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Abstract  

Subcortical brain structures are integral to motion, consciousness, emotions, and learning. We 

identified common genetic variation related to the volumes of nucleus accumbens, amygdala, 

brainstem, caudate nucleus, globus pallidus, putamen, and thalamus, using genome-wide 

association analyses in over 40,000 individuals from CHARGE, ENIGMA and the UK-Biobank. We 

show that variability in subcortical volumes is heritable, and identify 25 significantly associated loci 

(20 novel). Annotation of these loci utilizing gene expression, methylation, and neuropathological 

data identified 62 candidate genes implicated in neurodevelopment, synaptic signaling, axonal 

transport, apoptosis, and susceptibility to neurological disorders. This set of genes is significantly 

enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting 

evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug 

targets underlying brain development and disease. 
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Subcortical brain structures are essential for the control of autonomic and sensorimotor 

functions1,2, modulation of processes involved in learning, memory, and decision-making3,4, as well 

as in emotional reactivity5,6 and consciousness7. They often act through networks influencing input 

to and output from the cerebral cortex8,9. The pathology of many cognitive, psychiatric, and 

movement disorders is restricted to, begins in, or predominantly involves subcortical brain 

structures and related circuitries10. For instance, tau pathology has shown to manifest itself early in 

the brainstem and thalamic nuclei of individuals with Alzheimer’s disease before spreading to 

cortical areas through efferent networks11. Similarly, the formation of Lewy bodies and Lewy 

neurites in Parkinson’s disease appears early in the lower brainstem (and olfactory structures) 

before affecting the substantia nigra12.  

A recent investigation identified five novel genetic loci influencing the volumes of the putamen 

and caudate, which pointed to genes controlling neuronal growth, apoptosis, and learning13. 

However, no genome-wide significant signals associated with the volumes of the nucleus 

accumbens, amygdala, globus pallidus, and thalamus were detected, and the genetic variation 

associated with brainstem volume has not been previously explored. Identifying novel genetic 

factors contributing to variability in subcortical structures, including the brainstem, should further 

improve our understanding of brain development and disease. 

We sought to identify novel genetic variants influencing the volumes of seven subcortical 

structures (nucleus accumbens, amygdala, caudate nucleus, putamen, globus pallidus, thalamus, 

and brainstem (including mesencephalon, pons, and medulla oblongata)), through genome-wide 

association (GWA) analyses in over 40,000 individuals from 54 study samples (Table S1) from the 

Cohorts of Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, the 

Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, and the United 

Kingdom Biobank (UKBB). 
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RESULTS 

 

Heritability 

To examine the extent to which genetic variation accounts for variation in subcortical brain 

volumes, we estimated the heritability of those volumes in the Framingham Heart Study (FHS) and 

the Austrian Stroke Prevention Study (ASPS-Fam) family-based cohorts. Our analyses are in line 

with previous studies conducted in young14 and older15 twins, suggesting that variability in 

subcortical volumes is moderately to highly heritable. The structures with highest heritability in the 

FHS and the ASPS-Fam family-based cohorts are the brainstem (ranging from 79-86%), caudate 

nucleus (71-85%), putamen (71-79%) and nucleus accumbens (66%); followed by the globus 

pallidus (55-60%), thalamus (47-54%), and amygdala (34-59%) (Figure 1 and Supplementary 

Table S2). 

 

Genome-wide associations 

We undertook a GWA analysis on the MRI-derived volumes of subcortical structures using the 

1000 Genomes Project1516 reference panel (phase 1 v.3) for imputation of missing variants. Our 

discovery sample comprised up to n=25,587 individuals of European ancestry from 45 study 

samples in CHARGE and ENIGMA (Table S1). Additionally, we included four samples for replication 

in Europeans (up to n=13,707), three for generalization to African-Americans (up to n=769), and 

two for generalization to Asians (n=341). Each study related genetic variants with minor allele 

frequency (MAF) ≥1% to the volumes of subcortical structures (average volume for bilateral 

structures) using additive genetic models adjusted for sex, age, age2, total intracranial volume (total 

brain volume in the UKBB), and population structure. After quality control, we combined study-

specific GWA results using sample-size-weighted fixed effects methods in METAL16. We conducted 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2017. ; https://doi.org/10.1101/173831doi: bioRxiv preprint 

https://doi.org/10.1101/173831


Satizabal et al. 

