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Most existing expression quantitative trait locus (eQTL)mapping studies have been focused on individuals of European ancestry and are

underrepresented in other populations including populations with African ancestry. Lack of large-scale well-powered eQTL mapping

studies in populations with African ancestry can both impede the dissemination of eQTL mapping results that would otherwise benefit

individuals with African ancestry and hinder the comparable analysis for understanding how gene regulation is shaped through evolu-

tion. We fill this critical knowledge gap by performing a large-scale in-depth eQTL mapping study on 1,032 African Americans (AA) and

801 European Americans (EA) in the GENOA cohort. We identified a total of 354,931 eSNPs in AA and 371,309 eSNPs in EA, with

112,316 eSNPs overlapped between the two. We found that eQTL harboring genes (eGenes) are enriched in metabolic pathways and

tend to have higher SNP heritability compared to non-eGenes. We found that eGenes that are common in the two populations tend

to be less conserved than eGenes that are unique to one population, which are less conserved than non-eGenes. Through conditional

analysis, we found that eGenes in AA tend to harbor more independent eQTLs than eGenes in EA, suggesting potentially diverse genetic

architecture underlying expression variation in the two populations. Finally, the large sample sizes in GENOA allow us to construct ac-

curate expression predictionmodels in both AA and EA, facilitating powerful transcriptome-wide association studies. Overall, our results

represent an important step toward revealing the genetic architecture underlying expression variation in African Americans.
Introduction

Genome-wide association studies (GWASs) have identi-

fied thousands of genetic variants that are associated

with various diseases and disease-related complex traits.

However, the vast majority of these disease-associated

variants reside in non-coding regions and have unknown

functions.1–4 While variants in non-coding regions

cannot directly alter the function of a gene through dis-

rupting protein-coding sequencing, they can influence

the level of gene expression through impacting the regu-

latory mechanisms underlying expression. Indeed, in

recent years, expression quantitative trait loci (eQTL)

mapping studies have successfully identified many cis-

acting genetic variants that are associated with gene

expression levels.5–8 These identified eQTLs can help

elucidate the molecular mechanisms underlying disease

associations and facilitate the identification of biological

pathways underlying disease etiology. For example, it

has been shown that genetic variants associated with

common diseases tend to be eQTLs and vice versa.1,9,10

In addition, identified eQTLs in mapping studies can

also provide invaluable information to enhance the

power of future GWASs.11

To date, most existing eQTL mapping studies have been

performed on individuals with European ancestry. eQTL

mapping studies in other populations are noticeably un-

derrepresented, with a particularly noticeable absence of
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large studies in populations with African ancestry. Indeed,

only a few eQTL mapping studies were carried out thus far

on individuals with African ancestry and these studies

often had small sample sizes that limited the statistical

power of eQTL mapping. For example, HapMap3 included

only 108 Yoruba (YRI) samples; the Geuvadis study

included 89 YRI samples;12 a study on population differ-

ence in immune response collected 100 individuals

with African ancestry;13 and the Multi-Ethnic Study of

Atherosclerosis (MESA) cohort included 233 African Amer-

icans.14 Because of differences in allele frequencies and

linkage disequilibrium (LD) patterns, eQTL mapping re-

sults can vary, sometimes quite substantially, across popu-

lations with diverse genetic backgrounds.15 Consequently,

eQTLs identified in one population are not necessarily

eQTLs in another population, and eQTL mapping results

from one population may not necessarily benefit or trans-

fer to another population. In addition, and equally impor-

tantly, a lack of eQTL mapping studies in populations with

African ancestry also hinders the progress of comparative

analysis between Africans and other populations in terms

of the genetic architecture differences underlying gene

expression variation. Indeed, only a limited number of

comparative studies have been performed between popula-

tions, and again with small sample sizes.12,16,17 Compara-

tive studies on the genetic regulation of gene expression

across populations can provide important insights into

the genetic differences among populations that may
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have been shaped by evolutionary forces. Therefore, well-

powered eQTL mapping studies with large sample sizes

in populations with African ancestry is critically needed

to realize the potential and benefits of eQTL mapping

studies across human populations.

To fill the above critical knowledge gap, here, we

collected gene expression and genotype data from 1,032

African American (AA) samples and 801 European Amer-

ican (EA) samples from the Genetic Epidemiology Network

of Arteriopathy (GENOA) study. We paired genotypes and

gene expression data in these samples together to perform

a comprehensive cis-eQTL mapping in both populations.

By comparing eQTL mapping results in the two popula-

tions, our results reveal the genetic architecture differences

underlying gene expression variation between African

Americans and European Americans.
Material and Methods

Subjects
The Genetic Epidemiology Network of Arteriopathy (GENOA) is a

community-based study of hypertensive sibships that was de-

signed to investigate the genetics of hypertension and target organ

damage. The study includes both African Americans (AA) from

Jackson,Mississippi and European Americans (EA) from Rochester,

Minnesota.18 In the initial phase of GENOA (phase I: 1996–2001),

all members of sibships containing at least two individuals with

essential hypertension clinically diagnosed before age 60 were

invited to participate, including both hypertensive and normoten-

sive siblings. Exclusion criteria for GENOA included secondary

hypertension, alcoholism or drug abuse, pregnancy, insulin-

dependent diabetes mellitus, or active malignancy. Eighty percent

of AA (n ¼ 1,482) and 75% of EA (n ¼ 1,213) from the initial study

population returned for the second examination (phase II: 2001–

2005). Demographic information, medical history, clinical charac-

teristics, lifestyle factors, and blood samples were collected in each

phase. Written informed consent was obtained from all subjects

and approval was granted by participating institutional review

boards (University of Michigan, University of Mississippi Medical

Center, and Mayo Clinic).
Genotyping Data and Quality Control
AA and EA blood samples were genotyped using either the Affyme-

trix Genome-wide Human SNP Array 6.0 platform or the Illumina

Human1M-DUO Beadchip. For each platform, participants were

excluded if they had an overall SNP call rate< 95%or sexmismatch

between genotype and self-report. SNPs were excluded if they had a

call rate < 95%. Principal component analysis was performed to

identify and remove samples whose genotype profile appeared to

be different from all other samples (outliers). After removing

outliers, there were 1,599 AA samples and 1,464 EA samples with

available genotype data. Imputation was performed using the

Segmented HAPlotype Estimation & Imputation Tool (SHAPEIT19

), v.2.r and IMPUTE v.220 using the 1000 Genomes project phase

I integrated variant set release (v.3) in NCBI build 37 (hg19) coordi-

nates (released on March 2012). Since genotyping was performed

on multiple platforms, imputation was performed separately by

platform and then the imputed data were combined. After imputa-

tion, SNPs withminor allele frequency (MAF)%0.01 or imputation
quality score (info score) %0.4 in any platform-based imputa-

tion were removed. The final set of genotype data included

30,022,375 and 26,079,446 markers for AA and EA, respectively,

covering both SNPs and SNVs/indels. In our eQTL mapping anal-

ysis (more details below), we focused on genotype information

for 6,432,684 imputed cis-SNPs on 1,032 AA individuals, and geno-

type information for 3,818,520 imputed cis-SNPs on 801 European

American individuals that also have gene expression data.

In EA and AA separately, the GENESIS package in R was used to

infer population structure.21 We used the PC-AiR function to

extract the first five genotype PCs and used GEMMA22 to estimate

an individual relatedness matrix. Both PCs and the relatedness

matrix were included as covariates in the eQTL mapping analysis.
Gene Expression Data and Quality Control
Since eQTL architectures can change dynamically during the

development and differentiation of cells, it is essential to map

eQTLs in purified cell types.23,24 In our study, gene expression

levels were measured using lymphoblastoid cell lines (LCLs)

from a subset of AAs (n ¼ 1,233) and EAs (n ¼ 919) in order to

minimize environmental influences. The gene expression levels

of AA samples were measured using the Affymetrix Human Tran-

scriptome Array 2.0 and those of EA samples were measured using

the Affymetrix Human Exon 1.0 ST Array. We used the Affymetrix

Expression Console provided by Affymetrix for array quality con-

trol and all array images passed visual inspection. In AA, we

removed 28 samples due to either low signal-to-noise ratio

(n ¼ 1), abnormal polyadenylated RNA spike-in controls (Lys <

Phe < Thr < Dap; n ¼ 24), sample mislabeling (n ¼ 2), or low

RNA integrity (n ¼ 1), leaving a total of n ¼ 1,205 for analysis.

