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Abstract

Genome-wide association studies (GWAS) are unraveling the genetics of adult brain 

neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). 

However, the genetic mechanisms that shape childhood brain development are, as yet, largely 

unexplored. In this study we identify common genetic variants associated with childhood brain 

development as defined by longitudinal aMRI.

Genome-wide SNP data were determined in 2 cohorts: one enriched for attention-deficit/

hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other 

from a population-based cohort (Generation R: 257 participants). The growth of the brain’s major 

regions (cerebral cortex, white matter, basal ganglia and cerebellum) and one region of interest 

(the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a genome-

wide association study and a pathway analysis were performed. In addition, association between 

polygenic risk for ADHD and brain growth was determined for the LONG cohort.

For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic 

SNP (rs12386571, p = 9.09x10−9), near AKR1B10. This gene is part of the aldo-keto reductase 

superfamily and shows neural expression. No enrichment of neural pathways was detected and 

polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG 
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cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain 

growth phenotype defined in vivo for further study.

Keywords

GWAS; pathway analysis; polygenic score; brain development; ADHD; children

INTRODUCTION

Cross-sectional studies show that variation in human brain structure, defined at a 

macroscopic level by anatomic magnetic resonance imaging (aMRI), is highly heritable with 

heritability estimates ~0.9 for the volumes of the prefrontal cortex and striatum (Neale et al., 

2010; Peper, Brouwer, Boomsma, Kahn, & Hulshoff Pol, 2007; Wallace et al., 2006). 

Progress has been made in identifying common genetic variants associated with brain 

structure in adults (Bis et al., 2012; Hibar et al., 2013; Melville et al., 2012; Stein et al., 

2012; Walters et al., 2013) but genetic factors involved in the developing brain are less well 

explored. Understanding how common genetic variation impacts brain growth is both 

inherently important and also has translational implications because neurodevelopmental 

disorders with a childhood-onset such attention-deficit/hyperactivity disorder (ADHD) are 

partly characterized by perturbed brain growth (F. X. Castellanos et al., 2002; Eric 

Courchesne, Campbell, & Solso, 2011; E. Courchesne, Carper, & Akshoomoff, 2003; Eric 

Courchesne & Pierce, 2005; Di Martino et al., 2014; Ducharme et al., 2012; El-Sayed, 

Larsson, Persson, Santosh, & Rydelius, 2003; Mackie et al., 2007; Redcay & Courchesne, 

2005; Rubia, 2007; Shaw et al., 2011; Shaw, Gogtay, & Rapoport, 2010; Sripada, Kessler, & 

Angstadt, 2014). For example, the severity of inattention, impulsivity and hyperactivity 

symptoms has been associated with altered development of the cerebral cortex and basal 

ganglia in children and adolescents (F. X. Castellanos et al., 2002; Ducharme et al., 2012; 

Shaw et al., 2014; Shaw et al., 2011). Thus, uncovering the genetic pathways that impact 

brain development in childhood might also inform our understanding of psychiatric 

disorders with a neurodevelopmental origin.

Here, we attempted to identify the common genetic variants associated with brain growth. 

Two independent cohorts were studied—the Longitudinal Observations in Neuroimaging 

and Genetics (LONG) cohort at the NIH (with 458 participants) and data from the 

Generation R Study in Rotterdam (with 257 participants). All participants in both cohorts 

had two neuroanatomic scans which were used to determine brain growth. Age-related 

volumetric changes in the major regions of the brain (cerebral cortex and white matter, basal 

ganglia, and cerebellum) were defined. Longitudinal twin imaging studies have 

demonstrated heritability in the growth of these brain regions, ranging from 19% for white 

matter growth, to 37% for cerebral gray matter and 40% for the cerebellum (Brouwer et al., 

2017). In addition, growth of the right lateral prefrontal cortex was also examined. This 

region was chosen because both cross-sectional and longitudinal studies tie age-related 

change in the right lateral prefrontal cortex to the severity of hyperactivity-impulsivity and 

inattention in all children, not just those with the diagnosis (Shaw, 2011; Ducharme, 2012). 

