All these priors are based on additive effects models. In addition,
Bayesian reproducing kernel Hilbert spaces regression (RKHS)
was tested fitting a single Gaussian kernel model in the (average)
squared-Euclidean distance between genotypes, as defined by
Pérez and De Los Campos (2014), with a fixed bandwidth
parameter h = 0.5. The RKHS model is a semi-parametric
approach that incorporates additive and non-additive effects.

A cross-prediction scenario was tested between and within
populations and traits, using the RKHS model described
above. Unlike the single-trait assessment of genomic prediction,
different datasets were used for training and validation in this
case. This scenario was divided in two separate cases. The first
consisted in using the BLUEs of CKT,WAC, or SdW from a single
population to predict every other trait in the same population.
In total, 18 different combinations of training-validation datasets
were obtained for this first case. For each combination, a similar
cross validation process used 70% of the individuals from the
training set of BLUEs to train the model. The remaining 30%
of individuals from the validation set of BLUEs were used to
calculate the PA between observed (TBVs) and predicted values
(GEBVs). The random 70:30 assignment was repeated 100 times.
The second case used the BLUEs from a given trait-population to
train the model, and then it was used to predict every other trait
in a different population, producing 54 different combinations
of training-validation datasets. In this case, no cross validation
was done, performing a single training and validation step.

This second case of cross-prediction scenario resembles a more
realistic breeding context.

RESULTS

Phenotypic Variation for Cooking Time,
Water Absorption Capacity, and Seed
Weight in Four Populations
Cooking time, WAC, and SdW were evaluated in four different
populations incorporating a large genetic variability: The DxG
population (bi-parental Andean×Mesoamerican inter-genepool
RIL population), the MAGIC population (eight-parental
Mesoamerican population), the VEF panel (Andean breeding
lines), and the MIP panel (Mesoamerican breeding lines).

Significant phenotypic variability was observed in all
populations for all traits (Figure 1 and Supplementary Table 1).
The DxG population presented more phenotypic variability for
CKT and WAC compared to the other populations (Figure 1)
with the highest coefficient of variation (> 30%). The highest
CKT values were found for DxG with an average of 92.9 min,
while it also had the lowest WAC values, with an average
of 40.7%. Furthermore, DxG displayed problems with water
absorption as several samples failed to absorb significant amounts
of water. These effects may be attributed to the storage conditions
of the seed, as the DxG seed was stored for a longer period before
evaluation. The Andean parent G19833 presented a shorter CKT
(83.7 min) than the Mesoamerican parent DOR364 (146 min)
(Figure 1). G19833 has larger seeds that showed higher WAC
compared to DOR364 (Figure 1). The spatial variation in the
field that was modeled with the Rj and (RB)jk terms in equation
(1) were not significant for any trial. Since they were accounted
for as random effects terms, the model presented in equation (1)
automatically drops the zero variance terms and reduces itself.

The MAGIC population, VEF, and MIP panels presented
similar phenotypic variability for CKT, with the lowest average
values for the VEF (37.4 min), MAGIC (38.1 min), and MIP
(51.6 min) (Figure 1A). In the MAGIC population, the founder
with the lowest CKT was MIB778 (30.2 min) (Figure 1A). The
MAGIC population presented a higherWAC (108.5%) compared
with the other populations. The line ALB213 showed the highest
WAC value among the founder lines of the MAGIC population
(118.2%) (Figure 1B). The large seeded Andean VEF panel had
average WAC values in between the Mesoamerican MAGIC and
MIP panels, and expectedly the heaviest seeds (Figures 1B,C). All
the evaluated traits showed high heritabilities in all populations
(Supplementary Table 1). For CKT, the heritabilities ranged from
0.64 to 0.89, while other traits had values ranging between 0.68
and 0.93, indicating good data quality for further analysis.

