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Genetic architecture of quantitative traits
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association studies of imputed whole
genome sequence variants: II: carcass merit
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Abstract

Background: Genome wide association studies (GWAS) were conducted on 7,853,211 imputed whole genome

sequence variants in a population of 3354 to 3984 animals from multiple beef cattle breeds for five carcass merit

traits including hot carcass weight (HCW), average backfat thickness (AFAT), rib eye area (REA), lean meat yield

(LMY) and carcass marbling score (CMAR). Based on the GWAS results, genetic architectures of the carcass merit

traits in beef cattle were elucidated.

Results: The distributions of DNA variant allele substitution effects approximated a bell-shaped distribution for all

the traits while the distribution of additive genetic variances explained by single DNA variants conformed to a

scaled inverse chi-squared distribution to a greater extent. At a threshold of P-value < 10–5, 51, 33, 46, 40, and 38

lead DNA variants on multiple chromosomes were significantly associated with HCW, AFAT, REA, LMY, and CMAR,

respectively. In addition, lead DNA variants with potentially large pleiotropic effects on HCW, AFAT, REA, and LMY

were found on chromosome 6. On average, missense variants, 3’UTR variants, 5’UTR variants, and other regulatory

region variants exhibited larger allele substitution effects on the traits in comparison to other functional classes. The

amounts of additive genetic variance explained per DNA variant were smaller for intergenic and intron variants on

all the traits whereas synonymous variants, missense variants, 3’UTR variants, 5’UTR variants, downstream and

upstream gene variants, and other regulatory region variants captured a greater amount of additive genetic

variance per sequence variant for one or more carcass merit traits investigated. In total, 26 enriched cellular and

molecular functions were identified with lipid metabolisms, small molecular biochemistry, and carbohydrate

metabolism being the most significant for the carcass merit traits.
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Conclusions: The GWAS results have shown that the carcass merit traits are controlled by a few DNA variants with

large effects and many DNA variants with small effects. Nucleotide polymorphisms in regulatory, synonymous, and

missense functional classes have relatively larger impacts per sequence variant on the variation of carcass merit

traits. The genetic architecture as revealed by the GWAS will improve our understanding on genetic controls of

carcass merit traits in beef cattle.

Keywords: Genetic architecture, Imputed whole genome sequence variants, Genome wide association studies,

Carcass merit traits, Beef cattle,

Background
Carcass merit traits are important to beef production as

they directly determine carcass yield, grade, and consumer

preferences for meat consumption, and therefore profitabil-

ity. Genetic improvement of carcass merit traits has been

made possible by recording pedigree and/or performance

data to predict genetic merit of breeding candidates. How-

ever, carcass merit traits are expressed at later stages of ani-

mal production and are mostly assessed at slaughter, which

sacrifices potential breeding stock although real-time ultra-

sound imaging technologies can be used to measure some

carcass traits such as backfat thickness, longissimus dorsi

muscle area, and marbling score on live animals [1]. With

the discovery of DNA variants and development of a 50 K

SNP panel that covers the whole genome for cattle [2],

utilization of DNA markers in predicting genetic merit such

as genomic selection holds great promise to accelerate the

rate of genetic improvement by shortening the gener-

ation interval and/or by increasing the accuracy of

genetic evaluation [3, 4]. However, the accuracy of

genomic prediction for carcass traits in beef cattle

still needs to be improved for wider industry applica-

tion of genomic selection [5–7]. Although collection

of more data on relevant animals to increase the

reference population size will improve the genomic

prediction accuracy, better understanding on genetic

architecture underlying complex traits such as carcass

merit traits will help develop a more effective gen-

omic prediction strategy to further enhance feasibility

of genomic selection in beef cattle [8, 9].

Early attempts to understanding the genetic control of

quantitative traits in beef cattle were made with the de-

tection of chromosomal regions or quantitative trait loci

(QTL) [10, 11]. However, these QTLs are usually local-

ized at relatively large chromosomal regions due to rela-

tively low density DNA marker panels used at the time

[8, 12, 13]. With the availability of the bovine 50 K SNP

chips [2] and high density (HD) SNPs (Axiom™

Genome-Wide BOS 1 Bovine Array from Affymetrix©,

USA, termed “HD” or “AffyHD” hereafter), identification

of significant SNPs associated with carcass merit traits

have led to better fine-mapped QTL regions. All these

studies have resulted in multiple QTL candidates for

carcass traits in beef cattle, and an extensive QTL data-

base has been created and is available at the Cattle QTL

database [14]. In addition, identification of causative mu-

tations underlying the QTL regions has been attempted

through association analyses between selected positional

and functional candidate gene markers and the traits

[10, 15–21]. These identified QTLs and candidate gene

markers have improved our understanding on the gen-

etic influence of DNA variants on carcass traits in beef

cattle. However, the genetic architecture including causal

DNA variants that control the carcass traits still remains

largely unknown.

The recent discovery and functional annotation of tens

of millions of DNA variants in cattle has offered new op-

portunities to investigate whole genome wide sequence

variants associated with complex traits in beef cattle

[22]. The whole genome sequence (WGS) variants repre-

sent the ideal DNA marker panel for genetic analyses as

they theoretically contain all causative polymorphisms.

Although whole genome sequencing on a large number

of samples may be impractical and cost prohibitive at

present, imputation of SNPs from genotyped lower-

density DNA panels such as the 50 K SNP panel up to

the WGS level may provide a valuable DNA marker

panel for genetic analyses including GWAS due to its

high DNA marker density. In a companion study, we

imputed the bovine 50 K SNP genotypes to whole gen-

ome sequence (WGS) variants for 11,448 beef cattle of

multiple Canadian beef cattle populations and retained

7,853,211 DNA variants for genetic/genomic analyses

after data quality control of the imputed WGS variants

[23]. We also reported the GWAS results for feed effi-

ciency and its component traits based on the 7,853,211

DNA variants in a multibreed population of Canadian

beef cattle [23]. The objective of this study was to fur-

ther investigate the effects of the imputed 7,853,211

WGS DNA variants (or termed as 7.8 M DNA variants

or 7.8M SNPs in the text for simplicity) on carcass

merit traits including hot carcass weight (HCW), average

backfat thickness (AFAT), rib eye area (REA), lean meat

yield (LMY), and carcass marbling score (CMAR).
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Results
Descriptive statistics and heritability estimates for carcass

merit traits

Means and standard deviations of raw phenotypic values

for the five carcass merit traits in this study (Table 1)

are in line with those previously reported in Canadian

beef cattle populations [24, 25]. Heritability estimates of

the five carcass merit traits based on the marker-based

genomic relationship matrix (GRM) constructed with

the 50 K SNP panel ranged from 0.28 ± 0.03 for AFAT

to 0.40 ± 0.03 for HCW (Table 1). With the GRMs of

the imputed 7.8M DNA variants, we observed increased

heritability estimates for all the five investigated traits,

ranging from 0.33 ± 0.03 to 0.35 ± 0.04 (or 6.1% increase)

for LMY and from 0.40 ± 0.03 to 0.49 ± 0.03 (or 22.5%

increase) for HCW without considering their SE. These

corresponded to an increase in additive genetic variances

explained by the 7.8 M DNA variants from 5.7% for

LMY to 24.0% for HCW, which indicated that the im-

puted 7.8M DNA variants were able to capture more

genetic variance than the 50 K SNP panel, with different

scales of increment depending on the trait. DNA

marker-based heritability estimates for all five traits

using both 50 K SNPs and imputed 7.8M DNA variants

are slightly smaller than the pedigree based heritability

estimates that were obtained from a subset of animals

from the population [24], suggesting that neither the 50

K SNP panel nor the 7.8 M DNA variants may capture

the full additive genetic variance.

Comparison of GWAS results between 7.8 M and 50 K SNP

panels

At the suggestive threshold of P-value < 0.005 as pro-

posed by Benjamin et al. [26], the GWAS of the imputed

7.8M SNPs detected a large number of SNPs in associ-

ation with the traits, ranging from 42,446 SNPs for LMY

to 45,303 SNPs for AFAT (Table 2). The numbers of

additional or novel significant SNPs detected by the 7.8

M DNA panel in comparison to the 50 K SNP GWAS

were presented in Table 2, ranging from 31,909 for REA

to 34,227 for AFAT. The majority of the suggestive

SNPs identified by the 50 K SNP panel GWAS for the

five carcass merit traits (ranging from 85% for AFAT to

91% for CMAR) were also detected by the imputed 7.8

M SNP GWAS at the threshold of P-value < 0.005. Fur-

ther investigation showed that all of these suggestive sig-

nificant SNPs detected by the 50 K SNP panel GWAS

were also significant by the 7.8M SNP GWAS if the sig-

nificance threshold was relaxed to P-value < 0.01, indi-

cating that the imputed 7.8M SNP panel GWAS was

able to detect all the significant SNPs of the 50 K SNP

panel. The small discrepancy in P-values of each SNP

between the two DNA variant panels is likely due to the

different genomic relationship matrices used. This result

is expected as the 7.8M DNA variant panel included all

SNPs in the 50 K panel and this study used a single

marker based model for GWAS. These additional or

novel significant SNPs detected by the 7.8M DNA

marker panel corresponded to the increased amount of

additive genetic variance captured by the 7.8M DNA

variants in comparison to the 50 K SNP panel, indicating

that the imputed 7.8 M DNA variants improved the

power of GWAS for the traits. Therefore, we will focus

on the GWAS results of the 7.8 M DNA variants in

subsequent result sections.

