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Abstract

Cardiac blood flow is a critical determinant of human health. However, definition of its genetic

architecture is limited by the technical challenge of capturing dynamic flow volumes from cardiac

imaging at scale. We present DeepFlow, a deep learning system to extract cardiac flow and volumes

from phase contrast cardiac magnetic resonance imaging. A mixed linear model applied to 37,967

individuals from the UK Biobank reveals novel genome-wide significant associations across cardiac

dynamic flow volumes including aortic forward velocity, total left ventricular stroke volume, forward

left ventricular flow and aortic regurgitation fraction. Mendelian randomization using CAUSE reveals a

causal role for aortic root size in aortic valve regurgitation. The most significant contributing variants

(near ELN, FBN1 and ULK4) are implicated in connective tissue and blood pressure pathways.

DeepFlow cardiac flow phenotyping at scale, combined with population-level genotyping data in the UK

Biobank, reinforces the contribution of connective tissue genes, blood pressure and root size to aortic

valve function in the general population.
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Introduction

Cardiac function is central to health and disease. Valvular regurgitation (a loss of integrity of

one-way valves between cardiac chambers and vessels) can lead to heart failure, which as a whole, is

responsible for 18.6 million annual deaths worldwide1. Current therapies for valvular regurgitation are

limited largely to surgical or procedural intervention, the risk of which is only warranted once severe

regurgitation has led to a decrement in cardiac function. Understanding the genetic underpinnings of

cardiac flow volumes is critical to identifying intervenable therapeutic targets for valvular regurgitation

prior to this severe stage of disease.

Until recently, the genetic architecture of valvular integrity remained elusive because of

technical challenges of phenotyping: noninvasive measurement of cardiac function by echocardiography

and cardiac magnetic resonance imaging (MRI) requires labor-intensive manual measurement of end

diastolic and end systolic cardiac volumes from select points in the cardiac cycle in order to infer flow

from two dimensional representations. This results in noisy phenotyping that makes genetic association

studies difficult2–6.

Direct measurement of aortic flow by MRI provides an opportunity to assess blood flow while

accounting for aortic insufficiency. However, its assessment at scale is also technically challenging:

precise segmentation remains a barrier7, and data must be obtained from velocity-encoding MRI (phase

contrast MRI sequences) that have sequence-specific artifacts. Deep learning, and specifically the

adoption of auto-encoders, has enabled a major advance in image segmentation8, powering precise

extraction of cardiac phenotypes at scale4 and enabling the discovery of underlying biology through

genetic association 2,3,9. No accurate, fully automated, open-source solution for applying these methods

to the problem of MRI flow quantification is available.
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Here, we combine deep learning strategies with available cardiac MRI and genotyping data from

the UK Biobank10 to address three major goals: first, we develop an automated software solution to

extract cardiac flow and volume from phase contrast magnetic resonance imaging (DeepFlow: Deep

learning-based aortic blood Flow quantification); second, we perform the first genome wide association

study of cardiac dynamic flow volumes; finally, we test plausible causal relationships among key

anatomic parameters using genetic instruments.

Results
DeepFlow reliably extracts cardiac flow metrics at scale

We define cardiac dynamic flow volumes as any moving blood quantity (mL) involving the heart

measured over a certain time period (e.g. cardiac cycle, systole, diastole). This includes flow from a

cardiac chamber to another cardiac chamber, from a cardiac chamber to a great vessel (e.g. aorta), and

from a great vessel back to a cardiac chamber (valvular regurgitation). We concentrated our analysis on

several left-sided traits (Figure 1) including: total left ventricular stroke volume (the total blood volume

that is pumped out the left ventricle during systole); forward left ventricular stroke volume (the blood

volume that is pumped from the left ventricle to the aorta during systole); net left ventricular stroke

volume (forward left ventricular stroke volume minus aortic valve regurgitant volume); aortic valve

regurgitant volume (the blood volume returning from the aorta to the left ventricle in diastole); aortic

valve regurgitant fraction (aortic valve regurgitant volume indexed to forward left ventricular stroke

volume) and mitral valve regurgitation volume (the blood volume that flows back to the left atrium

during systole due to an incompetent mitral valve) by subtracting the forward left ventricular stroke

volume from the total left ventricular stroke volume11. Additionally, we considered the forward and

retrograde peak velocities (cm/s) at the aortic annulus (corresponding to the peak forward (systolic)

[AoFVmax] and peak regurgitant (diastolic) [AoRVmax] velocities at the aortic annulus, respectively) for

analysis.
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In order to obtain total left ventricular stroke volume, we deployed a published algorithm4 on the

CINE MRI dataset of the UK Biobank. For the forward and net left ventricular stroke volumes,

AoFVmax and AoRVmax, aortic valve regurgitation volume and fraction, we developed DeepFlow

(Figure 2), a deep learning-based segmentation algorithm (Figure 3) to achieve automated extraction of

MRI phenotypes from cardiac phase contrast MRI DICOM files. We used a subset of 4,500 MRI images

from 150 individuals in the UK Biobank to train this model. After training, DeepFlow’s segmentation

model was tested in 450 MRI images from 15 individuals. The highest Dice similarity coefficient in the

test set was 0.93, indicating good segmentation performance12. With this segmentation performance, the

complementary characterization of the aortic annulus area (at the sinotubular junction) was enabled (see

Methods).

We tested DeepFlow on a second test set (6,000 MRI images from 200 UK Biobank participants)

for which output from a commercial proprietary algorithm (Medviso13) was available. DeepFlow traits

were highly correlated with Medviso measurements (Pearson correlation coefficients 0.96 ± 0.02 for

forward left ventricular stroke volume, and 0.90 ± 0.03 for aortic valve regurgitation volume (mean±

SD), supplementary figure S2). No significant difference was found in Medviso segment vs. DeepFlow

measurements of aortic valve regurgitation volume or forward left ventricular stroke volume (aortic

valve regurgitation fraction: mean difference = +0.26 mL [-3.04 - 3.56mL], p = 0.54; forward left

ventricular stroke volume = -2.94 [-16.94 - 11.06] mL, p=0.11, supplementary figure S2).

Additionally, in order to analyze the genetic correlation with the cardiac dynamic flow volumes,

we retrieved static left- and right ventricular volumes (left and right ventricular end systolic and end

diastolic volumes, as well as left ventricular ejection fraction) and the measurement of left ventricular

mass at an end-diastolic phase from cine imaging. All volumes, areas and left ventricular mass were

indexed to Body Surface Area (BSA).
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DeepFlow enables precise measurement of aortic valve regurgitation
As additional validation, we tested the hypothesis that DeepFlow could reliably predict clinical

outcomes in aortic regurgitation. In agreement with previous echocardiography studies14–16, our results

showed that male sex and the presence of ascending aortic aneurysm were the most significant

predictors of aortic valve regurgitation progression (Figure 4, complete results after linear regression in

supplementary discussion SD1). Also, we found that aortic valve stenosis, hypertension, previous

coronary artery bypass operations and rheumatic valve disease were significantly enriched within higher

aortic valve regurgitation fraction severity groups, congruent with previous observations 14,17 (Tables

1-3). Moreover, rates of all-cause mortality (mild vs. severe: p < 0.005 and mild vs. moderate: p = 0.03,

log-rank test) and new aortic valve replacement (mild vs. severe: p < 0.005 and moderate vs. severe: p =

0.02, log-rank test) were enriched in patients with higher aortic regurgitation fractions (Figure 4) (mild:

< 22%; moderate:  >= 22%18; severe: >= 33%19). Time to event analyses are included in supplementary

figure S4.