In EA, we removed duplicated samples (n ¼ 31), control samples

(n ¼ 11), and sex mismatch samples (n ¼ 2), leaving n ¼ 875 for

analysis. We processed data in each population separately. Specif-

ically, raw intensity data were processed using the Affymetrix Po-

wer Tool software.25 Affymetrix CEL files were normalized using

the Robust Multichip Average (RMA) algorithm which included

background correction, quantile normalization, log2-transforma-

tion, and probe set summarization.26 The algorithm also includes

GC correction (GCCN), signal space transformation (SST), and

gain lock (value ¼ 0.75) to maintain linearity. The Brainarray

custom CDF27 version 19 (see Web Resources) was used to map

the probes to genes. This custom CDF27 uses updated genomic an-

notations and multiple filtering steps to ensure that the probes

used are specific for the intended gene cluster. In particular, it re-

moves probes with non-unique matching cDNA/EST sequences

that can be assigned to more than one gene cluster. Consequently,

the gene expression data processed through the custom CDF in27

is expected to be largely free of mappability issues. However, we

do acknowledge that alignment bias may still exist due to genetic

variation, errors in the reference genome and other complica-

tions.28 After mapping, we used ComBat software29 to remove

batch effects. Finally, the gene expression data were quantile

normalized across genes for the following eQTL analysis. A total

of 17,616 autosomal protein-coding genes in AA and 17,360 auto-

somal protein-coding genes in EA were available for analysis. In

AA samples 17,572 genes and in EA samples 17,343 genes were

mapped to the corresponding imputed SNPs.
eQTL Mapping Analysis
The eQTL mapping analysis was performed in AA and EA

samples separately, using individuals with both genotype and



gene expression data (n¼ 1,032 in AA and n¼ 801 in EA). For each

gene, we first extracted cis-SNPs that are within 100 kb of tran-

scription start site or transcription end site of genes, following rec-

ommendations by Peters et al.30 A total of 17,572 genes in AA and

a total of 17,343 genes in EA had non-zero cis-SNPs. The median

number of cis-SNPs per gene is 722 for AA (mean ¼ 825.8; SD ¼
649.8) and 418 for EA (mean ¼ 491.4, SD ¼ 410.8), with range

varying from 1 to 19,808 for AA and from 1 to 13,379 for EA.

We focused our analysis on genes with at least one cis-SNP. For

each gene, we then applied a linear mixed model implemented

in GEMMA22 for eQTL mapping, adjusting for age, gender, the

top five genotype PCs from PC-AiR, and the genetic relatedness

matrix from GEMMA. Afterward, we selected the SNP with the

lowest p value for each gene as the candidate eQTL and used its

p value as the gene-level significance measure. We permuted the

sample labels ten times and applied the same eQTL mapping pro-

cedure to obtain an empirical null distribution of gene-level

p values.31–33 In each population, after each permutation, we

kept the most significant p value per gene. With the empirical

null distribution, we computed the false discovery rate (FDR) asso-

ciated with each p value threshold following Barreiro et al.31 and

Pickrell et al.32 and selected the p value threshold that provided

a 5% FDR control. The p value threshold used is 6.245907e�05

in AA and 1.385504e�4 in EA. We refer to the genes that pass

an FDR threshold of 5% as the identified eGenes and refer to the

SNPs with the lowest p value in these genes as the identified (pri-

mary) eQTLs. We refer to the significant cis-SNPs in the eGenes as

eSNPs. We also used Plink34 to calculate Weir and Cockerham’s

Fst
35 to measure the degree of population differentiation between

AA and EA. Negative values of Weir and Cockerham’s Fst were

treated as zero. The summary statistics from eQTL mapping anal-

ysis along with all analysis scripts are available on our website (see

Web Resources).

We examined the overlap of the detected eGenes and eSNPs in

AA or EA in other replication cohorts (AFA, CAU, and HIS in

MESA; YRI and EUR in Geuvadis; details of these populations are

described below). In particular, we used the qvalue method36,37

to estimate the expected true positive rate p1 between popula-

tions. The p1 statistics was estimated by selecting the SNP-gene

pairs with FDR % 0.05 in AA or EA population from the GENOA

cohort and examining their p value distribution in each replica-

tion cohort (YRI and EUR in Geuvadis, AFA, CAU, HIS in MESA).

p0 is the proportion of false positives estimated by assuming a uni-

form distribution of null p values and p1 ¼ 1� p0.
37

For each eGene in turn, we performed conditional analysis to

identify additional conditional eQTLs following Jansen et al.33

To do so, we refer to the primary eQTLs as E1 SNPs. For each

gene in turn, we performed association analysis conditional on

the E1 SNP and identified the strongest SNP association among

the remaining SNPs. We refer to the identified SNP as an E2 SNP

if its conditional p value is below the genome-wide significance

threshold established in the above paragraph. Afterward, we per-

formed further association analysis conditional on both E1 and

E2 SNPs to identify E3 SNPs. We repeated such process until the

smallest p value among the remaining SNPs can no longer exceed

the genome-wide significance threshold.

We performed subsampling analysis to check whether gene

length is a potential source of bias in eQTL detection. In the first

analysis, we focused on half of the genes that have a SNP number

greater than or equal to the median value (8,802 genes in AA and

8,694 genes in EA). For each gene in turn, we down-sampled its

cis-SNPs to themedian value, so that all genes have the same num-
ber of cis-SNPs. In the second analysis, we focused on the genes

with SNP density higher or equal to the median (8,787 genes in

AA and 8,672 genes in EA). The SNP density is defined as the ratio

between the number of SNPs in a gene and the length of that gene.

Afterward, for each gene in turn, we randomly subsampled a spe-

cific number of SNPs to do the analysis, while the specific number

is selected as themedian SNP densitymultiple the gene length. For

both subsampling analyses, we repeated the down-sampling pro-

cedure 10 times and averaged results to account for stochasticity

in the down-sampling process.
Controlling for Local Ancestry
We performed local ancestry (LA) inference in AA and EA samples

using the software Efficient Local Ancestry Inference (ELAI)

v.1.0138 in the FRANC interface (see Web Resources). We used

the default settings in ELAI. We downloaded genotype files in

plink format for 83 Utah Residents (CEPH) with Northern and

Western European Ancestry (CEU) and 88 Yoruba in Ibadan,

Nigeria (YRI) populations from the 1000 Genomes Project to serve

as reference panels. We focused on the common set of autosomal

SNPs that are available both in the 1000 Genomes Project and in

the AA or EA samples for ancestry inference. We converted variant

base pair positions to centimorgans using the hg19 genetic map.

