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Abstract

Prediction of genetic merit using dense SNP genotypes can be used for estimation of breeding values for selection of
livestock, crops, and forage species; for prediction of disease risk; and for forensics. The accuracy of these genomic
predictions depends in part on the genetic architecture of the trait, in particular number of loci affecting the trait and
distribution of their effects. Here we investigate the difference among three traits in distribution of effects and the
consequences for the accuracy of genomic predictions. Proportion of black coat colour in Holstein cattle was used as one
model complex trait. Three loci, KIT, MITF, and a locus on chromosome 8, together explain 24% of the variation of
proportion of black. However, a surprisingly large number of loci of small effect are necessary to capture the remaining
variation. A second trait, fat concentration in milk, had one locus of large effect and a host of loci with very small effects.
Both these distributions of effects were in contrast to that for a third trait, an index of scores for a number of aspects of cow
confirmation (‘‘overall type’’), which had only loci of small effect. The differences in distribution of effects among the three
traits were quantified by estimating the distribution of variance explained by chromosome segments containing 50 SNPs.
This approach was taken to account for the imperfect linkage disequilibrium between the SNPs and the QTL affecting the
traits. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects
(proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of
analysis takes advantage of the distribution of loci effects.
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Introduction

Genomic prediction of future phenotypes or genetic merit using

dense SNP genotypes can be used for prediction of disease risk, for

forensics, and for estimation of breeding values for use in selection

of livestock, crops and forage species [1–4]. In dairy cattle,

estimated breeding values predicted from genomic information are

now in wide spread use [3,5].

The accuracy of genomic predictions will depend on the

number of phenotypes used to derive the prediction equation, the

heritability of the trait, the effective population size, the size of the

genome, the density of markers, and the genetic architecture of the

trait, in particular number of loci affecting the trait and

distribution of their effects [6–8]. In simulated data the distribution

of loci effects affects the accuracy of predicting genetic values.

However in real data it has been difficult to show that traits vary in

this distribution. For instance, in many cases a statistical method

(Best linear unbiased prediction or BLUP) designed for traits with

many loci all of small effects performs as well as methods assuming

other distributions of loci effects, such as a t-distribution [9–10]. If

it is true that most complex traits are controlled by very many

polymorphisms of very small effect (a nearly infinitesimal model),

this has important consequences for prediction of genetic merit or

future phenotypes such as disease risk. Formulae for the accuracy

of genomic prediction under this model suggest that sample sizes

.100,000 individuals will be needed to achieve high accuracy,

except for populations with a small effective population size [7].

Thus it is important to determine the distribution of effect sizes for

a range of traits, use this information in genomic prediction and

plan future experiments accordingly.

Coat colour in mammals is usually regarded as trait controlled

by a few loci of large effect. However, aspects of coat colour have

been suggested as a model for investigating complex trait

architecture, given the close relationship between genotype and

phenotype [11]. White spotting of the coat is one such

‘‘quantitative’’ coat colour trait, as it can be recorded as the

proportion of the coat which is white. White spotting occurs in

many domesticated mammals, including cattle, horses, dogs and

cats. In dogs, mutations causing white spotting have been mapped

to the microphthalmia-associated transcription factor (MITF) [12].

In mice, at least ten genes have been demonstrated to affect white

spotting [13]. In horses, an inversion on chromosome 3 in the

region of the Hardy-Zuckerman 4 feline sarcoma viral oncogene

homolog (KIT) gene is associated with tobiano white-spotting

pattern [14], and a seven other mutations at the KIT gene are

associated with white coat colour phenotypes [15]. Further,
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mutations in KIT are also associated with roan coat [16]. In

domestic pigs, a number of alleles of the KIT gene have been

characterised and associations with dominant white colour

demonstrated [17]. Recently, in black and white dairy cattle,

variation in the degree of white spotting (measured as proportion

of the coat which is black) has been mapped using linkage to large

genomic intervals on chromosome 6 and chromosome 22, which

contain the KIT and MITF loci respectively [18]. However a

genome wide association study (GWAS) has not been reported for

this trait.

Complex traits which have been studied by GWAS in dairy

cattle include fat% and ‘‘type’’, a complex conformation trait [19–

20]. A single mutation in the DGAT1 gene accounts for 30% of the

variation in fat% from Holstein Friesian cattle [21]. This is in

contrast to ‘‘type’’, a complex trait combining scores for a number

of aspects of cow confirmation (termed ‘‘overall type’’), for which

only modest effects have been reported.