Aortic valve regurgitation has genetic underpinnings distinct from left ventricular
volumes

We next investigated the underlying genetic architecture of cardiac dynamic flow volumes. For

this purpose, we used DeepFlow-derived traits, as well as left and right ventricular parameters4 and

mitral valve regurgitation volume. We first examined heritability (h2, Figure 5 A) using the

linkage-disequilibrium (LD) regression score20 and found that structural phenotypes, aortic annulus area,

and BSA-indexed left ventricular mass were the two most heritable traits (h2= 0.40 ± 0.04 and 0.36 ±

0.04, respectively). Aortic valve regurgitation fraction and aortic valve regurgitant volume showed low

heritability (h2 =0.06 ± 0.02 and 0.07 ± 0.02, respectively). Mitral valve regurgitation volume was

associated with the lowest heritability (h2 =0.03).
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We studied the genetic correlation between these traits using the LD regression score (rg, Figure

5 B).  Aortic valve regurgitation parameters (aortic valve regurgitation fraction and volume) were highly

correlated with each other (rg = -0.91 ± 0.06, p-value = 5.7e-55 ), as well with peak regurgitant velocity

(AoRVmax)  (rg = -0.61 ± 0.1, p-value = 1.7e-6). Moreover, aortic valve regurgitation fraction was

positively genetically correlated with aortic annulus area (AoFVmax) (rg = 0.53 ± 0.1, p-value = 8.4e-7)

and negatively correlated with aortic peak forward velocity (AoFVmax) (rg -0.51 ± 0.1, p-value = 2.2e-6).

There was a negative genetic correlation between the aortic annulus area and AoFVmax (rg -0.83 ± 0.04,

p-value = 2.5e-111). This is in alignment with Bernoulli's principle, according to which fluid velocity is

inversely associated with cross sectional area. Aortic valve regurgitation fraction displayed weak genetic

correlations with both left and right ventricular volumes (rg < |±0.4| ± 0.13). This was in contrast with

mitral valve regurgitation volume, which was more strongly and positively genetically correlated with

left and right ventricular volumes (rg > |±0.5| ± 0.37) .

Novel genome-wide loci are associated with dynamic flow volumes
We next sought to identify common genetic variants that were associated with DeepFlow derived

phenotypes (Figure 6). We computed LD-regression score intercepts and genomic control lambdas to

assess for genomic inflation in our GWAS (supplementary figure S5), which were acceptable. For

BSA-indexed aortic annulus area, 56 distinct loci were identified (Supplementary table S6), validating

27 loci previously reported in association with CINE MRI-derived aortic areas12 (Figure 6 B). Leading

SNVs for this trait were found to be in close proximity to ELN (-log10 p= 52.75), as well as PRDM6

(-log10 p = 22.94) and FBN1 (-log10 p = 22.25), all of which are genes associated with Mendelian aortic

diseases. Forty-one genome-wide significant loci were associated with peak forward velocity at the

aortic annulus (AoFVmax) (Figure 6 A, Supplementary table S7), with the most significant single

nucleotide variant (SNV, rs11768878) also near the elastin gene ELN (-log10 p = 43.30).  The lead SNV

in locus LINC01808 (long intergenic non-protein coding RNA) for aortic valve regurgitation fraction
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(-log10 p= 7.89, Supplementary table S10) was also significantly associated with AoFVmax and aortic

annulus area (-log10 p = 18.07 and 15.97, respectively), demonstrating internal validation of our findings.

Overall, AoFVmax and aortic annulus area shared 35 significant loci.

With respect to dynamic left ventricular volumes, we found one SNV (rs34098933) near

SLC12A9 that was significantly correlated with forward left ventricular stroke volume (-log10 p = 8.33,

Supplementary table S11).  Eight distinct loci were identified for total left ventricular stroke volume,

whereas SNVs closest to SLC35F1 (-log10 p = 8.99) and BRAP (-log10 p =8.60) loci showed the most

significant association (Supplementary table S8). The SLC35F1 (solute carrier family 35 member F1)

gene, enabling transmembrane transporter activity, has been linked to the PR-interval of the

electrocardiogram21, but has not yet been linked to this trait in previous studies 9,22. On the other hand,

the BRAP gene, which has been recently implicated as a regulator of the cardiomyocyte cell cycle23,24,

was previously reported in association with total left ventricular stroke volume in two prior studies9,22.

Our GWAS for AoRVmax, BSA-indexed net left ventricular stroke volume and BSA-indexed mitral

valve regurgitation volume did not reveal any significant associations (respective Manhattan plots

included in Supplementary figure S7). GWAS for BSA-indexed aortic valve regurgitation volume

(Supplementary figure S7) revealed two lead SNVs associated with this trait (rs77097530 (-log10 p =

7.48) and rs4719607 (-log10 p = 7.34), Supplementary table S9). SNV rs77097530 is closest to protein

coding downstream gene CEP120 and upstream gene PRDM6, while the latter has been linked to both

bicuspid aortic valve and aortic root disease.

Elimination of participants with common cardiovascular comorbidities (as performed in the

time-to-event analysis) from the population set did not reveal additional significant SNVs, and narrowed

the number of loci significantly associated with AoFVmax and aortic annulus area. However, this

secondary analysis showed an additional novel locus (GNA12/AMZ1, encoding a GTPase and a

metallopeptidase, respectively) associated with both aortic valve regurgitation fraction (-log10 p = 7.70)
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and volume (-log10 p = 7.66) (Supplementary discussion SD2, flowchart of the GWAS sample size in

supplementary discussion SD3).

Genetic determinants of aortic root size and flow metrics map to connective tissue
and blood pressure pathways

We next identified potential interactors of the genes closest to loci significantly associated with

AoFVmax and aortic annulus area. We performed unsupervised gene clustering using K-means followed

by enrichment analysis for pathways and phenotypes within identified clusters using the STRING-DB

server25. We took into account the most significantly predicted phenotypes from Gene Ontology26, the

Monarch Human Phenotype Ontology (HPO)27 and UniProt28. For aortic annulus area, there were three

major gene clusters identified. Genes in these clusters were highly associated with pulse pressure

management (Monarch HPO 0005763, q-value = 2.6e-6), diastolic blood pressure (Monarch HPO

0004324, q-value = 9.1e-5) and William-Beurer syndrome (a condition caused by a microdeletion

involving ELN and LIMK1)29, (q-value = 0.04), respectively. In the gene cluster most highly associated

with diastolic blood pressure, extracellular matrix genes (UniProt KW-0272, q-value = 0.02) and aortic

root size-associated genes (Monarch HPO 0005037, q-value = 0.03), were also highly enriched. For

AoFVmax, two major clusters were defined: The first was most significantly enriched for

microfibril-associated genes (GO 0001527, q-value = 0.03), which are related to connective tissue

phenotypes, and the other was enriched for genes associated with systolic blood pressure (Monarch HPO

0006335, q-value = 0.01) (Figure 7 A and B ).

To identify tissues enriched for expression of genes near trait-associated loci, we used

DEPICT30,31.  No enriched gene sets were identified. However, tissue enrichment analysis revealed that

expression of genes nearest loci associated with BSA-indexed aortic annulus area were enriched in

arterial tissue (led by MeSH term A07.231.114, p-value = 7e-4, FDR <0.01). These results are consistent

with the hypothesis that genetic drivers of aortic regurgitation act within connective tissue to affect
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structural traits such as aortic annulus size. Genes near loci associated with AoFVmax were significantly

enriched in the myometrium (the smooth muscle of the uterus, led by MeSH term A05.360.319.679.690,

p-value = 0.002, FDR <0.05). This is a surprising finding that has been previously reported in

association with aortic areas derived from CINE sequences12. It may reflect a sex-specific association of

aortic dilation, and requires additional investigation to understand its implications. Aortic valve

regurgitation fraction associated loci were not significantly enriched in any tissue (Supplementary figure

S8).