The inferred local ancestry is in the value of the number of African

ancestry alleles (0, 1, or 2) for each SNP. We treated these inferred

values as an additional covariate in the eQTL mapping using the

LAMatrix R package.39 Note that the LAMatrix software is not

able to control for family relatedness in GENOA. In the analysis,

we also constructed empirical null distributions as described

above, computed the false discovery rate (FDR) associated with

each p value threshold, and selected the p value threshold

that provided a 5% FDR control. Such p value threshold is

5.962974e�05 in AA and 1.376416e�4 in EA. As described above,

we refer to genes that pass an FDR threshold of 5% as the identified

eGenes and refer to the SNPs with the lowest p value in these genes

as the identified (primary) eQTLs. We also refer to the significant

cis-SNPs in the eGenes as eSNPs.
Gene Expression Heritability Estimation and

Partitioning
For each gene, we estimated the proportion of variance in gene

expression level explained by all SNPs using the Bayesian sparse

linearmixedmodel (BSLMM) implemented in GEMMA. Following

Mogil et al.,14 we also used BSLMM40 to partition the gene expres-

sion variance into a cis-component that is explained by cis-SNPs

and a trans-component that is explained by trans-SNPs. To do so,

for each gene we fit the following model:

y¼mþ xcisbcis þ xtransbtrans þ e

bcis;i � pN
�
0;s2

a

�þ ð1�pÞd0

btrans;i � N
�
0; s2

b

�

Where y is a n by 1 vector of gene expression levels for n individ-

uals; m is the intercept; xcis is the n by pcis matrix of genotypes for

pcis cis-SNPs of interest and bcis are the corresponding effect sizes;

xtrans is the nby ptrans matrix of genotypes for ptrans trans-SNPs of in-

terest (i.e., SNPs that are not cis-SNPs); and btrans are the corre-

sponding effect sizes, here ptrans was based on all genotyped sites

used in our analyses; and e is a n by 1 vector of residual errors.



We used 1,000 burn-in steps and 10,000 sampling steps in the

Markov chain Monte Carlo (MCMC) algorithm to fit BSLMM.

We used the posterior samples of bcis and btrans to calculate

VðxcisbcisÞ=VðyÞ, which represents the proportion of variance

in the phenotype explained by cis-SNPs, as well as

VðxtransbtransÞ=VðyÞ, which represents the proportion of variance

in the phenotype explained by trans-SNPs. Besides the main anal-

ysis where we used all trans-SNPs, we also performed sensitivity

analysis where we used only trans-SNPs that reside on different

chromosomes.
Conservation Scores
We obtained three types of conservation scores: phyloP score,41

phastCons score,42 and dN/dS ratio.43 The phyloP score measures

the evolutionary conservation at each individual alignment site

and the absolute phyloP score is a �log p value for testing the

null hypothesis of neutral evolution. A positive sign of phyloP

score indicates conservation and slower evolution than expecta-

tion, while a negative sign of phyloP score indicates faster evolu-

tion than expectation.44 The phastCons score measures the prob-

ability that each nucleotide belongs to a conserved element and

aims to compare whether the site is better explained by the

conserved model or by the non-conserved model. A higher phast-

Cons score represents more conservation.42 The dN/dS score mea-

sures the direction and magnitude of nature selection on the pro-

tein-coding genes. A dN/dS ratio greater than 1 implies positive

selection; a ratio less than 1 implies negative selection; while a

ratio of exactly 1 indicates no selection.45 We obtained the per-

site phyloP and phastCons scores from the 100-way vertebrate

comparison on the UCSC Genome Browser46 for each base posi-

tion inside the annotated exons and averaged them to obtain

the per-gene phyloP and phastCons scores. We obtained per-

gene dN and dS scores using the BioMart R package.47

We compared the conservation scores in eGenes that are identi-

fied in both populations, eGenes that are uniquely identified in

one population, and non-eGenes. We performed Jonckheere-

Terpstra test to test whether there is an observable trend in conser-

vation scores across these three classes of genes.
Functional Enrichment Analysis
We performed GO and KEGG pathway enrichment analyses to

investigate the shared biological function among eGenes in the

AA and EA populations. We do so by using the g:GOSt tool on

the web software g:Profiler and used the expressed genes as back-

ground.48 In the analysis, we used the default option g:SCS

method in g:Profiler for multiple testing correction. We presented

pathways identified with an adjusted p value< 1e�5. To adjust for

the potential influence of gene length to the GO analysis, we also

carried out GO enrichment using R package GOfuncR.49,50 In the

analysis, we computed family-wise error rates (FWER) based on

permutations of gene-associated variables and used an FWER

threshold of 0.1 to declare enrichment significance.
Comparison of eQTL Results with Previous Studies
We compared our findings (eGenes, eSNPs, and eQTLs) to those

from two previous eQTL mapping studies. These two previous

studies include the Geuvadis Consortium study8 and the Multi-

Ethnic Study of Atherosclerosis (MESA).14 The Geuvadis study

was performed on lymphoblastoid cell lines (LCL) of 465 individ-

uals from five different populations: Utah residents (CEPH) with

northern and western European ancestry (CEU, n ¼ 92), Finns
(FIN, n ¼ 95), British (GBR, n ¼ 96), Toscani (TSI, n ¼ 93), and

Yoruba (YRI, n ¼ 89). The MESA study was performed on CD14þ

monocytes of individuals from three different populations:

African American (AFA, n ¼ 233), Hispanic (HIS, n ¼ 352), and

European (CAU, n ¼ 578). In the Geuvadis results, we directly

matched their reported Ensembl gene IDs to GENOA andmatched

SNPs between studies through their positions. In the MESA data,

we directly matched their reported Ensembl gene IDs to GENOA

and matched SNPs between studies through matching rs IDs.
Gene Expression Prediction
We constructed gene expression prediction models using AA and

EA samples in either GENOA or MESA. We then accessed the pre-

diction performance of these models in a separate study, the Geu-

vadis study. For MESA, we directly downloaded the cis-SNP

weights. These weights were produced by fitting the elastic net

model for gene expression prediction with PrediXcan in the

MESA study.14 For GENOA, we followed the MESA study14 and

used the glmnet R package51 to fit the elastic net model for gene

expression prediction. Also following the MESA study, we set

elastic net regularization penalty a ¼ 0.5. Besides using the elastic

net, we also used BSLMM40 for gene expression prediction. After

building expression prediction models in either MESA and

GENOA, we downloaded individual-level genotype and gene

expression data from Geuvadis and examined the prediction per-

formance there. To do so, we processed the Geuvadis gene expres-

sion data as described in Lappalainen et al.8 Specifically, we

focused our analysis on protein-coding genes that are annotated

fromGENCODE52 (release 12). We removed lowly expressed genes

that have zero counts in at least half of the individuals and re-

tained a total of 15,810 genes. Afterward, we performed PEER

normalization to remove confounding effects and unwanted var-

iations.53 In order to remove potential population stratification

inGeuvadis, we quantile normalized the gene expressionmeasure-

ments across individuals in each population to a standard normal

distribution, and then quantile normalized the gene expression

measurements to a standard normal distribution across individ-

uals from all five populations. In addition to the gene expression

data, all individuals in Geuvadis also have their genotypes

sequenced in the 1000 Genomes project. Among the sequenced

genotypes, we retained 7,072,917 SNPs that have a MAF above

0.05. We compared the prediction performance in a set of 2,524

common genes across all seven prediction models (GENOA AA

and EA with BSLMM and elastic net; MESA AFA, CAU, and HIS

with elastic net). We predicted the expression level of each gene

in the Geuvadis data using the cis-SNP weights constructed in

either GENOA or MESA, with overlap SNPs between GENOA and

Geuvadis and between MESA and Geuvadis. We then measured

the prediction performance using the squared Pearson’s correla-

tion coefficient (R2) between the predicted expression level

and true expression level as described in Mikhaylova and

Thornton.54
TWAS Analysis in WTCCC
The Wellcome Trust Case Control Consortium (WTCCC) study55

data consist of about 14,000 case subjects from seven

common diseases and 2,938 shared control subjects. The cases

include 1,963 individuals with type 1 diabetes (T1D [MIM:

222100]), 1,748 individuals with Crohn disease (CD [MIM:

266600]), 1,860 individuals with rheumatoid arthritis (RA

[MIM: 180300]), 1,868 individuals with bipolar disorder



Table 1. Comparison of eQTL Mapping Results for African Americans and European Americans in the GENOA Study

