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ABSTRACT
Objective An understanding of the etiologic 
heterogeneity of colorectal cancer (CRC) is critical for 

improving precision prevention, including individualized 
screening recommendations and the discovery of novel 
drug targets and repurposable drug candidates for 
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chemoprevention. Known differences in molecular characteristics and 
environmental risk factors among tumors arising in different locations 
of the colorectum suggest partly distinct mechanisms of carcinogenesis. 
The extent to which the contribution of inherited genetic risk factors for 
CRC differs by anatomical subsite of the primary tumor has not been 
examined.
Design To identify new anatomical subsite- specific risk loci, we 
performed genome- wide association study (GWAS) meta- analyses 
including data of 48 214 CRC cases and 64 159 controls of European 
ancestry. We characterised effect heterogeneity at CRC risk loci using 
multinomial modelling.

Results We identified 13 loci that reached genome- wide significance 
(p<5×10−8) and that were not reported by previous GWASs for 
overall CRC risk. Multiple lines of evidence support candidate genes at 
several of these loci. We detected substantial heterogeneity between 
anatomical subsites. Just over half (61) of 109 known and new risk 
variants showed no evidence for heterogeneity. In contrast, 22 variants 
showed association with distal CRC (including rectal cancer), but no 
evidence for association or an attenuated association with proximal 
CRC. For two loci, there was strong evidence for effects confined to 
proximal colon cancer.
Conclusion Genetic architectures of proximal and distal CRC 
are partly distinct. Studies of risk factors and mechanisms of 
carcinogenesis, and precision prevention strategies should take into 
consideration the anatomical subsite of the tumour.

INTRODUCTION
Despite improvements in prevention, screening and therapy, 
colorectal cancer (CRC) remains one of the leading causes of cancer- 
related death worldwide, with an estimated 53 200 fatal cases in 
2020 in the USA alone.1 CRCs that arise proximal (right) or distal 
(left) to the splenic flexure differ in age- specific and sex- specific inci-
dence rates, clinical, pathological and tumour molecular features.2–5 
These observed differences reflect a complex interplay between 
differential exposure of colorectal crypt cells to local environmental 
carcinogenic and protective factors in the luminal content (including 
the microbiome), and distinct inherent biological characteristics that 
may influence neoplasia risk, including sex and differences between 
anatomical segments in embryonic origin, development, physi-
ology, function and mucosal immunology. The precise extrinsic and 
intrinsic aetiological factors involved, their relative contributions, 
and how they interact to influence the carcinogenic process remain 
largely elusive.

An individual’s genetic background plays an important role in the 
initiation and development of CRC. Based on twin registries, heri-
tability is estimated to be around 35%.6 Since genome- wide associ-
ation studies (GWASs) became possible just over a decade ago, over 
100 independent common genetic variant associations for overall 
CRC risk have been identified, over half of which were identified in 
the past few years.7–10 Three decades ago, based on observed simi-
larities between Lynch syndrome and proximal CRC, and between 
familial adenomatous polyposis and distal CRC, Bufill proposed the 
existence of two distinct genetic categories of CRC according to the 
location of the primary tumour.2 However, given that genetic vari-
ants that influence CRC risk typically have small effect sizes, until 
very recently, sample sizes did not provide adequate statistical power 
to conduct meaningful subsite analyses. As a consequence, GWASs 
to detect genetic associations specific to CRC case subgroups defined 
by primary tumour anatomic subsite have not been reported yet. 
Similarly, a comprehensive analysis of the extent to which allelic 
risk of known GWAS- identified variants differs by primary tumour 
anatomic subsite is lacking.

To address the major gap in our knowledge of the differential 
role that genetic variants, genes and pathways play in mecha-
nisms of proximal and distal CRC carcinogenesis, we analysed 
clinical and genome- wide genotype data for 112 373 CRC cases 
and controls. First, to discover new loci and genetic risk vari-
ants with site- specific allelic effects, we conducted GWASs of 
case subgroups defined by the location of their primary tumour 
within the colorectum. Next, we systematically characterised 
heterogeneity of allelic effects between primary tumour subsites 
for new and previously identified CRC risk variants to identify 
loci with shared and site- specific allelic effects.