Aortic root size is causally related to aortic valve regurgitation fraction
We next used Mendelian randomization (MR) to assess the causal relationships between aortic

annulus area and aortic valve regurgitation fraction. Using the CAUSE algorithm, which better addresses

horizontal pleiotropic effects compared to other methods, we observed that BSA-indexed aortic annulus

area was causally associated with aortic valve regurgitation (p=0.004, Figure 8A). This causal

interaction was also identified by applying CAUSE and three additional (two-sample) MR methods on

non-overlapping random subsets of the patients (inverse variance weighting, MR-Egger, and weighted

median estimation, see Methods and Table 4). When treating aortic valve regurgitation as the exposure

(i.e., testing for the reverse causal relationship), the CAUSE analysis was not significant (p=0.11). The

unidirectionality was supported by the MR-Steiger directionality test (correct causal direction is true,

p-value = 3.0e-119).

CAUSE uses a Bayesian model comparison approach that estimates how well the posterior

distributions of a particular model are expected to predict a new set data. In the process, it computes

variant-level importance scores, the difference in the expected log pointwise posterior density32 (delta

ELPD), in which the most negative score favors the causal model. We therefore used these scores to

rank the variants by their explanatory value (Figure 8B). For the causal model with aortic annulus area

as the exposure and aortic valve regurgitation fraction set as the outcome, the three most significant
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SNVs included rs7782306 (closest to ELN), rs1036476 (intronic variant in FBN1) and rs61744388

(missense variant ULK4). The ELN and FBN1 genes are implicated in connective tissue related

pathways12. Therefore, these genes are expected to mechanistically affect the aortic annulus area, and are

not expected to be horizontally pleiotropic with aortic valve regurgitation. Indeed, as can be seen in

Figure 8B, the causal estimates of their variants are proximal to the MR slope, corroborating our causal

estimation results (as these variants are more plausible to be proper instrumental variables based on the

substantive prior knowledge). As an additional candidate to be a proper instrument, we identify ULK4,

which has been linked to blood pressure management pathways33.

Discussion
Here, we present three advances. First, we introduce DeepFlow, an open source solution for

accurately capturing cardiac dynamic flow volumes from phase-contrast cardiac MRI data at scale.

Second, genome-wide association studies of cardiac flow dynamic traits reveal multiple significant new

and replicated loci. Third, we report a causal relationship between aortic root size and aortic valve

regurgitation fraction.

Our findings have several implications. First, GWAS revealed several novel genomic loci

associated with cardiac flow dynamic volumes. Interestingly, the only variant significantly associated

with forward left ventricular stroke volume mapped to SLC12A9, a gene coding a solute carrier

responsible for potassium/chloride symporter activity and found to be associated with the

electrocardiogram RR interval. This implies a mechanism consistent with the Frank-Starling

relationship34,35 whereby cardiac muscle responds to stretch with lengthening (increasing ventricular

volume) and a more forceful contraction. A similar mechanism may also explain the association

between total left ventricular stroke volume and the variant mapping to ARHGEF40. This gene is also

associated with the PR interval of the electrocardiogram 36,37 suggesting that longer diastolic filling leads
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to a larger stroke volume through the Frank-Starling mechanism. That there was no overlap between the

loci significantly associated with total left ventricular stroke volume and those significantly associated

with aortic valve regurgitation fraction and peak forward velocity at the aortic annulus reinforces the

argument that aortic valve structure and not left ventricular function or size primarily determine aortic

valve regurgitation.

Mendelian randomization demonstrates a unidirectional causal relationship between aortic root

size and aortic valve regurgitation. While these two findings often co-exist in patients, the causal nature

of their relationship has been less clear until now. The two most explanatory variants map to ELN and

FBN1, genes linked to the mendelian conditions Ehlers-Danlos syndrome38 and Marfan syndrome,39

which cause aortic enlargement. The third most explanatory variant was rs61744388, which overlaps the

gene ULK4. Although ULK4 encodes a member of the unc-51-like serine/threonine kinase family with a

primary role in neuronal growth and endocytosis40, not only have prior studies suggested an association

with blood pressure phenotypes41, they have also linked this gene to acute aortic dissection42. Similarly,

ABCC9, ANO1 and PRDM6 (genes mapped by variants in the top 12 ranked explanatory variables),

have been also shown to be significantly associated with the risk of acute aortic dissection43. ANO1

plays a major role in regulating chloride and calcium currents in smooth muscle cells and knockout of

this gene lowers vascular tone44. Overlap between genetic associations of the anatomy of the aorta and

the physiology of blood flow, as well as the causal relationships we have uncovered, suggest that

therapies used to prevent progression of ascending aortic aneurysm45 may help prevent progression of

aortic regurgitation itself. They further suggest that components of the extracellular matrix specifically

control this phenomenon, and that targeting blood pressure with agents that modify its fibrous

composition (e.g., ACE-inhibitors) may be an effective strategy.
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Our study has limitations. Since we did not manually curate every imaging study, instead relying

on a semi-automated accurate deep learning model, some error may be introduced. To minimize noise,

we set a threshold of phenotype values more than three interquartile ranges above the first quartile or

below the third quartile (Winsorization method). In addition, our model was not trained to detect

bicuspid aortic valves. However, this is unlikely to be a major factor given its low estimated prevalence

in this population46. Lastly, the UK biobank is a population of predominantly European ancestry, limiting

the extension of our findings to other populations.

This report demonstrates the breadth of inquiry made possible by automated phenotype

extraction from population imaging databases. While dynamic flow volumes are central to health and

cardiac disease diagnosis  including valvular insufficiency, automated extraction of blood flow patterns

to other organs (e.g., the brain) may enable discovery of genetic underpinnings of poorly understood

diseases across diverse physiological systems. Further, the specific hypotheses we raise here regarding

the genetic contributions of connective tissue to aortic annulus size and aortic regurgitation motivates

further investigation into the prevention of aortic regurgitation progression in prevalent disease,

potentially with preexisting therapeutics.

URLs

Ukbb_cardiac https://github.com/baiwenjia/ukbb_cardiac, CAUSE

https://jean997.github.io/cause/, DEPICT https://github.com/perslab/depict, LocusZoom
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Methods

Derivation of flow dependent variables from phase contrast MRI

The UK Biobank is a prospective study of > 500,000 individuals from the UK enrolled between

2006-2010 with extensive phenotype, imaging and multiple genetic characterizations, which has been

previously described 47,48. The UK Biobank received ethical approval from the National Health Service’s

National Research Ethics Service North West (11/NW/0382).

The latest release of UK Biobank’s MRI dataset comprises data from > 40,000 participants. The

MRI dataset contains eight cardiac imaging sets, including CINE sequences of long- and short-axis

views of the left ventricle, the Shortened MOdified Look-Locker Inversion recovery (shMOLLI)

sequences, aortic distensibility and left ventricular outflow tract imaging, CINE tagging and scout, and

phase contrast magnetic resonance imaging sequences. All MRIs were taken using the Siemens scanner

equipment (Siemens, Munich, Germany) and the images are stored in DICOM format. The phase

contrast magnetic resonance imaging sequence is crucial to obtain aortic blood flow related variables.

There are three series of phase contrast magnetic resonance imaging of the aortic valve registered

in an en face view at the sinotubular junction: raw anatomical images (CINE), magnitude (MAG) and

velocity encoded (VENC) (Figure 2). While pixel-value MAG and VENC series can be mapped to the

real velocity of blood-flow at that specific pixel-coordinate, the pixel-values of the CINE series are

unrelated to velocity information. For the Siemens scanner, equation one maps the pixel-intensity value

from the VENC series to the corresponding velocity in cm/s.