DNA marker effects and additive genetic variance related

to functional classes

Plots of the allele substitution effects of imputed 7,853,

211 WGS variants showed a bell-shaped distribution for

all the traits (Additional file 1: Figure S1). Distributions

of additive genetic variances explained by single DNA

variants followed a scaled inverse chi-squared distribu-

tion for all the five traits to a greater extent (Additional

file 1: Figure S1). When the DNA marker or SNP effects

of the 9 functional classes were examined, differences in

their average squared SNP allele substitution effects

were observed as shown in Table 3. In general, missense

variants, 3’UTR, 5’UTR, and other regulatory region var-

iants exhibited a larger effect on all five carcass merit

traits investigated in comparison to DNA variants in

other functional classes. Intergenic variants and intron

variants captured a greater amount of total additive

genetic variance for all five carcass traits. However, the

Table 1 Descriptive statistics of phenotypic data, additive genetic variances and heritability estimates based on the 50 K SNP and

the imputed 7.8 M whole genome sequence (WGS) variants in a beef cattle multibreed population for carcass merit traits

Traitsa n mean (sd) 50 K σ
2
a � SE 50 K h2 ± SE 7.8 M σ

2
a � SE 7.8 M h2 ± SE

HCW 3984 337.26 (35.42) 335.77 ± 23.39 0.40 ± 0.03 416.26 ± 35.60 0.49 ± 0.03

AFAT 3354 11.11 (4.70) 3.15 ± 0.35 0.28 ± 0.03 3.52 ± 0.50 0.32 ± 0.04

REA 3979 85.46 (11.92) 28.15 ± 2.19 0.36 ± 0.03 32.96 ± 3.34 0.42 ± 0.03

LMY 3367 57.43 (5.02) 3.49 ± 0.34 0.33 ± 0.03 3.69 ± 0.49 0.35 ± 0.04

CMAR 3928 406 (89) 1136.98 ± 104.48 0.29 ± 0.03 1326.30 ± 156.30 0.34 ± 0.03

a
HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm2, LMY lean meat yield in %, CMAR carcass marbling score from 100

(trace marbling) to 499 (more marbling). mean (SD) = mean of raw phenotypic values and standard deviation (SD), σa
2 ± SE = additive genetic variance ± standard

error (SE), h2 ± SE = heritability estimate ± SE
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relative proportion of additive genetic variance explained

per sequence variant by intergenic and intron variants

was smaller than those of other functional classes. Rela-

tively, missense variants captured a greater amount of

additive genetic variance per sequence variant for REA,

LMY, and CMAR while 3’UTR explained more additive

genetic variance per DNA variant for HCW, AFAT, and

REA. DNA variants in 5’UTR and other regulatory

region variants also showed a greater amount of additive

genetic variance explained per sequence variant for

CMAR and for CMAR and REA, respectively. Although

synonymous variants had relatively smaller averages of

squared SNP allele substitution effects, a single DNA

variant in the synonymous functional class accounted

for more additive genetic variance for AFAT, REA, LMY

and CMAR. In addition, both the downstream and

upstream gene variants were found to capture more additive

genetic variance per sequence variant for HCW (Table 3).

Top significant SNPs associated with carcass merit traits

The suggestive lead SNPs associated with HCW, AFAT,

REA, LMY, and CMAR in Table 2 were distributed

across all the autosomes as shown in the Manhattan

plots of 7.8M DNA variant GWAS (Fig. 1). The num-

bers of lead SNPs were dropped to 51, 33, 46, 40, and 38

for HCW, AFAT, REA, LMY, and CMAR, respectively,

at a more stringent threshold of P-value < 10− 5, of which

51, 15, 46, 16, and 12 lead significant SNPs reached a

FDR < 0.10 for HCW, AFAT, REA, LMY, and CMAR,

respectively (Table 2).

The lead significant SNPs at the nominal P-value < 10− 5

for the five carcass merit traits were distributed on multiple

autosomes (Fig. 2). In general, SNP with larger effects were

observed on BTA6 for HCW, AFAT, LMY, and REA. For

CMAR, SNPs with relatively larger effects were located on

BTA1 and BTA2 (Additional file 2). To show lead SNPs on

each chromosome, Table 4 lists top significant lead SNPs

with larger phenotypic variance explained on each chromo-

some. The top lead variant Chr6:39111019 for HCW on

BTA6 was an INDEL located 118,907 bp from gene LCORL

and explained 4.79% of the phenotypic variance. SNP

rs109658371 was another lead SNP on BTA6 and it ex-

plained 4.65% of phenotypic variance for HCW. Addition-

ally, SNP rs109658371 was located 102,547 bp upstream of

the top SNP Chr6:39111019 and it is 221,454 bp away from

the nearest gene LCORL. Outside BTA6, two other SNPs

rs109815800 and rs41934045 also had relatively large effects

on HCW, explaining 3.41 and 1.47% of phenotypic variance

and are located on BTA14 and BTA20, respectively. SNPs

rs109815800 is 6344 bp away from gene PLAG1 whereas

SNP rs41934045 is located in the intronic region of gene

ERGIC1. For AFAT, two lead SNPs explaining more than

1% of phenotypic variance included SNP rs110995268 and

SNP rs41594006. SNP rs110995268 is located in the

intronic region of gene LCORL on BTA6, explaining 2.87%

of phenotypic variance. SNP rs41594006, which explained

1.07% of phenotypic variance, is 133,040 bp away from gene

MACC1 on BTA4. SNPs rs109658371 and rs109901274 are

the two lead SNPs on different chromosomes that ex-

plained more than 1% of phenotypic variance for REA.

These two lead SNPs are located on BTA6 and BTA7, re-

spectively. SNP rs109658371 accounted for 3.32% of pheno-

typic variance for REA and is 221,454 bp away from gene

LCORL while SNP rs109901274 is a missense variant of

gene ARRDC3, explaining 1.11% of phenotypic variance for

REA. For LMY, SNPs rs380838173 and rs110302982 are

the two lead SNPs with relatively larger effects. Both SNPs

are located on BTA6, explaining 2.59 and 2.53% of pheno-

typic variance respectively. SNP rs380838173 is 128,272 bp

away from gene LCORL while SNP rs110302982 is only

5080 bp away from gene NCAPG. For CMAR, two lead

SNPs rs211292205 and rs441393071 on BTA1 explained

1.20 and 1.04% of phenotypic variance. SNP rs211292205 is

50,986 bp away from gene MRPS6 while SNP rs441393071

was an intron SNP of gene MRPS6. The rest of the lead

significant SNPs for CMAR accounted for less than 1% of

phenotypic variance (Table 4).

Enriched molecular and cellular and gene network

With a window of 70kbp extending upstream and down-

stream of each of the lead SNPs at FDR < 0.10, 319 can-

didate genes for HCW, 189 for AFAT, 575 for REA, 329

Table 2 A summary of number of significant DNA variants detected by the 7.8 M WGS variant GWAS for carcass merit traits in a

beef cattle multibreed population

Traita HCW AFAT REA LMY CMAR

Suggestive (p < 0.005) 42,612 (32,240) 45,303 (34,227) 42,544 (31,909) 42,446 (33,305) 44,654 (33,211)

Lead Suggestive 3927 (3621) 3922 (3598) 3993 (3705) 3906 (3606) 4158 (3827)

Significant (p < 10−5) 1413 (374) 260 (162) 1171 (254) 312 (198) 256 (145)

Lead Significant 51 (27) 33 (23) 46 (25) 40 (31) 38 (28)

FDR (FDR < 0.10) 1997 (374) 183 (97) 1255 (254) 168 (86) 107 (59)

Lead FDR (FDR < 0.10) 51 (27) 15 (9) 46 (25) 16 (11) 12 (8)

a
HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm2, LMY lean meat yield in %, CMAR carcass marbling score from 100

