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Abstract
This paper provides a review of the design and analysis of genetic association studies. In case

control studies, the different contingency tables and their relationships to the underlying

genetic model are defined. Population stratification is discussed, with suggested methods to

identify and correct for the effect. The transmission disequilibrium test is provided as an

alternative family-based test, which is robust to population stratification. The relative benefits

of each analysis are summarised.

INTRODUCTION
The Human Genome Project has

generated a wealth of data that will

determine the genetic contribution to

common human disorders. Genetic

studies have already proved highly

successful in cloning genes for simple

Mendelian diseases, such as cystic fibrosis,

Huntington’s disease and many rare

syndromes, but progress has been slower

in complex diseases. This class of diseases

covers a broad spectrum of human health,

including inflammatory bowel disease,

asthma and heart disease, where several

genes are likely to control disease risk, and

gene–gene or gene–environmental

interactions may be important. Identifying

the genetic contributions to complex

diseases will lead to advances in diagnosis

and therapy (especially

pharmacogenomics) and with far-reaching

implications for public health.

The major tools from the Human

Genome Project for identifying disease

susceptibility loci are the single nucleotide

polymorphisms (SNPs). These single

base-pair changes are common across the

genome, and over 1.4 million such

polymorphisms have been detected.1

SNPs occur ubiquitously across the

genome, in coding, non-coding and

untranslated regions. Such variants are

strong candidates for disease susceptibility

mutations, and gene localisation studies

screen large numbers of SNPs to test the

co-occurrence of SNP alleles and disease.

These genetic association studies are

performed to determine whether a

genetic variant is associated with disease:

an individual carrying one or two copies

of a high-risk variant is at increased risk of

developing a disease.

This review paper will consider two

different study designs for association

studies: the case control study and the

transmission disequilibrium test (TDT),

focusing on study design, statistical

analysis methods and interpretation of

results. Web sites for downloading

analysis software are given.

CASE CONTROL STUDIES
Case control studies compare the

frequency of SNP alleles in two well-

defined groups of individuals: cases who

have been diagnosed with the disease

under study, and controls, who are either

known to be unaffected, or who have

been randomly selected from the

population. (Both choices of controls

form a valid study.) An increased

frequency of a SNP allele or genotype in

cases compared with controls indicates

that presence of the SNP allele may

increase risk of disease. The major

problem in case control studies is ensuring
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a good match between the genetic

background of cases and controls, so that

any genetic difference between them is

related to the disease under study and not

to biased sampling. Clearly, cases and

controls should be from similar ethnic

groups. More subtle genetic differences

can be guarded against by collecting

controls from the same geographical area

as cases, or by collecting information such

as the birth place of grandparents to check

a similar distribution between cases and

controls.

Analysis methods
For a single SNP with alleles A and B

tested in a case control study, the data

generated consist of six counts of the

numbers of genotypes (AA, AB and BB)

in cases and controls (Table 1(a)). We

assume a total of ncase cases and ncont

controls have been tested, and the total

number of AA genotypes observed is nAA,

etc. This 2 3 3 contingency table can be

analysed directly using an observed-

expected test statistic, which has a chi-

squared distribution on two degrees of

freedom (df ). Contingency tables can be

analysed using any standard statistical

package (Stata, SAS, SPSS, Splus, etc.) or

using Excel.

The chi-square statistic tests for

departure from the expected values across

cells in the table. Thus the observed value

for AA genotype in cases (O1 ¼ a) is

compared with its expected value given

the total number of cases and the total

number of AA genotypes, so

E1 ¼ nAAncase=n. The full test statistic is

X ¼
X6

i¼1

(Oi � Ei)

Ei

2

� �2

where the summation is over all six cells

in the table, and Oi are the observed

values a, b, c, d, e, f in each cell.

Notice that this test statistic compares

the observed number of AA genotypes in

cases with that expected assuming both

cases and controls have the same

frequency of AA genotypes. The analysis

does not provide any sense of ordering

across the genotypes AA, AB and BB.

The test statistic approximation to the

chi-square distribution is asymptotic,

implying that the analysis becomes more

accurate with larger data sets. A small

count in any cell can violate the

distributional assumptions, and an

expected value of at least five observations

in each cell is regarded as a minimum

number.