1) 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 * 𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝑠𝑙𝑜𝑝𝑒 + 𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
4096  *  𝑉𝐸𝑁𝐶
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In equation one, rescale intercept and rescale slope information can be obtained from the

(0028,1052) and (0028,1053) DICOM-tags metadata, respectively. The VENC (largely set to 250 cm/s

in the UK Biobank) parameter can be obtained from the CSA headers, which are Siemens-specific

private data elements embedded in DICOM headers. According to the UK Biobank MRI study

protocol10, each of these phase contrast magnetic resonance imaging series (CINE, MAG and VENC)

are composed of 30 frames taken over a heart cycle with each frame corresponding to 12-bit grayscale

images, with a matrix-size of 192 × 192 pixels. Additionally, one manifest-file per phase contrast

magnetic resonance imaging is provided by the UK Biobank. Each participant has, therefore, a total of

90 DICOM- and one manifest-files, compressed into a single compressed ZIP archive. Phase contrast

magnetic resonance imaging series that diverged from the protocol were excluded from the analysis.

Considering the 30 frames composing the VENC series of the phase contrast magnetic resonance

imaging sequence, if the region or mask of the aortic annulus can be segmented, the images obtained

after intersection between the predicted masks and the velocity corrected VENC imaging series deliver

the blood flow velocity at each pixel coordinate. Here, aortic annulus is defined as the transversal

section of the ascending aorta at the sinotubular junction. Regarding the collection of mean velocities

per frame at the sinotubular region ([sum of velocities of aortic annulus area]/[number of pixels in aortic

annulus area]), the forward peak velocity (AofVmax) and regurgitant peak velocity (AoRVmax)

correspond to the highest and lowest mean velocities of this collection, respectively. Equation two

calculates the total net left ventricular stroke volume calculation over an entire heart cycle using the

pixel-intensity-values after applying equation one49.

2) 𝑁𝑒𝑡 𝑙𝑒𝑓𝑡 𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 =  
𝑖=0

𝐼

∑
𝑛=0

𝑁

∑  (𝑆
𝑖,𝑛

 * 𝑉
𝑖,𝑛

)  * 𝑎∆𝑡 
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In equation two, i stands for the segment index, I for the number of temporal instances in the

scan, N for the number of pixels in each segment, S for the binary segmentation map, V for the velocity

map calculated using equation 1, a for the pixel area (in cm2), and finally, Δt for the time interval

between segments. Pixel area and time interval are retrieved using the (0028,0030) and the (0018,1063)

DICOM-tags, respectively. Next, volumes per frame obtained in equation two can be plotted over a heart

cycle, and both regurgitant and forward volumes are calculated as the sum of all negative and positive

volumes, respectively. Equation three delivers the definition of aortic valve regurgitation fraction, the

main target phenotype feature.

3) 𝐴𝑜𝑟𝑡𝑖𝑐 𝑣𝑎𝑙𝑣𝑒 𝑟𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 (%) =  𝑅𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿) 
𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿)  *  100

Furthermore, using the predicted binary masks, the maximal/minimal areas, diameters and

perimeters can be computed. The area is calculated as the sum of all pixels-values. The maximal and

minimal diameters are retrieved after calculating the centroid of the mask and subsequent bounding

box’s height and length. Finally, the perimeter can be obtained by assuming the shape of the aorta’s

transversal plane as an ellipse and applying the Ramanujian’s equation shown in equation four.

4) 𝐸𝑙𝑙𝑖𝑝𝑠𝑒
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

 ≈  π [ 3 (𝑎 +  𝑏) − (3𝑎 + 𝑏)(𝑎 +  3𝑏)]     

In equation four, a corresponds to the major axis and b to the minor axis. For the subsequent

analyses in this study, we used the maximal area computed over a heart cycle. With these considerations,

the main computational steps involved in the described software were derived and are depicted in

Figure 2.

Preprocessing and deep learning-based segmentation

In order to compute the model segmentation’s weights, an autoencoder deep learning algorithm,

U-net, was used. U-nets are powerful for image segmentation tasks. The model architecture is depicted
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in Figure 3 and can be accessed in the GitHub repository:

https://github.com/Urban90/deepFlow/blob/master/assets/model.svg. Our U-Net architecture is

characterized by several convolutional layers that are used to extract image features. A 3x3 kernel is

used for each convolution, which is followed by batch normalization, an activation layer with a rectified

linear unit (ReLU) and a dropout layer (set to 5%). Then, the feature map is downscaled by a factor of 2

after every convolution in order to learn features at a more global level.  Afterwards, it iteratively

up-samples the feature map stepwise to its original resolution by a factor of 2 using transposed

convolutions and concatenates with the feature map at the next scale. Downsampling and upsampling

part of the U-Net consists of four convolutional layers, respectively. The last element of this U-Net

architecture includes a further convolutional layer with a 3x3 kernel, followed by batch normalization,

ReLU activation layer, a last convolutional layer with a 1x1 kernel and a sigmoid output layer

computing a probabilistic label map. Input and output images have the shape of 128 x128 pixels. Details

regarding the hyperparameters of the convolutional and batch normalization layers are compiled in

Supplementary tables 1 to 3. Training, validation and testing of the software was performed with

Python version 3.9.7, with module tensorflow-gpu version 2.4.1.

In the preprocessing steps, first, manual segmentation of the complete CINE series from 150

randomly selected participants (30 frames per participant, conferring a total of 4,500 frames) was

performed by a level III MRI trained physician (BG) using Medviso’s open-source software Segment13.

Then, the manually segmented images were then converted into a binary mask and the pixel intensities

corresponding to the region of interest were set to 1 (excluding the edge of the segmentation line). The

remaining pixels were set to 0. Second, the pairs composed by the CINE series and the respective binary

mask were resized to 128 × 128 pixels and checked for grayscale scaling (pixel-intensity ranging from 0

to 1 in the masks produced for training). After this step, training and validation subsets were randomly

produced following a 9:1 ratio, and was done over 10 epochs and a batch size of 4. The model was
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compiled with the “Adam” optimizer. Per training epoch loss quantification was calculated using mean

squared error. We also defined callback functions to automate the following tasks after every epoch:

stopping training after 5 epochs with no improvement, adjusting the learning rates over time by 0.1

factor (with a minimum learning rate of 0.00001) if the loss metric did not improve after 5 epochs.

For the test set, manual segmentation of 300 CINE images from the phase contrast magnetic

resonance imaging sequences of 15 randomly selected patients was also performed by a level III MRI

trained physician (BG) following the same steps as previously described. After thresholding the masks’

predicted pixel intensities to either 1 if the pixel value was higher than 0.5 or to 0 otherwise, the Dice

similarity coefficient was calculated. Lastly, the best model weights are saved to be deployed in the

segmentation prediction of the remaining studies in the phase contrast magnetic resonance imaging

dataset.

Postprocessing computation

After segmentation, in order to compute the aortic blood flow dependent variables, the first step

includes mapping of the pixel intensities of the VENC imaging series to the real velocity (cm/s) using

the previously described equation one. The mathematical operation enunciated in its numerator (

) is automatically performed through the(𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 *  𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝑠𝑙𝑜𝑝𝑒) +  𝑅𝑒𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

DICOM-file conversion to NIfTI-format (from the Neuroimaging Informatics Technology Initiative,

which can also be applied to cardiovascular imaging)50. Pixel-wise multiplication by factor 𝑉𝐸𝑁𝐶/4096

of the resulting image matrix completes the velocity mapping operation from equation one.

After computing the real velocities (cm/s) at each pixel-coordinate inside the region of interest

(aortic annulus), the mean blood flow velocity at each frame can be obtained. The application of

equation three results in the calculation of blood volume that flows through the aortic annulus per frame.

Plotting the blood volume per frame over a heart cycle yields the blood flow curve, whereas negative

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.05.22280733doi: medRxiv preprint 

https://paperpile.com/c/ehX59X/RZsck
https://doi.org/10.1101/2022.10.05.22280733
http://creativecommons.org/licenses/by-nc-nd/4.0/


values correspond to regurgitant blood volume and positive values to forward blood volume, making

possible the calculation of forward left ventricular stroke volume, regurgitant volume, total net volume

and regurgitation fraction over the aortic annulus. Additional measurements include the aortic annulus

major/minor diameters, perimeter and area, as described in Figure 2.