(trace marbling) to 499 (more marbling). FDR = genome-wise false discovery rate (FDR) calculated from the Benjamini-Hochberg procedure [27]. The numbers of

additional or novel significant SNPs in comparison to the 50 K SNP panel were presented in the parentheses
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for LMY, and 198 for CMAR were identified based on

annotated Bos taurus genes (23,431 genes on autosomes

in total) that were downloaded from the Ensembl Bio-

Mart database (accessed on 8 November, 2018) (Add-

itional file 1: Figure S4b). Of the identified candidate

genes, 308, 180, 557, 318, and 188 genes were mapped

to IPA knowledge base for HCW, AFAT, REA, LMY,

and CMAR, respectively. In total, we identified 26

enriched molecular and cellular functions for AFAT,

CMAR, and REA, and 25 functions for HWC and LMY

at a P-value < 0.05 as presented in Additional file 1: Fig-

ure S2. Of all the five traits, lipid metabolism was among

the top five molecular and cellular functions for AFAT,

REA, LMY, and CMAR. For HCW, lipid metabolism was

the sixth highest biological function involving 46 of the

candidate genes. Across the five traits, the lipid related

genes are primarily involved in the synthesis of lipid,

metabolism of membrane lipid derivatives, concentration

of lipid, and steroid metabolism processes as shown in

the gene-biological process interaction networks (Add-

itional file 1: Figure S3). Interestingly 18 genes involved

in lipid synthesis including ACSL6, CFTR, NGFR,

ERLIN1, TFCP2L1, PLEKHA3, ST8SIA1, PPARGC1A,

MAPK1, PARD3, PLA2G2A, AGMO, MOGAT2, PIGP,

PIK3CB, NR5A1, CNTFR, and BMP7 are common for all

the four traits. It is also worth noting that 18 (AGMO,

BID, BMP7, CFTR, CLEC11A, GNAI1, MOGAT2, MRAS,

NGFR, NR5A1, P2RY13, PDK2, PIK3CB, PLA2G2A,

PPARGC1A, PPARGC1B, PTHLH, and ST8SIA1) of the

31 genes involved in lipid metabolism for AFAT have

roles in lipid concentration.

Additionally, our results also revealed small molecular

biochemistry and carbohydrate metabolism as other

important molecular and cellular processes for AFAT,

CMAR, HCW, and LMY (Additional file 1: Figure S3).

Some of the major enriched subfunctions or biological

processes related to carbohydrate metabolism included

uptake of carbohydrate, synthesis of carbohydrate, and

synthesis of phosphatidic acid as shown in the gene-

biological process interaction networks (Additional file 1:

Figure S3). For REA, cell morphology, cellular assembly

and organization, cellular function and maintenance are

the top enriched molecular processes in addition to lipid

metabolism and molecular transport. The major enriched

biological processes and subfunctions related within cell

morphology function included transmembrane potential,

Fig. 1 Manhattan plots of GWAS results based on the imputed 7.8 M

DNA variant panel for (a) hot carcass weight (HCW), (b) average

backfat thickness (AFAT), (c) rib eye area (REA), (d) lean meat yield

(LMY), and (e) carcass marbling score (CMAR). The vertical axis

reflects the –log10 (P) values and the horizontal axis depicts the

chromosomal positions. The blue line indicates a threshold of

P-value < 0.005 while the red line shows the threshold of P-value < 10− 5
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transmembrane potential of mitochondria, morphology of

epithelial cells, morphology of connective tissue cells, and

axonogenesis as presented in (Additional file 1: Figure S3).

For cellular function and maintenance, the genes are

mainly involved in organization of cellular membrane,

axonogenesis, the function of mitochondria, and trans-

membrane potential of the cellular membrane. The genes

involved in these processes and subfunctions are also

shown in Additional file 1: Figure S3. Table 5 lists all the

genes involved in each of the top five enriched molecular

processes for each trait while examples of the gene net-

work for lipid metabolism and carbohydrate metabolism

are presented in Additional file 1: Figure S3.

Discussion
The value of the imputed 7.8 M whole genome sequence

variants on GWAS

With the 50 K SNPs (N = 30,155) as the base genotypes,

a reference population of 4059 animals of multi-breeds

genotyped with the Affymetrix HD panel, and a panel of

1570 animals with WGS variants from run 5 of the 1000

Bull Genomes Project, we achieved an average imput-

ation accuracy of 96.41% on 381,318,974 whole genotype

sequence variants using FImpute 2.2 [28]. This average

imputation accuracy is comparable to the imputation ac-

curacy previously obtained in beef cattle [29] but slightly

lower than that in dairy cattle [30, 31]. However, the

imputation accuracy over a validation dataset of 240

animals varied among individual DNA variants, with a

range from 0.42 to 100% (data not shown). To ensure a

higher quality of imputed WGS DNA variants, we

removed imputed WGS DNA variants with an average

imputation accuracy less than 95% of the 5-fold cross-

valuation at each individual DNA variant, MAF < 0.5%,

and deviation from HWE at P-value < 10− 5, leaving 7,

853,211 DNA variants for GWAS. With this WGS DNA

panel, we demonstrated that the additive genetic vari-

ance and corresponding heritability estimates increased

Fig. 2 Distribution of lead SNPs at P-value < 10− 5 on Bos taurus autosomes (BTA) for hot carcass weight (HCW), average backfat thickness (AFAT),

rib eye area (REA), lean meat yield (LMY), and carcass marbling score (CMAR). The blue dots indicate a threshold of P-value < 10− 5 while the red

dots show the threshold of both P-value < 10− 5 and genome-wise false discovery rate (FDR) < 0.10
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Table 5 Five topmost significantly enriched biological functions for carcass merit traits, and genes involved in the specific function

Traita Biological Function Genes Involved in the biological function

HCW Gene expression (23) BMP7, BTRC, CTCFL, DTX1, HIF3A, IRF9, KAT7, KDM8, LGALS1, MAPK1, MRAS, MS4A15, NFIA, NR5A1, PARD3, PCTP,
PEG10, PPARGC1A, RNF4, RXRB, SIAH1, TADA3, TFCP2L1

Carbohydrate metabolism
(26)

AGMO, ALPI, BID, BMP7, CMAS, CYP2J2, FCGR2B, GRPR, KDM8, LGALS1, MAPK1, MRAS, NGFR, PARD3, PCTP, PDK2,
PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PRKCB, PTHLH, ST8SIA1, UGT2B17, VDAC1

Nucleic acid metabolism (18) ADCY4, ATP5PF, BMP7, CFTR, CMAS, GART, GNAI1, GRPR, MAPK1, NUDT9, OLA1, PDK2, PPARGC1A, PRKCB, PTHLH,
SLC25A5, ST8SIA1, VDAC1

Small molecule biochemistry
(54)

ACSL6, AGMO, AKR1C3, AKR1C4, ALPI, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLEC11A, CMAS, CNTFR, CYP2J2, DHRS4,
ELOVL4, ERLIN1, FCGR2B, GBA3, GNAI1, GRPR, INHA, KCNE2, KCNE1B, LGALS1, MAPK1, MOGAT2, MRAS, NGFR, NR5A1,
P2RY13, PARD3, PCCB, PCSK2, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PRKCB, PTHLH,
RXRB, SLC22A6, ST8SIA1
TFCP2L1, TGM1, TTR, UGT2B11, UGT2B17, UPK2, VDAC1

Molecular transport (45) ACSL6, AGMO, ALPI, ANGPTL4, ATP10A, ATP6V1E1, ATP6V1G1, BID, BMP7, CA4, CCS, CFTR, CLEC11A, CLIC4, CNTFR,
COQ7, FCGR2B, GNAI1, GRPR, HBA1/HBA2, INHA, KCNE2, KCNE1B, KCNK2, LGALS1, MAPK1, MOGAT2, MRAS, NGFR,
NR5A1, P2RY13, PCTP, PDK2, PIK3CB, PLA2G2A, PPARGC1A, PPARGC1B, PRKCB, PTHLH, SLC20A2, SLC22A6, ST8SIA1,
TTR, UPK2, VDAC1

AFAT Carbohydrate metabolism
(22)

AGMO, BID, BMP7, CMAS, GRPR, KDM8, LGALS1, MAPK1, MRAS, NGFR, PARD3, PDK2, PIK3CB, PLA2G2A, PPARGC1A,
PPARGC1B, PTHLH, ST8SIA1, UGT2B17

Nucleic acid metabolism (10) BID, BMP7, CMAS, GART, GNAI1, GRPR, MAPK1, PDK2, ST8SIA1, UGT2B17

Small molecule biochemistry
(36)

ACSL6, AGMO, BID, BMP7, CFTR, CLEC11A, CMAS, CNTFR, DHRS4, ERLIN1, GART, GBA3, GNAI1, GRPR, KDM8, LGALS1,
MAPK1, MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A,
PPARGC1B, PTHLH, SLC22A6, ST8SIA1, TFCP2L1, TGM1, UGT2B17