Right prefrontal volume loss is one of the more consistently replicated findings in cross-
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sectional neuroimaging studies in ADHD and is tied to the atypical development of 

prefrontal lateralized processing seen in the disorder.

Our primary aim was to identify associations between Single Nucleotide Polymorphisms 

(SNPs) and the growth of five major brain regions in the LONG and Generation R cohorts. 

Secondly, we determined if the biological pathways implicated through SNPs or a child’s 

aggregate (polygenic) risk for ADHD showed associations with brain growth.

METHODS

Subjects

‘LONG cohort’—The LONG cohort includes a total of 458 participants (271 males), with 

339 typically developing children and adolescents, and 119 youth with an ADHD diagnosis. 

Diagnosis was ascertained using the clinician-administered Parent Diagnostic Interview for 

Children and Adolescents (Reich, 2000). All participants had two aMRIs. The mean age of 

the first scan was 11.47 (SD 3.54) years and the mean age of the second scan was 16.13 (SD 

4.72) years. Based on parent-reported race/ethnicity, there were 404 European Americans, 

31 African Americans, 8 Asian Americans and 15 participants of mixed race. The sample 

included 146 sibling pairs (137 pairs of full siblings, 9 pairs of half siblings).

‘Generation R’—The second cohort was a subsample of the Generation R Study, a 

population-based Dutch birth cohort (Kooijman et al., 2016), consisting of the 257 

participants (135 males) with two aMRIs (White et al., 2013). The mean age of the 

participants was 7.71 (SD 0.86) years at the time of the first scan and 10.23 (SD 0.68) years 

at the second scan. Given its community-based nature, most children (n=244) were typically 

developing. Clinically significant levels of ADHD symptoms were identified using the 

Attention Problems and DSM-oriented ADHD Problems scales of the Child Behavior 

Checklist (CBCL) 1.5–5 (Achenbach & Rescorla, 2000), at a mean age 6.03 (SD 0.4). The 

preschool version of the CBCL was used because many of the children were younger than 6 

years at the time of assessment. Using clinical thresholds established on Dutch norm 

populations there were 13 children who scored above the clinical threshold on attention 

problems or DSM-oriented ADHD problems (Tick, van der Ende, Koot, & Verhulst, 2007). 

Based on parent-reported race/ethnicity, 177 children were White/Caucasian and 80 non-

Caucasian (these participants were of various ethnicities, such as African, primarily North 

African, Asian, and Caribbean).

The Institutional Review Board of each institute approved the study protocols at each site 

(the National Institutes of Health for the LONG cohort, and the Medical Ethics Committee 

of the Erasmus Medical Center for the Generation R Study). Written informed consent to 

participate in the study was obtained from parents.

Genotyping

LONG cohort—DNA was extracted from lymphoblastoid cell line (234 samples), saliva 

(124 samples), and blood (100 samples). Genotyping and initial quality control were 

performed at Center for Inherited Disease Research (http://www.cidr.jhmi.edu/) with the 

Illumina HumanOmniExpressExome-8v1-2 array. Initially, 959,200 SNPs were released. 
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After quality control procedures, 668,419 SNPs were available for analyses. Ungenotyped 

markers surrounding significant regions were imputed to facilitate fine mapping (see 

supplementary materials and methods).

Generation R—Genotype data from Generation R was available for 518,245 SNPs. Before 

imputation the Generation R and LONG cohort had 287,902 SNPs in common. SNPs from 

Generation R were imputed (to SNPs from the LONG cohort) to increase the SNP-overlap. 

Imputation resulted in an additional 365,128 SNPs with a quality mach.rsq > 0.3 in 

Generation R for final analysis, for a total of 653,030 SNPs for meta-analysis. Genotyping, 

quality control procedures and imputation analyses are described in detail elsewhere 

(Medina-Gomez et al., 2015).

The brain growth phenotypes

LONG cohort—Neuroanatomical MRI was acquired on 370 participants on a 1.5-T GE 

Signa scanner (Milwaukee, WI) at both baseline and follow up. Sixty-eight participants had 

aMRI acquired on a 3-T GE Signa scanner (Milwaukee, WI) at both time points. Twenty 

children were scanned on a 1.5-T scanner at baseline and a 3-T scanner at follow-up. 