Pixelwise velocity outlier correction — noise correction

One factor acknowledged to have an influence on error in phase-contrast MRI is random

noise51,52,53. After applying velocity mapping on the dataset, we further refined the software performance

after benchmarking multiple noise correction (pixel-intensity outlier removal) methods described here:

first - computing the pixel-wise standard deviation over a heart cycle and thresholding the

pixel-intensities to 0 if the standard-deviation was higher than the 99.95% percentile, with no further

transformation otherwise; second -  thresholding the pixel-intensities to 0 if the pixel-intensity over a

heart cycle was lower than the 0.05% percentile, with no further transformation otherwise; third - setting

the pixel-intensities to 0, if the pixel-intensity corresponded to > 200 cm/s or < -100 cm/s. The method

achieving the highest Pearson correlation coefficient comparing calculated forward left ventricular

stroke volume with our algorithm and Medviso Segment software (test set of 6,000 images from 200 UK

Biobank individuals, described in the next section) was integrated into the pipeline (Supplementary

table 4 and supplementary figures 1 - 3 show the software performance results).

Benchmarking and quality control

Medviso’s open-source segmentation software13 was used for the post processing of phase

contrast magnetic resonance imaging sequences to evaluate the aortic valve regurgitation fraction and

forward volume of 200 randomly selected participants (not included for model segmentation

training/validation/testing described in step 1) of the UK Biobank. The Medviso’s Segment software

semi-automatically obtains these measurements using vessel-tracking algorithms, where one
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segmentation mask (which requires human intervention) is propagated to the remaining frames of the

heart cycle. The most common approach of current commercially available scanner software tools relies

on vessel tracking after careful manual segmentation of one frame, which is mostly done in the

mid-systole, where the aortic annulus contours display the highest contrast. Due to the lack of a

manually curated phase contrast magnetic resonance imaging dataset from the UK Biobank, we decided

to design the ground-truth label of the test set based on the normally performed MRI analysis based on a

human supervised vessel tracking technique with the open-source Medviso Segment, to closely mimic

clinical practice.

This test set compilation was accomplished by a MRI level III trained physician (BG). The main

performance metric includes the Pearson correlation coefficient (also averaging Pearson correlation

coefficient from 5 complementary testing subsets, each with samples from 40 individuals) and the

accompanying means and mean-differences obtained through Bland-Altman plots.

To ensure cross-platform compatibility, rapid setup, and to allow stringent control over

versioning, we adopted a Docker-based strategy to containerize the program along with its

dependencies. This method radically reduces the turnaround time for the software installation by

incorporating all the program code and dependencies in one place. Additionally,  using Docker, we could

build specific optimized packages for multiple system architectures. The first one was built on the most

widely used x86_64 architecture and comes in both GPU and CPU variants, with the latter being

substantially smaller in size. There was no noticeable difference between the two versions in our internal

tests using a Linux laptop with a 16-core CPU and an 8 GB NVIDIA RTX 2080 Super GPU, but this

might radically alter in favor of the GPU version when numerous desktop/server level GPUs are

accessible to the program. The other Docker container was built on aarch64 architecture, which natively

supports the latest macOS® systems using Apple® silicon (M1/ M2) along with other ARM64 based

systems. This software container, tested on an Apple MacBook Pro with M1 Max processor and 64GB
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of RAM, yielded almost identical processing speeds as our Linux test system. While the same was not

true when we tried running our software container with x86_64 architecture in emulation mode, hence

proving the benefits of building on native architecture. The software accepts a folder location carrying

all DICOM ZIP files (one per sample) and creates a single tab-delimited list of results for all samples

run in one batch. Additionally, a flow-over-aorta vs time graph is plotted for each sample.

DeepFlow processing on our test device took about 2 minutes and 30 seconds per phase contrast

magnetic resonance imaging study. It is compatible with all major modern Linux, macOS, and Windows

distributions. The software is freely available for non-commercial use (open-source CC-BY-NC license)

at https://github.com/Urban90/deepFlow.

Outcomes analysis

We focused our outcomes analysis on aortic valve regurgitation fraction, as we sought to further

validate DeepFlow’s phenotyping. In order to ensure that no participant had more than one MRI

measurement included in the study, only the first phase contrast magnetic resonance imaging visit was

included. The means and standard deviations were used to infer the prevalence of aortic valve

regurgitation in the UK Biobank. Student’s T-tests for independent variables were applied to compare

the means of aortic valve regurgitation distribution among age groups and between sex categories. To

infer progression rates per year of life, multivariate linear regression models to predict aortic valve

regurgitation fraction were constructed. The first used sex and age as covariates, the second model added

ascending aortic aneurysm (obtained after binarizing the variable of maximal aorta diameter computed

by the developed software, using a cut-off of 50 mm or higher), the third added presence of hypertension

(instead of ascending aortic aneurysm). Also, a multivariate linear regression model including age at

MRI, sex, presence of hypertension and presence of aneurysm to predict aortic valve regurgitation

fraction was computed (Supplementary discussion SD1). To assess the distribution of common
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cardiovascular comorbidities across the aortic valve regurgitation spectrum categories (mild: < 22%;

moderate >= 22% and < 33%; severe >= 33%), Chi-Square tests were applied. Considering these

statistical analyses, a two-sided level of significance of 0.05 was adopted.

Comorbidities surrogates were defined as a binary categorical variable, using UK Biobank’s

International Classification of Diseases 10th Revision (ICD-10) codes for intra-hospital diagnoses.

These common cardiovascular comorbidities included coronary artery disease, valvular heart disease,

non-ischemic cardiomyopathies, inflammatory heart diseases, atrial fibrillation, diabetes mellitus type 2,

hypertension, chronic obstructive pulmonary disease and peripheral artery disease. Chi-Square test

results, adopted ICD-10-codes and distribution summary are compiled in Table 1. The distribution of

congenital aortic valve malformations (per ICD-10 codes), ascending aorta aneurysm and rheumatic

aortic valve disease (as per ICD-10 code) across the three groups of aortic valve regurgitation severity

are outlined in Table 2.  Also, the history of procedures were analyzed, using the operative procedure

codes (OPCS-4). Main procedures included coronary revascularizations (surgical and interventional),

heart valve repair or replacement (surgical or interventional), heart transplantation, left ventricular assist

devices, permanent pacemaker implantation and the presence of an implantable

cardioverter-defibrillator. Only the ICD-10 codes or OPCS-4 codes dated before MRI was performed

were included. The distribution of procedures history and Chi-Square test results are illustrated in Table

3.

Time-to-event analysis

A time-to-event analysis of several clinical endpoints was performed. Clinical endpoints

included all-cause mortality, ischemic stroke, coronary artery bypass graft and aortic valve replacement.