Significance of this study

What is already known on this subject?
 ► Heterogeneity among colorectal cancer (CRC) tumours 
originating at different locations of the colorectum has 
been revealed in somatic genomes, epigenomes and 
transcriptomes, and in some established environmental risk 
factors for CRC.

 ► Genome- wide association studies (GWASs) have identified 
over 100 genetic variants for overall CRC risk; however, a 
comprehensive analysis of the extent to which genetic risk 
factors differ by the anatomical sublocation of the primary 
tumour is lacking.

What are the new findings?
 ► In this large consortium- based study, we analysed clinical 
and genome- wide genotype data of 112 373 CRC cases 
and controls of European ancestry to comprehensively 
examine whether CRC case subgroups defined by anatomical 
sublocation have distinct germline genetic aetiologies.

 ► We discovered 13 new loci at genome- wide significance 
(p<5×10−8) that were specific to certain anatomical 
sublocations and that were not reported by previous GWASs 
for overall CRC risk; multiple lines of evidence support strong 
candidate target genes at several of these loci, including 
PTGER3, LCT, MLH1, CDX1, KLF14, PYGL, BCL11B and BMP7.

 ► Systematic heterogeneity analysis of genetic risk variants for 
CRC identified thus far, revealed that genetic architectures of 
proximal and distal CRC are partly distinct, and demonstrated 
that distal colon and rectal cancer have very similar germline 
genetic aetiologies.

 ► Taken together, our results further support the idea that 
tumours arising in different anatomical sublocations of the 
colorectum may have distinct aetiologies.

How might it impact on clinical practice in the foreseeable 
future?

 ► Our results provide an informative resource for 
understanding the differential role that genetic variants, 
genes and pathways may play in the mechanisms of proximal 
and distal CRC carcinogenesis.

 ► The new insights into the aetiologies of proximal and 
distal CRC may inform the development of new precision 
prevention strategies, including individualised screening 
recommendations and the discovery of novel drug targets 
and repurposable drug candidates for chemoprevention.

 ► Our findings suggest that future studies of aetiological risk 
factors for CRC and molecular mechanisms of carcinogenesis 
should take into consideration the anatomical sublocation of 
the colorectal tumour. In particular, our results argue against 
lumping proximal and distal colon cancer cases.
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METHODS
Detailed methods are provided in online supplemental 
materials.

Samples and genotypes
This study included clinical and genotype data for 48 214 CRC 
cases and 64 159 controls from three consortia: Genetics and 
Epidemiology of Colorectal Cancer Consortium (GECCO), 
Colorectal Cancer Transdisciplinary Study (CORECT) and 
Colorectal Cancer Family Registry (CCFR). Online supplemental 
table 1 provides details on sample numbers and demographic 
characteristics by study. All study participants were of genetically 
inferred European- ancestry. Across studies, participant recruit-
ment occurred between the early 1990s and the 2010s. Details 
of genotype data sets, genotype QC, sample selection and studies 
included in this analysis have been published previously.7 8 11 12 
All participants provided written informed consent, and each 
study was approved by the relevant research ethics committee or 
institutional review board.

Colorectal tumour anatomic sublocation definitions
We defined proximal colon cancer as any primary tumour arising 
in the cecum, ascending colon, hepatic flexure or transverse 
colon; distal colon cancer as any primary tumour arising in the 
splenic flexure, descending colon or sigmoid colon; and rectal 
cancer as any primary tumour arising in the rectum or recto-
sigmoid junction. For the GWAS discovery analyses, we anal-
ysed five case subgroups based on primary tumour sublocation. 
In addition to the three afore- mentioned mutually exclusive 
case sets (proximal colon, distal colon and rectal cancer), we 
defined colon cancer and distal/left- sided colorectal cancer case 
sets. Colon cancer cases comprised combined proximal colon 
and distal colon cancer cases, and additional colon cases with 
unspecified site. In the distal/left- sided colorectal cancer cases 
analysis, we combined distal colon and rectal cancer cases based 
on the different embryonic origins of the proximal colon versus 
the distal colon and rectum. Online supplemental figure 1 and 
table 1 summarise distributions of age of diagnosis by sex and 
primary tumour site.