Imaging parameters are given as supplemental information.

Generation R—Baseline MR images were acquired on a 3-T GE Discovery MR-750 

scanner (Milwaukee, WI) and the second scan on a 3-T GE Discovery MR-750w scanner. 

Imaging parameters are provided as supplemental information.

Image preprocessing—Automatic volumetric segmentations were performed with the 

FreeSurfer image suite (version 5.3; https://surfer.nmr.mgh.harvard.edu). For quality 

assurance, two raters assessed the quality of all the initial images, blind to diagnosis and 

other demographic details, retaining only those judged to have no or minimal motion or 

other artifacts (determined using published guidelines (F. Castellanos et al., 2002)). The final 

segmentations of the cortical surface and mantle and deeper structures, provided by 

FreeSurfer, were also visually inspected by trained raters following published guidelines 

used by the Enhancing Imaging Genomics through Meta-Analysis consortium (http://

enigma.ini.usc.edu/protocols/imaging-protocols/). At each stage, discrepant ratings of either 

the initial image or its final segmentations were reviewed and a consensus rating was given. 

Finally, a participant was retained only if both scans met these quality criteria. Because of 

these measures, 338 of the initial 1254 scans in the LONG cohort were excluded along with 

378 of the original 892 in Generation R. Thus, the final analyses were comprised of 916 

scans in the LONG cohort and 514 in Generation R.

Modeling growth

Growth was modeled for four major divisions of the brain (the cerebral cortex, the basal 

ganglia, the cerebellum, cerebral white matter) and the region of interest (the right lateral 

prefrontal cortex). Volume was used as the measure because it can be determined for all of 

these divisions: other measures such as thickness apply only to the cortex. Although many 

brain growth phenotypes can be determined (for example, considering multiple cortical and 
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subcortical regions), the four major divisions and the region of interest were selected as 

phenotypes prior to conducting any statistical analyses to limit the number of multiple tests.

Longitudinal data was used to chart individual growth (Kraemer, Yesavage, Taylor, & 

Kupfer, 2000). However, modeling growth at the level of individuals presents several 

challenges. First, it is not feasible to model non-linear growth at an individual level as this 

requires a minimum of three, and ideally more, observations, and all participants in the 

Generation R cohort had only 2 images. Thus individual-level growth was taken to be linear. 

Volumetric change was measured controlling for the age at initial assessment and has the 

same unit of time (i.e., change per annum) through adjustment for inter-scan interval. Such 

linear modeling is a reasonable approximation for growth. The proportional change in 

volume for each region was calculated as follows: change in volume between the two scans 

divided by the baseline volume. Then, using linear regression, this proportional change was 

adjusted for the age at baseline scan, the interscan interval, sex and ADHD status. A positive 

value indicates that the brain region showed overall (adjusted) increase in volume; a negative 

value indicates age-related decrease in volume. After adjustment, residualized values were 

normalized using rank-based inverse normal transformation (Blom’s formula: (rank-3/8)/(n

+1/4). Normalization is necessary to ameliorate the well known inflated type I error rate 

(Schwantes-An et al., 2016).

Residualized change in the cerebral cortex and right lateral prefrontal cortex were highly 

correlated (r = 0.86), but correlation between all other phenotypes was modest (mean overall 

correlation of 0.27; maximum r = 0.39 between the cerebellum and white matter, and 

minimum of r = 0.11 for the cerebellum and basal ganglia).