Lipid metabolism (31) ACSL6, AGMO, BID, BMP7, CFTR, CLEC11A, CNTFR, DHRS4, ERLIN1, GBA3, GNAI1, LGALS1, MAPK1, MOGAT2, MRAS,
NGFR, NR5A1, P2RY13, PARD3, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PTHLH, ST8SIA1,
TFCP2L1, TGM1, UGT2B17

Cell morphology (25) BID, BMP7, BTRC, CFTR, CLEC11A, CLIC4, CNTFR, FSCN1, GDF3, KCNK2, LGALS1, MAPK1, MRAS, NDUFAB1, NGFR,
NR5A1, PCSK2, PLA2G2A, PLXNB2, PPARGC1A, PPARGC1B, PTHLH, SERPINA3, ST8SIA1, UPK2

REA Cell morphology (71) BID, CAMP, CCND1, CD4, CERS5, CFTR, CHL1, CLEC11A, CLIC4, CNTFR, CSTB, CUL3, DVL1, EPO, FGL1, GDF3, GSDMD,
HAND1, HAUS4, HELLS, INHA, INTU, KCNK2, KIF11, KIFC1, LGALS1, LIF, LIMK2, MAPK1, MAPT, NDUFAB1, NEFH, NFIA,
NGFR, NTRK2, OSMR, P2RY12, PALLD, PCTP, PEG10, PLXNB2, PPARGC1A, PPARGC1B, PTHLH, PTPN1, RNF4, SCYL1,
SERPINA3, UCP1, UPK2

Cellular assembly and
organization (58)

AMPH, ARHGAP32, ARPC4, ATG4B, ATG4C, ATL1, BID, CAMP, CBLB, CCND1, CD4, CFTR, CLEC11A, CLIC4, CLTB, CSTB,
CTDNEP1, DRP2, DVL1, EPO, EXO5, HAND1, IDE, KCNK2, KIF11, KIF13B, KIFC1, KLHDC8B, LANCL1, LGALS1, LIF, MAPT,
NDUFAB1, NDUFS2, NEFH, NFIA, NGFR, NLGN1, NR5A1, NTRK2, OLA1, P2RY12, PALLD, PARD3, PLXNB2, POLG,
PPARGC1A, PPARGC1B, REPS2, SERPINA3, SLC25A5, SNX9, SRCIN1, TP53INP1, TRAK2, TTR, UCP1, VDAC1

Cellular function and
maintenance (51)

ARHGAP32, ARMC4, ATL1, BID, CAMP, CCDC103, CCDC39, CCND1, CD4, CELSR2, CLEC11A, CLIC4, COQ7, CSTB, DVL1,
EPO, FCGR2B, HAND1, IDE, IFNA2, KCNK2, KIF11, KIF13B, KIFC1, LANCL1, LGALS1, LIF, MAPT, NDUFAB1, NDUFS2,
NEFH, NFIA, NGFR, NLGN1, NMNAT3, NTRK2, PARD3, PLXNB2, POLG, PPARGC1A, PPARGC1B, SCYL1, SERPINA3, SS18,
ST8SIA1, TCF7L1, TFCP2L1, TP53INP1, TRAK2, UCP1, VDAC1

Lipid metabolism (77) ABHD3, ACSL6, AGMO, AKR1C3, AKR1C4, AKR1C1/AKR1C2, ALPI, ANGPTL4, ANGPTL6, ATP5PF, BID, BMP7, C3AR1,
CAMP, CD4, CERS5, CFTR, CLDN16, CLEC11A, CNTFR, CTDNEP1, CYP2C18, CYP2J2, CYP7B1, DEGS2, DHRS4, ELOVL4,
EPO, ERLIN1, FCGR2B, FGL1, GBA3, GNAI1, GPC3, IL1RN, INHA, KCNE1B, KIF13B, KLF15, LGALS1, LIF, MAPK1, MAPT,
MOGAT2, MRAS, NGFR, NONO, NR5A1, NTRK2, OSMR, P2RY12, P2RY13, PARD3, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A,
PLEKHA3, POLG, PPARGC1A, PPARGC1B, PRKCB, PTHLH, PTPN1, RENBP, RGS2, RXRB, SERPINE2, ST8SIA1, TFCP2L1,
TRHR, TTR, UCP1, UGT2B4, UGT2B11, UGT2B17

Molecular transport (105) ACSL6, AGMO, AKR1C4, AKR1C1/AKR1C2, ALPI, ANGPTL4, ANGPTL6, AOC3, APPBP2, ATP10A, ATP6V1E1, ATP6V1G1,
BID, BMP7, C3AR1, CA4, CAMP, CBLB, CCS, CD4, CERS5, CFTR, CLDN16, CLEC11A, CLIC4, CNTFR, COQ7, CTDNEP1,
DIO3, DUOXA2, DVL1, ELOVL4, EPO, FCGR2B, FGL1, GCNT4, GNAI1, GPC3, GRPR, HBA1/HBA2, IL1RN, INHA, IP6K1,
KCNAB1, KCNE2, KCNE1B, KCNK2, KDM8, KIF13A, KIF13B, KLF15, LGALS1, LIF, MAPK1, MAPT, MOGAT2, MRAS, NDC1,
NGFR, NONO, NR5A1, NTRK2, OGG1, OSMR, P2RY12, P2RY13, PCSK2, PCTP, PDK2, PIK3CB, PKN1, PLA2G2A, POLG,
PPARGC1A, PPARGC1B, PRKCB, PTGER1, PTHLH, PTPN1, RENBP, RXRB, SCN9A, SLC16A4, SLC20A2, SLC22A6, SLC37A2,
SLC39A7, SLC6A7, SLC8B1, SMG6, SNX9, SRCIN1, ST8SIA1, STRADA, STRADB, SVBP, SYNDIG1, TMED2, TP53INP1,
TRAK2, TRHR, TTR, UCP1, VDAC1, ZFP36L1

LMY Gene expression (23) BMP7, BTRC, CTCFL, DTX1, HIF3A, IRF9, KAT7, KDM8, LGALS1, MAPK1, MRAS, MS4A15, NFIA, NR5A1, PARD3, PCTP,
PEG10, PPARGC1A, RNF4, RXRB, SIAH1, TADA3, TFCP2L1

Lipid metabolism (47) ACSL6, AGMO, AKR1C3, AKR1C4, ALPI, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLEC11A, CNTFR, CYP2J2, DHRS4, ELOVL4,
ERLIN1, FCGR2B, GBA3, GNAI1, INHA, KCNE1B, LGALS1, LIF, MAPK1, MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3,
PCCB, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PRKCB, PTHLH, RXRB, ST8SIA1, TFCP2L1,
TTR, UGT2B11, UGT2B17
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by 6.1 to 22.5% for all the five carcass traits in compari-

son to the 50 K SNP panel (Table 1). Moreover, the 7,

853,211 DNA variant based GWAS identified additional

significant DNA variants for all five carcass merit traits

in comparison to the 50 K SNPs. In a companion study,

we also observed that the imputed 7.8M DNA variants

accounted for more additive genetic variance and led to

identification of additional DNA variants that are asso-

ciated with feed efficiency and growth traits in beef

cattle [23], indicating that the imputed 7.8M WGS

variants can improve the power of GWAS analyses for

beef cattle quantitative traits.

DNA marker effect distributions

The distributions of DNA marker allele substitution ef-

fects and the amounts of additive genetic variances ex-

plained by single DNA markers support the assumptions

of a normal distribution for SNP effects and a scaled

inverse-chi squared distribution for SNP additive genetic

variance used in previous studies [32, 33], although these

DNA marker effect distributions may be biased as

greater LD between DNA markers in the 7.8M DNA

variant panel is expected and a single DNA marker

GWAS was used in this study. The 7.8M DNA variant

GWAS also demonstrated that the majority of the vari-

ants had zero or near zero effects on all the five

carcass merit traits, and only a small fraction (< 0.1%) of

the 7,853,211 WGS variants passed the suggestive

threshold of P-value < 0.005. This seems to correspond

well to a π value of approximately 99% that was com-

monly used as an assumption to shrink proportions of

SNPs to no effects in genetic analyses with high density

SNPs [34]. Another important aspect of quantitative trait

genetic architecture is whether the trait is affected by

many genes with small effects or by a few of genes with

large and/or modest effects plus genes with small effects.

The GWAS results based on the 7.8M DNA variants

showed that HCW, LMY, and REA are likely influenced

by a few of genes with larger effects, explaining up to

4.79% phenotypic variance, and many genes with small

effects. However, for AFAT and CMAR, a few of genes

with modest effects and many genes with small effects

likely contribute to the variation of the traits (Table 4).