The first two outcomes were obtained based on a composite source of data from an interview with a

nurse at the visit to assessment centers (self-reported) and linked electronic health records including
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hospital inpatient episode data. Hospital inpatient episode data was collected at the Assessment Centre

in-patient Health Episode Statistics in combination with data on cause of death from the National Health

Service Information Centre. The remaining outcome endpoints were retrieved by the date the respective

ICD-10-code was documented in the intra-hospital electronic medical record of the participant. Only

ICD-10-codes recorded after the date of the MRI visit were taken into account. All participants without

the following cardiovascular comorbidities (using the ICD-10 codes): I.10,  I.25, I.34 to I.37, I.40 to

I.43,  I.48 and I.73; and/or procedures (using the OPCS-4 codes): K.01, K.25 to K.28, K.30, K.35, K.38,

K.40, K.41, K.56, K.59, K.60 and K.75 were excluded from the subsequent analysis. Tables 1 to 3 show

the ICD-10 codes/OPCS-4 codes corresponding clinical conditions. All missing values were excluded

from the analysis and a Z-score standardization of the remaining dataset was performed. Also, aortic

valve regurgitation was adjusted to age and sex (excluding the residuals computed after fitting a linear

regression model to these covariates). Aortic valve regurgitation fraction was transformed into a

categorical variable (mild: < 22%;  moderate >= 22% and < 33%; severe >= 33%). Ischemic stroke and

coronary artery bypass graft related results are presented in the supplementary material S2. Excluding

the time-to-event analysis of the outcome of new aortic valve replacement at follow-up as the dependent

variable, the event of aortic valve replacement was right-censored. Then, Kaplan-Meyer curves and

log-rank tests were undertaken to analyze the possible differences in clinical outcomes rates across

aortic valve regurgitation severity groups. For these statistical analyses, a two-sided level of significance

of 0.05 was adopted.

Genome-wide association studies

We studied the genotype-phenotype associations in the cardiac flow related variables extracted

from raw phase-contrast magnetic resonance imaging after deploying DeepFlow to the available UK

Biobank cardiac imaging database. Also, to compute the genetic correlation matrix including the

remaining left and right ventricular morphological and functional traits, a published deep-learning based
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model4 was used. Mitral valve regurgitation volume was calculated using the forward left ventricular

stroke volume ( ) output from the developed software (phase contrast magnetic resonance imaging𝐴𝑜𝑃𝐶

based) and the total left ventricular stroke volume ( ) from the Bai et al.'s model (CINE sequence𝐿𝑉𝑆𝑉

based), after equation seven:

7) 𝑀𝑖𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑣𝑒 𝑟𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝐿𝑉𝑆𝑉 −  𝐴𝑜𝑃𝐶 

Other MRI-based mitral valve regurgitation quantification methods include (equations 8 and 9):

8) 𝑀𝑖𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑣𝑒 𝑟𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝐿𝑉𝑆𝑉 −  𝑅𝑉𝑆𝑉

9) 𝑀𝑖𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑣𝑒 𝑟𝑒𝑔𝑢𝑟𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝐿𝑉𝑆𝑉 −  𝑃𝑎𝑃𝐶

Although prognostic and diagnostic outcome data regarding mitral valve regurgitation are mostly

based on the method following equation 7 and is commonly preferred in the clinical setting, one

limitation is the necessary combination of two acquisitions, subject to potential interscan variability11.

Contrary to the methods from equations 8 and 9, mitral valve regurgitation quantification using equation

7 is independent from biases resulting from accompanying cardiac valvular pathology (which are an

important source of error in method following equation 8) or from intracardiac shunts (e.g. an atrial

septal defect causing left-right shunt; which leads to measuring errors while using equation 9).

Regarding the genetic data, participants were genotyped using custom arrays, Affymetrix UK

BiLEVE Axiom array or Affymetrix UK Biobank Axiom array which shares 95% of marker content.

The genetic data was centrally imputed into the Haplotype Reference Consortium panel and the

UK10K+1000 Genomes panel47. Variant positions were identified using the GRCh37 human genome

reference. The genotyping methods, arrays and quality-control procedures have been extensively

described previously54. Only autosomes were included in the analysis.
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Only participants with phase contrast magnetic resonance imaging sequences and genotyping

through custom arrays were considered for analysis. Phenotype outliers defined as values more than

three interquartile ranges above the first quartile or below the third quartile were winsorized. The

residuals from the phenotypes’ variables were computed after linear regression models were fitted to the

covariates (age at MRI, sex, the first 5 principal components and the genotyping array) and quantile

normalization was applied. The following genetic quality control (QC) criteria were applied: filtering

variants with a minor allele frequency less than 1%, filtering variants with a low minimal allele count

(less than 20), excluding variants with missing call rates exceeding 1%, excluding variants failing a

Hardy-Weinberg equilibrium exact test at 1*e-6. We performed a common variant genome wide

association analysis of the traits using a mixed linear regression model through the SAIGE software55.

To adjust for multiple testing, Bonferroni correction using the genome-wide significance threshold of

p-value < 5 × 10−8 for the selection of independent variants that were significantly associated with the

phenotypes was applied. Each phenotype underwent linkage disequilibrium (LD)-based clumping to

generate independent SNVs using an LD cut-off of R2 < 0.1 within 500 kilobases window on variations

exceeding the P-value threshold of 1* 10-8. Manhattan plots and QQ plots were generated using

LocusZoom software56. SNV-heritability and genetic correlations between cardiac measurements were

computed with LDSC software20.

Additionally, we carried out gene clustering using K-means (n = 3) and additional enrichment

analysis for pathways and phenotypes using the STRING-DB server25 in order to comprehend the gene

interactions of the major protein coding loci from AoFVmax and aortic annulus area traits. Additionally,

STRING will run an automated pathway enrichment analysis of the gene clusters and identify any

significantly associated pathways or phenotypes (using hypergeometric testing, against a statistical

background of either the entire genome or a user-supplied background gene list). STRING performs

these tests for a total of eleven functional pathway classification frameworks, including the Gene
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Ontology 26 and Monarch Human Phenotype Ontology (HPO)27. The STRING database seeks to

incorporate all known and anticipated relationships between genes/proteins, including both functional

and physical interactions. STRING gathers and scores data from a variety of sources to accomplish this,

including automated text mining of the scientific literature, databases of interaction experiments and

annotated complexes/pathways, computational interaction predictions from co-expression and from

conserved genomic context, and systematic transfers of interaction evidence from one organism to

another57.

Mendelian randomization

We evaluated the bidirectional causal effects between aortic annulus area and aortic valve

regurgitation fraction with the Bayesian-based Mendelian randomization (MR) method CAUSE58.

CAUSE takes into account both correlated and uncorrelated pleiotropy, thereby mitigating the risk of

horizontal pleiotropy bias. CAUSE permits overlapping GWAS datasets, and thus can be used both for

single- and two-sample MR. Given a significant CAUSE model, we used the estimated difference in the

expected log pointwise posterior density (delta ELPD, where the biggest negative difference supports

the causal model) to rank variants based on their contribution to the causal estimate. As input

instrumental variables for each MR analysis, we considered all SNVs with a P-value threshold of 5 *

10-5 or lower when examining the exposure genome-wide association results. We then applied

LD-clumping using PLINK (default settings recommended by CAUSE: LD cut-off of R2 < 0.01 within

10000 kilobases window).

If CAUSE indicated a significant causal relationship (at p<0.05) for a given exposure-outcome

pair, we carried the additional two-sample MR analysis explained below. We first randomly selected two

non-overlapping subsets of the tested UK Biobank participants (e.g., ~ 1:1 GWAS sample-size ratio

between the traits aortic valve regurgitation and aortic annulus area). Using the TwoSample MR
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software59, summary data for exposure and outcomes were harmonized. When feasible, palindromic

SNVs were deleted if the minor allele frequency was more than 0.42. We followed the suggested

parameters for inferring forward strand alleles using allele frequency data. To assess for horizontal

pleiotropy we used the built-in function of the TwoSample MR software to return the intercept values

and respective p-values (non significant if p-value > 0.05) after applying the Egger-estimator. Finally,

we used the inverse variance weighted random effects model, as well as the weighted median and the

Egger-estimator to obtain causal effects and their significance.

In order to assess the MR assumption that genetic instruments are connected to the outcome only

through the exposure, we also tested for reverse causation using MR-Steiger. Briefly, when reverse

causation does not occur, the genetic mutation is more strongly related to the exposure. However, when

reverse causation occurs, this premise is broken. We therefore also report the output of MR-Steiger

directionality test estimates in the results section.