Data analysis

GWAS—Tests of association were performed assuming an additive linear model. Due to the 

degree of relatedness (N=146 sibling pairs) in the LONG cohort, Efficient Mixed-Model 

Association eXpedited (EMMAX) (H. M. Kang et al., 2010), a method which accounts for 

population structure and relatedness among the participants, was used to perform the GWAS 

for each trait. EMMAX has a flexible variance component approach that enables correcting 

for a wide range of sample structures by explicitly accounting for pair-wise relatedness 

between individuals, using high-density SNPs. Furthermore, admixture-adjusted marker-

based kinship matrices were used as input for EMMAX, calculated using the Relationship 

Estimation in Admixed Population (REAP) method (Thornton et al., 2012). Both 

simulations and analysis of real data have previously demonstrated that REAP can 

adequately account for population structure and ancestry-related assortative mating by using 

individual-specific allele frequencies at SNPs that are calculated on the basis of ancestry 

derived from whole-genome analysis.) (Thornton et al., 2012). To this end, ADMIXTURE 

(Alexander, Novembre, & Lange, 2009) was used to estimate the number of subpopulations 

in each cohort, assuming k = 3 subpopulations for LONG and k = 2 subpopulations for 

Generation R based on the best model fit criteria comparing models with k = 1 through 5 

subpopulations in both cohorts. Output from the ADMIXTURE analysis provided the 

individual-specific allele frequencies used in REAP. To illustrate population structure within 
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the LONG cohort, principal components analysis and Scree plots are provided in 

supplementary Figures S1a and S1b.

Replication was performed with two different methods. In the first, a meta-analysis based on 

the EMMAX associations obtained from these two cohorts was performed. This was done 

with the rmeta package in R, which is based on an inverse variance weighted meta-analysis 

conducted for each of the five phenotypes assuming a random effect. Nominal genome-wide 

significance was determined by the standard significance criteria of 5x10−8. Although five 

growth phenotypes were tested, multiple test correction was based on 4 traits (Li & Ji, 2005) 

because of the high correlation between cerebral cortex and right lateral prefrontal cortex (r 

= 0.86) resulting in an adjusted genome-wide significance level of 1.25x10−8.

The second approach was to use ComPaSS-GWAS [Sabourin et al., submitted], a method 

based on complimentary pairs stability selection (Shah & Samworth, 2013) applied to a 

traditional regression based GWAS selection procedure. ComPaSS-GWAS approximates 

replication by randomly splitting the data in half (into a pseudo-discovery and pseudo-

replication set) multiple times and looking for corroboration of GWAS results within the 

random splits. For a given critical value, ComPaSS-GWAS returns a corroboration score 

between 0 and 1, indicating the proportion of random splits where each SNP was 

corroborated at a given threshold. SNPs that are corroborated at a high rate are less sensitive 

to sampling variability, i.e., their significance is less likely to be an artifact of the sample 

analyzed, and therefore are more likely to be replicated. Simulations show that a ComPaSS-

GWAS score of at least 0.25 and 0.5 based on a within split critical value parameter of 10−3 

results in type I error rates of less than 6.6x10−7 and 5x10−8, respectively. For this study, 

ComPaSS-GWAS was used only on the larger cohort (the LONG cohort). ComPaSS-GWAS 

scores based on a within split critical value parameter of 10−3 and a corroboration score of at 

least 0.4 are reported. Significant results from ComPaSS-GWAS for the LONG cohort that 

were not supported by the meta-analysis but which had evidence of heterogeneity (Phet < 

0.05) were also examined.

Pathway analysis—Pathway-based analyses can detect pathophysiological mechanisms 

that may be missed by focusing on single alleles, especially when considering only those 

attaining genome-wide significance (Mooney et al., 2016; Wang, Li, & Hakonarson, 2010). 

Pathway analyses was based on SNPs associated with the brain growth phenotypes in the 

meta-analyses at p-values < 1x10−5. SNPs meeting these conditions were annotated to genes 

using wANNOVAR(Chang & Wang, 2012). Using Ingenuity Pathway Analysis (IPA, 

QIAGEN, Redwood City, www.qiagen.com/ingenuity), enrichment for canonical pathways 

among these variants was tested. Pathways that were significantly enriched at a Benjamini-

Hochberg (B-H) corrected q < 0.05, were taken to be significant.