Correlations between the evaluated traits were somewhat
inconsistent between populations (Table 1). Significant negative
correlations between CKT and WAC were observed in the DxG
and VEF panels, which belong (at least partially) to the Andean
genepool, whereas correlations were not significant in the other
two populations. The correlations between CKT and SdW were
significant and positive in the case of the MAGIC population,
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FIGURE 1 | Phenotypic distributions of (A) cooking time (CKT), (B) water absorption capacity (WAC), and (C) 28 seed weight (SdW) in four evaluated populations of

common bean. DxG is a RIL population product of the cross between DOR364 and G19833 (green points). The MAGIC population was produced by intercrossing

the eight founder lines displayed as black, purple, and yellow points. The VEF and MIP panels are composed of elite breeding lines from the Andean and

Mesoamerican genepools, respectively.

but negative for the VEF and MIP panels. A negative significant
correlation betweenWAC and seed size was only observed for the
MIP panel. Taken together, higher water absorption is correlated
to earlier CKT in half the experiments. However, we observed no
general effect of seed size or genepool on CKT or WAC as the
correlations with seed weight were not consistent.

We investigated the effect of seed color on CKT. In the VEF
and MIP panels, light colored beans presented faster cooking

TABLE 1 | Pearson’s correlation and significance between cooking time (CKT),

water absorption capacity (WAC), and 28 seed weight (SdW) of four populations

(DxG population, MAGIC population, VEF panel, and MIP panel).

Population Trait WAC SdW

DxG

CKT −0.46*** −0.18

WAC −0.04

MAGIC

CKT 0 0.19***

WAC 0.01

VEF

CKT −0.28*** −0.33***

WAC 0.13

MIP

CKT −0.07 −0.13*

WAC −0.23***

Significance of correlations indicated as ***p < 0.001; **p < 0.01; *p < 0.05.

time compared to darker beans, the white seeded being the fastest
cooking group (Figure 2). However, the variance component
for color group in equation (3) was significant only within the
MAGIC population, where the seeds with black coat presented
the lowest CKT.

The top 5% of the fastest cooking lines for each population
are listed in Supplementary Table 2. Overall, the fastest cooking
lines (with less than 25 min cooking time) belong to the VEF
(LPA_566, LPA_071, SAA_020, SAB_576, and AFR_619) and
MAGIC panels (MGC_263 andMGC_330). In the DxG andMIP
populations, the fastest cooking lines ranged between 31 and
39 min. Only four genotypes in the DxG population were listed
in this range (DxG_80, DxG_53, DxG_22, and DxG_26), while
11 lines from the MIP panel were included in the list (SEF_070,
SMR_152, SMC_223, MIB_778, SXB_412, SMC_040, SMC_143,
MIB_755, SMC_228, SMN_071, and SMR_048).

Genetic Structure of the Populations of
Interest
The sequencing data from the DxG parental lines, the MAGIC
population, the VEF, and MIP panels were merged into a
single matrix of 17,508 polymorphic markers that were used to
assess the population structure (Figure 3). The first principal
component explains a major proportion of the total variance,
accounting for 64.7%. This PC separates the samples into two
clearly differentiated clusters that correspond to the Andean
genepool (left side) with the VEF lines and the DxG parental line
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FIGURE 2 | Boxplot of cooking times for the MAGIC population, VEF panel, and MIP panel grouped by seed color. Blue dots represent cooking time averages for

each group. Seed color abbreviations are as follows: RM, red mottled; Re, red; Cr, cream; Pi, pink; Ye, yellow; Wh, white; Bl, black; and Br brown.

FIGURE 3 | Assessment of population structure by a principal components analysis (PCA) using 17,508 SNP markers from the combined MAGIC, VEF, and MIP

lines. The location of each genotype is represented by a point in the two-dimensional space defined by the eigenvectors of the first and second principal

components. The founder lines of the MAGIC and DxG populations are represented by colored tags.
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G19833, and the Mesoamerican genepool (right side) comprised
of the MAGIC and MIP lines, and the second DxG parental
DOR364. MAGIC and most MIP lines are separated by the
second PC as the majority of variation that is not explained by
the genepool is found in the Mesoamerican lines. Taken together,
these results indicate significant differences in the population
structure between populations.

QTL and Genome-Wide Association
Mapping Analysis
To investigate the genetic basis of the CKT and WAC, QTL
analyses were performed on the biparental DxG population and
the multi-parental MAGIC population, and GWAS was carried
out on the MAGIC, VEF, and MIP panels.

For the QTL analyses, the genetic map previously reported for
DxG was used (Galeano et al., 2009) (Supplementary Figure 3).
Three QTL were identified on chromosomes Pv01 and Pv03,
two QTL for CKT, one of which co-located with a WAC QTL
(Table 2). The identified CKT QTL account for 15.8–16.0% of
the observed variance, whereas WAC3.1 explains 69.76%. The
Andean parent G19833 contributes the allele for lower CKT and
higher WAC, in line with the observed phenotypic correlation
of both traits and the phenotypes of the parents (Table 1).
CKT3.2 andWAC3.1 are located in the same position, suggesting
that the same polymorphism might be affecting both traits
(Supplementary Figure 4).