Statistical analysis
GWAS meta-analyses
We imputed all genotype datasets to the Haplotype Reference 
Consortium panel.13 In brief, we phased all genotyping array 
data sets using SHAPEIT214 and used the Michigan Imputation 
Server15 for imputation. Within each dataset, variants with an 
imputation accuracy r2≥0.3 and minor allele count ≥50 were 
tested for association with CRC case subgroup. Variants that 
only passed filters in a single dataset were excluded. We assumed 
an additive model using imputed genotype dosage in a logistic 
regression adjusted for age, sex and study or genotyping project- 
specific covariates, including principal components to adjust 
for population structure. Details of covariate corrections have 
been published previously.8 Because Wald tests can be anticon-
servative for rare variants, we performed likelihood ratio tests 
and combined association summary statistics across sample sets 
via fixed- effects meta- analysis employing Stouffer’s method, 
implemented in the METAL software.16 Reported p values are 
based on this analysis. Reported combined OR estimates and 
95% CIs are based on an inverse variance- weighted fixed- effects 
meta- analysis.

Heterogeneity in allelic effect sizes between tumour anatomic 
sublocations
To characterise tumour subsite- specificity and effect size hetero-
geneity across tumour subsites for new loci, and for established 
loci for overall CRC, we examined association evidence in three 
different ways. First, for each index variant we created forest 
plots of OR estimates from GWAS meta- analyses for proximal 
colon, distal colon and rectal cancer. Second, we tested for 
heterogeneity using multinomial logistic regression. In brief, 
after pooling of datasets, we performed a likelihood ratio test 
comparing a model in which ORs for the risk variant were 
allowed to vary across tumour subsites, to a model in which 
ORs were constrained to be the same across tumour subsites. 
Third, inspired by reference,17 we used a multinomial logistic 
regression- based model selection approach to assess which 
configuration of tumour subsites is most likely to be associated 
with a given variant. For each variant, we defined and fitted 11 
possible causal risk models specifying variant effect configura-
tions that vary or are constrained to be equal among subsets of 
tumour subsites (online supplemental table 2). We then identified 
and report the best fitting model using the Bayesian information 
criterion (BIC). For each model i we calculated ∆BICi=BICi−
BICmin, where BICmin is the BIC value for the best model. Models 
with ∆BICi≤2 were considered to have substantial support and 
indistinguishable from the best model.18 For these variants, we 
do not report a single best model. Analyses were carried out 
using the VGAM R package.19 The list of index variants for 
previously published CRC risk signals is based on Huyghe et al.8

Pathway enrichment analyses
We used the Pascal programme to compute pathway enrichment 
score p values from genome- wide summary statistics.20 The 
gene set library used comprises the combined KEGG,21 REAC-
TOME22 and BIOCARTA23 databases.

Genomic annotation of new GWAS loci and gene 
prioritisation
We annotated all new loci with five types of functional and 
regulatory genomic annotations: (i) cell- type- specific regulatory 
annotations for histone modifications and open chromatin, (ii) 
nonsynonymous coding variation, (iii) evidence of transcription 
factor binding, (iv) predicted functional impact across different 
databases, (v) colocalisation with expression quantitative trait 
loci (eQTL) signals. Genes were further prioritised based on 
biological relevance, colorectal tissue expression, presence of 
associated non- synonymous variants predicted to be deleterious, 
evidence from functional studies, somatic alterations or familial 
syndromes. Details are in online supplemental materials.