DNA marker effects related to SNP functional classes

Annotation of DNA variants into functional classes

allows for further dissection of DNA marker effects

on the trait to DNA variant functionality. The im-

puted 7.8 M DNA variants include a proportionally

larger number of DNA polymorphisms in each of the

functional classes, ranging from 3309 for 5’UTR vari-

ants to 5,251,680 for intergenic region in comparison

to the lower density SNP panels such as the bovine

50 K SNPs, which was reported in the Additional files

of Zhang et al. (2019) [23]. For convenience, the an-

notation information of various DNA variant panels

has been provided in Additional file 3: Tables S1–S3

of this article. We used both the average squared al-

lele substitution effects of each functional class and

the additive genetic variance captured by a single

DNA variant within the functional class to assess

their relative importance in affecting the trait. For the

Table 5 Five topmost significantly enriched biological functions for carcass merit traits, and genes involved in the specific function

(Continued)

Traita Biological Function Genes Involved in the biological function

Small molecule biochemistry
(55)

ACSL6, AGMO, AKR1C3, AKR1C4, ALPI, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLEC11A, CMAS, CNTFR, CYP2J2, DHRS4,
ELOVL4, ERLIN1, FCGR2B, GBA3, GNAI1, GRPR, INHA, KCNE1B, KCNE2, LGALS1, LIF, MAPK1, MOGAT2, MRAS, NGFR,
NR5A1, P2RY13, PARD3, PCCB, PCSK2, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PRKCB,
PTHLH, RXRB, SLC22A6, ST8SIA1, TFCP2L1, TGM1, TTR, UGT2B11, UGT2B17, UPK2, VDAC1

Vitamin and mineral
metabolism (17)

AKR1C3, AKR1C4, BMP7, CFTR, CYP2J2, DHRS4, INHA, LIF, NR5A1, P2RY13, PCTP, PPARGC1A, ST8SIA1, TTR, UGT2B11,
UGT2B17, VDAC1

Carbohydrate metabolism
(26)

AGMO, ALPI, BID, BMP7, CMAS, CYP2J2, FCGR2B, GRPR, KDM8, LGALS1, MAPK1, MRAS, NGFR, PARD3, PCTP, PDK2,
PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PRKCB, PTHLH, ST8SIA1, UGT2B17, VDAC1

CMAR Carbohydrate Metabolism
(23)

AGMO, BID, BMP7, CMAS, GNAI1, GRPR, KDM8, LGALS1, MAPK1, MRAS, NGFR, PARD3, PCTP, PDK2, PIGP, PIK3CB,
PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PTHLH, ST8SIA1, UGT2B17

Nucleic acid metabolism (10) BID, BMP7, CMAS, GART, GNAI1, GRPR, MAPK1, PDK2, ST8SIA1, UGT2B17

Small molecule biochemistry
(40)

ACSL6, AGMO, AKR1C3, AKR1C4, BID, BMP7, CFTR, CLEC11A, CMAS, CNTFR, DHRS4, ERLIN1, GART, GBA3, GNAI1,
GRPR, KDM8, LGALS1, MAPK1, MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PCSK2, PCTP, PDK2, PIGP, PIK3CB,
PLA2G2A, PLEKHA3, PPARGC1A, PPARGC1B, PTHLH, SLC22A6, ST8SIA1, TFCP2L1, TGM1, UGT2B17

Cellular development (24) AKR1C3, B9D1, BID, BMP7, CBLB, CLEC11A, CLIC4, FSCN1, ITGA11, ITIH4, KCNK2, LGALS1, MAPK1, MRAS, NASP, NGFR,
NR5A1, PIK3CB, PPARGC1A, PTHLH, TGM1, UGT2B17, UPK2, ZFP36L1

Lipid metabolism (33) ACSL6, AGMO, AKR1C3, AKR1C4, BID, BMP7, CFTR, CLEC11A, CNTFR, DHRS4, ERLIN1, GBA3, GNAI1, LGALS1, MAPK1,
MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A,
PPARGC1B, PTHLH, ST8SIA1, TFCP2L1, UGT2B17

a
HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm2, LMY lean meat yield in %, CMAR carcass marbling score from 100

(trace marbling) to 499 (more marbling)
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average squared allele substitution effects, missense

variants, 3’UTR, 5’UTR, and other regulatory region

variants exhibited a relatively larger allele substitution

effect on all five carcass merit traits in general in

comparison to variants in other functional classes. Al-

though the LD between DNA markers of different

functional classes and the singe DNA marker GWAS

used in this study may lead to biased estimates of the

DNA marker effect on the traits, the results are in

agreement with the expectation that missense variants

alter the peptide sequence of a protein, and greater

roles of 3’UTR, 5’UTR, and other regulatory variants

play in influencing gene expression and gene transla-

tion [35–37].

To provide further insight into relative importance of

each functional class, we fitted the GRM of the func-

tional class and GRM constructed from DNA variants of

all other functional classes simultaneously to estimate

the additive genetic variance captured by each functional

class. For each functional class, the sum of the additive

genetic variances captured by the two GRMs (Table 3)

was almost the same as the additive genetic variance ob-

tained by the GRM with all the imputed 7.8M DNA var-

iants for all the traits (Table 1), indicating a reliable

partition of additive genetic variance for each function

class variants for the carcass merit traits. Although inter-

genic variants and intron variants captured a greater

amount of total additive genetic variance for all five

carcass merit traits, their relative proportion of additive

genetic variance explained per sequence variant was

smaller than other functional classes. These results con-

cur with the report by Koufariotis et al. [38] that the in-

tron and intergenic variants explained the lowest

proportion of the genetic variance per SNP for milk and

fertility traits in dairy cattle. Relatively smaller amount

of additive genetic variance captured per sequence vari-

ant in intron and intergenic regions were also observed

for feed efficiency related traits in beef cattle [23], which

is likely due to much larger numbers of DNA variants in

the class and the majority of them have small or zero ef-

fects on the traits. Of other functional classes, 3’UTR ex-

plained more additive genetic variance per DNA variant

for HCW, AFAT, and REA while DNA variants in

5’UTR and other regulatory variants also showed a

greater amount of additive genetic variance explained

per sequence variant for CMAR and for CMAR and

REA, respectively. It was found that missense variants

captured a greater amount of additive genetic variance

per sequence variant for REA, LMY, and CMAR. Al-

though synonymous variants had relatively small average

squared SNP allele substitution effects, a single DNA

variant in the functional class accounted for more addi-

tive genetic variance for AFAT, REA, LMY, and CMAR.

In addition, both the downstream and upstream gene

variants were found to capture more additive genetic

variance per sequence variant for HCW (Table 3). These

results suggest that the relative contribution per DNA

variant of the functional classes to the additive genetic

variance might vary across different traits. Indeed, in a

study by Koufariotis et al. [39], functional classes includ-

ing splice sites, 3’UTR, 5’UTR, and synonymous variants

explained relatively a larger proportion of genetic vari-

ance per sequence variant for milk production traits but

not for fertility related traits.

It was observed that most top lead SNPs with larger

effects are located between genes or located in intronic

regions, although their average SNP effects or variances

captured by individual DNA variants were relatively

smaller than missense and regulatory DNA variants in-

cluding 3’UTR and 5’UTR variants (Table 4). However,

there were cases for each trait where support SNPs had

either larger allele substitution effects or explained a lar-

ger percentage of phenotypic variance than those of their

lead SNPs but with a larger P-value. For instance, a mis-

sense variant rs42661323 at 4,916,731 bp on BTA20 had

an allele substitution effect of 10.73 on HCW, which was

larger than that (b = 10.14) of its nearby lead SNP

rs41574252 located at 4863507 bp. However, the P-value

of the missense variant rs42661323 was 8.10 × 10− 8 and

was slightly larger than that (P-value = 4.85 × 10− 8, or

4.85E-08) of its lead SNP (Additional file 2). A similar

instance was found for missense variant rs379314731 of

gene ENSBTAG00000012585 (RAB3GAP2) at 24,332,

917 bp on BTA16 for AFAT. The missense variant

rs379314731 had an allele substitution effect of − 0.64

on AFAT with a P-value of 8.76 × 10− 7. However, its

nearby downstream gene SNP rs381910687 was selected

as the lead SNP due to its lower P-value of 5.89 × 10− 7

although its allele substitution effect was slightly smaller

(i.e. b = − 0.63). Therefore, support SNPs that are located

in more important functional classes such as missense

and regulatory variants are also worth further investiga-

tion. Additionally, as the imputed 7.8 M DNA variants

represent a proportion of whole genome DNA polymor-

phisms, the intergenic or intronic SNPs with larger ef-

fects may also be in LD with the causative DNA

variant(s) that are not present in the 7.8M DNA variant

panel. In this case, fine mapping of QTL in the region of

lead SNPs is needed to identify the causative DNA vari-

ants for the trait.