The genetic map previously reported for the MAGIC
population was used for QTL analyses (Diaz et al., 2020;
Supplementary Table 3). Five QTL were mapped in the MAGIC
population using the haplotype-based interval mapping, four
QTL for CKT, and one for WAC (Table 3). In all four
QTL for CKT, MIB778 (fastest cooking time founder) and

INB827 contributed negative allelic effects reducing cooking time
(Supplementary Table 4). CKT3.1 (∼0.5 Mbp) observed in the
MAGIC population is distant from CKT3.2 identified in the DxG
population (∼51 Mbp).

GWAS on the MAGIC population, VEF, and MIP panels
revealed six QTL, three for CKT and three for WAC (Table 4 and
Figures 4, 5, Supplementary Tables 5,6). CKT3.2 was identified
in the VEF panel on the same position as in the DxG population
(Table 4 and Figure 4). CKT3.2 has the largest allelic effect on
CKT (5.24 min) and explained a large part of the phenotypic
variation (20%) (Figure 6). Similarly, WAC3.1, was found in
the DxG and VEF panel on the same position as CKT3.2. Both
QTL for CKT and WAC have the same allelic frequency (0.95)
(Table 4). This is a distinctive QTL of Andean origin.

CKT3.1 was identified using GWAS in the MAGIC
population, confirming the result of the QTL analysis. CKT3.1
has the highest R2 value, explaining 34% of the phenotypic
variation with an allelic effect of -1.98 min (Tables 3, 4 and
Figures 4, 6). Five QTL were identified in the haplotype-based
interval mapping, but only CKT3.1 was confirmed by GWAS.
WAC7.1 was identified in both Mesoamerican populations, the
MAGIC population and the MIP panel (Table 4 and Figure 5).
CKT2.1 was identified only in the MIP panel.

Genomic Prediction Models
A single-trait assessment of genomic prediction with the CKT,
WAC, and SdW data was performed for each population,
following optimal custom settings. The overall mean prediction
ability (PA) for CKT ranged between 0.18 (MIP) and 0.52
(MAGIC), while the mean PA for WAC ranged between 0.05
(MAGIC) and 0.43 (DxG); the PA for SdW is higher than
the other traits, ranging between 0.52 (MAGIC) and 0.64

TABLE 2 | QTL identified for cooking time (CKT) and water absorption capacity (WAC) in DOR364 × G19883 RIL population using Composite Interval Mapping.

QTL

name

Chr. Pos.

(cM)

Physical pos. left

marker (Mbp)a
Physical pos. right

marker (Mbp)a
Left marker

name

Right marker

name

LOD PVE (%)b Addc Interval

position (Mbp)

CKT1.1 Pv01 344 50.9 51.31 Bng083 g510 3.94 15.8 13.04 0.37

CKT3.2 Pv03 237 51.1 52.06 Leg213 BMb590 3.67 15.97 13.88 0.92

WAC3.1 Pv03 237 51.1 52.06 Leg213 BMb590 26.76 69.76 −14.5 0.92

aPhysical position in Mbp.
bPhenotypic variation explained.
cAllelic effect by DOR364.

TABLE 3 | QTL mapped for cooking time (CKT) and water absorption capacity (WAC) in the MAGIC population based on composite interval mapping using haplotype

prediction with the procedure for additive effects (ICIM-ADD).

QTL name Chr. Pos. (cM) Left marker namea Right marker name LOD PVE (%)b Interval size (Mbp)

CKT3.1 Pv03 1.5 Pv2.1_03_592656_G/A Pv2.1_03_755530_G/C 6.96 7.07 0.16

CKT4.1 Pv04 47 Pv2.1_04_41895594_A/T Pv2.1_04_41987047_A/T 7.03 7.60 0.09

CKT7.1 Pv07 63.5 Pv2.1_07_31833933_A/C Pv2.1_07_32077935_T/C 11.39 12.18 0.24

CKT8.1 Pv08 77 Pv2.1_08_60150805_T/C Pv2.1_08_60180011_A/G 9.01 9.77 0.02

WAC11.1 Pv11 75 Pv2.1_11_51537051_G/C Pv2.1_11_51584833_C/G 7.96 8.69 0.04

Information on founder haplotype effects is in Supplementary Table 4.
aPhysical position and polymorphism of the SNP according to reference version 2.1.
bPhenotypic variation explained.
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TABLE 4 | QTL and most significant markers identified by GWAS associated with cooking time (CKT) and water absorption capacity (WAC) in MAGIC population, VEF

panel, and MIP panel.