In this paper, we use proportion of black on the coat, fat% and

overall type to show that differences in the distribution of loci

effects are recognisable using a new method to estimate the

distribution of variance explained by each QTL. We demonstrate

that three loci, KIT, MITF and a locus on chromosome 8 together

explain a considerable proportion of the variation in proportion of

black, but a large number of loci of small effect are necessary to

capture the remaining variation. We then contrast the accuracy of

genomic prediction which can be achieved for this trait with the

accuracy of genomic predictions for overall type and fat% in milk.

The results demonstrate a clear effect of trait architecture on the

accuracy of genomic predictions.

Results/Discussion

Genome-wide association study for proportion of black
While GWAS results for fat% have been reported previously, no

GWAS results have been reported for proportion of black [19–20].

In our population of 756 Holstein bulls, phenotypes for proportion

of black varied from almost completely black to completely white,

Figure 1. A GWAS study using 43115 SNPs detected three

genome regions containing SNPs with P values,1024 in the

discovery population. We tested these in an independent

validation population and confirmed three SNPs at P,0.001,

Table 1 and Figure 2. The most significant SNP was within the

KIT locus on chromosome 6 (72,104,530 bp). There was another

highly significant SNP at 32,459,763 bp on chromosome 22 which

is in very close proximity to the MITF locus (32,353,746–

32,397,952 bp). There was also a highly significant SNP on

chromosome 8 at 64,164,842bp. This SNP is within the zinc finger

CCHC domain containing 7 gene (ZCCHC7). However zinc

finger CCHC domain containing genes have not been implicated

in coat colour development in any species. Perhaps a more

plausible candidate in this region is PAX5 (63,778,241–

63,950,395bp). Other members of this family, PAX3 and PAX6,

have been demonstrated to interact withMITF [22]. Planque et al.

[22] pointed out that the structure and docking of PAX5 should be

nearly identical to PAX6, because their C-terminal subdomains are

75% identical and all DNA-contacting residues are conserved [and

23]. However the interaction between PAX5 and MITF remains to

be demonstrated.

Author Summary

Prediction of future phenotypes or genetic merit using
high-density SNP chips can be used for prediction of disease
risk in humans, for forensics, and for selection of livestock,
crops, and forage species. Key questions are how accurately
these predictions can be made and on what parameters
does the accuracy depend. In this paper, we use three dairy
cow traits—proportion of black on coat, fat percentage in
milk, and overall type, which measures cow confirmation—
to demonstrate the large differences among genetic
architectures of complex traits. For example 24% of the
genetic variance in proportion of black is determined by
three loci, KIT,MITF, and a locus on chromosome 8; however
a surprisingly large number of additional loci, all of small
effect, are required to capture the remaining variation. For
overall type, a very large number of loci are necessary to
capture the same level of variance. We also show that the
accuracy of predicting genetic values is higher for traits with
a proportion of large effects (proportion black and fat
percentage) than for a trait with no loci of large effect
(overall type), provided the method of analysis takes
advantage of the distribution of loci effects.

Figure 1. Proportion of black phenotype. Bull with 95% black (A) and bull with 5% black (B).
doi:10.1371/journal.pgen.1001139.g001

Trait Architecture and Genomic Prediction Accuracy
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Together the three loci on chromosomes 6, 8 and 22 accounted

for 24% of the variation in proportion of black phenotypes in the

validation population. There was no evidence of dominance for

any of these significant SNPs, and no statistical support for an

interaction between the significant SNPs in KIT, MITF and the

locus on chromosome 8 when we fitted models evaluating these

effects.

Figure 2 also illustrates an interesting property of genome wide

association studies in black and white dairy cattle, and other

breeds and species with small recent effective population size. The

SNP residing in the KIT gene has the largest F-value, exceeding

the next largest SNP by 10 F units. However there are significant

SNPs extending 10-15Mb either side of the most significant SNP.

This is likely to be caused by the pattern of linkage disequilibrium

in livestock: while at short distances levels of r2 between markers

are similar to that observed in humans, low levels of LD (r2#0.1)

extend for many Mb in Holstein-Friesian cattle, probably due to

recent reduction in effective population size [24].

A GWAS for fat% has been conducted in the same data [20].

Briefly, 40 SNPs had validated associations (P,0.01) for fat%,

with the largest effects on chromosome 14 in close proximity to the

DGAT1 gene, and other large effects on chromosomes 2, 6 and 20.

For overall type, a small number of SNPs had validated

associations, however the false discovery rate in the validation

population was close to 100% (Figure S1).