Tissue enrichment analysis

In order to highlight biological pathways and sets of functionally related genes enriched by

multiple GWAS signals; to identify tissues and cell types where prioritized genes are highly expressed

we used DEPICT30,31, a tool that employs data from massive numbers of experiments measuring gene

expression.  For Linkage-Disequilibrium-based clumping by PLINK (v1.9), which precedes the DEPICT

analysis, a p value threshold of 10−8 (except for aortic valve regurgitation fraction, whereas a p value

threshold of  5*10-5 was established), a distance threshold of 500 kilobases and a

Linkage-Disequilibrium threshold of 0.1 was set (default setting by DEPICT). We performed these

analyses on the newly studied phenotypes with higher heritability — aortic annulus area, mean forward

peak velocity at the aortic annulus, aortic valve regurgitation fraction.
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Figures

Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure legends

Figure 1. Overview of the concepts defining cardiac dynamic flow volumes analyzed in this
study. Systole: left ventricular contraction phase. Diastole: left ventricular relaxation phase. a, Total left
ventricular stroke volume is defined as the complete blood volume that is pumped towards the aorta and
backwards to the left atrium during systole. b, Mitral valve regurgitation is the blood volume that flows
backwards into the left atrium during systole due to the incompetence of the mitral valve. Also, mitral
valve regurgitation can be determined by the difference between total left ventricular stroke volume and
the forward left ventricular stroke volume, which is a definition commonly used for in MRI analysis11. c,
Forward left ventricular stroke volume is the blood volume pumped from the left ventricle to the aorta
during systole. This is equivalent to the area under the curve of the positive portion of the plot
displaying aortic blood flow vs. time. d, Net left ventricular stroke volume is the blood volume that is
effectively pumped into the aorta during an entire heart cycle: the remaining forward left ventricle stroke
volume after excluding the aortic valve regurgitant volume. e, Aortic valve regurgitant volume is the
blood volume that returns to the left ventricle during diastole due to an incompetence of the aortic valve.
This is equivalent to the area under the curve of the negative portion of function plotting the aortic blood
flow vs. time. f, The peak forward and regurgitant velocities at the aortic annulus (at the level of the
sinotubular junction) correspond to the positive and negative peaks of mean aortic blood flow/velocity
over a heart cycle, respectively. Of note, because over the cross-section of the aorta the velocity differs
from pixel to pixel, the velocities are averaged for that aortic cross-section per time instance/frame.

Figure 2. Overview of the software pipeline. The input per participant consists of 91 files (90
DICOM-files from 3 different phase contrast magnetic resonance imaging series - CINE, anatomic
imaging, MAG, magnetic phase and VENC, velocity-encoded sequences - each of them with 30 frames
over a heart-cycle, and one manifest file) that are compressed in a zip-file. Step 1: the software takes the
DICOM-files from the CINE series and applies a deep-learning based segmentation model with
pre-trained weights which retrieves the region of ascending aorta transversal at sinotubular junction
(inner edge to inner edge). Step 2: the software maps the pixel-intensities of the VENC series to the
corresponding velocities by applying equation 1 (for equations, see Methods). Step 3: the obtained
binary masks from the CINE series are intersected with the velocity-mapped VENC series. Step 4: mean
of velocities per frame are calculated and plotted over the heart cycle. Also, after applying equation 2,
the sum of the volumes per frame is plotted, whereas forward volume, regurgitant volume and aortic
valve regurgitation fraction (using equation 2 and 3) can be inferred. Lastly, from the masks obtained
after segmentation of the CINE series, the cross-sectional area, perimeter (equation four) and
minimal/maximal diameters of the ascending aorta at the sinotubular junction are returned. * denotes the
multiplication/intersection operation.

Figure 3. U-Net architecture of the segmentation model used in DeepFlow. The input image
(128x128) is fed into a U-Net architecture, which predicts a pixelwise probability of being part of the
region of interest or not. The U-Net is composed by a downsampling path and an upsampling path,
which explains the u-shaped architecture. The contracting path is composed by a convolutional network
that consists of repeated application of convolutions (four times), each followed by a batch
normalization layer, a rectified linear unit (ReLU), a max pooling and a 5% dropout operation. The
expansive pathway combines the feature and spatial information through a sequence of up-convolutions
and concatenations with high-resolution features from the contracting path. Specifically, each series of
up-convolution is composed by a dropout layer, followed by a convolutional operation, batch
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normalization, ReLU activation and a transverse convolution operation. The last layer of convolutions in
the architecture consists of a convolution operation, batch normalization, ReLU activation, a last
convolution operation using a 1x1 kernel and an sigmoid output layer computing the probabilistic label
map (with a 128x128 size).

Figure 4. Epidemiology of aortic valve regurgitation fraction in the UK Biobank population. a,
Density distribution histogram of the aortic valve regurgitation fraction. “I” indicates mild aortic valve
regurgitation fraction (< 22%), “I” indicates moderate aortic valve regurgitation fraction (>= 22% and <
33%) and “III” indicates severe aortic valve regurgitation fraction (>= 33%). Across 40,077 UK
Biobank individuals included, the mean age at the time of phase contrast magnetic resonance imaging
was 64.5 ± 7.7 years, mean aortic valve regurgitation fraction was 7.7 ± 6.5 %.  In order to infer the
progression rates according to different risk groups we performed multivariate linear regression with
aortic valve regurgitation fraction as the dependent variable. b, Multivariate regression analysis with
sex, age at MRI visit as independent variables. Male population was found to be an independent
predictor of higher AR fraction with age. c, Multivariate linear regression adding the presence or
absence of ascending aorta aneurysm as an independent variable, which was a significant predictor of
higher aortic valve regurgitation fraction with age. d, Multivariate linear regression considering the
presence or absence of hypertension as an independent variable, which was not a significant predictor of
higher aortic valve regurgitation fraction. Linear regression fitting equations presented in
supplementary equations. For the time-to-event analysis of e, all-cause mortality and f, new aortic
valve replacement, common concomitant cardiovascular comorbidities were excluded (see Methods).
Also, aortic valve regurgitation fraction was adjusted to sex and age at MRI. Log-rank test was
performed to assess statistical significant differences between the incidence of outcomes. The percentiles
of 99.2% for severe and 96.9% for moderate aortic valve regurgitation fraction were used to define the
groups. RF_G indicates aortic valve regurgitation fraction severity group: red: mild (1); blue: moderate
(2); green: severe (3). AscAA indicates aneurysm of the ascending aorta; HTN indicates hypertension.

Figure 5. Heritability and genetic correlation matrix of cardiac flow dependent variables. a,
Heritability of the cardiac flow and volume parameters, ranked from trait with highest heritability to
lowest. b, In the genetic correlation matrix, the size of the dots corresponds to the magnitude of the
correlation between variables. The color indicates the direction of the correlation (blue end: positive
correlation, red end: negative correlation, white: no correlation). AA indicates: BSA-indexed aortic
annulus area; AR: BSA-indexed aortic valve regurgitant volume; ARf: aortic valve regurgitation
fraction;  fVmax: forward peak velocity at aortic annulus; FSV: BSA-indexed forward left ventricular
stroke volume; LCO: BSA-indexed left cardiac output; LSV: BSA-indexed left ventricular stroke
volume; MR: BSA-indexed mitral valve regurgitation volume; NSV: BSA-indexed net left ventricular
stroke volume; RES: BSA-indexed right ventricular end systolic volume; REV: BSA-indexed right
ventricular end diastolic volume;  RSV: BSA-indexed right ventricular stroke volume; rVmax: aortic
retrograde peak velocity.