QTL name Population Marker Chr. Pos. (bp)a p value MAFb n R2c Effect

CKT3.1 MAGIC Pv2.1_03_983982_T/C Pv03 983,982 1.39E−06 0.38 203 0.34 −1.98

CKT3.2 VEF Pv2.1_03_51024158_C/A Pv03 51,024,158 3.66E−07 0.05 330 0.20 5.24

CKT2.1 MIP Pv2.1_02_46670223_A/G Pv02 46,670,223 1.66E−06 0.46 197 0.17 −0.47

WAC7.1 MAGIC Pv2.1_07_1182132_A/G Pv07 1,182,132 7.17E−08 0.11 203 0.17 4.15

WAC3.1 VEF Pv2.1_03_51024185_T/A Pv03 51,024,185 5.56E−10 0.05 330 0.17 9.89

WAC5.1 VEF Pv2.1_05_7726366_C/T Pv05 7,726,366 1.99E−06 0.03 330 0.12 −8.39

WAC7.1 MIP Pv2.1_07_3412439_T/A Pv07 3,412,439 6.00E−07 0.12 193 0.20 3.11

The complete list is presented in Supplementary Tables 5,6.
aPosition is based on the P. vulgaris reference genome.
bMinor allele frequency.
cR2 is the percent of phenotypic variation explained by the SNP marker.
dAllelic effect based on the reference allele.

FIGURE 4 | Genome wide association analysis for cooking time (CKT) showing Manhattan and QQ plot for (A): 203 MAGIC RILs with 17,654 markers, (B) 330 VEF

lines with 9,420 markers, and (C) 197 MIP lines with 26,500 markers. The Bonferroni correction threshold (p = 0.05) is presented as a blue horizontal line based on

the number of markers for each population, respectively.

(DxG) (Figure 7, Supplementary Table 7). In general, the PAs
fell significantly below the estimated broad-sense heritability
(Supplementary Table 1) and the PAs for WAC were not
correlated with the heritabilities. Evaluating the PA of different
GP models mostly resulted in very similar results for each
trait except for WAC in the DxG. In this case, the PA
reached mean values of 0.67 for the BayesA and BayesB priors,

doubling the mean PA of other models (0.3) for the same
trait in the DxG.

A cross prediction between CKT, WAC, and SdW was
performed between and within the MAGIC, MIP, and VEF
populations to assess prediction ability using different training-
validation datasets. The cross-validation results between traits in
the same population followed the behavior of the phenotypic
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FIGURE 5 | Genome wide association analyses showing Manhattan and QQ plots for water absorption capacity (WAC) for (A): 203 MAGIC RILs with 17,654

markers, (B) 330 VEF lines with 9,420 markers, and (C) 193 MIP lines with 26,500 markers. The Bonferroni correction threshold (p = 0.05) is presented as a blue

horizontal line based on the number of markers in each population, respectively.

correlations, with PAs ranging between -0.36 (VEF, CKT as
training and SdW as validation) and 0.25 (VEF, WAC as training,
and SdW as validation) (Table 1 and Supplementary Figure 5).
The PA across traits and populations did not show higher values
than those obtained in the single-trait assessment of genomic
prediction, with PA values ranging from −0.25 (MIP-CKT as
training and VEF-SdW as validation) and 0.38 (MIP-SdW and
MAGIC-SdW used both as training and validation). GPs across
populations for the same trait were only acceptable for SdW
between the Mesoamerican populations with PA values of 0.37
and 0.38, but not for other traits.

Taken together, these results show that the PA across
populations for CKT, WAC, and SdW is mostly low suggesting
different genetic bases. GPs within populations, on the other
hand, show promise for breeding applications with acceptable
predictive abilities, as long as it would be applied within
these genetic groups.