African American (AA) European American (EA) Overlapping

Number Total Percentage Number Total Percentage Number AA% EA%

eGenes 5,475 17,572 31.16% 4,402 17,343 25.38% 3,048 55.67% 69.24%

eSNPs 354,931 14,511,338 2.45% 371,309 8,521,801 4.36% 112,316 31.64% 30.25%

The first row shows the number of eGenes that are identified in AA (first column), the total number of genes analyzed in AA (second column), the percentage of
genes that are eGenes in AA (third column), the number of eGenes that are identified in EA (fourth column), the total number of genes analyzed in EA (fifth
column), the percentage of genes that are eGenes in EA (sixth column), the number of common eGenes identified in both AA and EA (seventh column), the pro-
portion of eGenes identified in AA that are also identified in EA (eighth column) and the proportion of eGenes identified in EA that are also identified in AA (ninth
column), at FDR %0.05.
(BD [MIM: 125480]), 1,924 individuals with type 2 diabetes (T2D

[MIM: 125853]), 1,926 individuals with coronary artery disease

(CAD [MIM: 608320]), and 1,952 individuals with hypertension

(HT [MIM: 145500]). We obtained quality-controlled genotypes

from WTCCC and imputed missing genotypes using BIM-

BAM.56 We obtained a total of 458,868 SNPs shared across all

individuals. We then imputed SNPs based on the 1000 Genomes

project reference panel using SHAPEIT and IMPUTE2.20 For

TWAS analysis, we focused on genes and SNPs that are shared

between WTCCC and GENOA or shared between WTCCC and

MESA. We calculated the predicted gene expression levels in

WTCCC using models constructed either in GENOA (BSLMM

or elastic net) or MESA (elastic net), with details described in

the previous section. We then tested for association between

the predicted gene expression level and disease status using logis-

tic regression, with the first ten genetic PCs included as covari-

ates. We considered the association between gene and disease

genome-wide significant if its p value is below the Bonferroni

corrected genome-wide threshold of 0.05. For results validation,

for each prediction model in turn, we counted the number of

genes identified in each WTCCC trait (T1D, T2D, RA, HT, CD,

CAD, and BD) that is replicated in post-WTCCC studies. In

particular, we defined replication as the genes within 100 kb of

a previous gene reported to be associated with the same trait in

the GeneCards knowledge base.57
Results

eQTL Mapping in AA and EA Samples in the GENOA

Study

We performed eQTL mapping in the GENOA study in the

AA and EA samples separately. The description of the

GENOA study, the gene expression data collection

and processing procedure, the genotype data collection

and processing procedure, and the eQTL mapping proced-

ure are all provided in Material and Methods. Briefly, the

AA data include expression measurements for 17,616

protein-coding genes and genotype information for

30,022,375 imputed SNPs for 1,032 AA individuals. The

EA data include 17,360 protein-coding genes and genotype

information for 26,079,446 imputed SNPs for 801 EA indi-

viduals. We processed gene expression data with Combat29

to remove batch effects or other technical covariates. We

extracted cis-SNPs within 100 kb of each gene and used

linear mixed models implemented in GEMMA for eQTL

mapping.22 In the analysis, we adjusted for age, gender,
the top five genetic principal components (PCs), as well

as a genetic relatedness matrix to control for familial rela-

tionships. Note that, following previous approaches,58

we determined the number of genotype PCs included in

the model based on maximizing the number of discoveries

(Figure S1). Overall, we examined a total of 17,572 genes

and 6,432,684 unique cis-SNPs, with an average of 825.8

cis-SNPs per gene in the AA samples; and 17,343 genes

and 3,818,520 unique cis-SNPs, with an average of 491.4

cis-SNPs per gene in the EA samples. Following Tung

et al.,59 we refer to a gene that harbors at least one eQTL

as an eGene. We used an empirical gene-level FDR

threshold of 5% constructed across all genes for identifying

eGenes. Following Tung et al.,59 we refer to the lowest p

value SNP in each eGene as the (primary) eQTL. Following

Barreiro et al.31 and Pickrell et al.,32 we refer to any cis-SNP

with a significant association with the eGene as an eSNP.

We used the p value threshold corresponding to the

same empirical FDR of 5% for eGene detection to declare

eSNPs. Besides this primary analysis, we also performed

conditional analysis to identify additional eQTLs (more

in the following section). The summary statistics from

eQTLmapping analysis and all analysis scripts are available

on our website (see Web Resources).

In total, we identified 5,475 eGenes in the AA samples

and 4,402 eGenes in the EA samples, with 3,048 overlap-

ping between AA and EA (overlapping Jaccard index ¼
0.446; Table 1 and Figure 1D). We also identified a total

of 354,931 eSNPs in AA and 371,309 eSNPs in EA, with

112,316 eSNPs overlapping between the two populations

(overlapping Jaccard index ¼ 0.183). The proportion of

overlapped eGenes increases from 53.01% to 59.15% in

AA and increases from 66.81% to 69.05% in EA when the

FDR threshold is increased from 0.01 to 0.2, though the

proportion of overlapped eSNPs remains similar (Table

S1). The lack of complete overlap of eGenes or eSNPs be-

tween the two populations is in part due to statistical

power and in part due to the difference in the genetic ar-

chitecture underlying gene expression levels between pop-

ulations. In addition, our results are largely consistent with

previous studies, with many eSNPs and eGenes in previous

studies replicated in our study. Specifically, compared to

the Geuvadis study,8 81.01% of eGenes and 84.01% of

eSNPs identified in the Yoruba (YRI) population (n ¼ 89)

are also identified in our AA samples. In addition,
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Figure 1. Overview of eQTL Mapping Results in GENOA
(A) The locations of the eQTLs in the eQTL analysis are shown relative to the most 50 gene transcription start site (TSS) and the most 30

gene transcription end site (TES) for each of the 5,475 eGenes in AA.
(B) The locations of the eSNPs are shown relative to the most 50 TSS and the most 30 TES for each of the 4,402 eGenes in EA.
In both (A) and (B), identified eQTLs are enriched near TSS, TES, and gene body. For SNPs residing between TSS and TES, we scaled its
distance to the transcript starting site by gene length.
(C) The effect size and direction of effect for the shared gene-SNP pairs (112,316) between AA and EA are highly consistent.
(D) Venn diagram plots show the overlap of eGenes and eSNPs identified in AA and EA.
65.39% of eGenes and 63.4% of eSNPs identified in the Eu-

ropean (EUR) population in Geuvadis (n ¼ 373) are also

identified in our EA samples (Table 2). Compared to the

MESA study (AFA: n ¼ 233; CAU: n ¼ 578; HIS: n ¼
352),14 32.21% of eGenes and 24.89% of eSNPs identified

in their AFA population are also identified in our AA sam-

ples. Also, 31.23% of eGenes and 19.33% of eSNPs identi-

fied in the CAU population in the MESA study are also

identified in our EA samples (Table 3). However, our anal-

ysis also identified many new eGenes and eSNPs that

were not identified in these previous studies. For example,

compared to the Geuvadis study,8 we identified 4,271 new

eGenes and 22,506 new eSNPs in our AA samples than that

in the YRI population; 2,116 new eGenes and 55,017 new
eSNPs in our EA samples than that in the EUR population.

Similarly, compared to theMESA study, we identified 2,345

new eGenes and 146,651 new eSNPs in our AA samples as

compared to that in the AFA samples; and 1,220 new

eGenes and 99,298 new eSNPs in our EA samples as

compared to that in the CAU samples. We also examined

the true positive rate p1 of the detected eSNPs in the AA

or EA populations that are replicated in theMESA and Geu-

vadis studies. The results show the true positive rate of

eSNPs is in the range of 59.3%–91.9% in AA (with values

varying based on which population the comparison is per-

formed on) and that in the 51.4%–90.9% in EA (Table S2).