To overcome the tendency to find significant SNPs up to 15 Mb

from a causal variant, we then used a different approach to

conduct the genome wide association studies, where all SNPs were

fitted simultaneously as random effects sampled from a t-

distribution (method BayesA of Meuwissen et al. [25]). The effects

of the SNPs associated with KIT and MITF, and the SNP on

chromosome 8 that was significant in the GWAS, had the largest

absolute value, but there were other smaller effects on chromo-

some 4, 7 and 17, Figure 3. Genome scans conducted in a similar

way for fat concentration in milk (fat%) revealed large effects on

chromosome 14 in close proximity to the DGAT1 gene

(443,937 bp), on chromosome 5 (position 101,015,511 bp) and

20 (34,036,832 bp) for fat%. However there were no effects

greater than 561025 phenotypic standard deviations for overall

type.

Distribution of loci effects for proportion of black, fat
percentage, and overall type
Although these analyses demonstrate the importance of a small

number of loci, they do not describe the complete distribution of

gene effects. Estimated SNP effects will reflect both the QTL effect

and the LD between the QTL and the SNP. Although the level of

LD between SNP and QTL is unknown, the average level of LD

(r2) between adjacent SNPs in our population was only 0.271.

Therefore we took the approach of using chromosome segments to

derive the distribution of effects as chromosome segments with

multiple SNPs are more likely to capture the complete effect of the

QTL. A chromosome segment was defined as consisting of 50

adjacent SNP loci. The SNPs were approximately equally spaced,

such that a 50 SNP segment was 3350kb long. This size of segment

was chosen as a compromise between having too little SNP

information to accurately estimate its contribution to the variance,

and having sufficiently small segments to enable interpretation

regarding the distribution of effects on the trait. Then a genomic

relationship matrix among the animals for that chromosome

segment was constructed (as described in materials and methods

below). To remove variance due to genes in the rest of the genome

and due to population structure, a second genomic relationship

matrix was constructed from all SNPs other than the 50 in the

current chromosome segment. Then the proportion of variance

explained by the 50 SNP chromosome segment was estimated,

with both effects fitted simultaneously.

However, estimates of proportion of variance explained derived

in this way contain sampling error. For instance, even if a

chromosome segment has no effect on the trait, the estimated

variance explained can be positive (it cannot be negative because

maximum likelihood estimation is restricted to the parameter

space and real variances cannot be negative). This was reflected in

the fact that the sum of the variances across the segments without

correction for sampling error was greater than the total genetic

variance. We wish to estimate the distribution of the true effects of

chromosome segments rather than the distribution of estimated

effects. To do this we used permutation to derive the distribution

of the proportion of variance explained due to the sampling error

alone. Then we used maximum likelihood to estimate the

distribution of true effects (Figure 4) which, when combined with

the distribution of sampling errors, would yield the observed

distribution of the estimated variance explained by 50 SNP

chromosome segments. When we did this, for all three traits many

segments explain ,0.1% of the genetic variance and for

proportion black 96% of segments fall into this category. If the

genetic variance contributed by the segments explaining less than

0.1% of the genetic variance is summed, such segments appear to

explain half the variance for both overall type and proportion of

black. However, there are tens of segments that explain 0.1–4.7%

of the variance for all three traits. For proportion of black there are

also a three segments explaining 4.7% to 18.8% of the variance

and for fat% there are three segments explaining 4.7–37.5%. This

concurs with the results of the GWAS for these traits. The total

variance explained is greater then 100% because segments next to

the segment containing DGAT1, for instance, explain a significant

amount of variance, so that the variance explained by DGAT1 is

counted more than once (the total summed variances were 204%,

107%, and 213% for fat%, overall type and proportion of black).

The distribution of variances of chromosome segments can also

be expressed as the cumulative proportion of the total variance

explained when the segments are ranked from largest variance to

Table 1. SNPs with validated associations with proportion of black on coat in a set of 400 Holstein bulls.

SNP Name Chrom. Position F-value Effect size

Proportion of variance

accounted for

ss117968126 6 72104530 76.92 14.96% 9.4%

ss86322805 8 64164842 11.40 24.97% 6.0%

ss61545343 22 32459763 32.58 10.48% 8.8%

F-value, effect size, and proportion of variance explained are all for the validation data set.
doi:10.1371/journal.pgen.1001139.t001

Trait Architecture and Genomic Prediction Accuracy
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Figure 2. Genome-wide association study for proportion of black. Results for (A) chromosome 6, (B) chromosome 22, and (C) chromosome 8.
The location of the KIT. MITF and PAX5 genes are also indicated.
doi:10.1371/journal.pgen.1001139.g002