DISCUSSION

Several factors such as taste, nutrition, cost, and convenience
influence the food choice of consumers (Aggarwal et al., 2016).
The convenience is defined as a food that is beneficial to the
consumer at any of the meal preparation and consumption

stages and is exemplified with reductions in time or physical
energy, among others. For this reason, the convenience has
a significant impact on society’s food consumption behaviors
(Ternier, 2010). Cooking time is increasingly recognized as
an important trait. Not only do consumers demand products
that cook faster to fit a modern lifestyle (Mkanda et al.,
2007) but it also affects nutrition and time expenditure
and, with the latter, the possibility of women empowerment
(Carrigan and Szmigin, 2006). Furthermore, using wood and
charcoal as a source of energy for domestic purposes has
detrimental effects on the health and environment (Smith,
2006). Obtaining fuel in rural areas can be dangerous and
time consuming, or costly in urban areas. We aimed to
elucidate the genetic architecture of cooking time in the
common bean, a grain legume that takes long preparation
times to reach palatability but constitutes an important
source of nutrients for millions of people in Latin America
and Eastern/Southern Africa. For this purpose, we used
germplasm from different breeding panels and genetic
populations of the Andean and the Mesoamerican genepools,
incorporating a wider genetic variability compared with
previous studies.

High genetic variability in all four populations was found, in
line with a previous report (Cichy et al., 2019). Also, heritabilities
of CKT and WAC were high indicating good data quality for
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FIGURE 6 | Allelic effect for the most significant marker of QTL of cooking time found in the DxG population, MAGIC population, VEF panel, and MIP panel.

FIGURE 7 | Boxplots of accuracies of cross-validations for genomic predictions for cooking time (CKT), water absorption capacity (WAC), and seed weight (SdW)

using different statistical models.

genetic studies, reaching comparable values to previous reports
on this trait (> 0.8) (Elia et al., 1997; Jacinto-Hernandez et al.,
2003; Arns et al., 2018; Cichy et al., 2019). Some lines that
had fast cooking time also have desirable features of grain and
agronomic quality (such as seed color and size, high yield,

tolerance to drought, and resistance to some diseases, among
others) for different market classes (Supplementary Table 2).
These lines can be used in the breeding programs to generate
new varieties adapted to geographic areas depending on the
consumer preferences, contributing to achieve all the benefits
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that fast-cooking beans can bring for the environment and
household habits.

The seed is a living organism that can be susceptible to
the processing and manipulation that is carried out right after
harvest. Long periods in non-optimal storage conditions have
been reported to increase cooking time due to the hard-to-cook
(HTC) phenomenon (Coelho et al., 2007; Arruda et al., 2012).
TheDxG population, which was stored the longest in sub-optimal
conditions showed the longest cooking times (Figure 1). The
HTC effect was observed here for some samples, where the
seed failed to absorb water during the soaking stage, causing
an extensive increase in cooking time. The HTC phenomenon
causes physical alterations to the cell structure of the seed coat,
which reduces the capacity of the grains to absorb water resulting
in longer cooking periods (Reyes-Moreno et al., 1993). Sandhu
et al. (2018) reported that HTC is an environment-induced
phenomenon, but there might be some genetic characteristics of
the seed playing a role because some varieties are more prone
to the HTC effect than others. For example, Cominelli et al.
(2020) found that the genotypes with the low phytic acid 1
(lpa1) mutation were more susceptible to HTC. These findings
suggest that HTC may trigger the expression of some genes
related to CKT or WAC.

The populations with Andean contribution (DxG population
and VEF panel) had a significant negative correlation between
WAC and CKT, in parallel with previous reports (Elia et al., 1997;
Rodrigues et al., 2005; Cichy et al., 2015; Wani et al., 2017; Berry
et al., 2020). During the soaking stage, the water enters the bean
through the micropyle migrating below the seed coat, causing
a softening effect on the seed as the available water inside the
cotyledon allows the cell separation during cooking (Chigwedere
et al., 2018). This effect would allow the indirect selection of
fast-cooking genotypes through WAC, which is easier, faster,
and cheaper to measure. However, inMesoamerican populations,
such correlation was not observed, which may indicate that the
genetic mechanism that regulates CKT and WAC is different
for each genepool.