Polygenic risk score analysis—Polygenic risk scores (PRS) for ADHD has already 

been shown to predict neuropsychological and clinical characteristics pertinent to the 

disorder (Hamshere et al., 2013). However, the ability of PRS for ADHD to predict brain 

growth has been untested. PRS was calculated for ADHD in the LONG cohort based on the 

recent release of ADHD GWAS mega-analysis results by the Psychiatric Genomics 

Consortium and the Lundbeck Foundation Initiative for Integrative Psychiatric Research 
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(iPSYCH) (Demontis et al., 2017). These meta-analyses did not include the LONG or 

Generation R cohorts. PRS were generated using the PRSice software (Euesden, Lewis, & 

O’Reilly, 2014). We excluded SNPs with an r2 > 0.1, which were within 250 kilobases (kb) 

of each other. The following p-value thresholds to define PRS: 0.0005, 0.001, 0.005, 0.01, 

0.05, 0.1, 0.5. Brain growth phenotypes within LONG were recalculated so that proportional 

change in volume was adjusted for age at baseline scan, interscan interval and sex but not 

ADHD status, as we were interested in the genetic overlap between ADHD and brain growth 

in a sample that was enriched for the diagnosis of ADHD. Residualized brain growth 

phenotypes were normalized using rank-based inverse normal transformation and regressed 

onto the standardized polygenic risk scores using linear mixed-models, which included a 

random term to account for relatedness among some participants and the first three principal 

components reflecting population structure.

RESULTS

Phenotype

Demographic differences were found between the two cohorts: the LONG cohort had an 

older mean age and a higher proportion of Caucasian participants (Table I). These 

demographic differences were accounted for in all analyses. Considering the brain growth 

phenotypes, the overall pattern of age-related change in regional volumes was similar across 

the cohorts (supplementary Figure S2). There was no significant difference in brain growth 

phenotypes between individuals with and without ADHD in any of the cohorts (Table II). 

Nevertheless, due to the high frequency of ADHD diagnosis within LONG, ADHD status 

was adjusted for in the main analyses. There was no significant effect of study site on the 

overall growth phenotypes in a repeated-measures ANOVA (between-subjects main effect of 

site (p = 0.24).

GWAS results

When the cohorts were analyzed separately, no SNP attained genome-wide significance (p < 

5x10−8) based on the GWAS with EMMAX in either the LONG or Generation R cohorts’ 

analyses. When combining the results from the two cohorts in a meta-analysis, one SNP was 

found to be genome-wide significant on chromosome 7 (rs12386571, p = 9.09x10−9) for 

white matter (Figure 1). This SNP is 20kb upstream from the aldo-keto reductase family 1 

member B10 (AKR1B10) gene and 48kb upstream from the AKR1B1 gene. Regional 

association plots of the most significant SNPs are shown in Figure 2. QQ and Manhattan 

plots from the meta-analyses can be found in the supplementary Figures S3–S7. The SNPs 

that were suggestive for association (meta-analysis p < 1x10−5, or in LONG cohort alone at 

p < 1x10−7 are presented in suppplementary Tables S1–S5 and Figures S8–9. Fine mapping 

through imputation of the region surrounding rs12386571 for white matter growth was 

performed (Figure S10), and one SNP, rs13237016, was found to be slightly more significant 

(p = 5.42 x 10−9). Fine mapping was also performed for the region encompassing 

rs10056913 for right lateral prefrontal cortical growth, but no SNPs reached nominal 

genomewide significance.
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The application of ComPaSS-GWAS to the LONG cohort resulted in multiple SNPs with 

corroboration scores greater than 0.5, which corresponds to genome-wide significant type I 

error rates of < 5x10−8. SNPs that were found to be at least suggestively associated by both 

ComPaSS-GWAS and the meta-analysis are considered. For white matter, ComPaSS-GWAS 

corroborates the meta-analysis’ most significant SNP on chromosome 7, rs12386571, with a 

ComPaSS-GWAS score of 0.56. ComPaSS-GWAS identified multiple SNPs in the LONG 
cohort, which were not replicated in the meta-analysis but had significant meta-analysis 

heterogeneity p-values. The SNPs that were found strongly suggestive based on ComPaSS-

GWAS on the LONG cohort (corroboration score ≥ 0.4) are also given in Tables S1–S5, and 

forest plots of the top associations for white matter and right lateral prefrontal cortical 

growth are in Figures S8–S9.