Trait Architecture and Genomic Prediction Accuracy
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smallest (Figure 5). The variances of the segments surrounding the

segment containing KIT, MITF and the locus on chromosome 8

were set to zero so variance caused by these mutations was not

double counted. The same procedure was used for the segments

surrounding the DGAT1 gene and other large effects for fat%. For

proportion of black and particularly fat%, a small proportion of

segments are necessary to capture a significant proportion of the

variance, while for overall type a greater number of segments are

required. Note that the sum of the variance from the segments

explaining the largest proportion of the variance is now 20%,

compared with 24% estimated from the GWAS. This reflects the

fact that the estimate of variance explained is regressed to account

for estimation error. For proportion of black, as segments other

than the three containing KIT, MITF and the significant SNP on

chromosome 8 only explain a small proportion of the variance,

many of them are required to explain even the majority of the

variance.

Effect of the distributions of loci effects on the accuracy
of genomic prediction
To investigate the effect of the distributions of loci effects on the

accuracy of genomic estimated breeding values, we used SNP

effects for each trait from the Bayesian approach described above

to predict genomic estimated breeding values. This was done for

the independent validation population of 400 bulls, as

GEBV~Xĝg, where X is a matrix with a row for each animal

and a column for each SNP and Xij is the number of ‘‘2’’ alleles

where they alleles are designated 1 or 2, ĝg is a vector containing

the estimate of the size of the effect of marker (the effect of

inheriting on copy of allele 2) when the effect of the first allele is set

to zero. The phenotypes of the animals in the validation

population were not used to predict the SNP effects. To estimate

the accuracy of the GEBV we used the correlation between it and

the phenotype of each animal corrected for the correlation of the

phenotype with the true genetic value. The accuracies of genomic

estimated breeding value were 0.56, 0.69 and 0.80 for overall type,

proportion of black and fat% respectively, Table 2. The accuracy

of these GEBVs was compared to that obtained using a statistical

analysis (BLUP) that assumed all SNP effects are sampled from a

normal distribution and therefore no large effects exist. These

accuracies of the GEBVs using the Bayes A method were higher

than those using the BLUP method for fat% and proportion of

black but lower for overall type, Table 2.

GEBV was also calculated using subsets of SNPs ranked in order

of the size of their effect. For each subset, BayesA was re-run to

predict SNP effects. For proportion of black, a very small number of

SNPs were required to achieve close to 95% of the accuracy possible

with the full set of SNPs, while at the other extreme for overall type

2000 SNPs were required to achieve greater than 90% of the

accuracy possible with the full set of SNPs, Figure 6.

Figure 3. Genome-wide SNP effects when all SNPs are fitted simultaneously for three traits in Holstein Friesian cattle. Proportion of
black (A), fat% (B), and overall type (C). Note the different scale of the y axis for overall type compared with proportion of black and fat%.
doi:10.1371/journal.pgen.1001139.g003

Trait Architecture and Genomic Prediction Accuracy
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For traits with a few moderate effects, and many small effects,

such as proportion of black, the accuracy of estimating the

moderate effects will be much higher than the accuracy of

estimating the very small effects. There is also a large effect of the

number of records used to estimate the effects – for proportion of

black there were only 327 records while for the other traits there

were 756 records. When the estimated effects are used in a

prediction equation for estimated breeding values, the moderate

effects therefore contribute the overwhelming majority of the total

accuracy of prediction. With a small number of phenotypic

records, the estimates of segments with small effects can be so

inaccurate that they contribute nothing to the accuracy of

prediction. This explains the apparent discrepancy between

Figure 5, where many chromosome segments are needed to

capture the total genetic variance of the trait, and Figure 6, where

close to the maximum accuracy of prediction achievable with all

SNPs (0.59, Table 2) is achieved with less than 10 SNPs.

Effect of architecture of complex traits on genomic
predictions
Our results demonstrate that large differences exist in the

architecture of different complex traits. For both proportion of

black and fat% there are segregating mutations of moderate effect

so that the distribution of effects is leptokurtotic. This in contrast to

overall type which has only loci of small effect, and the distribution

of these effects could be assumed to be normal.