Certainly, a lack of complete overlap of eGenes or eSNPs

among different studies is expected, given that statistical



Table 2. Comparison of eQTL Mapping Results between GENOA and Geuvadis

Genes (or Gene-SNP Pairs) Analyzed in Both Studies
Detected in
Geuvadis

Detected in
GENOA

Overlapped between
the Two Studies

GENOA AA (n ¼ 1,205) versus Geuvadis YRI (n ¼ 89)

eGenes 10,539 416 4,608 337

eSNPs 51,611 7,791 29,051 6,545

GENOA EA (n ¼ 801) versus Geuvadis EUR (n ¼ 373)

eGenes 11,130 2,800 3,947 1,831

eSNPs 331,784 159,262 156,027 101,010

The first row shows the number of eGenes that are identified in GENOA AA and analyzed in Geuvadis YRI (first column), the number of eGenes in AA that are also
eGenes in Geuvadis YRI (second column), the percentage of also eGenes in Geuvadis YRI that are also eGenes in AA (third column), the number of eGenes that are
identified in GENOA EA and analyzed in Geuvadis EUR (first column), the number of eGenes in EA that are also eGenes in Geuvadis EUR (second column), the
percentage of also eGenes in Geuvadis EUR that are also eGenes in EA (third column).
power is unlikely achieved fully in any study and that

different studies differ in terms of the cis window size,

used tissue types (e.g., MESA uses monocytes while the

others use LCLs) as well as applied FDR methods (e.g., per-

mutation based versus Benjamini-Hochberg).

We used ELAI to infer local ancestry and treated the in-

ferred local ancestry as covariates in the eQTL mapping

analysis using the LAMatrix package. We found that the

eQTL mapping results controlling for local ancestry are

largely consistent with the main results. Specifically, after

adjusting for local ancestry, we identified 5,553 eGenes

in AA and 4,586 eGenes in EA, with 5,312 and 4,333 genes

overlapped with the main results (overlapping Jaccard in-

dex¼ 0.929 in AA and 0.931 in EA; Table S3).We identified

a total of 357,072 eSNPs in AA and 372,240 eSNPs in EA,

with 325,571 and 347,949 eSNPs overlapped with the

main results (Jaccard index ¼ 0.843 in AA and 0.880 in

EA). The estimated effect sizes after adjusting for local

ancestry are highly correlated with the main results (Pear-

son’s correlation ¼ 0.991, p value < 2.23e�308 in AA; cor-

relation ¼ 0.994, p value < 2.23e�308 in EA; Figure S2). In

addition, the �log10 p values are also highly correlated be-

tween these two approaches (Spearman’s correlation ¼
0.963, p value < 2.23e�308 in AA; correlation ¼ 0.972, p

value < 2.23e�308 in EA; Figure S3).

Characteristics of eGenes and eQTLs

Wefirst examined the properties of the identified eQTLs and

eSNPs. As expected,60 the eQTLs identified in both AA and

EA samples are strongly enriched near gene transcription

start sites, insidegenebodies, andnear transcriptionendsites

(Figures 1A and 1B), validating the eQTL mapping results.

Within each population, the absolute eQTL effect size is

negatively correlated with its minor allele frequency (MAF)

(Pearson coefficient ¼ �0.47, p value < 2.23e�308 in AA;

Pearson coefficient¼�0.46, p value< 2.23e�308 in EA; Fig-

ures S4A and S4B), likely reflecting either winner’s curse or

negative selection.59 In addition, the significance level of

the eQTLs in terms of�log10 p value is positively correlated

withMAF in each of the two populations (Spearman’s coeffi-

cient¼ 0.414, p value< 2.23e�308 in AA; Spearman’s coef-
ficient¼ 0.341, p value< 2.23e�308 in EA), likely reflecting

the increased power with increasing MAF. Between popula-

tions, the�log10(p value) difference between the two popu-

lations is positively correlated with MAF difference (Spear-

man’s correlation ¼ 0.07, p value < 2.23e�308; Figure S5).

The average MAF difference between AA and EA is �0.0133

in non-eSNPs (Wilcoxon test p value < 2.23e�308), 0.0396

in AA-specific eSNPs (p value < 2.23e�308), �0.0496 in

EA-specific eSNPs (p value < 2.23e�308), and �0.0053 in

commoneSNPs (pvalue¼ 9.15e�27; Figures S6 and S7), sug-

gesting that AA-specific eSNPs tend to have higher MAF in

AA than in EA while the EA-specific eSNPs tend to have

higher MAF in EA than in AA. Consistent with Glassberg et

al.,61 we also found that eSNPs tend to have higher MAF as

compared to tested SNPs in both AA and EA (Figure S8). Be-

sides the influenceofMAFonpower,we found that the effect

sizes of the identified common eSNPs shared between EAs

and AAs are highly correlatedwith each other (Pearson coef-

ficient¼ 0.903; p value< 2.23e�308; Figure1C),with97.3%

of eSNPs sharing the same effect sign between AA and EA.

The significance level in terms of �log10 p value of the cor-

responding eSNPs in the two populations are also positively

correlated (Spearman’s coefficient ¼ 0.42, p value <

2.23e�308), partially reflecting theMAFcorrelationbetween

the two populations (Pearson coefficient ¼ 0.35, p value <

2.23e�308). In addition, we found that EA unique eSNPs

tends to have larger effect size in EA as compared to AA,

and vice versa (Figure S9). The primary eQTLs also tend to

have the largest effect size across all cis-SNPs for a given

gene: in AA, 428 (7.8%) out of the 5,475 primary eQTLs

have the largest effect sizes (versus 0.15% by chance alone);

in EA, 488 (11.09%) out of 4,402 primary eQTLs also have

the largest effect sizes (versus 0.27% by chance alone). In

addition, in AA, 1,105 (20.18%) out of the 5,475 primary

eQTLs have the largest MAF across all SNPs mapped to a

given gene. In EA, 715 (16.24%) out of 4,402 primary eQTLs

also have the largest MAF across all SNPs mapped to a given

gene.

We next examined the properties of the identified

eGenes. Within each population, we first found that

eGenes with longer length tended to have a higher number



Table 3. Comparison of eQTL Mapping Results between GENOA and MESA

Genes (or Gene-SNP Pairs) Analyzed in Both Studies Detected in MESA Detected in GENOA Overlapped between the Two Studies

GENOA AA (n ¼ 1,205) versus MESA AFA (n ¼ 233)

eGenes 9,221 4,275 3,722 1,377

eSNPs 5,038,835 197,277 195,747 49,096

GENOA EA (n ¼ 801) versus MESA CAU (n ¼ 578)

eGenes 9,151 5,559 2,956 1,736

eSNPs 3,154,038 533,989 202,503 103,205

The first row shows the number of eGenes that are identified in GENOA AA and analyzed in MESA AFA (first column), the number of eGenes in AA that are also
eGenes in MESA AFA (second column), the percentage of also eGenes in MESA AFA that are also eGenes in AA (third column), the number of eGenes that are
identified in GENOA EA and analyzed inMESA CAU (first column), the number of eGenes in EA that are also eGenes inMESA CAU (second column), the percentage
of also eGenes in MESA CAU that are also eGenes in EA (third column).
of eSNPs (p value in AA¼ 7.9e�04; p value in EA¼ 1.7e�3)

but a lower density of eSNPs (p value in AA ¼ 2.51e�13;

p value in EA ¼ 1.81e�8). Because we defined eGenes as

genes that harbor at least one significant eSNP, longer

genes with a larger number of SNPs will tend to be eGenes.

Therefore, we performed subsampling-based analyses to

avoid such potential confounding and more carefully

examine the property of eGenes in terms of their gene

length and SNP density (details in Material and Methods).