In this study, we compared external characteristics of the seed
such as weight and color with its cooking time. The correlation
between CKT and SdW was not consistent within populations.
Some studies have shown weak relationships between CKT and
SdW. Cichy et al. (2015) found a positive correlation between
these two traits in the Andean Diversity Panel (ADP). However,
a parallel study that used a subset of the ADP reported negative
correlations between these traits (Katuuramu et al., 2020). This
suggests there is no phenotypic or genetic correlation between
seed size and time needed to cook it. There was a subtle
effect related to the seed color. Seeds with white coats were
the fastest cooking group in both the VEF and MIP panels.
Similarly, Cichy et al. (2015) found white seeded varieties in
the Andean diversity panel (ADP) to be the fastest cooking. On
the other hand, red, red-mottled, and cream-mottled beans were
the slowest to cook here, resembling the results obtained for
the ADP. In this work, we also observed similar trends in the
Mesoamerican panel, with white seeded beans cooking the fastest.
Although the Mesoamerican black beans in both populations
(MAGIC and MIP) were slow cooking, even more so were the

yellow lines. These results go in line with the slow cooking
yellow Mesoamerican beans reported by Wiesinger et al. (2018).
Previous studies have described how low levels of phenols in the
seed coat may be correlated with faster cooking time (Hincks and
Stanley, 1986; Stanley et al., 1990). Phenol contents are secondary
metabolites produced in the cotyledons that can participate in
chemical reactions resulting in restricted water binding and
impaired cell separation during cooking. Taken together, the seed
coat color appears to be related with cooking time, as lighter seeds
cooked faster than darker seeds. Nevertheless, cooking times of
the color-based groups overlap between each other, so other
factors apart from the chemical compounds cause the color to
affect cooking properties.

QTL Results and Use in Breeding
Recently, an increasing number of studies in common bean have
investigated the genetics of cooking time; among them, several
QTL studies (Jacinto-Hernandez et al., 2003; Vasconcelos et al.,
2012; Berry et al., 2020) and studies in the Andean diversity
panel (Cichy et al., 2015). However, few studies have focused their
results on breeding. Furthermore, the genetic variability analyzed
has been limited, focusing on germplasm from a single gene-pool
or biparental populations characterized by their limited genetic
variability. In this study, we analyzed different representative
populations of the two important gene pools existing in common
bean: the Andean and Mesoamerican pools (Figure 3).

A QTL was found in populations with Andean contribution
(DxG population and VEF panel) with opposite effects on CKT
and WAC (CKT3.2/WAC3.1). The favorable allele in DxG is
contributed by the Andean parent G19833. This locus likely
causes the negative correlation that was observed between CKT
and WAC in these populations. A similar QTL was previously
described for WAC and CKT in chromosome Pv03 (Pérez-Vega
et al., 2010; Berry et al., 2020). WA3 and CT3.1 were identified
in a biparental population obtained by crossing the lines Xana
(Andean) and Cornell49-242 (Mesoamerican). Similarly, the
positive additive effect for WAC originated from the Andean
parent, and the closest marker SR20 is located at 50.18 Mbp, not
far fromWAC3.1 at 51–52 Mbp. These results indicate that WA3
andWAC3.1 are likely the same QTL, which has a reducing effect
on CKT in Andean populations. On the contrary, CT3.1 was
located in Pv03 but is not in the same position as that of CKT3.2
or CKT3.1 (14–22 Mpb).

The genetic control of WAC may be different in the
Andean and Mesoamerican lines investigated here. WAC7.1 was
identified in the populations with Mesoamerican origin (MAGIC
and MIP panel). The phenotypic correlations between WAC
and CKT were distinct, and accordingly, different QTL were
identified in this study at chromosomes Pv03 for the Andean and
Pv07 forMesoamerican populations.WAC7.1 co-locates with the
ASP locus (0–1.5Mb) associated with seed coat luster: Mature dry
black bean seeds are either opaque (dull) or shiny (glossy) (Cichy
et al., 2014). The Asp gene is the major determinant of water
uptake in black beans. The Asp gene influences the thickness and
uniformity of the epicuticular wax layer such that shiny-seeded
beans have a thick and more uniform wax layer than opaque-
seeded beans. The effect on water uptake is hypothesized to be
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related to the unevenness of the surface of the opaque beans
(Sandhu et al., 2018).