RESULTS
The final analyses included data for 48 214 CRC cases and 64 159 
controls of European ancestry. To discover new loci and genetic 
risk variants with site- specific allelic effects, we conducted five 
genome- wide association scans of case subgroups defined by the 
location of their primary tumour within the colorectum: prox-
imal colon cancer (n=15 706), distal colon cancer (n=14 376), 
rectal cancer (n=16 212), colon cancer, in which we omitted 
rectal cancer cases (n=32 002), and distal/left- sided CRC, in 
which we combined distal colon and rectal cancer cases (n=30 
588). Next, we systematically characterised heterogeneity of 
allelic effects between tumour subsites for new and previously 
identified CRC risk variants to identify loci with shared and site- 
specific allelic effects.
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New colorectal cancer risk loci
Across the five CRC case subgroup GWAS meta- analyses, a total 
of 11 947 015 single nucleotide variants (SNVs) were analysed. 
Inspection of genomic control inflation factors and quantile–
quantile plots of test statistics indicated no residual population 
stratification issues (online supplemental materials and figure 
2). Across tumour subsites, we identified 13 loci that mapped 
outside regions previously implicated by GWASs for overall 
CRC risk (closest known locus 3.1 megabases away) and that 
reached genome- wide significance (p<5×10−8) in at least one 
of the meta- analyses (table 1, figure 1, online supplemental 
figures 3 and 4). Seven of the new loci passed a Bonferroni- 
adjusted genome- wide significance threshold correcting for five 
case subgroups analysed (table 1). All lead variants were well 
imputed (minimum average imputation r2=0.788), had minor 
allele frequency (MAF) >1%, and displayed no significant 
heterogeneity between sample sets (Cochran’s Q heterogeneity 
test p>0.05; table 1).

The novel associations showing the strongest statistical 
evidence were obtained for proximal colon cancer and mapped 
near MLH1 on 3p22.2 (rs1800734, p=3.8×10−18) and near 
BCL11B on 14q32.2 (rs80158569, p=8.6×10−11). These 
loci showed strongly proximal cancer- specific associations. 
The proximal colon analysis also yielded a locus on 14q32.12 
(rs61975764, p=2.8×10−8) that showed attenuated effects for 
other tumour subsites (figure 1 and online supplemental table 3). 
Most new loci (six) were discovered in the left- sided CRC anal-
ysis: 2q21.3 (rs1446585, p=3.3×10−8), near CDX1 on 5q32 
(rs2302274, p=4.9×10−9), near KLF14 on 7q32.3 (rs73161913, 
p=1.3×10−9), 10q23.31 (rs7071258, p=8.4×10−9), 19p13.3 
(rs62131228, p=2.4×10−8) and near BMP7 on 20q13.31 
(rs6014965, p=4.5×10−9). The rectal cancer analysis identi-
fied an additional locus near PYGL on 14q22.1 (rs28611105, 
p=4.7×10−9) that showed an attenuated effect for distal colon 
cancer (figure 1 and online supplemental table 3). No addi-
tional new loci were detected in the distal colon analysis. The 
colon cancer analysis identified three new loci: near PTGER3 
on 1p31.1 (rs3124454, p=1.4×10−8), 3p21.2 (rs353548, 
p=1.3×10−8) and 22q13.31 (rs736037, p=2.8×10−8).

Genomic annotations and most likely target gene(s) at new 
loci
To gain insight into molecular mechanisms underlying new asso-
ciation signals, and to identify candidate causal variants and 
target gene(s), we annotated signals with functional and regula-
tory genomic annotations, assessed colocalisation with eQTLs, 
and performed literature- based gene prioritisation. Results for 
all new signals are given in online supplemental tables 4 and 5, 
and candidate target genes are also given in table 1. Notable and 
strong candidate target genes include PTGER3, LCT, MLH1, 
CDX1, KLF14, PYGL, RIN3, BCL11B and BMP7. Strong candi-
date causal variants were identified at loci 2q21.3 (rs4988235; 
LCT), 3p22.2 (rs1800734; MLH1), 14q32.12 (rs61975764; 
RIN3) and 14q32.3 (rs80158569; BCL11B). A detailed interpre-
tation of candidate causal variants and target genes is deferred to 
the Discussion section.