Figure 6. Manhattan plots showing the GWAS results of a, aortic valve regurgitation fraction; b,
peak forward velocity at the aortic annulus; c, aortic annulus area; d, forward left ventricular stroke
volume; e, total left ventricular stroke volume. All patients with phase contrast magnetic resonance
imaging and imputed microarray DNA data.  Independent variables were adjusted to age, sex, the first 5
genetic principal components and genotyping array. To adjust for multiple testing, we applied
Bonferroni correction using the genome-wide significance threshold of P < 5 × 10−8 for selection of
independent SNVs that were considered significantly associated with the traits. Complete lists of the
genomic loci are shown in supplementary tables S6-S11. All volumes and areas are BSA-indexed.
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Figure 7. Cluster groups and gene interactions of the traits (a) forward peak velocity at the aortic
annulus and (b) aortic annulus area. K-means was applied to define the three groups. In a, the color red
represents the cluster of genes which most significantly enriched for microfibril-associated genes; color
blue represents a group of phenotypes which was most significantly associated with systolic blood
pressure; in color green the cluster of genes did not show a specific enrichment. In b, the color red
represents a group of genes related which was most significantly associated with pulse pressure
management; in blue, the group of genes were most significantly linked to the William-Beurer
syndrome; the color green represents a cluster of phenotypes which was most significantly enriched for
diastolic blood pressure, but also includes traits related to connective tissue. Complete list of phenotypes
included in the clusters available in the supplementary data. Edges show protein-protein relationships,
i.e., when protein work together to perform a common task. Light blue line: known interactions from
curated datasets; purple line: experimentally determined known interactions; dark blue line: predicted
interactions from gene neighborhood; red line: predicted interactions from gene fusions; dark blue line:
predicted interactions from gene co-occurrences; light green line: predicted interaction from text mining;
black line: co-expression; light purple: gene homology.

Figure 8. Mendelian randomization results using CAUSE to establish causal relationships
between aortic annulus area (exposure) and aortic valve regurgitation fraction (outcome). As
instrumental factors for each of these traits, we considered all SNVs with a P-value threshold of 5 * 10-5

as exposure. a, Scatter plots showing the SNV effects on the exposure and outcome traits according to
the sharing model (scatter plot on the left) and the causal model (middle scatter plot). The continuous
and dashed lines correspond to the linear fit in the sharing and causal models, respectively. The eta and
gamma parameters represent the slope of the linear fit. After applying CAUSE, which uses a Bayesian
model comparison approach, the causal model showed the best fit. The size of the dots in the scatter plot
are proportional to the value of the SNV’s -log10 p-value associated with the exposure factor. We used
the estimated difference in the expected log pointwise posterior density (delta ELPD), as a measurement
of the explanatory value of the SNVs included in the CAUSE models. In the left scatter plot, the delta
ELPD values of the SNVs are color mapped from the extreme negative (red) to the extreme positive
(blue). SNVs with reddish shades favor the causal model. b, Subset of the causal model scatter plot,
highlighting the closest genes to the top 12 SNVs with the highest negative delta ELPD values. The size
of the dot associated with each SNV is proportional to the value of delta ELPD.  The genes highlighted
have been found to be associated with connective tissue, blood pressure management and congenital
heart disease traits (coded in blue, red and green, respectively). Delta ELPD: estimated difference in the
expected log pointwise posterior density; SNV indicates single nucleotide variant; Z-Score associated
with the exposure related SNV’s p-value.
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Tables

Table 1. Baseline comorbidities across the aortic valve regurgitation fraction severity.

N = 33590 AR fraction

Diagnosis (ICD10-code) Mild

(< 22%)

Moderate

(>= 22% & <
33%)

Severe

(>= 33%)

p-value

Hypertension (I.10) 5501 174 89 3e–10 ***

Diabetes mellitus

(E.10, E.11, E.12, E.13)

1134 38 10 0.76

COPD

(J.44)

299 11 3 0.95

PAD

(I.73)

172 3 3 0.92

Renal insufficiency

(N18)

258 15 4 0.06

Mitral valve disease

(I.34)

133 2 3 0.73

Tricuspid valve disease

(I.36)

2 0 0 0.99

Pulmonary valve disease

(I.37)

8 1 1 0.04

Aortic valve stenosis

(I.35.0)

41 4 4 5e-7 ***
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Post endocarditis

(I.33)

4 0 0 0.99

Post-myocarditis

(I.40)

2 0 0 0.99

Chronic CAD

(I.25)

1419 67 28 1e-8 ***

Post-MI

(I.21, I.22., I.23)

560 19 11 0.13

Atrial fibrillation or
flutter

(I.48)

680 27 13 0.17

Cardiomyopathy

(I.42, I.43)

59 4 2 0.02

Congenital heart disease

(Q.24)

4 1 0 0.36

ICD10-codes definitions are considered as surrogate markers of the comorbidities. ** indicates p-value
< 0.01, *** indicates p-value < 0.0001. CAD: coronary artery disease; COPD: chronic obstructive
pulmonary disease; MI: myocardial infarction; PAD: peripheral artery disease.

Table 2. Etiologic comorbidities across the aortic valve regurgitation fraction severity.

N = 33590 AR fraction

Diagnosis (ICD10-code) Mild

(< 22%)

Moderate

(>= 22% & < 33%)

Severe

(>= 33%)

p-value

Rheumatic valve disease

(I.06)

1 0 1 1e-11 ***
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Congenital aortic valve
disease

(Q.23)

4 0 0 0.99

Aneurysm of the
ascending aorta

165 16 30 1.8e-113 ***

ICD10-codes definitions are considered as surrogate markers of the comorbidities. ** indicates p-value
< 0.01, *** indicates p-value < 0.0001.

Table 3. Baseline history of cardiovascular procedures across the aortic valve regurgitation fraction
severity.

N = 33625 AR fraction

Diagnosis (OPCS4-code) Mild

(< 22%)

Moderate

(>= 22% & < 33%)

Severe

(>= 33%)

p-value

Saphenous vein - CABG

(K.40)

182 16 3 0.0001**

Left ventricular assist
device

(K.56)

6 2 0 0.008**

PPI

(K.60)

12 0 0 0.99

ICD

(K.59)

1 0 0 0.99

MVR

(K.25)

4 0 0 0.99

AVR

(K.26)

2 0 0 0.99
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TVR

(K.27)

0 0 0 1

PVR

(K.28)

0 0 0 1

Post-PCI

(K.75)

559 19 10 0.28

Heart transplantation
(K.01)

0 0 0 1

Aortic valve
valvuloplasty

(K.35)

0 0 0 1

Other heart valve
operations

(K.38)

2 0 0 0.99

OPCS-4-codes definitions are considered as surrogate markers of the procedures. * indicates p-value <
0.05, ** indicates p-value < 0.01, *** indicates p-value < 0.0001. AVR: aortic valve replacement or
reconstruction; CABG: coronary artery bypass graft; ICD: implantable cardioverter defibrillator; MVR:
mitral valve replacement or reconstruction; PCI: percutaneous coronary intervention; PPI: permanent
pacemaker implantation; PVR: pulmonary valve replacement or reconstruction; TVR: tricuspid valve
replacement or reconstruction.

Table 4. Mendelian randomization analysis

Two-Sample Mendelian

Randomization Analysis

(non overlapping subsets)

Exposure: aortic annulus area (N= 17772)

Outcome: aortic valve regurgitation fraction (N= 18988)

MR Egger Beta = 0.23 ± 0.08, P-value = 5.6e-3
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Weighted median Beta = 0.19 ± 0.04 P-value =1.4e-7

Inverse variance weighted Beta  = 0.17 ± 0.03 P-value =5.6e-10

Mendelian Randomization analysis establishes a causal relationship between BSA-indexed aortic
annulus area (exposure) and aortic valve regurgitation fraction (outcome) using two sample Mendelian
randomization techniques on non-overlapping samples for robustness of results. A p-value is considered
significant if < 0.05. N indicates sample size. Beta indicates the effect size ± standard error.
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