The QTL CKT2.1 and CKT3.1 were identified in the MIP
panel and the MAGIC population, respectively. Both QTL were
previously reported in the Andean panel ADP (Cichy et al.,
2015). In CKT3.1, the founder lines SEN56, INB841, INB827,
MIB778, and SXB412 display the desirable negative allelic effects
diminishing values for this trait. These five founders were
reported to bear introgressions from the Andean genepool at
this genomic position (Lobaton et al., 2018). This suggests that
alleles of Andean origin contribute to favorable cooking time in
these breeding lines.

Several studies have tried to identify the genetic characteristics
of CKT and WAC in an effort to unravel their genetic
architecture. In all cases, they confirm a relatively high
heritability. Some reports indicate that both traits can be
controlled by a small number of genes (Elia et al., 1997; Jacinto-
Hernandez et al., 2003; Arns et al., 2018), while others indicate
that CKT may be under the control of multiple genes at the same
time (Vasconcelos et al., 2012; Cichy et al., 2015). The phenotypic
variation observed here for those traits support a quantitative
mode of inheritance. Even though several QTL were found in
this study, the average proportion of explained variance is 23%,
reaching a maximum value of 34%. In that sense, an important
part of the genetic effects is not captured. It is questionable that
these QTL are sufficient to guide a breeding program. None of
them were identified across all populations, and potential GxE
effects should be studied, though GxE of cooking time has been
reported to be limited (Katuuramu et al., 2018; Cichy et al., 2019;
Katuuramu et al., 2020).

Given that CKT and WAC appear to have a partially
quantitative mode of inheritance, we evaluated to what extent
genomic prediction models can capture its genetic variability.
Prediction accuracies for CKT ranged from 0.18 to 0.52, suitable
for breeding in the MAGIC population, but not so for the
MIP panel. Higher accuracies were observed for SdW, ranging
from 0.52 to 0.64, close to previously reported values for this
trait (Keller et al., 2020). Similarly, higher PAs were reported in
common bean for nematode response (Wen et al., 2019). PAs
for some agronomic traits were reported to follow the pattern
of trait heritabilities, usually ranging 10–20 points below the
heritability (Keller et al., 2020). However, this pattern was not
observed on individual predictions of CKT or WAC, where PAs
were often quite low. Similarly, the PAs in the cross-prediction
scenario using different training and validation datasets were
even lower than the single-trait prediction scenario. It is not
clear at this point why accuracies are not well linked to trait
heritabilites as observed in most other cases. We tested several
GP models that are based either on additive effects only (Bayes A,
B, C, BayesRR, BLasso, and GBLUP) or additive and non-additive
effects (semiparametric RKHS) (Figure 7). These results indicate
that the genetics of this trait may not be well represented in any
of the tested GP models. Even so, the results of prediction ability
in some populations seems suitable to be employed in breeding
considering that CKT is a complex trait, which allows taking
the first steps of genomic prediction and genomic selection in
breeding programs focused on seed quality.

In this work, we compared different population types, using
constructed bi-parental and eight-parental RIL populations
besides two different breeding panels. All population types appear
basically suitable for identifying genetic variability, for genetic
mapping, and GP. RIL populations performed somewhat better
for predicting CKT and WAC. This was not observed in studies
with other traits comparing GP in MAGIC population and
VEF panel (Keller et al., 2020). Panels of elite breeding lines
provide more relevant variability that can be directly applied
in germplasm improvement; hence, this information is more
valuable for breeders.

CONCLUSION

This study evaluated the genetic architecture of cooking time
and water absorption capacity using and integrating different
tools and methodologies. To our knowledge, this study used
the highest genetic variability studied so far in these traits
in common bean, using four different populations with lines
belonging to both Andean and Mesoamerican gene-pools. The
presented results validate the advantage of combining GWAS
and QTL analyses to find loci that controlled a complex trait.
We identified fast cooking lines in every population evaluated
with a high potential to be implemented in a breeding program
with perspectives to different markets. Different QTL for the
Andean and Mesoamerican gene-pool were located in distinct
regions of the genome, suggesting differential genetic control in
each of the pools for the traits of interest. Genomic selection
looks to be a promising tool in several of the evaluated
populations; offspring populations need to be evaluated to see
if the understanding of variation in accuracy can be improved
in the future. Genomic selection is particularly promising if the
investment for genotyping can be used to predict several traits at
a time, in which case also a lower accuracy trait can be added to a
selection index.
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