Information on the degree of leptokurtosis of the distribution of

effects can be used to guide the design of experiments that will

subsequently enable genomic predictions. A deterministic method

has been developed to predict the accuracy of genomic estimated

breeding values [7]. The parameters of this formula were the

number of phenotypic records in the reference population (N), the

heritability of the trait (h2), the length of the genome (L), and the

distribution of QTL effects. The distribution of effects could be either

normal or leptokurtotic. When a normal distribution of effects is

assumed, the accuracy of genomic breeding values can be predicted

as r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{l=(2N
ffiffiffi

a
p

) � ln((1zaz2
ffiffiffi

a
p

)=(1za{2
ffiffiffi

a
p

)½ �
p

where

a=1+2 l/N, and l=qk/h2, with k= 1/log(2Ne), where Ne is the

effective population size. The parameter q=number of independent

chromosome segments in the population. The value of q used here

was 2NeL, where L is the length of the genome inMorgans. Using the

same number of phenotypic records as were used in our experiment,

and the same heritabilities of the traits, the deterministic prediction

of accuracies are given Table 2. For leptokurtotic distributions, there

is no closed form equation for the accuracy of breeding values, but

these accuracies can be derived by numerical integration of the

accuracy of predicting the effects given the assumed distribution and

allele frequencies [7]. A t distribution with 4.012 degrees of freedom

was used to model the distribution of effects, and a U shaped

distribution of allele frequencies as expected under the neutral model

was used [25]. As expected, the leptokurtotic distribution of effects

gave higher predicted accuracies of genomic breeding value than a

Figure 4. Distribution of proportion of variance explained by 50 SNP chromosome segments for three traits. Proportion of black (A),
fat % (B), and overall type (C). The x axis is on a logarithmic scale. (D-F) are extreme right hand side of the same graphs, with the x axis from 0.023 to
1.0 proportion of variance explained.
doi:10.1371/journal.pgen.1001139.g004

Trait Architecture and Genomic Prediction Accuracy
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normal distribution of effects. The observed accuracy of GEBVs for

overall type in our experiment, 0.35, matches closely the prediction

for accuracy of GEBV for a quantitative trait with the same

heritability and a normal distribution of effects. Conversely, both

fat% and proportion of black better match the predictions when a

leptokurtotic distribution of effects was used.

The maximum accuracy for GEBVs should be obtained when

the assumed distribution of effects matches the true distribution

[7]. In the absence of knowledge about the true distribution two

extreme approaches have been used. In one all SNP effects are

assumed to come from a single normal distribution (the analysis

called BLUP above). In the other only a small number of highly

significant and validated SNPs from GWAS are used. For

example, vanHoek et al. [26] used 9 validated genetic polymor-

phisms to predict disease risk for type 2 diabetes. In their study, the

value of the SNP information was low, with only marginal

Figure 5. Cumulative proportion of variance explained by chromosome segments, ranked from most to least variation explained,
derived from the distribution of proportion of variance explained.
doi:10.1371/journal.pgen.1001139.g005

Table 2. Deterministic predictions of accuracy of genomic breeding value (GEBV) and realised accuracies of genomic breeding
values.

Trait

Overall type Proportion of black Fat %

Number of records in reference set 756 327 756

Heritability of records 0.63 0.74 0.83

Deterministic prediction of accuracy of GEBV

Normal distribution of effects 0.35 0.26 0.39

Leptokurtotic distribution of effects 0.75 0.66 0.93

Realised accuracy of GEBV

BLUP 0.42 0.46 0.63

BAYESA 0.38 0.59 0.73

The deterministic predictions assumed either normal or leptokurtotic (t, degrees of freedom=4.012) distributions of effects, a genome length of 30 Morgans and
effective population size of 100 (Goddard 2008, as modified by Hayes et al. 2009).
doi:10.1371/journal.pgen.1001139.t002

Trait Architecture and Genomic Prediction Accuracy
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improvement as a result of using the genetic polymorphisms

beyond clinical characteristics. In this paper we have demonstrat-

ed that for some traits, such as overall type, a large number of

SNPs will be required to predict the trait with any accuracy. An

approach where all SNPs are fitted simultaneously to derive a

prediction equation, ignoring significance levels, should lead to

higher accuracies of prediction, than an approach which uses only

associations detected in GWAS with stringent thresholds. The

accuracies achievable with this approach can be predicted

deterministically provided we have some knowledge of whether

the distribution of QTL effects is normal or leptokurtotic. The

deterministic results agree only reasonably well with those we

observed for proportion of black, fat% and overall type, suggesting

that further knowledge about the distribution of effect would be

beneficial. However, even with current knowledge the determin-

istic approach can be used to design experiments to develop

genomic predictions.

It interesting to speculate on why large effects are segregating

for fat% and proportion of black, but not overall type. For fat%,

the fact that DGAT1 continues to segregate in the population may

reflect the change in breeding goal for dairy cattle over time [21].