 

25 

 

meta-analyses in stages, from discovery, through replication and generalization, to the combination 

of all available samples. 

In the discovery analysis, we identified 25 genome-wide significant loci across six subcortical 

structures, 20 of which are novel (Table 1). Among them, 13 variants were located within genes 

(one 3’-UTR, one missense, one non-coding transcript, 10 intronic), and 12 in intergenic regions. In 

addition to these 25 loci, a further seven novel probable genetic associations were identified: four 

had p-values just above the threshold of significance (5.3 x 10-8 to 2.9 x 10-7) and three others 

reached genome-wide significance but were less frequent variants reliably genotyped in a smaller 

sample of n<2500 individuals. Replication results in the UKBB are shown in Table 1. We carried 

forward these 32 loci pointing to 31 candidate genes (variants at the 14q22.3 locus near KTN1 were 

related to putamen and globus pallidus volumes) to in-silico replication in Europeans, 

generalization in African-Americans and Asians, and combined meta-analysis of all samples (Table 

S3). Of 32 candidate loci, the direction of association was the same for 24 variants in Europeans and 

15 variants across all ethnicities. In the combined meta-analysis, 21 of the 32 associations were 

genome-wide significant, 20 for which the strength of association increased from the discovery. 

Among these, are 2 of variants for the nucleus accumbens (MAST4 and SNAR-I) below the threshold 

in the discovery now reached genome-wide significance in the combined meta-analysis.  

To functionally annotate our discoveries, we investigated expression quantitative trait loci 

(eQTL, Table S4) and methylation QTL (meQTL, Table S5) for the 32 candidate loci identified in the 

discovery analysis, using data from post-mortem brains from the Religious Order Study and the 

Rush Memory and Aging Project (ROSMAP). We also queried a variety of cis- and trans-eQTL 

datasets in brain and non-brain tissues (further described in the Supplement) for the 32 candidate 

loci or their proxies (r2>0.8), using the European population reference (Table S6). This allowed us 

to identify 31 additional candidate genes (in addition to the 31 candidate genes within or near the 
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32 loci carried forward for in-silico replication), including one long intergenic non-protein coding 

RNA, and one microRNA, yielding a final set of 62 candidate genes (Table S7). The details describing 

the process, whereby specific genes were identified at each locus, can be found in the supplement 

(see extended results in the Supplementary note). 

 

Associations with cognitive function and neuropathological phenotypes 

We related genetic variation of the 32 variants as well as the expression of our final set of 62 

genes influencing subcortical brain volumes to cognitive function and neuro-pathological traits in 

ROSMAP. We did not find significant associations for individual variants with any investigated trait 

after Bonferroni correction (P<0.0003), except for the APOE variant rs429358, which was, not 

surprisingly, associated with the presence of neurofibrillary tangles, tau density, β-amyloid load, 

neuritic plaques, and cognitive decline (Table S8). However, we did find significant associations of 

dorsolateral prefrontal cortex mRNA expression levels of five candidate genes influencing 

brainstem, caudate, and putamen volumes (Table S9). These included associations with cognitive 

function (KTN1, BCL2L1, SGTB, C20orf166-AS1, PTCH1), neuritic plaque presence (BCL2L1, KTN1), 

β-amyloid load (SGTB, KTN1), neurofibrillary tangles (BCL2L1), and tau density (BCL2L1). 

 

Phenotypic and genetic correlations 

We explored both phenotypic and genetic correlations among subcortical volumes, and also the 

genetic correlations between subcortical volumes and height, MRI-defined hippocampal17 and 

intracranial18 volumes, adult height19, body mass index 20, Alzheimer’s disease21, general cognitive 

function22, bipolar disorder23, and schizophrenia24; using linkage disequilibrium (LD) score 

regression methods25 (Figure 2 and Supplementary Table S10). We observed strong phenotypic 

(P<3.95E-06) and genetic (P=0.04–4.5x10-17) overlap among all subcortical structures (Figure 2A), 
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consistent with our finding that many of the loci identified have pleiotropic effects on the volumes 

of several subcortical structures (Table S3).  