QTLs for carcass merit trait in beef cattle

Mapping QTLs via linkage or association analyses are

subject to a false positive rate. Therefore, validation of

QTL or DNA variants associated with a trait in inde-

pendent studies provides confidence on the identified

candidate QTLs or DNA variants. We compared our

lead significant SNPs with the QTL regions reported in
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the Cattle QTL database (https://www.animalgenome.

org/cgi-bin/QTLdb/index, accessed on 22 August 2018)

[14]. With a window centered at the lead SNPs extend-

ing 70 kb upstream and downstream, 33, 17, 20, 3, and 0

were overlapped with reported QTL for HCW, AFAT,

REA, LMY, and CMAR, respectively (Additional file 3:

Table S4). With a window of 1Mb, 41 of the 51 lead

SNPs for HCW, 20 of the 33 lead SNPs for AFAT, 31 of

the 46 lead SNPs for REA, 15 of the 40 lead SNPs for

LMY, and 2 of the 39 lead SNPs for CMAR were found

to be overlapped with the reported QTL in the Cattle

QTL database (Additional file 3: Table S4). These over-

lapped lead SNPs provide additional evidence that the

QTL regions may harbor causative DNA variants affect-

ing the carcass merit traits. The non-overlapped lead

SNPs, however, may suggest unique QTLs that were seg-

regating in the investigated beef cattle population for the

trait, in particular for the lead SNPs with multiple sup-

port SNPs (Table 4).

To investigate potential pleotropic effects of SNPs or

QTL regions on the carcass merit traits, we also com-

pared lead significant SNPs among the five carcass merit

traits. It was found that CMAR did not share any lead

significant SNPs with HCW, AFAT, REA, or LMY.

HCW, AFAT, REA, and LMY, however, shared a com-

mon significant lead SNP “rs109696064”, which was a

downstream gene variant that is 3164 bps away from the

nearest gene LCORL on chromosome 6 (Additional

file 2). AFAT and HCW also shared four lead signifi-

cant SNPs located on chromosome 6, including one

intronic variant (rs109355965) that is within gene

ENSBTAG00000005932 (FAM184B), one intronic variant

(rs110995268) of gene LCORL, one downstream gene

variant (rs109843602) that was in proximity to genes

NCAPG and DCAF16, and one downstream gene variant

(rs109696064) located within 70 kb of genes LCORL and

NCAPG. The region that harbors genes NCAPG-LCORL

on BTA6 is likely to be a candidate QTL region with

pleiotropic effects for carcass merit traits including HCW,

AFAT, REA, and LMY. The lead significant SNPs located

on BTA 6 in the region of 37.9Mb to 39.9Mb were also

found to have relatively larger effects on HCW, AFAT,

REA, and LMY as shown in the Manhattan plots (Fig. 1).

The chromosome region (i.e 6_37 to 6_39) was previously

reported to have large pleiotropic effects on traits includ-

ing carcass weight, rib eye muscle area, and carcass fat

thickness in multiple US cattle breeds [40]. In our 7.8M

DNA variant GWAS for feed efficiency related traits, this

chromosomal region also showed the largest effects on

DMI, ADG, and MWT, explaining from 3.04 to 5.80%

phenotypic variance for the traits as reported by Zhang

et al. in our companion paper [23]. All these results

strengthen the evidence that there are likely causative

DNA variants in the chromosomal region with major

pleiotropic effects on beef cattle growth related traits [40].

Genes NCAPG and LCORL are the two major nearest

genes to the chromosomal region. DNA markers within

or in proximity to genes NCAPG (Non-SMC Condensin I

Complex Subunit) and LCORL (ligand-dependent nuclear

receptor co-repressor like) were found to have significant

associations with feed intake and body weight gain in beef

cattle [41]. In our study, the annotation of the imputed

7.8M DNA marker panel identified a total of 185 WGS

variants within NCAPG including 4 synonymous variants,

177 intronic variants, 2 missense variants, and 2 other

regulatory region variants. Also a total of 409 WGS vari-

ants were within gene LCORL, including 404 intronic vari-

ants, 1 missense variant, and 4 3’UTR variants. At P-value

less than 10− 5, 17 SNPs (including 15 intronic variants

and 2 missense variants) within gene NCAPG were found

to be in significant association with HCW but none of

them were identified to be a lead SNP. The intronic SNP

rs110175987 of NCAPG was significantly associated with

HCW (i.e. AC_000163.1:g.38783305C > T, P-value =

1.14 × 10− 19 and FDR = 1.51 × 10− 15), accounting for

4.18% of the phenotypic variance, and it was the largest

proportion of phenotypic variance explained by a single

DNA marker among the 17 within-gene variants (Add-

itional file 2). This SNP was also significantly associated

with AFAT (P-value = 5.42 × 10− 12 and FDR = 1.33 × 10− 6),

REA (P-value = 1.34 × 10− 15 and FDR= 3.99 × 10− 10) and

LMY (P-value = 1.20 × 10− 10 and FDR = 2.92 × 10− 5),

explaining 2.72, 3.19, and 2.41% of the phenotypic variance,

respectively (Additional file 2). A missense variant

rs109570900 at 38,777,311 bp on BTA6, which induces a

Ile-442-Met substitution in amino acid within NCAPG, was

also identified to be in significant association with HCW

(P-value = 2.10 × 10− 9 and FDR = 4.65 × 10− 5) and REA

(P-value = 5.09 × 10− 8 and FDR = 9.39 × 10− 4) accounting

for 1.45 and 1.18% of phenotypic variance, respectively.

Previous studies reported that this missense variant had

strong association with fetal growth and birth weight in

Holstein and Charolais crossbreed [42]. The missense

variant was also in association with body frame size at

puberty in Japanese black and Charolais × Holstein [43]

and with carcass weight, longissimus muscle area, and

subcutaneous fat thickness in Japanese Black and Brown

cattle [44]. Sahana et al. [45] proposed the missense as a

strong candidate responsible for calf size at birth and con-

sequently calf birth survival. In our companion paper by

Zhang et al. [23], the SNP within NCAPG was also found

to be associated with ADG, DMI, and MWT, respectively.

For gene LCORL, the intronic SNP rs110995268 at

38,914,196 bp was significantly associated with AFAT

(P-value = 1.64 × 10− 12 and FDR = 9.39 × 10− 7), explaining

2.87% of the phenotypic variance (Table 4). The SNP

was also significantly associated with HCW (P-value =

4.2 × 10− 20 and FDR = 6.76 × 10− 15), REA (P-value =
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1.80 × 10− 15 and FDR = 4.12 × 10− 10), and LMY (P-value =

6.15 × 10− 11 and FDR = 2.92 × 10− 5), explaining 4.33,

3.19, and 2.50% of the phenotypic variance, respectively

(Additional file 2). A total of 80, 15, 47, and 15 SNPs

within gene LCORL were identified to be significantly as-

sociated with HCW, AFAT, REA, and LMY respectively.

However, they were all intronic variants. The intronic

SNP rs110995268 belongs to a group of 15 common sig-

nificant intronic variants within LCORL that had effects

on HCW, AFAT, REA, and LMY. Out of the 15 within-

gene intronic SNPs, proportions of phenotypic variance

ranged from 4.30 to 4.37% for HCW, from 2.82 to 2.87%

for AFAT, from 3.10 to 3.24% for REA, and 2.44 to 2.50%

for LMY (Additional file 2).

The NCAPG-LCORL region also encompassed two

additional interesting genes including DCAF16 and

FAM184B. In addition, gene SNPs under other lead sig-

nificant QTL regions with relatively larger effects were

also examined and some significant lead SNPs were

found to be missense or located within regulatory re-

gions (Table 4), which may suggest their roles as causa-

tive mutations due to the functional annotation. For

instance, a missense variant rs109901274 within gene

ENSBTAG00000007116 (ARRDC3) at 93,244,933 bp on

chromosome 7 was a lead SNP in significant association

(P-value = 5.28 × 10− 8) with REA, explaining 1.11% of

phenotypic variance (Table 4). The SNP rs109901274

was also found to be a significant support SNP in asso-

ciation with HCW, with a P-value of 8.84 × 10− 8 and

accounted for 1.07% of phenotypic variance (Additional

file 2). Gene ARRDC3, which harbours SNP

rs109901274, belongs to an arrestin superfamily and

plays a role in regulating body mass in mice [46] and hu-

man males [47]. In our companion paper by Zhang et al.

[23], SNP rs109901274 was also reported to be a lead

SNP in significant association with ADG and MWT. A

previously study by Saatchi et al. reported that SNPs in

proximity to ARRDC3 were associated with birth weight,

carcass weights, and body weights in US cattle breeds

[40]. However, the physiological roles of ARRDC3 in cat-

tle remain unknown.