Risk heterogeneity between tumour anatomical sublocations
Multinomial logistic regression modelling of 96 known and 13 
newly identified risk variants showed the presence of substantial 
risk heterogeneity between cancer in the proximal colon, distal 
colon and rectum. For 61 variants, the heterogeneity p value 
(phet) was not significant (phet>0.05). For 51 of those variants, Ta
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a multinomial model in which ORs were identical for the three 
cancer sites provided the best fit, and for 8 of the remaining 
10 variants, this model did not significantly differ from the best 
fitting model (online supplemental tables 2, 3 and 7; figure 5).

Among the 109 known or new variants, 48 showed at least 
some evidence of heterogeneity with phet<0.05, and after 
Holm- Bonferroni correction for multiple testing, 14 variants 
showing strong evidence of heterogeneity remained significant 
(phet<4.6×10−4). These included 10 variants previously reported 
in GWASs for overall CRC risk.

For 17 out of the 48 variants with phet<0.05, the best- fitting 
model supported an effect limited to left- sided CRC (figure 2 
and online supplemental tables 3 and 7). Of these 17 variants, 
6 were in the list of variants with the strongest evidence of 
heterogeneity (phet<4.6×10−4), including the following previ-
ously reported loci: C11orf53- COLCA1- COLCA2 on 11q23.1 
(phet=6.0×10−14), APC on 5q22.2 (phet=2.3×10−10), GATA3 on 
10p14 (phet=1.7×10−8), CTNNB1 on 3p22.1 (phet=9.8×10−8), 
RAB40B- METRLN on 17q25.3 (phet=3.6×10−6) and CDKN1A 
on 6p21.2 (phet=1.6×10−4). Inspection of forest plots and asso-
ciation evidence also suggest stronger risk effects for left- sided 
tumours for the following additional five known loci: TET2 on 
4q24, VTI1A on 10q25.2, two independent signals near POLD3 
on 11q13.4, and BMP4 on 14q22.2.

For 5 out of the 49 variants with phet<0.05, a model with 
association with colon cancer risk, but no association with rectal 

cancer risk, provided the best fit (online supplemental tables 3 
and 7). These involve the following loci: PTGER3 on 1p31.1, 
STAB1- TLR9 on 3p21.2, HLA- B- MICA/B- NFKBIL1- TNF on 
6p21.33, NOS1 on 12q24.22 and LINC00673 on 17q24.3. 
Association evidence also suggests stronger risk effects for colon 
tumours for one of two independent signals near PTPN1 on 
20q13.13.

Evidence from the three approaches (figure 1; online 
supplemental tables 3 and 7) indicates that only two loci are 
strongly proximal colon cancer- specific: MLH1 on 3p22.2 
(phet=5.4×10−19), and BCL11B (phet=1.5×10−5) on 14q32.2. 
Finally, for only one variant, at one of two independent loci near 
SATB2 on 2q33.1, a model with a rectal cancer- specific associa-
tion provided the best fit, but association evidence shows atten-
uated effects for proximal and distal colon cancer. OR estimates 
also suggest stronger risk effects for rectal cancer at the known 

Figure 1 Primary tumour site- specific associations for the lead single 
nucleotide polymorphisms (SNPs) of the 13 colorectal cancer risk loci 
not reported in previous genome- wide association studies. The forest 
plot shows the (log- additive) OR estimates together with 95% CIs. For 
clarity, this figure only shows results for the proximal colon, distal colon 
and rectal cancer case subgroup analyses.
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Figure 2 Loci showing association with risk of distal colorectal cancer 
(ie, distal colon+rectal), but attenuated or no evidence for association 
with proximal colon cancer risk. The forest plot shows the (log- additive) 
OR estimates for the lead single nucleotide polymorphisms (SNPs) at 
the loci, together with 95% CIs, from the genome- wide association 
study meta- analyses of case subgroups defined by primary tumour 
anatomical subsite for proximal colon, distal colon and rectal. Best 
model is the best- fitting multinomial logistic regression model according 
to the Bayesian information criterion (BIC). Models are defined in online 
supplemental table 2. Phet is the p value from a test for heterogeneity of 
allelic effects across tumour subsites.
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loci LAMC1 on 1q25.3, and CTNNB1 on 3p22.1, and at new 
locus PYGL on 14q22.1.