As expected, we found strong genetic correlations among the nuclei composing the corpus 

striatum, particularly for nucleus accumbens with putamen (P=1.24x10-14), and with caudate 

nucleus (P=6.92x10-13). The genetic architecture of thalamic volume highly overlapped with that of 

most subcortical volumes, except for the nucleus accumbens. In contrast, there were no significant 

genetic correlation of the volume of the brainstem with that of most other structures, with the 

exception of very strong correlations with volumes of the thalamus (P=4.45 x10-17) and the globus 

pallidus (P=9.20 x10-09). 

We also observed strong genetic correlations of smaller amygdala and putamen volumes with 

increased risk of Alzheimer’s disease, and smaller nucleus accumbens and caudate nucleus volumes 

with risk of bipolar disorder. Increased general cognitive function was correlated with larger 

brainstem, thalamic, and nucleus accumbens volumes. Finally, intracranial volume was genetically 

correlated with larger volumes of subcortical structures, except for the nucleus accumbens and the 

putamen (Figure 2B). 

 

Cross-species analysis  

To investigate for potential evolutionarily conserved requirements of our gene-set in 

neurodevelopment, neuronal maintenance, or both, we examined available genetic and phenotypic 

data from the fruit fly, Drosophila melanogaster. Importantly, compared to mammalian models, the 

fly genome has been more comprehensively interrogated for roles in the nervous system. We found 

that the majority of candidate genes for human subcortical volumes are strongly conserved in the 

Drosophila genome (66.1%), and many of these genes appear to have conserved nervous system 

requirements (Table S11). To examine if this degree of conservation was greater than that expected 
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by chance, we leveraged systematic, standardized phenotype data based on FlyBase annotations 

using controlled vocabulary terms (Table S12). Indeed, 24.1% of the conserved fly homologs are 

documented to cause “neuroanatomy defective” phenotypes in flies, representing a significant 

(P=3.9x10-3), nearly two-fold enrichment compared to 12.9% representing all Drosophila genes 

associated with such phenotypes (Table S13).  

 

Protein-protein interactions 

To explore potential functional relationships between proteins encoded by our set of 62 genes, 

we conducted protein-protein interaction analyses in STRING26. Our results revealed enrichment of 

genes involved in brain-specific pathways (i.e. nervous system development, regulation of neuronal 

death, neuron projection, axon, neuron part), as well as housekeeping processes (i.e. cell 

differentiation, apoptosis, kinase binding). Figure 3 shows these protein networks, and the detailed 

pathways are presented in Table S14.  
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DISCUSSION 

We undertook the largest GWA meta-analysis of variants associated with MRI-derived volumes 

of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen, and 

thalamus; in more than 40,000 individuals from 54 study samples worldwide. Our analyses 

identified a set of 62 candidate genes influencing the volume of these subcortical brain structures, 

most of which have well-established roles in the nervous system. 

We identified genes implicated in neurodevelopmental processes, including all the candidates 

influencing the volume of the caudate nucleus. We confirm one locus in 11q14.3 near the FAT3 gene 

previously associated with the caudate nucleus13, where the top variant is an eQTL for the 

expression of FAT3 in CD14+ monocytes (Table S6). This gene encodes a conserved cellular 

adhesion molecule implicated in neuronal morphogenesis and cell migration based on mouse 

genetic studies27. Variants in a locus on 9q33 located 150kb from PBX3 were also significantly 

associated with caudate volume. PBX3 is robustly expressed in the developing caudate nucleus of 

the non-human primate, Macaca fuscata, consistent with a role in striatal neurogenesis28. Another 

locus associated with caudate volume at 2p21 is 40kb proximal to SIX3, which encodes a 

transcriptional regulator with conserved neurodevelopmental roles in both vertebrates and 

invertebrates29.The most significant variant at this locus is associated with CpG sites near active 

transcription start sites (TSS) harboring SIX3 in anterior caudate brain tissues (Figure S3.F). Finally, 

another locus associated with caudate volume was at the 9q22.3 locus, 97kb upstream of PTCH1, 

encoding a receptor for the Sonic Hedgehog (SHH) signaling protein, which was also recently found 

associated with hippocampal volume17. Mutations in PTCH1 and SHH are responsible for a third of 

medulloblastomas30. In addition, dominant mutations in SIX3, PTCH1, and SHH similarly cause 

human holoprosencephaly31, and their genetic manipulation causes analogous developmental 
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phenotypes in mice30,32. Moreover, SHH is a direct transcriptional target of SIX333, raising the 

possibility that this pathway also regulates caudate development.  