The mutant allele decreases milk fat yield but increases milk

volume so artificial selection is likely to have favoured it at times

but not consistently. This swept the allele to moderate frequencies

in the population. Mutations causing white spotting must have

been selected by breeders of black and white cattle since it is their

defining feature. Thus in both cases, mutations which would have

been unfavourable before domestication, were selected and still

segregate at intermediate frequencies. Overall type has also been

subject to artificial selection pressure since domestication.

However, any mutations of large effect would have a detrimental

effect on overall fitness (natural and artificial) and would likely

have been quickly removed from the population.

There is little evidence for alleles of large effect for most

complex traits [27]. Thus most complex traits are like overall type

in architecture. Fat% and proportion black may be examples of

transient situations where a change in selection pressure has driven

a mutation to intermediate frequency. Recently Eyre-Walker [28]

argued that rare alleles of large effect should explain much of the

variation in complex traits if there is natural selection for the trait.

Our results suggest that if alleles of large effect do exist, they are at

such low frequency that they individually explain a small

proportion of the variance. For overall type and proportion of

black at least we find that the majority of variance is contributed

by a large number of chromosome segments, each explaining a

small proportion of the total variance. The question is then do the

segments explain a small proportion of the total variance because

they harbour QTL of small effect at moderate frequency, or

because they harbour QTL of large effect at very low frequency.

While our experiment cannot answer this question directly, some

evidence that the former explanation might be true comes from

linkage experiments. Linkage experiments can estimate QTL

effect sizes directly, rather than through SNP in LD with the QTL,

as the association of the marker and QTL within families will be

almost perfect, provided enough markers are used. Provided at

least one sire in the experiment is heterozygous at the QTL, a

QTL of large effect should be detected. However, despite quite

large linkage mapping studies in dairy cattle with many sires and

very large numbers of progeny, very few QTL of large effect were

found for complex traits [29–30]. One exception was the DGAT1

Figure 6. Accuracy of genomic breeding value (GEBV) when a given number of SNPs of largest effect are used to calculate the
GEBV.
doi:10.1371/journal.pgen.1001139.g006

Trait Architecture and Genomic Prediction Accuracy
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region on chromosome 14, which was highly significant in many

linkage mapping experiments [eg 21]. Taken together, our results

and the results of the linkage mapping studies suggest that,

although mutations of moderate effect occur (as demonstrated

here for fat% and proportion black), they are very rare for

complex traits compared to mutations of small effect. Our results

have some implications for explaining the ‘‘missing heritability’’ in

GWAS of human population data [27]; namely that some of the

missing heritability is explained by mutations with very small

effects on the trait (undetectable by GWAS), but there are very

many of them. Dairy cattle have some advantages for studying this

question because large amounts of data are available through the

breeding programme, because analyses of sires with large numbers

of tested progeny produce traits with high effective heritabilities

and because the LD structure may be relatively favourable for

capturing genetic variance with 10-fold fewer markers than are

used in humans. However it must be pointed out that conclusions

results from cattle may not be relevant for other species: the larger

LD blocks in cattle than other species will mean more variance per

‘‘effective’’ locus than in populations with larger effective

population size. Further, the history of cattle domestication with

at least two separate domestications followed by hybridisation

events and strong artificial selection may produce unusual patterns

of diversity and LD and the distribution of allele effects may owe

more to recent population demographics and artificial selection

than to the natural selection for fitness that will drive other

populations including humans.

Materials and Methods

Samples and SNPs
The data set consisted of 1200 Australian Holstein bulls. For

fat% and overall type the ‘phenotype’ used for each bull was the

mean phenotype of his daughters. To obtain this phenotype we de-

regressed the Australian breeding values (ABVs) to remove the

contribution from relatives other than daughters [3] while

retaining the correction for non-genetic effects such as herd. All

bulls with de-regressed estimated breeding values had at least 80

daughters. The traits measured in the bull’s daughters were fat%

in a sample of the milk on each test day, and overall type. Overall

type is composite trait combining scores for a number of aspects of

the cow’s conformation, including frame-capacity, rump, feet and

legs, fore udder, rear udder, mammary system and dairy character

(see http://www.adhis.com.au/ for more details). For portion of

black, each bull himself was scored according to the proportion of

black on the entire body, from 0% to 100% black. The values

ranged from 5% black to 95% black. The scorer was the same for

all the bulls.

The bulls were genotyped for the Illumina Bovine50K array,

which includes 54,001 Single Nucleotide Polymorphism (SNP)

markers [31]. The following criteria and checks were applied to

the bull’s genotypes. Mendelian consistency checks revealed a

small number of either sons who were discordant with their sires at

many (.1000) SNPs or sires with many discordant sons. These

animals (17) were removed from the data set. We omitted bulls if

they had more than 20% of missing genotypes. 1181 bulls passed

these criteria.