Pathway enrichment analyses
To explore whether biological pathways play different roles 
in tumourigenesis of proximal and distal CRC, we conducted 
pathway enrichment analyses of GWAS summary statistics. 
There was no clear and strong evidence for differential involve-
ment of pathways; pathways that were Bonferroni- significant for 
one anatomical subsite, reached at least suggestive significance 
levels for other subsites (online supplemental table 8). Several 
of the Bonferroni- significant pathways related to transforming 
growth factor β (TGFβ) signalling.

DISCUSSION
It has long been recognised that CRCs arising in different 
anatomical segments of the colorectum differ in age- specific and 
sex- specific incidence rates, clinical, pathological and tumour 
molecular features. However, our understanding of the aetio-
logical factors underlying these medically important differences 
has remained scarce. This study aimed to examine whether 
the contribution of common germline genetic variants to CRC 
carcinogenesis differs by anatomical sublocation. The large 
sample size comprising 112 373 cases and controls provided 
adequate statistical power to discover new loci and variants with 
risk effects limited to tumours for certain anatomical subsites, 
and to compare allelic effect sizes across anatomical subsites.

Our CRC case subgroup meta- analyses identified 13 additional 
genome- wide significant CRC risk loci that, due to substantial 
allelic effect heterogeneity between anatomical subsites, were 
not detected in larger, previously published GWASs for overall 
CRC risk.8 9 In fact, the only way to discover certain loci and 
risk variants with case subgroup- specific allelic effects is via anal-
ysis of homogeneous case subgroups.24 For example, p values 
for rs1800734 and rs80158569 were ~18 and~5 powers of 
10, respectively, more significant in the proximal colon analysis 
compared with in our overall CRC analysis. While follow- up 
studies are needed to uncover the causal variant(s), biological 
mechanism and target gene, multiple lines of evidence support 
strong candidate target genes at many of the new loci, including 
genes MLH1, BCL11B, RIN3, CDX1, LCT, KLF14, BMP7, 
PYGL and PTGER3.

At the MLH1 gene promoter region on 3p22.2, associated to 
proximal colon cancer, previous studies have reported strong and 
robust associations between the common single nucleotide poly-
morphism (SNP) rs1800734, and CRC with high microsatellite 
instability (MSI- H).25 26 Rare deleterious nonsynonymous germ-
line mutations in the DNA mismatch repair (MMR) gene MLH1 
are a frequent cause of Lynch syndrome (OMIM #609310). The 
risk allele of the likely causal SNP rs1800734 is strongly associ-
ated with MLH1 promoter hypermethylation and loss of MLH1 
protein in CRC tumours.26 The mechanisms of MLH1 promoter 
hypermethylation and subsequent gene silencing may account 
for most CRC tumours with defective DNA MMR and MSI- H.27

At the highly localised, proximal colon- specific association 
signal on 14q32.2, lead SNP rs80158569 is located in a colonic 
crypt enhancer and overlaps with multiple transcription factor 
binding sites, making it a strong candidate causal variant. Nearby 
gene BCL11B encodes a transcription factor that is required for 
normal T cell development,28 29 and that is a SWI/SNF complex 
subunit.30 BCL11B acts as a haploinsufficient tumour suppressor 
in T- cell acute lymphoblastic leukaemia.31 32 Experimental 
work suggests that impairment of Bcl11b promotes intestinal 

tumourigenesis in mice and humans through deregulation of the 
Wnt/β-catenin pathway.33

At locus 14q32.12, lead SNP rs61975764 showed the stron-
gest association evidence in the proximal colon analysis and 
attenuated effects for other tumour locations. Genotype- Tissue 
Expression (GTEx) data show that rs61975764 is an eQTL 
for gene Ras and Rab interactor 3 (RIN3) in transverse colon 
tissue. RIN3 functions as a RAB5 and RAB31 guanine nucleotide 
exchange factor involved in endocytosis.34 35