Furthermore, in our GWA of brainstem volume we identified a signal at 4q22, 185kb 

downstream of ATOH1, an important gene for neurodevelopment. ATOH1 encodes an evolutionarily 

conserved transcriptional regulator of neuronal differentiation, based on studies in numerous 

animal models34. Mice lacking Math1, the ATOH1ortholog, show widespread brainstem 

developmental anomalies35, including disruption of medullary and pontine nuclei with roles in 

respiratory drive36. The most significant variant in this locus is also an eQTL for the expression of 

SMARCAD1 and GRID2 in blood cells (Table S6). In mouse experimental models, expression of 

Smarcad1 accompanies neurogenesis37; whereas in Lurcher mice, serving as a model for 

neurodegeneration, mutations in Grid2 are characterized by brainstem and cerebellar 

neurodegeneration38 resulting in ataxia39. We found that variants in PAPPA and IGF1 are associated 

with the volumes of the brainstem and caudate nucleus, respectively. PAPPA encodes a secreted 

metalloproteinase that cleaves IGFBPs, thereby releasing bound IGF. Although IGF may be 

beneficial in early- and midlife (i.e. higher levels are associated with larger brain volumes and a 

lower risk of Alzheimer’s disease40); its effects may be detrimental during aging, and studies of 

PAPPA similarly support antagonistic pleiotropy. Low circulating PAPPA levels are a marker for 

adverse outcomes in human embryonic development41, but in later life, higher levels have been 

associated with acute coronary syndromes and heart failure42,43. Similarly, Pappa knockout mice 

show dwarfism but reduced age-related degeneration and increased longevity44. 

In screening for variants associated with globus pallidus volume, we identified additional genes 

involved in neurodevelopment. One was an intronic variant in ALPL, associated with CpG sites near 

enhancers in the gene and transcription sites in NBPF3 (Table S5 and Figure S3.I). ALPL encodes an 

alkaline phosphatase that mediates bone mineralization, regulates cell migration, neuronal 
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differentiation early during development, and post-natal synaptogenesis in transgenic mouse 

models45. Recent reports suggest that ALPL helps propagate the neurotoxicity induced by tau46, and 

its activity increases in Alzheimer’s disease47 and cognitive impairment48. NBPF3 belongs to the 

neuroblastoma breakpoint family, which encodes domains of the autism- and schizophrenia-related 

DUF1220 protein49. 

 

Genes influencing the volume of the thalamus, a relay hub for electrical impulses travelling 

between subcortical structures and the cerebral cortex, were related to synaptic signaling 

pathways. We found a missense variant in NPTX1, a gene expressed in the nervous system which 

restricts synapse plasticity50, and induces β-amyloid neurodegeneration in human and mouse brain 

tissues51. We also identified an intronic variant in NCAM2, encoding a protein involved in olfactory 

system development52, levels of which are lower in hippocampal synapses of Alzheimer’s disease 

brains53, possibly contributing to synapse loss in Alzheimer’s disease.  

Additionally, the identified variant at the 3’-UTR of SGTB for the brainstem was a robust eQTL 

for the expression of SGTB in cerebellum, visual cortex (Table S6), and dorsolateral prefrontal 

cortex (Table S4). Experimental rat models showed that βSGT, highly expressed in brain, forms a 

complex with the cysteine string protein and heat-shock protein cognate (CSP/Hsc70) complex to 

function as a chaperone guiding the refolding of misfolded proteins near synaptic vesicles54. Other 

experimental studies in the nematode worm, C. elegans, showed that the genetic manipulation of 

the ortholog, sgt-1, suppresses toxicity associated with expression of the human β-amyloid 

peptide55. Other genes involved in synaptic signaling are CHPT1 (brainstem), involved in 

phosphatidylcholine metabolism in the brain, and DLG2 (putamen), encoding an evolutionarily 

conserved scaffolding protein involved in glutamatergic-mediated synaptic signaling and cell 
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polarity56 that has been associated with schizophrenia57, cognitive impairment58, and Parkinson’s 

disease59. 