The first subsampling analysis ensures that all analyzed

genes have the same number of cis-SNPs. In such analysis,

we found that the lowest p value for each gene is nega-

tively correlated with gene length (before subsampling:

Spearman’s correlation ¼ �0.146 and �0.141 in AA and

EA; p value ¼ 2.31e�43 and 4.77e�40; after subsampling:

correlation ¼ �0.107 and �0.109; p value ¼ 6.04e�24 and

1.9e�24) while positively correlated with SNP density

(before subsampling: correlation ¼ 0.135 and 0.118;

p value ¼ 3.48e�37 and 3.66e�28; after subsampling: cor-

relation ¼ 0.103 and 0.094; p value ¼ 2.45e�22 and

1.912e�18), consistent with our above conclusion (note

that a negative correlation between p value and gene

length means that an eGene tends to have longer gene

length). The second subsampling analysis ensures that all

analyzed genes have the same SNP density. In such anal-

ysis, we found that the lowest p value for each gene is

also negatively correlated with gene length (before sub-

sampling: Spearman’s correlation ¼ �0.267 and �0.269

in AA and EA; p value ¼ 3.99e�143 and 7.13e�144; after

subsampling: correlation ¼ �0.458 and �0.425; p value

< 2.23e�308 and < 2.23e�308). Overall, these subsam-

pling-based analyses support the conclusion that an eGene

tends to have a longer gene length and lower SNP density.

Next, between populations, we found that the common

eGenes shared between the two populations are often less

evolutionarily conserved than unique eGenes that are

identified in a single population, which are also less evolu-

tionarily conserved than non-eGenes. This decreased con-

servation pattern in non-eGenes versus unique eGenes

versus common eGenes can be clearly visualized using

each of the three commonly used conservation scores:

phyloP (p value ¼ 1.86e�07; Figure 2A), phastCons
(p value ¼ 1.6e�35; Figure 2B), and dN/dS ratio (p value

¼ 2.94e�10; Figure 2C). For example, the mean phyloP

score is 0.255, 0.207, 0.228, and 0.166, for non-eGenes,

eGenes unique to EA, eGenes unique to AA, and eGenes

shared between the two populations, respectively. The cor-

responding mean phastCons scores are 0.151, 0.135,

0.133, and 0.117 and the correspondingmean dN/dS ratios

are 0.135, 0.127, 0.131, and 0.144. The decreased conser-

vation in common eGenes shared between populations

dovetails an early study in primates.59 In addition, we

found that eSNPs in AA and EA tended to have a higher

Fst value than non-eSNPs, supporting the previous observa-

tion that eSNPs are more variable than non-eSNPs13 (Fig-

ures 2D, S10A, and S10B). The mean Fst for the eSNPs

shared between EA and AA, eSNPs unique to either EA or

AA, and non-eSNPs are 0.0888, 0.079, 0.0895, and

0.0338, respectively (Figure 2D).

We also performed a gene ontology (GO) analysis on

eGenes versus non-eGenes to examine whether eGenes

are enriched in particular pathways (details in Material

and Methods). We found that, in both EA and AA, the

eGenes are highly enriched in catalytic activity, protein

binding, and transferase activity among the GO molecular

functions (Tables S4 and S8); are enriched in metabolic

processes among the GO biological processes (Tables S5

and S9); and are enriched in intracellular part, cytoplasmic

part, and mitochondrion among the GO cellular compo-

nents (Tables S6 and S10). In human phenotype ontology

analysis, we found that eGenes are enriched in autosomal-

recessive inheritance in both AA and EA (Tables S7 and

S11). The GO analysis results are consistent with the previ-

ous finding that eGenes tend to be less conserved, are

enriched for targets of purifying selection, and are more

likely to be observed in recessive disorders.62,63 In addition,

the GO enrichment using R package GOfuncR49,50 that

controls for the influence of gene length also yields consis-

tent results (Tables S20–S22).

Gene Expression Heritability Estimation and Partitioning

Next, we estimated the genetic architecture underlying

gene expression variation through heritability estimation

and partitioning. For each gene in turn, we estimated the
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Figure 2. The Relationship between Conservation Scores and Four Categories of Genes
(A) Boxplot of phyloP scores, together with the mean (red dot), across four groups of genes: eGenes that are shared between EA and AA;
eGenes that are unique to either EA or AA; non-eGenes. phyloP scores are based on a 100-way primate genome comparison.
(B) Boxplot of phastCons scores, together with the mean (red dot), across the same four groups of genes. phastCons scores are based on a
100-way primate genome comparison.
(C) Boxplot of dN/dS ratio, together with the mean (red dot), across the same four groups of genes.
(D) Boxplot of Fst, together with the mean (red dot), across the same four groups of genes.
Note that a high phyloP score, a high phastCons score, or a low dN/dS ratio represents the gene is more conserved. The results show that
the non-eGenes, which are treated as background genes, are most conserved. The eGenes unique in either European Americans (EA
unique) or African Americans (AA unique) are less conserved. The common eGenes between European Americans and African Americans
are the least conserved. The Jonckheere-Terpstra tests for testing such trend are significant for all these scores: p value ¼ 2.94e�10 for
dN/dS score; p value ¼ 1.86e�07 for phyloP; p value ¼ 1.6e�35 for phastCons; and p value < 2.23e�308 for Fst. Again, the red dots
represent the mean values in each boxplot.
proportion of variance (PVE) in gene expression levels that

are accounted for by all SNPs using the Bayesian sparse

linear mixed model (BSLMM). This quantity is commonly

referred to as SNP heritability. We used Benjamini-Hoch-

berg false discovery rates (FDR) to correct for multiple

testing,64 with an FDR% 0.05 used as the threshold for sig-

nificant PVE. In the analysis, we found that 11.3% of genes

in AA and 8.3% of genes in EA have a PVE that significantly

deviates from zero at FDR% 0.05. In AA, themedian PVE is
24.6% across these significant genes (1,986 genes, mean ¼
26.67%; SD ¼ 10.5%), with PVE estimates ranging from

8.49% to 79.46% (Figure S11A). In EA, the median PVE is

26.78% across these significant genes (1,440 genes, mean

¼ 28.25%; SD ¼ 9.88%), with PVE estimates ranging

from 9.81% to 78.7% (Figure S11B). The PVE of tested com-

mon genes is generally consistent between AA and EA

(Pearson’s correlation ¼ 0.57, p value < 2.23e�308), and

the PVE of common eGenes is also consistent between
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Figure 3. Estimation and Partitioning of
SNP Heritability Underlying Gene Expres-
sion Variation in African Americans and
European Americans
Proportion of variance (PVE; aka SNP heri-
tability) in gene expression levels esti-
mated for all genes (left three plots), genes
without detectable eQTLs (middle three
plots), and genes with detectable eQTLs
(right three plots) in African Americans
(A) and European Americans (B). PVE ex-
plained by all SNPs is referred to as total
PVE (orange), which is partitioned into a
component that is explained by cis-SNPs
(cis-PVE; green) and another component
that is explained by trans-SNPs (trans-
PVE; purple). As expected, PVE in eGenes
tends to be larger than that in non-eGenes
or in all genes. The total PVE as well as the
cis-PVE in cis-eQTL genes also tend to be
larger than that in non cis-eQTL genes or
in all genes.
AA and EA (Pearson’s correlation ¼ 0.502, p value ¼
2.69e�194) (Figures S12A and S12B). As one might expect,

eGenes tend to have a higher PVE than non-eGenes

(p value < 2.23e�308) (Figures 3A and 3B): the median

PVE is 14.19% across eGenes and 5.28% across non-

eGenes in AA, and is 14.7% across eGenes and 6.03%

across non-eGenes in EA.

With BSLMM, we partitioned the PVE of each gene into

two parts: one that is explained by cis-SNPs and the other

that is explained by trans-SNPs. Consistent with previous

studies,14 we found that the majority of PVE is explained

by trans-SNPs, with only a fraction explained by cis-SNPs:

the median proportion of PVE explained by cis-SNPs is

only 1.03% (mean ¼ 3.09%; SD ¼ 5.44%) across all genes

in AA and is 1.01% (mean ¼ 2.63%; SD ¼ 4.85%) across

all genes in EA. As one might expect, cis-SNPs explain a

higher proportion of PVE in eGenes than in non-eGenes.