The data may also be analysed assuming

a prespecified genetic model. For

example, with the hypothesis that

carrying allele B increased risk of disease

(dominant model), the AB and BB

Case control studies are
a widely used and
powerful study design

Contingency table
analysis methods allow
for different genetic
models

Table 1: Contingency tables for case
control analyses, by genetic model. Test 1 is
a baseline analysis, and any further analysis
should be driven by prior hypothesis. a, b, c,
d, e, f are genotype counts observed in cases
and controls

(a) Full genotype table for a general genetic model

AA AB BB

Cases a b c
Controls d e f

(b) Dominant model: allele B increases risk

AA AB+BB

Cases a b + c
Controls d e + f

(c) Recessive model: two copies of allele B required
for increased risk

AA + AB BB

Cases a + b c
Controls d + e f

(d) Multiplicative model: r-fold increased risk for AB,
r2 increased risk for BB. Analysed by allele, not by
genotype

A B

Cases 2a + b b + 2c
Controls 2d + e e + 2f

(e) Additive model: r-fold increased risk for AB, 2r
increased risk for BB. Genotypes analysed by
Armitage’s test for trend

AA AB BB

Cases a b c
Controls d e f
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genotypes are pooled giving a 2 3 2 table

(Table 1(b)). This is particularly relevant

when allele B is rare, with few BB

observations in cases and controls.

Alternatively, under a recessive model for

allele B, cells AA and AB would be

pooled (Table 1(c)).

Analysing by alleles provides an

alternative perspective for case control

data. This breaks down genotypes to

compare the total number of A and B

alleles in cases and controls, regardless of

the genotypes from which these alleles are

constructed (Table 1(d)). This analysis is

counter-intuitive, since alleles do not act

independently, but it provides the most

powerful method of testing under a

multiplicative genetic model, where risk

of developing a disease increases by a

factor r for each B allele carried: risk r for

genotype AB and r2 for genotype BB. If a

multiplicative genetic model is

appropriate, both case and control

genotypes will be in Hardy–Weinberg

equilibrium,2 and this can be tested for

(see below).

A fourth possible genetic model is

additive, with an increased disease risk of r

for AB genotypes, and 2r for BB

genotypes (Table 1(e)). This model shows

a clear trend of an increased number of

AB and BB genotypes, with the risk for

AB genotypes approximately half that for

BB genotypes. The additive genetic

model can be tested for using Armitage’s

test for trend.3

The contingency table can also be

analysed using a logistic regression model,

where the outcome (0/1) is a case or

control, and the explanatory variable of

genotype has three levels (AA, AB, BB).

Statistically, this method is equivalent to

the contingency table, but the logistic

regression modelling can be easily

extended to further SNPs,

epidemiological risk factors or clinical

variables such as disease severity or age at

onset. Standard statistical packages will fit

this model. This method can also be used

to analyse a codominant model, where

the disease risk associated with AB

individuals lies between that of AA and

BB individuals, but not in the specific

relationship of a multiplicative or additive

model.

Although this paper focuses on biallelic

SNPs, association studies may also be

performed using multi-allele systems, such

as microsatellite markers. Indeed, several

disease genes have been identified

through association studies with

microsatellite markers in regions

delineated by linkage studies.4,5 The

analysis methods remain similar, but

problems arise when rare alleles lead to

sparse contingency tables that cannot be

analysed by chi-square statistics. Sham and

Curtis6 provide a solution to this in their

program CLUMP, which analyses case

control data from microsatellite markers

using Monte Carlo simulation methods.

Testing for Hardy–Weinberg
equilibrium
Control genotypes should be in Hardy–

Weinberg equilibrium, provided the

population they are selected from is

random mating and is large in size.

Suppose the population frequency of

allele A is p and allele B is q ¼ 1 � p, then

the genotypes AA, AB and BB should

have frequency p2, 2pq and q2. This may

be tested in controls, comparing observed

control genotype counts against those

expected under Hardy–Weinberg

equilibrium, using p ¼ (2d þ e)=(2ncont)

as an estimate of the frequency for allele

A. The test statistic has a chi-square

distribution with 1 df (reduced from 2

since the data have been used to estimate

the parameter p).

A significant result showing that

controls are not in Hardy–Weinberg

equilibrium (HWE) could arise because of:

• random chance: one of every 20

markers tested will give a p-value of less

than 0.05 by chance;

• genotyping problems, where genotypes

are consistently mis-called, or specific

genotypes give missing values;

• heterogeneous population: the controls

Allele frequency
methods assume a
multiplicative genetic
model

An additive genetic
model is tested using
Armitage’s test for
trend

Testing for Hardy–
Weinberg equilibrium
can identify genotyping
problems
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may be a mix of different populations

with different allele frequencies

(although the test has low power to

identify this scenario).