 

Other identified variants point to genes involved in autophagy and apoptotic processes, such 

as DRAM1 and FOXO3, both related to brainstem volumes. DRAM1 encodes a lysosomal membrane 

protein involved in activating TP53-mediated autophagy and apoptosis,60 and mouse models 

mimicking cerebral ischemia and reperfusion have found that inhibiting the expression of DRAM1 

worsens cell injury61. The most significant variant located 9Kb downstream from DRAM1 was also 

associated with a CpG site proximate to active TSS upstream of that gene in several mature brain 

tissues (Table S5 and Figure S3.B). FOXO3 has been recently identified as pivotal in an astrocyte 

network conserved across humans and mice involved in stress, sleep, and Huntington's disease62, 

and has been related to longevity63. In Drosophila, a FOXO3 ortholog regulates dendrite number and 

length in the peripheral nervous system64, and in the zebrafish, Danio rario, Foxo3a knockdown led 

to apoptosis and mispatterning of the embryonic CNS65. 

 

Finally, some of the genes we identified have been implicated in axonal transport. Our results 

confirm an association between variants in the 13q22 locus with putamen and globus pallidus 

volumes as previously reported13,66. The most significant variant (rs8017172) is a robust eQTL for 

KTN1 in peripheral blood cells (Table S6). This gene encodes a kinesin-binding protein involved in 

the transport of cellular components along microtubules67, and impairment of these molecular 

motors has been increasingly recognized in neurological diseases with a subcortical component68. 

The 5q12 locus, associated with nucleus accumbens volume in the combined analysis, lies 53kb 

upstream from MAST4, which encodes a member of the microtubule-associated serine/threonine 

kinases. This gene has been associated with hippocampal volumes17 and juvenile myoclonic 
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epilepsy69,and it appears to be differentially expressed in the prefrontal cortex of atypical cases of 

frontotemporal lobar degeneration70. In Drosophila, the knockdown of a conserved MAST4 homolog 

enhanced the neurotoxicity of human tau71, which aggregates to form neurofibrillary tangle 

pathology in Alzheimer’s disease. 

 

Overall, the loci identified by our study pinpoint candidate genes not only associated with 

human subcortical brain volumes, but also reported to disrupt invertebrate neuroanatomy when 

manipulated in Drosophila and many other animal models. This is consistent with the results 

observed in protein-protein networks. Thus, our results are in line with the knowledge that the 

genomic architecture of central nervous system development has been strongly conserved during 

evolution. Further elaboration of the biological pathways associated with the genes not discussed in 

the main text may be found in the Supplementary note (see extended results). 

 

Our findings derived from genetic correlations support earlier observations that amygdala 

volume is reduced in Alzheimer’s disease patients72 and in carriers of the Alzheimer risk enhancing 

ε4 variant of the APOE gene73. Interestingly, one of the top signals related to the amygdala was one 

of the two variants that determines the APOE ε4 isoform (rs429358). In line with our findings, other 

studies have described smaller putamen volumes in Alzheimer’s disease74, or smaller accumbens 

and caudate nuclei in patients with bipolar disorder75,76. Notably, higher general cognitive function 

was correlated with larger brainstem, thalamus, and nucleus accumbens, highlighting the 

integrative role of these brain structures in cognition.  
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In conclusion, we describe multiple genes associated with the volumes of MRI-derived 

subcortical structures in a large sample, leveraging diverse bioinformatic resources to validation 

and follow-up our findings. Our analyses indicate that the variability of evolutionarily old 

subcortical volumes of humans is moderately to strongly heritable, and that their genetic variation 

is also strongly conserved across different species. The majority of the variants identified in this 

analysis point to genes involved in neurodevelopment, regulation of neuronal apoptotic processes, 

synaptic signaling, brain homeostasis, and susceptibility to neurological disorders. We show that 

the genetic architecture of subcortical volumes overlaps with that of anthropometric measures and 

neuropsychiatric disorders. We have focused on the discovery of common and less frequent 

variants, but further efforts to also reveal rare variants and epigenetic signatures associated with 

subcortical structures will provide an even more refined understanding of the underlying 

mechanisms involved. In summary, our findings greatly expand current understanding of the 

genetic variation related to subcortical structures, which can help identify novel biological 

pathways of relevance to human brain development and disease. 
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Table 1. Genome-wide and probable* association results for subcortical brain volumes in the discovery meta-analysis in more than 25,000 Europeans 

from CHARGE and ENIGMA, and replication results in more than 9,000 Europeans from the UKBB 