Specifically, the median proportion of PVE explained by

cis-SNPs is 5.36% (mean ¼ 7.93%; SD ¼ 7.76%) across

eGenes in AA and is 5.09% (mean ¼ 7.61%; SD ¼ 7.63%)
across eGenes in EA. The proportion

of PVE in eGenes explained by

cis-SNPs is correlated between AA

and EA (Pearson’s correlation coeffi-

cient ¼ 0.62, p value < 2.23e�308),

and the proportion of PVE in eGenes

explained by trans-SNPs is also

correlated between AA and EA (Pear-

son’s correlation coefficient ¼ 0.18,

p value ¼ 1.33e�22). For most

eGenes, the primary eQTLs is able to

explain a large proportion of the total

cis-PVE (the PVE explained by cis-

SNPs) in both AA and EA populations

(Figures S13 and S14): the primary

eQTL explains a median of 64.52%
cis-PVE in AA and 80.43% in EA. Note that the heritability

estimates obtained using trans-SNPs residing on different

chromosomes are almost identical to those obtained using

all trans-SNPs (Figure S15). In particular, the cis heritability

estimates obtained from these two approaches are highly

correlated (0.9988 or 0.9937 in AA and EA, respectively)

and so are the trans heritability estimates (correlation ¼
0.9989 or 0.9933 in AA and EA, respectively).

Independent cis-eQTLs rRevealed through Conditional

Analysis

Because the primary eQTL does not fully explain cis-PVE,

we performed conditional analysis to identify additional

independent eQTLs for eGenes (details in Material and

Methods). Through conditional analysis, we identified

8,070 independent eQTLs in AA and 5,401 in EA (Table 4);

these include 2,595 conditional eQTLs in AA and 999 con-

ditional eQTLs in EA, in addition to the primary eQTLs

identified earlier. We found that most eGenes have only

one independent eQTL (i.e., primary eQTL), with the



Table 4. The Number of Independent eQTLs Identified in eGenes through the Conditional Analysis

Number of Independent eQTLs

1 2 3 4 5 6 7 8 9

African American 3,725 1,203 368 104 49 14 7 4 1

European American 3,577 690 108 18 7 1 1 0 0

Table lists the number of eGenes in AA (first row) and EA (second row) that contain different number of independent eQTLs (columns).
proportion of eGenes with one eQTL lower in AA and

higher in EA (68.03% in AA and 81.26% in EA; Fisher’s

exact test p value < 2.23e�308; Figures 4A and 4D). A sub-

stantial proportion of eGenes have two independent

eQTLs, with the proportion higher in AA and lower in EA

(21.97% in AA and 15.67% in EA; p value ¼ 1.11e�15).

The remaining eGenes have three or more independent

eQTLs and those eGenes are more likely to appear in AA

than EA (9.99% in AA and 3.07% in EA; p value ¼
6.94e�45). In addition, the eGenes in AA tend to have a

higher number of independent eQTLs: the average number

of eQTLs per eGene is 1.47 in AA and 1.23 in EA (Wilcoxon

test p value ¼ 2.04e�56). The higher number of indepen-

dent eQTLs for eGenes in AA may suggest a more complex

gene regulatory mechanism in AA, although we also note

that the higher number of independent eQTLs in AA

may reflect in part the lower linkage disequilibrium among

SNPs in AA and hence the higher statistical power in de-

tecting conditional eQTLs in AA. By identifying condi-

tional eQTLs, we can explain a higher proportion of total

cis-PVE compared to that explained by primarily eQTLs

only (Figures S13 and S14): both primary and conditional

eQTL explains a median of 77.83% cis-PVE in AA and

86.28% in EA.

As one might expect,65 the conditional eQTLs reside

farther away from the TSS compared to the primary eQTLs,

though they are still enriched around the TSS when

compared with non-eQTLs (Figures 4C and 4F). The num-

ber of independent eQTLs across genes in the conditional

analysis is positively correlated with the number of eSNPs

in the unconditional analysis, more so in AA than in EA

(Pearson’s correlation coefficient ¼ 0.41, p value ¼
3.34e�218 in AA; correlation ¼ 0.18, p value ¼ 1.88e�22

in EA); and positively correlated with the gene length,

though to a much lesser extent (Spearman’s correlation be-

tween log10 transformed gene length and number of inde-

pendent eQTLs ¼ 0.08, p value ¼ 0.57 in AA; correlation ¼
0.034, p value ¼ 0.06 in EA; Figure S16). The number of in-

dependent eQTLs across eGenes is also positively corre-

lated with the cis-PVE of each eGene, more so in AA than

in EA (Pearson’s correlation coefficient ¼ 0.57, p value <

2.23e�308 in AA; correlation ¼ 0.41, p value ¼
1.21e�123 in EA; Figures 4B and 4E). The eGenes with

more independent eQTLs are less conserved: the number

of independent eQTLs across eGenes is positively corre-

lated with the dN/dS scores (Pearson’s correlation ¼
0.047, p value ¼ 5e�04 in AA; correlation ¼ 0.001, p value

¼ 0.94 in EA); and negatively correlated with the conserva-
tion score (phyloP score: Pearson’s correlation coefficient¼
�0.082, p value ¼ 1.17e�11 in AA; correlation ¼ �0.11,

p value ¼ 4.57e�09 in EA; phastCons score: correlation ¼
�0.078, p value ¼ 7.6e�09 in AA; correlation ¼ �0.086,

p value ¼ 2.06e�06 in EA).

Large Sample Size in GENOA Enables More Accurate

Gene Expression Prediction

Finally, we illustrate how the large sample size in both AA

and EA populations in GENOA can allow us to construct

accurate gene expression prediction models, thus poten-

tially facilitating powerful transcriptome-wide association

analysis (TWAS).66 To do so, we constructed gene expres-

sion prediction models for one gene at a time in AA and

EA separately. Each prediction model uses all cis-SNPs as

covariates and is constructed using BSLMM. Afterward,

we evaluated the performance of these prediction models

for the same gene in a separate eQTL mapping study, the

Geuvadis study. The Geuvadis study consists of five

different populations that include CEPH (CEU, n ¼ 92),

Finns (FIN, n ¼ 95), British (GBR, n ¼ 96), Toscani (TSI,

n¼ 93), and Yoruba (YRI, n¼ 89). We evaluated the perfor-

mance of the prediction models constructed in EA and AA

separately in each of the five populations. In each analysis,

we calculated the coefficients of determination (R2) be-

tween the predicted gene expression and the observed

gene expression to measure prediction performance.66 As

expected,67 we found that genes with high heritability

tend to be predicted with high accuracy. For example,

the prediction R2 achieved using GENOA AA samples is

positively correlated with PVE across all genes, in each of

the five populations in Geuvadis (mean correlation

across five populations ¼ 0.36, SD ¼ 0.02; p value <

2.23e�308); similar patterns were observed with themodel

constructed based on GENOA EA samples (Figure S17).

Also as expected,14 we found that the expression predic-

tion models constructed in a population often perform

well in the population of the same ancestry. For example,

the prediction models based on EA performed better for

predicting expression levels in FIN and CEU than in other

populations (Tables S26 and S27), while the models con-

structed based on AA performed better in YRI than in other

populations (Figure 5A and Table S23). The better perfor-

mance of AA models in YRI highlights the need for eQTL

mapping studies in the African American population.

Besides GENOA, we also obtained previously constructed

gene expression prediction models using elastic net in the

MESA study and evaluated their prediction performance
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Figure 4. Characterization of the Conditional eQTLs
(A and D) Histogram shows the number of eGenes (y axis) that harbor different numbers of independent eQTLs (x axis) in African Amer-
icans (A) or European Americans (D). We displayed eGenes that harbor up to nine independent eQTLs, with the detailed number of
eQTLs listed above each bar. A large fraction of eGenes harbor a small number of independent eQTLs.
(B and E) The proportion of variance (PVE) in gene expression levels explained by SNPs are higher for eGenes that harbor a larger number
of independent eQTLs in African Americans (B) or European Americans (E).
(C and F) Density plot shows the distance from eQTL to the transcription start site (TSS) of the corresponding eGene. The density plot is
stratified by the number of eQTLs: eGenes with one independent eQTL is colored in red; eGenes with two independent eQTL is colored
in green; eGenes with three independent eQTL is colored in blue; eGenes with four or more independent eQTL is colored in purple.
Dashed lines represent the median distance between eQTL and TSS in the four stratified groups in African Americans (C) or European
Americans (F).
in Geuvadis. The MESA study consists of three populations:

African American (AFA, n ¼ 233), Hispanic (HIS, n ¼ 352),

and European (CAU, n ¼ 578). For a fair comparison, we

also constructed gene expression prediction models using

elastic net in GENOA, in addition to using BSLMM above.