Provided the controls are in HWE, the

cases may then be tested. If the SNP has a

true genetic effect that is not controlled

by a multiplicative model, the cases will

not be in HWE2 (although again, the test

has little power to detect small departures

from HWE). If the cases are in HWE, the

data may be analysed by allele counting, as

any genetic effect is consistent with a

multiplicative model.

Population stratification
Case control association studies assume

that any difference in SNP genotypes

between cases and controls is due solely to

their difference in disease status, and not

to any difference in genetic background.

This assumption is crucial to a successful

study, but is difficult either to ensure at

the design stage of a study, or to test for at

the analysis stage. The problem arises if

our underlying population is actually a

mix of ancestrally distinct populations

with different values of disease prevalence

and SNP allele frequency. For example,

with two populations where population 1

has high disease prevalence and

(independently) a higher allele frequency

at the SNP than population 2, cases will

be preferentially drawn from population

1. This will give a higher frequency of the

SNP allele than controls, and a spurious

association between the SNP and disease.

Notice that the frequencies of both the

disease and the SNP allele must differ in

the two populations in order for the

population stratification to give a false

positive result in the association study.

The lack of replication across many

disease association studies may be due to

population stratification, but there is little

evidence that the genetic differences

between populations are sufficient to lead

to these results. Diverse genetic

populations such as Africans and

Caucasians have different disease

prevalences (eg hypertension, prostate

cancer), and large differences in SNP

allele frequencies, but would not be

analysed together in a genetic study.

Within ethnic groups, more subtle

genetic variation could lead to population

stratification, but (aside from human

leukocyte antigen, HLA, studies) little is

known regarding genetic differences

within broad population groups. Given

the current level of concern over possible

population stratification, stringently

designed case control studies are essential

for scientific credibility.

Several methods have been developed

to test and correct for potential population

stratification in association studies, using

genotypes from genetic markers unlinked

to the SNP(s) involved in the association

study to obtain information on population

diversity among the cases and controls.

Pritchard et al.7 estimate the ancestry of

study members, and then incorporate this

information into the association study,

essentially testing for association within

subpopulations. The genomic control

method treats the population ancestry as a

nuisance parameter within the modelling,

and removes the effect from the

association test statistic.8

Odds ratios for disease from
case control studies
The contingency table methods above

provide an assessment of departure from

equal SNP allele frequencies in cases and

controls (a p-value). These studies can also

be used to estimate the disease risk

conferred by the SNP allele. Suppose we

have a dominantly acting SNP allele,

which other studies have confirmed as a

functional mutation. The odds ratio (OR)

for disease is the ratio of allele carriers to

non-carriers in cases compared with that

in controls (Table 1):

OR ¼ [(b þ c)d ]=[a(e þ f )]

which gives the increase in disease risk for

carriers compared to non-carriers. The

relative risk can also be estimated, but the

OR has the advantage of easily calculated

confidence intervals based on cell entries.9

Further evidence for the underlying

Population stratification
leads to false positive
results

Odds ratios illustrate
the risks conferred by
genetic mutations
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genetic model is provided by calculating

odds ratios separately for each genotype

(AB, BB) compared with the wild-type

AA homozygotes. For example, in

inflammatory bowel disease, the pooled

effect of mutations in the NOD2 gene

gives an odds ratio of 3.0 for heterozygote

carriers and 23.4 for homozygotes.10 Odds

ratios should only estimated once strong

evidence has accumulated that the tested

SNP is indeed the true disease mutation.

TRANSMISSION
DISEQUILIBRIUM TEST
The TDT tests for both linkage and

association in families with observed

transmissions from parents to affected

offspring.11 It was originally developed to

test for linkage in the presence of

association, but its most common usage is

now to test for association in the presence

of linkage, since it is robust against

population stratification.