It was commonly observed that SNPs from the in-

tronic region of the genes or between genes showed sig-

nificant effects on the carcass merit traits as lead SNPs.

For instance, one of the most significant lead SNPs

(rs109815800, AC_000171.1:g.25015640G > T, P-value =

1.26 × 10− 21 and FDR = 5.82 × 10− 16) in association with

HCW on chromosome 14 at 25015,640 bp was mapped

to the intergenic region (6344 bp upstream) of PLAG1

(Table 4). This SNP was previously reported as one of

the eight candidate QTNs with major effects on bovine

stature by Karim et al. [48]. The SNP was also the most

significant DNA marker reported by Fink et al. [49] in

expression QTL mapping of PLAG1, and the most

significant SNP in meta-analysis of GWAS for cattle

stature by Bouwman et al. [50]. This SNP (i.e.

rs109815800) accounted for 3.41% of phenotypic vari-

ance of HCW in this study (Table 4). Additionally, SNP

rs109815800 was a support SNP in significant asso-

ciation with REA, reaching a P-value of 2.02 × 10− 6 and

explained 0.84% of phenotypic variance (Additional file

2). These intronic DNA variants significantly associated

with the traits may also warrant further investigation for

their effects on the traits. In addition, the significant in-

tronic and intergenic DNA variants may also in high LD

with the causative DNA variant(s) that are not present

in the imputed 7.8M DNA variant panel. Therefore, fur-

ther fine mapping of the QTL regions will lead to identi-

fication of causative variants for the carcass merit traits

in cattle, in particular for QTL regions where lead SNPs

are supported by multiple significant DNA markers.

Genetic networks compared with RNAseq

The IPA analyses based on the candidate genes identi-

fied via a window of 70 k bp of the lead SNPs with FDR <

0.10 detected lipid metabolism was among the top 5

enriched molecular process for four of the carcass merit

traits (AFAT, CMAR, LMY, and REA), and 6th for

HCW, followed by carbohydrate metabolisms and small

molecule biochemistry. In studies using RNAseq on bo-

vine liver samples, lipid metabolism, and small molecule

biochemistry were also among the top enriched molecu-

lar processes for marbling score in Charolais steers [51,

52]. In this study, all the animals with carcass data were

finished for meat production. The goal of the fattening

stage with a finishing diet is to allow beef cattle to grow

muscle and to accumulate intramuscular fat, i.e. marb-

ling, for better carcass quality. Therefore, genes involved

in lipid metabolism and carbohydrate metabolism likely

play a more important role in determining the carcass

merit traits, as shown both in this and previous studies

[51, 52]. The identification of top and other enriched

molecular processes and their corresponding genes will

not only improve our understanding on genetic mecha-

nisms that influence the carcass traits but also help

prioritize candidate genes for identification of causative

gene polymorphisms responsible for the phenotypic

variation.

Conclusions
The imputed 7,853,211 DNA variants explained more

genetic variance than the 50 K SNP panel and led to

identification of additional QTL regions in associations

with carcass merit traits in Canadian multi-breed beef

cattle. The DNA marker allele substitution effects on the

carcass traits based on the imputed 7,853,211 DNA vari-

ants approximated a bell-shaped distribution, and the

additive genetic variances explained by single DNA
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variants followed a scaled inverse chi-squared distribu-

tion to a greater extent. On average, missense variants,

3’UTR variants, 5’UTR variants, and other regulatory re-

gion variants exhibited larger allele substitution effects

in comparison to DNA variants that are located between

genes and in intronic regions. Intergenic and intronic

variants also accounted for a smaller amount of additive

genetic variance per DNA variant for the carcass traits

whereas single regulatory, synonymous, and missense

variants had relatively larger impacts on the variation of

carcass merit traits. The five carcass merit traits appear

to be controlled by a few DNA variants with relatively

larger or modest effects complementary by DNA vari-

ants with small effects. Lipid metabolism, small molecu-

lar biochemistry, and carbohydrate metabolism were the

top biological processes for the carcass merit traits. The

genetic architecture as revealed by the 7.8 M DNA

variant GWAS will improve our understanding on the

genetic control of carcass merit traits in beef cattle.

Methods
Animal populations and phenotype data

The populations used in this study, i.e., Angus, Charo-

lais, Kinsella Composite, Elora crossbred, PG1, and

TXX, were described previously [23, 53–56]. Briefly,

Angus, Charolais, and Kinsella Composite herds are lo-

cated at Roy Berg Kinsella Research Ranch, University of

Alberta, with Angus and Charolais being maintained as

purebreds while the Kinsella Composite herd had been

influenced mainly by Angus, Charolais, Galloway, and

Hereford. The Elora crossbred animals were from the

Elora Beef Research Centre, University of Guelph and it

was made by crossing Angus, Simmental, Charolais, and

other cattle breeds. Both the commercial crossbred PG1

and terminal crossbred TXX animals were from multiple

commercial herds in Alberta. The top beef breeds that

were used in commercial crossbred beef production in

Alberta included Angus, Charolais, Herefore, Simmental,

Limousin, Gelbvieh, while the TXX animals were pro-

duced from 2- or 3-way crossbreeding systems involving

terminal composite bulls (TX/TXX) and crossbred cows

of multiple beef breeds. Animals used in this study were

finishing steers and heifers born between 1998 and 2006

for the Elora crossbred, between 2002 and 2015 for Kin-

sella Composite, between 2004 and 2015 for Angus and

Charolais, between 2008 and 2011 for PG1 and TXX

populations.

The animals were initially measured for feed intake

using the GrowSafe system (GrowSafe Systems Ltd.,

Airdrie, Alberta, Canada) at their respective feedlot test

station under multiple projects, which were described

previously [55, 57–59]. After the feedlot tests, animals

were slaughtered either at a commercial plant or at the

Lacombe Research and Development Centre (LRDC) ab-

attoir when a majority of them reached > 8mm back-

fat thickness as predicted from ultrasound

measurements. For slaughter, animals were first stunned

by captive bolt and then exsanguinated. Collection of

carcass data was previously described [53, 55, 59–62].

Briefly, hot carcass weight (HCW) in kg was obtained by

summing up the weight of each side of the carcass that

was split during dressing, about 45 min post-mortem.

Average backfat thickness (AFAT) in mm, rib eye area

(REA) in squared centimeters, and carcass marbling

score (CMAR) at the grading site between the 12th and

13th ribs was assessed by trained personnel. Carcass

marbling score was measured as a continuous variable

from 100 (trace marbling or less) to 499 (abundant or

more marbling) to reflect the amount of fat deposit in-

terspersed between the muscle fibers (i.e., intramuscular

fat) of the longissimus thoracis. Lean meat yield (LMY)

was calculated as LMY, % = 57.96 + (0.202 × REA, cm2)

− (0.027 × HCW, kg) − (0.703 × AFAT, mm) as described

by Basarab et al. [57] as an estimate of saleable meat in

the carcass. The phenotype data obtained from each data

source were examined and phenotypic values beyond 3

standard deviations of the trait value mean were

excluded from further analyses.

SNP data consolidation, imputation, and functional

annotation

All animals entering the feedlot tests were genotyped

with bovine 50 K SNP panels under multiple projects.

SNP data consolidation and imputation was described in

the companion paper [23]. Briefly, raw 50 K SNP geno-

type profile data were obtained from each source and

SNP genotypes were then called in each of the four dif-

ferent SNP formats, i.e. forward strand, top strand, de-

sign strand, and AB format. The SNP genotype data

were then combined by the same SNP format and each

SNP was examined to ensure it had only two alleles after

merging. In total, 50 K SNP genotypes of 11,448 beef

cattle were compiled. A SNP quality check was applied

for each data source, where SNPs that had a minor allele

frequency less than 5%, or had a missing rate larger than

5%, or were significantly deviated from exact test of

Hardy-Weinberg equilibrium (HWE) (P-value < 10− 3),

or on sex chromosomes were filtered out. SNPs removed

from one data source were also excluded from all other

data sources. In addition, animals with more than a 5%

missing rate of total SNP genotypes were deleted. After

SNP data editing, 33,321 SNPs were retained for further

analyses. Sporadic missing SNP genotypes in the SNP

data set (< 0.065%) were then imputed via the

population-based algorithm implemented in Beagle 3.3.2

[63]. Population admixture analyses were also conducted

for all the 11,448 beef cattle based on the 33,321 SNPs
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to predict breed composition for each animal, which was

described in the companion paper [23].