In the analysis, we found that the gene prediction models

constructed based onGENOA AA or EA samples outperform

those constructed based on theMESA AFA, CAU, or HIS (Ta-

bles S23–S27). For example, for predicting gene expression

in YRI, models constructed based on AA in GENOA with

elastic net achieve a prediction R2 above 0.1 in 337 genes,

which represents a 75.5% gain compared to the prediction

models constructed based on the AFA population in MESA

with elastic net (Table S23). Similarly, for predicting gene

expression in GBR, models constructed based on EA in

GENOA with elastic net achieve a prediction R2 above 0.1

in 415 genes, which represents a 30.1% gain compared to

the predictionmodels constructed based on the CAU popu-

lation in MESA with elastic net (Table S24).

The accurate expression prediction performance based

on GENOA also translates to a high power for TWAS anal-
ysis.66 To illustrate the TWAS power gain brought by

GENOA, we applied the prediction models constructed in

each of the five populations (GENOA: AA and EA; MESA:

AFA, HIS, and CAU) to seven common diseases collected

from a GWAS case control study: the WTCCC.55 These

seven diseases include Crohn disease (CD), rheumatoid

arthritis (RA), bipolar disorder (BD), type 2 diabetes

(T2D), coronary artery disease (CAD), and hypertension

(HT). For each gene and disease pair in turn, we tested

for the association between the predicted gene expression

and disease status using logistic regression, with the first

ten genetic PCs included as covariates. Overall, we found

that models constructed based on GENOA identified

more associations with the seven common diseases

compared to models constructed based on MESA (Figures

5C–5H and S18 and Table S28). For example, using elastic

net for constructing the gene predictionmodels in GENOA

AA, we identified a total of 48 genes in WTCCC, among

which 42 are reported to be associated with the same trait

in the GeneCards database.57 Using the same elastic net for

constructing the gene prediction models in MESA AFA, we
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Figure 5. Application of GENOA eQTL Mapping Results in Gene Expression Prediction and TWAS in WTCCC
(A) Comparison of the prediction performance measured by R2 using GENOA AA (y axis) and MESA AFA (x axis) eQTL mapping results
for the Geuvadis YRI data. The panel also lists the number of genes where AA performs better (2,597) and the number of genes where AA
performs worse than AFA (1,897). Here we compare the commonly predicted genes between AA and AFA.
(B) Comparison of the prediction performance measured by R2 using GENOA EA (y axis) and MESA CAU (x axis) eQTL mapping results
for the Geuvadis GBR data. The panel also lists the number of genes where EA performs better (2,627) and the number of genes where EA
performs worse (2,250) than CAU. Here we compare the commonly predicted genes between EA and CAU.
(C–H) Barplots display the number of significant genes from TWAS analysis using gene expressionmodels constructed based on different
populations. The significant genes are those passing the genome-wide significance threshold via Bonferroni correction (a ¼ 0.05/num-
ber of genes tested) in each of the seven common diseases inWTCCC that include Crohn disease (CD), rheumatoid arthritis (RA), bipolar
disorder (BD), type 1 diabetes (T1D), type 2 diabetes (T2D), coronary artery disease (CAD), and hypertension (HT). The result for HT is not
shown since no gene was identified in any population. The five populations used to construct the gene expression models include
GENOA AA BSLMM (light blue), AA elastic net (deep blue), GENOA EA BSLMM (light green), GENOA EA elastic net (deep green),
MESA AFA (pink), MESA CAU (red), and MESA HIS (yellow).
identified a total of 40 genes in WTCCC, among which 37

are reported in the GeneCards. Table S29 lists the signifi-

cant genes identified by TWAS analysis using GENOA AA

samples, the majority of which have also been identified

in much larger-scale GWASs.68–70
Discussion

We have presented a comprehensive eQTL mapping anal-

ysis in GENOA. Our study is a large eQTL mapping study

performed in the African American population. The large

AA sample size in GENOA allows us to identify a substan-

tial number of eQTLs and eGenes in AA, many of which

were not identified in previous AA eQTL mapping

studies.8 In addition, we identified a higher number of

eGenes in AA than in EA, likely due to the larger sample

size, higher number of cis-SNPs per gene, and/or poten-

tially higher diversity in AA. Importantly, only a small per-

centage of the significant gene-SNP pairs identified in AA

are also identified in EA, highlighting the importance of
eQTL mapping with AA samples. The large AA sample

size also allows us to construct accurate gene expression

prediction models in the African American population,

facilitating powerful TWAS analysis there. These analyses

and results enhance our understanding of the genetic ar-

chitecture underlying gene expression variation and facil-

itate the future investigation of the causal molecular mech-

anisms underlying common diseases and disease-related

complex traits.

The availability of both large-scale AA and EA samples

in GENOA allows us to perform comparisons between

these two populations. We found that eGenes with multi-

ple independent eQTLs are often less conserved and

eGenes shared between AA and EA are also less conserved.

Indeed, eGenes are depleted from genes with crucial roles

in regulating cell functions.65 The comparison results

highlight the importance of negative selection, which

constrains biologically important regions, removes

large-effect regulatory variants, and reshapes the genetic

architecture.36 Through comparison, we found that sub-

stantial differences exist between the two populations of
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AA and EA. Specifically, despite the similar sample sizes

between AA and EA, we identified a higher number of in-

dependent eQTLs in AA than in EA through conditional

analysis. A higher number of independent eQTLs in AA

supports the potentially more complex regulatory mech-

anisms underlying gene expression in AA. While the

identified eQTLs vary across populations, the shared

eQTLs in the AA and EA populations nevertheless often

share similar effect sizes and effect directions. In addition,

the gene expression prediction models constructed based

on AA apply reasonably accurately for gene expression

prediction in EA, and vice versa. Therefore, at least part

of the eQTL mapping results from one population can

be transferred to the other populations.12 Further inte-

grating the GENOA study with other previous studies

for joint eQTL mapping or joint TWAS analysis is an

important direction for future exploration.

Finally, while we have identified many primary eQTLs

in the main analysis, we acknowledge that the identified

primary eQTLs do not explain all cis-SNP heritability in

eGenes (median ¼ 64.52% in AA and 80.43% in EA).

We can identify many additional eQTLs through condi-

tional analysis. However, these conditional eQTLs in addi-

tion to the primary eQTLs again cannot explain all cis-

SNP heritability (median ¼ 77.83% AA and 86.28% in

EA). In addition, the cis-SNP heritability only represents

a small proportion of total SNP heritability, suggesting

that a large fraction of SNP heritability remains largely un-

identified. The incomplete cis-heritability explained by

identified eQTLs support the likely polygenic architecture

underlying gene expression variation. Therefore, future

studies with larger sample sizes are necessary to fully cap-

ture the genetic architecture underlying gene expression

variation.
Accession Numbers

The accession numbers for the gene expression data used in this

analysis are Gene Expression Omnibus (GEO): GSE138914 for

AA and GSE49531 for EA. The accession number for the SNP

data used in this analysis is Database of Genotypes and Pheno-

types (dbGaP): phs001238.v2.p1. Due to IRB restriction, mapping

of the sample IDs between genotype data (dbGaP) and gene

expression data (GEO) cannot be provided publicly but are avail-

able upon written request to JS and SK.
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Supplemental Data can be found online at https://doi.org/10.
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