The TDT tests for distortion in

transmission of alleles from a

heterozygous parent to an affected

offspring (Figure 1). Under no association

with the disease, alleles A and B have an

equal chance of being transmitted from a

heterozygous parent. If, however, allele B

increases risk of disease, this allele will be

preferentially transmitted to the affected

offspring. The sampling scheme for the

TDT is the family trio, with DNA

available from both parents and a single

affected offspring (although further

affected offspring can be included in a test

of linkage). The test statistic T considers

all heterozygote AB parents, and

compares the number of transmissions of

allele A and allele B, in a McNemar’s test

(Figure 1). T has a chi-square distribution

with 1 degree of freedom, provided the

sample size (of heterozygous parents) is

sufficiently large. For a smaller number of

parents, an exact binomial test can be

used. The TDT treats parental

contributions as independent, and

therefore assumes a multiplicative model.

In case control studies, different tests can

be used for specific genetic models

(recessive, dominant, etc.), and similar

methods are available for the TDT,12

although these are not widely used.

The sampling scheme of the TDT is

convenient where families have

previously been collected (for example in

a linkage study), and in young-onset

traits. However for older onset traits,

collecting complete family trios may be

difficult. An alternative is the sibTDT13

and other similar tests, where unaffected

siblings replace the parents. In the

sibTDT, the number of A alleles carried

by affected siblings is compared with

those carried by unaffected siblings. The

sample size required for the sibTDT is

substantially larger than that for the TDT:

for families where two unaffected siblings

replace the parents, 50 per cent more

families are required to obtain the same

power to detect association.14 Results for

the TDT and sibTDT may be combined

into a single test, giving a method that is

flexible to different family structures.

Including families where only a single

parent is genotyped is difficult:

reconstructing parental transmission can

bias the result.15

Many programs can analyse TDT data

and are available through the WWW,

with a complete listing given on the

Rockefeller linkage site (Table 2). The

TDT/Sib-TDT program by Spielman is

user-friendly, and provides a complete

analysis of TDT and sibTDT families.

Other programs provide the TDT as an

additional option to linkage analysis, for

example Genehunter.16 These programs

also provide functions such as

TDT is robust against
population stratification

TDT counts
transmissions of an
allele from
heterozygous parents
to an affected offspring

Figure 1: TDT diagram and test statistic
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permutation tests to assess the significance

of the TDT statistic. The pedigree

disequilibrium test (PDT) provides a test

of association for extended families.17

Several extensions to the TDT have

been developed. For a multi-allele marker

with n alleles, the contingency table of

Figure 1 is extended to have n columns

and rows, where the entry in row i,

column j shows the number of parents

who transmit allele i in preference to

allele j, and vice versa for row j, column i.

Although such contingency tables can be

analysed using standard statistical methods,

the sparseness of data makes this difficult.

Sham and Curtis18 have developed a

logistic regression approach, estimating a

risk effect for each allele, and fitting

models to the number of transmitted and

non-transmitted alleles for a microsatellite

marker, which is implemented in the

program ETDT.

HAPLOTYPE ANALYSIS OF
MULTIPLE SNPS OR
MICROSATELLITE
MARKERS
Association studies commonly test a series

of SNPs within a candidate gene to

determine whether any SNP increases risk

of developing the disease. The analysis

methods presented above for case control

studies and the TDT assume that each

SNP will be analysed independently, but

some recognition of multiple testing is

necessary. A Bonferroni correction to the

p-values obtained from each SNP is

overly conservative, since the SNPs may

be in linkage disequilibrium, and

therefore results from each test are not

independent. Some TDT programs use

permutation statistics to provide an overall

assessment of significance (eg

Genehunter).

Analysis methods based on single SNPs

have limited power to detect a true

genetic effect that requires a specific allele

at several SNPs. This may be detected

using haplotype-based methods, analysing

all SNPs concurrently. Genehunter allows

haplotype analysis of up to four SNPs.

One of the most flexible programs for

TDT-type analysis is Transmit.19 This

analyses either a single SNP or

reconstructs haplotypes across SNPs, and

also deals with multi-allele markers.

Transmit estimates transmission

probabilities of alleles to affected

offspring, using parental and sibling

genotypes where available, and it infers

missing genotypes using Hardy–

Weinberg equilibrium where necessary.

Haplotypes in case control studies can

be analysed using EH or Ehplus20,21

which estimate haplotype frequencies in a

set of individuals. By performing the

analysis on cases, on controls, and then on

the pooled collection of cases and

controls, a likelihood ratio test can be

used to test for a difference in haplotype

frequencies in cases and controls.