Criteria for selecting SNPs were; less than 5% pedigree

discordants (eg. cases where a sire was homozygous for one allele

and progeny were homozygous for the other allele), 90% call rate,

MAF.2%, Hardy Weinberg P,0.00001. 40077 SNPs met all of

these criteria. A small number of these were not assigned to any

chromosome on Bovine Genome Build 4.0, and were omitted

from the final data set, as were SNPs on the X chromosome.

Parentage checking was then performed again, and any genotypes

incompatible with pedigree were set to missing.

To impute missing genotypes, the SNPs were ordered by

chromosome position. All SNPs which could not be mapped or

were on the X chromosome were excluded from the final data set,

leaving 39,048 SNPs. To impute missing genotypes, the genotype

calls and missing genotype information was submitted to

fastPHASE chromosome by chromosome [32]. The genotypes

were taken as those filled in by fastPHASE. The accuracy of

imputing genotypes was 98.6% [5].

The discovery dataset consisted of bulls progeny tested before

2004 (n = 756). For proportion of black portion 327 bulls in the

reference set had phenotypes. The bulls in the validation dataset

were progeny tested during or after 2004 (n= 400)

Genome-wide association study for proportion of black
In the discovery set of bulls, a linear model was fitted to the

bull’s proportion of black phenotypes to determine if the SNPs

accounted for any variation. The top–bottom called genotypes

were re-coded as 0 for the homozygote of the first alphabetical

allele, 1 for the heterozygote, and 2 for the homozygote of the

second alphabetical allele. The effect of each SNP was estimated in

turn using the model y~mzSzxbze where y is a vector of

proportion of black, m is the mean, S is the (random) effect of the

sire of each bull, x is a vector of genotypes, b is the effect of the

SNP, and e is a vector of random residuals. The variance of the

sire effects was Is2
S where I is an identity matrix and s2

S is the

sire variance. Fitting the sire effect should remove any spurious

associations due to family structure. All data analyses were

performed using mixed linear models with variance components

estimated by residual maximum likelihood [33]. SNPs that were

significant at P,0.0001 were fitted in the validation set using the

same model as above.

Genomic prediction
Best linear unbiased prediction (BLUP). If there are many

QTLs whose effects are normally distributed with constant

variance, then genomic selection is equivalent to replacing the

expected relationship matrix with the realised or genomic

relationship matrix (G) estimated from DNA markers in the

BLUP equations. [7,34–37]. The model was

y~1nmzZgze

Where y is a vector of phenotypes, m is the mean, 1n is a vector of

1s, Z is a design matrix allocating records to estimated breeding

values, g is a vector of breeding values and e is a vector of random

normal deviates ,N(0,s2e). The breeding value g can be modelled

by the combined effects of all the SNPs g=Wu where uj is the

effect of the jth SNP, and V (g)~WW0s2u. Elements of matrix W

are wij for the ith animal and jth SNP, where wij=022pj if the

animal is homozygous 11 at the jth SNP, 122pj if the animal is

heterozygous and 222pj if the animal is homozygous 22 at the jth

SNP, where pj is the allele frequency of the 1 allele of the SNP. The

diagonal elements of WW9 will be
P

m

j~1

2pj(1{pj) where m is the

number of SNPs. If WW9 is scaled such that G~
nWW0

P

n

i~1

wii

then

V (g)~Gs2g.

Estimated breeding values for both phenotyped and non-

phenotyped individuals can be predicted by:
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Where G is the realised relationship matrix calculated as above,

and s2g is a genetic variance. Variance components were estimated

with ASREML [33].

The realised accuracy of GEBV was calculated as r(GEBV,

yval)/h where yval was the phenotype (either deregressed estimated

breeding values for overall type and fat%, or the bull’s own

proportion of black), for bulls in the validation set, and h is the

correlation between the phenotype and the true breeding value

estimated, (the square root of the heritability of the records was used).

BayesA. A Bayesian approach to simultaneously predicting

the effect of all SNPs to derive the prediction equation was used,

namely BayesA [25]. BayesA has a prior assumption that SNP

effects are t-distributed. The model fitted was:

y~1n
0mzXuzZvze

Where y is a vector of n phenotypes, X is (n6m) a design matrix

allocating records to the marker effects with element Xij=0, 1 or 2

if the genotype of animal i at SNP j is 11, 12 or 22 respectively. u is

a (m61) vector of SNP effects assumed normally distributed

ui*N(0,s2ui), e is a vector of random deviates where s2e is the

error variance, vi is the polygenic breeding value of the ith animal,

with variance As2a, where A is the numerator relationship matrix

derived from pedigrees. In BayesA the prior for s2ui was an inverse

chi square distribution with 4.012 degrees of freedom. This

describes a moderately leptokurtotic distribution [25]. Using the

predicted SNP effects from each method, we predicted the GEBVs

in the validation sets as GEBV~v̂vzXûu. The realised accuracy of

GEBV was derived as described for BLUP above.