SNP Chr Position Function Gene annotation A1/A2 
Discovery in CHARGE and ENIGMA† Replication in the UKBB‡ 

Freq. (A1) Weight Z-score P Freq. (A1) Weight Z-score P 

Nucleus accumbens            

rs11747514 5 65839259 intergenic MAST4 (dist=52kb) T/G 0.22 23,683 -5.44 5.34E-08 0.23 9,409 -1.28 0.201 

rs145293717 3 190642692 intergenic SNAR-I (dist=46kb) T/G 0.09 23,360 -5.32 1.04E-07 0.09 9,409 -3.33 8.61E-04 

Amygdala              

rs953755 2 60255546 intergenic MIR4432 (dist=358kb) T/C 0.62 25,400 -5.553 2.81E-08 0.63 9,403 -0.30 0.761 

rs11111293 12 102921296 intergenic IGF1 (dist=46kb) T/C 0.78 25,434 5.195 2.05E-07 0.78 9,403 0.72 0.469 

rs429358 19 45411941 missense APOE T/C 0.85 24,549 5.127 2.94E-07 0.85 9,403 0.41 0.681 

Brainstem              

rs11111090 12 102326461 intergenic DRAM1 (dist=9kb) A/C 0.52 19,930 8.706 3.14E-18 0.51 9,400 5.46 4.72E-08 

rs1405 9 118954624 intronic PAPPA A/G 0.39 19,930 8.482 2.22E-17 0.39 9,400 5.89 3.93E-09 

rs1549192 5 64965900 3’-UTR SGTB T/C 0.74 19,930 -7.092 1.32E-12 0.74 9,400 -3.38 7.24E-04 

rs10792032 11 68984602 intergenic MYEOV (dist=77kb) A/G 0.48 19,769 6.127 8.98E-10 0.49 9,400 -4.45 8.53E-06 

rs201287891 16 52867262 intergenic CHD9 (dist=221kb) D/I 0.37 19,205 6.082 1.18E-09 NA NA NA NA 

rs9398173 6 109000316 intronic FOXO3 T/C 0.34 19,930 -6.058 1.38E-09 0.29 9,400 -2.81 4.95E-03 

rs112994922 6 149919887 intronic KATNA1 D/I 0.32 18,552 5.65 1.60E-08 NA NA NA NA 

rs201708769 20 49127281 intronic PTPN1 D/I 0.21 19,205 -5.597 2.18E-08 NA NA NA NA 

rs11934535 4 94936015 intergenic ATOH1 (dist=184kb) A/G 0.60 19,930 -5.59 2.28E-08 0.58 9,400 -0.99 0.322 

rs12479469 20 61145196 nc transcript C20orf166-AS1 A/G 0.33 16,943 -5.489 4.05E-08 0.34 9,400 -2.68 7.27E-03 

Caudate nucleus            

rs2845878 11 92019253 intergenic FAT3 (dist=28kb) C/G 0.33 25,563 -6.464 1.02E-10 0.33 9,400 -6.50 7.80E-11 

rs888234 9 128880042 intergenic PBX3 (dist=150kb) A/G 0.58 25,449 -6.001 1.96E-09 0.59 9,400 -3.05 2.27E-03 

rs7584428 2 45128493 intergenic SIX3 (dist=40kb) A/G 0.40 25,563 -5.623 1.88E-08 0.42 9,400 -1.67 0.096 

rs76099988 9 98329371 intergenic PTCH1 (dist=97kb) A/T 0.08 25,445 5.599 2.15E-08 0.09 9,400 1.20 0.231 

Globus pallidus            

rs148470213 14 56193700 intergenic KTN1 (dist=42kb) T/C 0.54 25,534 7.058 1.69E-12 0.56 9,352 1.97 4.92E-02 

rs1349470 8 42430502 intergenic SMIM19 (dist=22kb) A/G 0.58 25,534 6.536 6.31E-11 0.59 9,352 9.03 1.65E-19 

rs12128419 1 21864879 intronic ALPL T/C 0.67 25,335 -5.561 2.68E-08 0.69 9,352 -3.37 7.41E-04 

rs182599518 14 103980792 intergenic CKB (dist=52kb) T/C 0.99 2,142 -5.456 4.87E-08 1.00 9,352 -0.49 0.627 