At locus 5q32, associated with left- sided CRC, the intestine- 
specific transcription factor caudal- type homeobox 1 (CDX1) 
encodes a key regulator of differentiation of enterocytes in 
the normal intestine and of CRC cells. CDX1 is central to the 
capacity of colon cells to differentiate and promotes differenti-
ation by repressing the polycomb complex protein BMI1 which 
promotes stemness and self- renewal. The repression of BMI1 
is mediated by microRNA-215 which acts as a target of CDX1 
to promote differentiation and inhibit stemness.36 CDX1 has 
been shown to inhibit human colon cancer cell proliferation by 
blocking β-catenin/T- cell factor transcriptional activity.37

In a region of extensive LD on locus 2q21.1, lead SNP 
rs1446585, associated with left- sided CRC, is in strong LD with 
functional SNP rs4988235 (LD r2=0.854) in the cis- regulatory 
element of the lactase (LCT) gene. In Europeans, the rs4988235 
genotype determines the lactase persistence phenotype, or the 
ability to digest lactose in adulthood. The p value for func-
tional SNP rs4988235 under an additive model was 7.0×10−7. 
The allele determining lactase persistence (T) is associated 
with decreased CRC risk. This is consistent with a previously 
reported association between low lactase activity defined by the 
CC genotype and CRC risk in the Finnish population.38 The 
protective effect conferred by the lactase persistence genotype is 
likely mediated by dairy products and calcium which are known 
protective factors for CRC.39 When we tested for association 
with left- sided CRC assuming a dominant model, associations 
for rs1446585 and rs4988235 became more significant with p 
values of 4.4×10−11 and 1.4×10−9, respectively. For functional 
SNP rs4988235, the OR estimate for having genotype CC 
versus CT or TT, and left- sided CRC was 1.14 (95% CI 1.09 
to 1.19). Because this region has been under strong selection, 
it is particularly prone to population stratification.40 However, 
we adjusted for genotype principal components, and the associ-
ation showed a consistent direction of effect across sample sets 
(online supplemental table 6), suggesting this association is not 
spurious.

Candidate genes at left- sided CRC loci 7q32.2 and 20q13.31 
are involved in TGFβ signalling. At 7q32.3, gene Krüppel- 
like factor 14 (KLF14) is a strong candidate. We previously 
reported loci at known CRC oncogene KLF5 and at KLF2.8 The 
imprinted gene KLF14 shows monoallelic maternal expression, 
and is induced by TGFβ to transcriptionally corepress the TGFβ 
receptor 2 (TGFBR2) gene.41 A cis- eQTL for KLF14, uncorrelated 
with our lead SNP rs73161913, acts as a master regulator related 
to multiple metabolic phenotypes,42 43 and a nearby independent 
variant is associated to basal cell carcinoma.44 For both reported 
associations, effects depended on parent- of- origin of risk alleles. 
The association with metabolic phenotypes also depended on 
sex. We did not find evidence for strong sex- dependent effects 
(men: OR=1.13, 95% CI 1.07 to 1.20; women: OR=1.17, 95% 
CI 1.09 to 1.25). Further investigation is warranted to analyse 
parent- of- origin effects. At 20q13.31, gene bone morphogenetic 
protein 7 (BMP7) is a strong candidate. BMP7 signalling in 
TGFBR2- deficient stromal cells promotes epithelial carcinogen-
esis through SMAD4- mediated signalling.45 In CRC tumours, 
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BMP7 expression correlates with parameters of pathological 
aggressiveness such as liver metastasis and poor prognosis.46

On 14q22.1, the single locus identified only in the rectal 
cancer analysis, GTEx data show that, in gastrointestinal tissues, 
lead SNP rs28611105 colocalises with a cis- eQTL coregulating 
expression of genes PYGL, ABHD12B and NIN. We reported an 
association between genetically predicted glycogen phosphory-
lase L (PYGL) expression and CRC risk in a transcriptome- wide 
association study.47 This glycogen metabolism gene plays an 
important role in sustaining proliferation and preventing prema-
ture senescence in hypoxic cancer cells.48