Pathway and polygenic risk analyses

No neural pathways were enriched by genes implicated by nominally significant genome-

wide associations with any of the brain growth phenotypes. Polygenic risk for ADHD was 

also not significantly associated with the brain growth phenotypes (all p > 0.1)

DISCUSSION

We detected a genome-wide significant common genetic variant that was associated with 

white matter growth. This SNP was located on chromosome 7 between AKR1B1 and 

AKR1B10. Both genes are part of the nicotinamide adenine dinucleotide (phosphate)-

dependent aldo-keto reductase (AKR) 1B subfamily (Mindnich & Penning, 2009). 

Candidate gene and gene expression studies have also associated AKR1B10 with eating-

disorders and nicotine dependence (M. W. Kang et al., 2011; Rohde et al., 2015). This is 

consonant with the gene’s decreased expression in the reward circuitry of rat strains that are 

more sensitive to the reinforcing properties of cocaine, morphine, and ethanol (Higuera-

Matas et al., 2011). AKR1B1 is involved in the biosynthesis of neurotransmitters dopamine 

and serotonin (Friedman et al., 2012) and elevated peripheral blood expression has been 

reported in adults with schizophrenia (de Jong et al., 2012).

The polygenic risk for ADHD determined from meta-analyses of existing GWAS was not 

associated with brain growth in a sample enriched for the diagnosis of ADHD. We had 

speculated that by taking into account prior knowledge about complex molecular networks 

and biological pathways, we could identify genes and mechanisms involved in brain growth, 

through considering ‘promising’ genetic assocaitions in pathway analyses. However, no 

pathways pertinent to brain structure or function were detected that survived our adjustment 

for multiple trait comparisons.

The importance of using longitudinal data when studying developmental processes such as 

brain growth has been remarked upon by many, but presents several practical challenges as 

discussed earlier (Kraemer et al., 2000). The approach we used modeled individual level 

change. There was considerable similarity between the cohorts in growth rates despite their 

differences in age range. Even when specific growth parameters differed, the pattern of 

overall change did not and there was no overall effect of cohort on growth estimates.
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Nonetheless, in common with all previous multi-site imaging genetic studies, the imaging 

data were acquired on different scanners and integrating such data is a challenge common to 

all multi-center studies. This is particularly true for legacy data, which did not include the 

collection of data that can aid cross-scanner calibration (such as the use of human phantoms 

etc). However, there are several mitigating factors. First, there is a similarity in patterns of 

brain growth across the two cohorts, despite the different scanners. Second, some effects of 

cohort heterogeneity can be attenuated by processing all data on the same servers with the 

same version of FreeSurfer and by having the same raters conduct all quality assurance 

procedures (Gronenschild et al., 2012). Most importantly, association analyses were 

conducted separately for each cohort, and only then combined results using meta-analytic 

techniques.

Given the differences in the two cohorts, it is not unexpected to have regions of 

heterogeneity in the meta-analysis, thus explaining some of the result discrepancies found 

between the ComPaSS-GWAS and meta-analysis results. These genomic regions with 

contrasting SNP associations may be due to population differences between the cohorts, not 

just relating to ethnicity, but may also be due to the difference between cohort in regards to 

the ages at which the first and second scan were taken.

There were other limitations to our study. First, we were underpowered to detect SNPs with 

small effect size involved in brain growth using conventional single-marker association 

analysis. However, only the currently available childhood cohorts that combine longitudinal 

neuroimaging with genome-wide SNP data were included. Attempts to replicate these 

preliminary findings will be possible as similar longitudinal neuroimaging studies (e.g., 

IMAGEN, ABCD or the Saguenay Youth Study) begin to report their findings (NIDA, 

September 2016; Nymberg, Jia, Ruggeri, & Schumann, 2013; Pausova et al., 2007). Finally, 

as is often the case in GWAS meta-analyses, the two cohorts were genotyped on different 

platforms (~42% of the SNPs genotyped in the LONG cohort were also genotyped in 

Generation R); however, allele frequencies were similar in both studies. To maximize the 

number of overlapping SNPs across the two sites, we included both genotyped and imputed 