Estimating the distribution of the proportion of variance
explained by chromosome segments
For each 50SNP segment of chromosome, we estimated the

proportion of variance explained by building a genomic relation-

ship matrix (as described above) based on the 50SNPs only (G1),

and a second genomic relationship matrix (G2) using all SNPs except

those in the current 50 SNP segment. We the fitted the model

y~1nmzZg1zZg2ze

Where y is a vector of phenotypes, m is the mean, 1n is a vector of 1s,

Z is a design matrix allocating records to animals, g1 is a vector of

genetic effects for a 50 SNP segment, assumed to be normally

distributed with mean 0 and co(variance) G1s
2
g1, g2 is a vector of

breeding values based on all the other segments, assumed to be

normally distributed with mean 0 and co(variance) G2s
2
g2 and e is a

vector of random normal deviates ,N(0,Is2e). Variance compo-

nents were estimated with ASREML [33], and the proportion of

variance explained by each segment was calculated as

s2g1=(s
2
g1zs2g2zs2e).

The estimate of the proportion of variance explained by a

chromosome segment i (y2i ) is naturally subject to some sampling

error. y2i is analogous to the squared correlation between the effect

of the segment and the phenotype so yi is analogous to the

correlation. We modelled yi as yi~tizei where ti is the true

correlation between segment i and phenotype and ei is a sampling

error While it is not possible to estimate the sampling error for a

specific segment, we can estimate the distribution of sampling

errors. To do this the phenotypes were permuted across the

genotypes 1000 times and the proportion of variance explained by

each segment re-calculated. Under the null hypothesis that there is

no real correlation between segments and phenotypes, the

distribution of the estimated proportion variance explained should

be a mixture of zero and a chi-square with 1 degree of freedom

(half the time the correlation would be estimated to be negative but

maximum likelihood always reports an estimate within the

parameter space and so half he reported estimates of variance

are zero). Therefore the square roots of these estimates were

assumed to be near-zero (half the time) and the positive half of a

normal distribution the other half. The standard deviation of e, s,
was then taken as the square root of the average proportion of

variance explained multiplied by 2 (the multiplication by two was

to account for the fact that negative estimates of the proportion of

variances explained are reported as zero).

We then used maximum likelihood to estimate the distribution

of true chromosome segment variances (ti
2) given that we had a

sample of estimated chromosome segment variances (y2i ) and

yi~tizei with ei,N(0,s).

We estimate the distribution of t and then convert that to a

distribution of t2. We did not wish to assume any parametric form

for the distribution of t so we approximate it by a discrete

distribution in which the proportion explained can only take

values j=0.00, 0.005 and so on to 1 (eg 100 classes between 0 and

1, but including 0). We then estimate the frequency of these

discrete values. The probability of observing yi given j and s was

taken as w(yi,j,s) if yiw0 and Q(0,j,s) if yi~0 where w(pi,xj ,s) is

the density function of the normal distribution and Q(0,j,s) is the

cumulative function of the normal distribution. (If t+e is negative
for a segment then y2 would be reported as zero since negative

variances are not allowed).

Then an expectation maximisation (EM) algorithm was used to

estimate the proportion of chromosome segments in each class fj.

The EM algorithm had three steps

1. Initialise each fj. to 0.01.

2. Calculate the probability of the j given the yi was

P(jDyi)~
P(jDyi)fj

P

100

j~1

P(yi Dj)fj

3. Update the proportion of chromosome segments in each class

as fj~

P

P(jDyj)

n

Steps 2 and 3 were repeated until the fj values did not change

between iterations. The results (Figure 4) are presented as a

distribution of t2 where the frequencies all values of t between

!0.01 and !0.03 are summed and presented as the frequency of

0.01,t2,0.03 etc.

Supporting Information

Figure S1 Genome-wide association study for overall type, by

chromosome and position. Light grey dots are significance levels in

the Holstein discovery population, black dots are SNPs which

significant in the discovery population at P,0.0001 and were also

significant in the validation population at P,0.05.

Found at: doi:10.1371/journal.pgen.1001139.s001 (0.03 MB PDF)
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