At 1p31.1, identified in the colon cancer analysis, PTGER3 
encodes prostaglandin E receptor 3, a receptor for prostaglandin 
E2 (PGE2), a potent pro- inflammatory metabolite biosynthe-
sised by cyclooxygenase-2 (COX-2). COX-2 plays a critical 
role in mediating inflammatory responses that lead to epithelial 
malignancies. The anti- inflammatory activity of non- steroidal 
anti- inflammatory drugs (NSAIDs) such as aspirin and ibuprofen 
operates mainly through COX-2 inhibition, and long- term 
NSAID use decreases CRC incidence and mortality.49 PGE2 is 
required for the activation of β-catenin by Wnt in stem cells,50 
and promotes colon cancer cell growth.51 PTGER3 plays an 
important role in suppression of cell growth and its downregula-
tion was shown to enhance colon carcinogenesis.52

Previous CRC GWASs had already reported allelic effect 
heterogeneity between tumour sites, including for 10p14, 11q23 
and 18q21 but only contrasted colon and rectal tumours, without 
distinguishing between proximal and distal colon.53 54 Sample size 
and timing of the present study enabled systematic characterisa-
tion of allelic effect heterogeneity between more refined tumour 
anatomical sublocations, and for a much expanded catalogue 
of risk variants. Our analysis revealed substantial, previously 
unappreciated allelic effect heterogeneity between proximal 
and distal CRC. Results further show that distal colon and 
rectal cancer have very similar germline genetic aetiologies. Our 
findings at several loci are consistent with CRC tumour molec-
ular studies. Consensus molecular subtypes (CMSs), which are 
based on tumour gene expression, are differentially distributed 
between proximal and distal CRCs. The canonical CMS (CMS2) 
is enriched in distal CRC (56% vs 26% for proximal CRC) and 
is characterised by upregulation of Wnt downstream targets.55 
We found that variant associations near Wnt/β-catenin pathway 
genes APC and CTNNB1 were confined to distal CRC. We also 
found that associations for variants near genes BOC and FOXL1, 
members of the Hedgehog signalling pathway, were confined to 
distal CRC, suggesting that Wnt and Hedgehog signalling may 
contribute more to the development of distal CRC tumours. 
However, pathway enrichment analyses did not provide clear 
evidence for differential involvement of pathways, suggesting 
perhaps that associations for proximal and distal CRC mostly 
converge on the same pathways. Pathway analysis results should, 
however, be interpreted taking into consideration the limitations 
of available approaches. Genetic variants were mapped to the 
nearest gene which is often not the target gene.

The precise intrinsic or extrinsic effect modifiers explaining 
observed allelic effect heterogeneity between anatomical subsites 
remain unknown and further research is needed. Short- chain 
fatty acids, in particular butyrate, produced by microbiota 
through fermentation of dietary fibre in the colon may be 
involved. Concentrations of butyrate, which plays a multifac-
eted antitumorigenic role in maintaining gut homoeostasis, are 
much higher in proximal colon.56 Moreover, the known chemo-
preventive role of butyrate may involve modulation of signalling 
pathways including TGFβ and Wnt.57 This may contribute to 

possible differences between anatomical segments in colorectal 
crypt cellular dynamics.

One limitation of our study is that we have not performed 
GWAS analyses of case subgroups based on more detailed 
anatomical sublocations. However, given current sample size, 
such analyses would result in reduced statistical power owing to 
reduced sample sizes and the aggravated multiple testing burden. 
As another limitation, our study was based on European- ancestry 
subjects and it remains to be determined whether findings are 
generalisable to other ancestries.

In conclusion, germline genetic data support the idea that 
proximal and distal colorectal cancer have partly distinct aetiolo-
gies. Our results further demonstrate that distal colon and rectal 
cancer have very similar germline genetic aetiologies and argue 
against lumping proximal and distal colon cancer in studies 
of aetiological factors. Future genetic studies should take into 
consideration differences between primary tumour anatomical 
subsites. A better understanding of differing carcinogenic mech-
anisms and neoplastic transformation risk in proximal and distal 
colorectum can inform the development of novel precision treat-
ment and prevention strategies through the discovery of novel 
drug targets and repurposable drug candidates for treatment 
and chemoprevention, and improved individualised screening 
recommendations based on risk prediction models incorporating 
tumour anatomical subsite.
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