Putamen              
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rs8017172 14 56199048 intergenic KTN1 (dist=47kb) A/G 0.42 25,393 -12.137 6.69E-34 0.42 9,402 -7.60 3.01E-14 

rs62097986 18 50818827 intronic DCC A/C 0.44 25,393 7.406 1.31E-13 0.42 9,402 6.22 5.13E-10 

rs1484994 20 30305975 intronic BCL2L1 A/G 0.71 24,113 7.072 1.52E-12 0.71 9,402 4.62 3.79E-06 

rs512556 11 83288085 intronic DLG2 A/C 0.64 25,393 -6.857 7.06E-12 0.62 9,402 -3.84 1.23E-04 

rs597583 11 117421799 intronic DSCAML1 C/G 0.80 25,393 6.54 6.14E-11 0.80 9,402 2.16 3.10E-02 

Thalamus              

rs144443274 17 78449948 missense NPTX1 T/C 0.18 22,864 -6.172 6.73E-10 0.20 9,412 -2.37 1.77E-02 

rs66562752 21 22530867 intronic NCAM2 A/C 0.57 25,585 5.623 1.88E-08 0.58 9,412 -2.29 2.21E-02 

rs8045946 16 68779469 intronic CDH1 A/G 0.80 2,447 -5.518 3.43E-08 NA NA NA NA 

rs143943992 14 66534309 intergenic FUT8 (dist=418kb) A/G 0.01 1,058 5.497 3.85E-08 0.01 9,412 -0.79 0.429 

Chr = chromosome; Freq. = frequency of the coded allele; dist = distance from nearest gene; A1 = coded allele; A2 = non-coded allele 
* Rows in gray represent probable associations; these are defined as 1) either of borderline genome-wide significance (MAST4, SNAR-I, IGF1, APOE), or 2) 
infrequent variants reliably genotyped in n<2,500 individuals (CKB, CDH1, FUT8). 
† GWA analyses are adjusted for sex, age, age², total intracranial volume and population stratification 
‡ GWA analyses are adjusted for sex, age, age², total brain volume and population stratification. UKBB results for proxy SNPs as follows: 
rs148470213~rs1959089 (r2=.48, C=C,T=T); rs182599518~rs145525075 (r2=1, T=C, C=T); rs144443274~rs34481566 (r2=.78, C=C, T=T); 
rs145293717~rs34481566 (r2=1, G=G, T=A); rs138074335~rs8756 (r2=1, A=C, G=A) 
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Figure 1. Heritability and Manhattan plot of genetic variation associated with subcortical brain volumes in the discovery sample. Analyses were 

adjusted for sex, age, age2, total intracranial volume, and population structure. A. Heritability (h2) estimates were performed with SOLAR in the 

Framingham Heart Study (n=895) and the Austrian Stroke Prevention-Family Study (n=370). B. Combined Manhattan plot. Each dot denotes a single 

genetic variant plotted according to its genomic position (x-axis) and −log10(P) for the associations with each subcortical volume (y-axis). Variants are 

colored differently for each structure (see legend in A). The solid horizontal line denotes genome-wide significance (P < 5 × 10-8), the dashed horizontal 

line denotes a threshold of P < 10-6. Individual Manhattan plots may be found in the Supplementary note. 
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Figure 2. Genetic and phenotypic correlations. In this heat map, the size of the circle is 

proportional to the strength of correlation (ρ) and the direction is presented in the color label on 

the bottom; ‘X’ indicates no significant association (p>0.05). (A) Partial phenotypic (upper triangle) 

and genetic (lower) correlations among the subcortical structures included in this report. Partial 

phenotypic correlations were derived from the subcortical volumes of n=894 participants from the 

Framingham Heart Study, adjusting for sex, age, age², total intracranial volume and PC1. (B) Genetic 

correlations using LD score regression between subcortical brain volumes and other MRI-derived 

volumes, anthropometric, and neuropsychiatric traits. 
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Figure 3. Protein-protein interaction network of 57 genes enriched for common variants 

influencing the volume of subcortical structures using medium-confidence interaction 

scores from the human STRING database. The edges represent protein-protein associations, 

where the edge color indicates the predicted mode of action and the edge shape the predicted 

action effects (see labels on the bottom). Colored nodes represent the queried proteins and first 

shell of interactors (5 maximum), whereas white nodes represent the second shell of interactors (5 

maximum). 
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