DISCUSSION
This paper provides an overview of

association studies in genetics, focusing on

two widely used study designs: the case

TDT can be applied to
microsatellite markers

Haplotypes of candidate
gene SNPs can give
greater power

Table 2: Web sites for association studies analysis methods

Rockefeller linkage site
providing a complete listing of
software for genetic linkage
analysis

http://linkage.rockefeller.edu/soft/list.html

TDT/SibTDT http://genomics.med.upenn.edu/spielman/TDT.htm
Genehunter http://www.fhcrc.org/labs/kruglyak/Downloads/index.html
PDT http://www.chg.duke.edu/software/pdt.html
ETDT http://www.mds.qmw.ac.uk/statgen/dcurtis/software.html
Transmit http://ftp-gene.cimr.cam.ac.uk/clayton/software/
EH ftp://linkage.rockefeller.edu/software/eh/
Ehplus http://www.iop.kcl.ac.uk/IoP/Departments/PsychMed/GEpiBSt/software.stm
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control study and the transmission

disequilibrium test. The TDT was

originally developed for use in family-

based linkage studies, but its popularity is

due primarily to its robustness against

population stratification. However,

population stratification may contribute

only a small proportion of the false

positive/non-replicated association

studies, and case control studies are again

popular for use in complex diseases.

The major advantage of a case control

study over the TDT is its increased power

to detect genes of similar effect and

therefore decreased sample sizes. The

relative advantage of the case control

study will depend on the underlying

genetic model. For example, a mutation

with a 10 per cent population frequency,

and a multiplicative model where each

copy of the mutation increases risk four-

fold, requires 450 genotypes (150 trios) in

a TDT study, but only 296 genotypes

(148 samples in each group) for a case

control study. Using the TDT therefore

requires 51 per cent more genotyping

than the case control study (using a

significance level of 5 3 10�8 for a

genome-wide association study, and a

power of 80 per cent). These differences

in sample size become critical when

genotyping capacity limits the number of

candidate genes/mutations we can test,

and when the minor genetic effect due to

any single mutation is at the boundary of

what our study sample sizes can detect.

However, the TDT provides a valuable

confirmation that results from a case

control study are indeed due to a true

disease susceptibility locus. Sample sizes

for case control studies can be calculated

from standard statistical software,

specifying the difference in allele or

genotype frequencies between cases and

controls. Several methods have been

developed for calculating TDT sample

sizes, including, most recently, a

computer program TDT power calculator

(TDT_PC) that allows diverse genetic

models and family structures.22

A Medline search on ‘genetic

association study’ reveals over 6,000

papers, many of these reporting

associations that remain unconfirmed in

further studies. For example, Altshuler

et al.23 analyse several polymorphisms that

have previously been associated with

increased risk of developing type 2

diabetes. Using case control and TDT

studies, they replicate only 2 of the 13

results. The reasons for non-replication

are diverse. The complex diseases may

have many contributing genes of small to

moderate effect. The power to detect this

effect will be low in any single study and,

unsurprisingly, non-replication occurs.

The non-replication may be exacerbated

by (1) studies that fail to interpret p-values

based on the number of candidate genes

or SNPs tested, (2) genetic mutations of

differing frequency and effect across

populations, (3) studies that ascertain

patients using different clinical criteria,

and (4) interactions with environmental

effects that differ across populations.

Ignoring population stratification, any

significant result from a disease association

study has several possible interpretations.

The tested SNP may be a true disease

susceptibility mutation that directly affects

risk. However, the SNP may merely be in

linkage disequilibrium with the true

mutation, and the significant result arises

because the SNP allele and mutation are

co-inherited in the population, rarely

separated by recombinations. This

remains a valuable result, because the

mutation must lie within a short genetic

region flanking the tested SNP. However,

identifying the true mutation from a

haplotype of SNP alleles that are in strong

linkage disequilibrium is difficult, and

may require functional studies. The third

possibility is that the result occurs by

random chance, and does not reflect any

true disease mutation. This possibility

increases when several genes or SNPs

have been tested, or when cases have

been stratified by clinical properties (such

as severity or age of onset), unless the

p-value has been corrected for multiple

testing.

Association studies currently focus on a

candidate gene, or a candidate region

TDT protects against
population stratification
but requires increased
sample sizes

Non-replication may
reflect poor study
design
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containing a gene cluster.5 However,

genome-wide association studies will be

feasible when we have a clearer

understanding of genetic variation in the

human genome, and when genotyping

throughput has increased substantially.

The basic analysis methods presented here

will remain applicable, but the studies will

provide enormous scope for testing

haplotype effects or interactions across

genetic regions.
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