SNP imputation was conducted using FImpute 2.2

[28] in a two-step procedure: (1) from the 50 K SNPs

(i.e. 33,321 SNPs) to the Affymetrix Axiom Genome-

Wide BOS 1 Array (Affymetrix, Inc., Santa Clara); (2)

from imputed HD to the full whole-genome sequence

(WGS) variants in run 5 of the 1000 Bull Genomes Pro-

ject [22]. Details of SNP imputation and average imput-

ation accuracy for each chromosome were provided in

the companion paper [23]. Initially, 38,318,974 imputed

WGS variant genotypes were obtained for all the ani-

mals. Quality control was then performed on the im-

puted WGS variant genotypes to ensure better quality of

imputed genotype data, where DNA variant genotypes

with less than 95% imputation accuracy, or being homo-

zygous, or with a minor allele frequency (MAF) less than

0.005 in either population/breed, or with significant de-

viations from Hardy–Weinberg exact test at significance

levels of P-value < 10− 5 in either population/breed were

excluded from further analyses. The post-imputation

quality control resulted in 7,853,211 DNA variant geno-

types that contain 30,155 SNPs from the 50 K SNP geno-

types on all the animals. The 7,853,211 DNA variants

included 7,497,128 SNPs and 356,083 INDELs (termed

7.8M DNA variants or 7.8M DNA variant panel or 7.8

M SNP panel in the text). The imputed 30,155 SNPs in

the 7.8 M DNA variant panel were replaced by their ac-

tual genotypes to facilitate comparison of the 50 K SNP

panel and the 7.8M DNA variants panel.

Functional annotation of SNPs or DNA variants on

the 30,155 SNPs and on the 7,853,211 DNA variants was

provided in the companion paper [23]. The WGS DNA

variants were annotated through run 5 of the 1000 Bull

Genomes Project, which included 379 full genome se-

quences from the Canadian Cattle Genome Project [64].

DNA variants were then assigned to a functional class

based on their overlap with gene features described in

the Ensembl database (release 81), using an updated

version of the NGS-SNP annotation system [65]. These

SNPs were grouped into 9 broader functional classes,

which consisted of intergenic region variants, down-

stream gene variants, upstream gene variants, synonym-

ous variants, intron variants, missense variants, 3′ UTR

variants, 5′ UTR variants, and other regulatory region

variants that includes splice regions in intron variants,

disruptive in-frame deletion, and splice region variants,

etc. (Additional file 3: Table S1–S3).

Genome wide association analyses

Animals with carcass data were merged with their im-

puted genotype data in the 7.8M DNA variant panel,

resulting in a sample size of n = 3354 for AFAT to n =

3984 for HCW (Table 1). For the GWAS analyses,

phenotypic values of the five carcass traits were adjusted

for animal birth year, sex type, a combination of feedlot

test location and pen, breed composition fraction of each

postulated ancestral breed predicted using the 50 K SNP

panel and Admixture [66], and animal age at slaughter.

The GWAS analyses were performed using a single

SNP-based mixed linear model association (MLMA) as

implemented in GCTA software [67, 68], and the linear

mixed model can be described as follows:

yij ¼ μþ b jxij þ aij þ eij

where yij is the adjusted phenotypic value of the ith ani-

mal with the jth SNP (i.e. the ijth animal, bj is the allele

substitution effect of SNPj, xij is the jth SNP genotype of

animal i, and it was coded as 0, 1, 2 for genotypes A1A1,

A1A2 and A2A2, respectively, aij is the additive polygenic

effect of the ijth animal � Nð0;Gσ2
aÞ, and eij is the ran-

dom residual effect � Nð0; Iσ2eÞ . The genomic relation-

ship matrix G (GRM) was constructed using GCTA-

GRM as implemented in GCTA software and defined in

Yang et al. [67, 69], which is essentially the same as the

G matrix calculated by the second method of VanRaden

[70]:

Ajk ¼
1

M

XM

i¼1

xij−2pi
� �

xik−2pið Þ

2pi 1−pið Þ

Where Ajk is off-diagonal element for animal j and ani-

mal k or represents the diagonal element if j = k, with

genotype codes of xij = 0, 1, 2 for A1A1, A1A2, and A2A2,

respectively. pj is the allele frequency of A2 at locus j cal-

culated based on SNP genotype data of the population

and M is the number of SNPs in the panel. The G

matrix was constructed using all DNA variants in the

7.8M DNA variant panel, i.e. mixed linear model with

candidate marker included (MLMi) so that the G matrix

was constructed based on all 30,155 SNPs for the 50 K

SNP GWAS and on all the 7,853,211 DNA variants for

the 7.8M SNP panel GWAS.

For each SNP or DNA variant, the allele substitution

effect and its P-value were estimated using the GCTA

package [67, 68]. The phenotypic variance explained by

a single SNP was calculated by Var ð%Þ ¼ 2pqβ2

S2
�100% ,

where p and q denote the minor frequency and major

frequency for the SNP, respectively, ß is the SNP allele

substitution effect, and 2pqβ2 is the additive genetic vari-

ance, and S2 is phenotypic variance. DNA variants (or

SNPs) that have a nominal P-value < 0.005 were consid-

ered as suggestive QTLs as proposed by Benjamin et al.

[26], while SNPs with a nominal P-value < 10− 5 were

classified as significant QTLs based on the recommenda-

tion of the Wellcome Trust Case Control Consortium

[71]. SNPs that have a nominal P-value < 10− 5 were
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further examined for the genome-wise false discovery

rate (FDR), which was calculated following the

Benjamini-Hochberg procedure for each SNP [27]. At

each significance threshold when multiple SNPs within a

window of 70 kb upstream and downstream are signifi-

cantly associated with a trait, the SNP with the lowest

nominal P-value was identified as the lead SNP whereas

the remaining SNPs were classified as support SNPs. A

70 kb window was chosen for this study as this was the

chromosomal length within which a high LD phase cor-

relation (> 0.77) was maintained in a Canadian multi-

breed population [54].

Heritability of a trait was estimated using GREML-LDMS

[72, 73] for both the 50 K SNP panel and the 7.8M DNA

variant panel. In GREML-LDMS, DNA variants were strati-

fied into four groups by their mean LD scores within a slid-

ing window, representing the first, second, third, and fourth

quartiles of the mean LD score distribution. A GRM was

subsequently constructed with DNA variants in each group.

The GRMs were then fitted simultaneously into the above

statistical model without the single DNA variant effect and

the variance components were estimated via a restricted

maximum likelihood (REML) as implemented in the GCTA

package [67, 69, 74, 75]. The genomic heritability of a trait

was calculated as a ratio of the total additive genetic vari-

ance over the phenotypic variance of the trait.

Inference of genetic architecture based on GWAS results

Distribution of SNP effects of each carcass trait was gen-

erated by plotting squared allele substitution effects of

all DNA variants in the 7.8M DNA variant panel, and

by plotting the amount of additive genetic variances ex-

plained by single DNA variants in the panel. The average

of squared allele substitution effects was obtained for

each of the 9 broad functional classes (Table 3) by sum-

ming all squared allele substitution effects within the

broad functional class divided by the total number of

DNA variants within the functional class. The additive

genetic variance accounted for by each of the 9 func-

tional classes was estimated by fitting the GRM con-

structed based on the DNA variants of the functional

class and the GRM constructed based on the DNA vari-

ants of all other functional classes simultaneously in the

statistical model using the GCTA package. The amount

of additive genetic variance explained per sequence

variant within a functional class was obtained by the

additive genetic variance captured by the functional class

divided by the number of DNA variants in the class.

Candidate gene identification and functional enrichment

analyses

Lead SNPs with a FDR < 0.10 were selected to search for

candidate genes. Subsequently, genes located within 70 kb

upstream and downstream of the lead SNP were considered

candidate genes associated with the trait based on SNP an-

notation information from the UMD3.1 bovine genome as-

sembly from the Ensembl genome browser (https://www.

ensembl.org/). Ingenuity Pathway Analysis (IPA) (Ingenu-

ity® Systems, Redwood City, CA; https://www.qiagenbioin-

formatics.com/products/ingenuity-pathway-analysis/) (IPA

Spring 2019 release) was used for the functional enrich-

ment analyses of the candidate genes identified via the

GWAS. Briefly, for the genes with known human ortholo-

gues from Ensembl, their gene IDs were replaced with their

human orthologous gene IDs, whereas those without

human orthologues their bovine gene IDs were maintained

in the gene list. These Ensembl gene IDs were then used as

input gene identifiers in IPA and a core analysis was per-

formed on the genes that were mapped to the IPA know-

ledge base database. With the list of candidate genes and

genes mapped to the human orthologues, enhanced

molecular processes and gene network were inferred using

IPA. Molecular, cellular, and biological processes or func-

tions were significantly enriched if the P-value for the over-

lap comparison test between the input gene list and the

IPA knowledge base database for a given biological function

was less than 0.05. Additionally, genes and biological pro-

cesses or sub-functions’ interaction networks within the

most significant molecular and cellular function were pro-

duced to show possible biological networks for the trait.
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