SNPs in analyses of Generation R. We also used recommended approaches to reduce the 

possibility of type 1 errors by retaining only imputed SNPs with high quality imputation 

scores (de Bakker et al., 2008; Sinnott & Kraft, 2012). The study included sibling pairs, and 

relatedness was accounted for in the analyses using EMMAX. However, we did not have 

enough sibling sets to provide heritability estimates for our phenotypes, nor to conduct 

linkage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The LONG Study was funded by the Intramural Programs of the National Human Genome Research Institute 
(NHGRI) and National Institute of Mental Health (NIMH). The authors gratefully acknowledge the participation of 
all children and families in the study. Genotyping services for the LONG cohort were provided by the Center for 
Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of 
Health to The Johns Hopkins University, contract number HHSN268201200008I. This project was also supported 

Szekely et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in part by the Division of Intramural Research Program of NHGRI. Analyse The Generation R Study is conducted 
by the Erasmus Medical Center in close collaboration with the Erasmus University Rotterdam, the Municipal 
Health Service in the Rotterdam area, the Rotterdam Homecare Foundation, Rotterdam and the Stichting 
Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. We gratefully acknowledge the 
contribution of general practitioners, hospitals, midwives and pharmacies in Rotterdam. Neuroimaging studies 
within the Generation R are supported through the Netherlands Organization for Health Research and Development 
(NWO) (ZonMw TOP 40-00812-98-11021), the European Community’s 7th Framework Program (FP7/2008–2013) 
under grant agreement 212652 (NUTRIMENTHE), the Stichting Sophia Kinderziekenhuis Fonds, and General 
Electric Healthcare. The Generation R Study is made possible by financial support from the Erasmus Medical 
Center, Rotterdam, the Erasmus University Rotterdam, ZonMw (ZonMW 10.000.1003), NWO, the Ministry of 
Health, Welfare and Sport, and the Ministry of Youth and Families.

References

Achenbach, TM., Rescorla, L. Manual for the ASEBA preschool forms & profiles : an integrated 
system of multi-informant assessment. Burlington, VT: ASEBA; 2000. 

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated 
individuals. Genome Research. 2009; 19(9):1655–1664. DOI: 10.1101/gr.094052.109 [PubMed: 
19648217] 

Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, … Seshadri S. Common variants 
at 12q14 and 12q24 are associated with hippocampal volume. Nature genetics. 2012; 44(5):545–
551. DOI: 10.1038/ng.2237 [PubMed: 22504421] 

Brouwer RM, Panizzon MS, Glahn DC, Hibar DP, Hua X, Jahanshad N, … Hansell NK. Genetic 
influences on individual differences in longitudinal changes in global and subcortical brain volumes: 
Results of the ENIGMA plasticity working group. Hum Brain Mapp. 2017

Castellanos F, Lee P, Sharp W, Jeffries N, Greenstein D, Clasen L, … Rapoport J. Developmental 
trajectories of brain volume abnormalities in children and adolescents with attention-deficit/
hyperactivity disorder. JAMA. 2002; 288:1740–1748. [PubMed: 12365958] 

Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, … Rapoport JL. 
Developmental trajectories of brain volume abnormalities in children and adolescents with 
attention-deficit/hyperactivity disorder. JAMA. 2002; 288(14):1740–1748. [PubMed: 12365958] 

Chang X, Wang K. wANNOVAR: annotating genetic variants for personal genomes via the web. J Med 
Genet. 2012; 49(7):433–436. DOI: 10.1136/jmedgenet-2012-100918 [PubMed: 22717648] 

Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: Age-specific changes 
in anatomical pathology. Brain Research. 2011; 1380:138–145. doi:http://dx.doi.org/10.1016/
j.brainres.2010.09.101. [PubMed: 20920490] 

Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in 
autism. JAMA. 2003; 290(3):337–344. DOI: 10.1001/jama.290.3.337 [PubMed: 12865374] 

Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: 
implications for frontal pyramidal neuron and interneuron development and connectivity. 
International Journal of Developmental Neuroscience. 2005; 23(2–3):153–170. doi:http://
dx.doi.org/10.1016/j.ijdevneu.2005.01.003. [PubMed: 15749242] 

de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of 
imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008; 
17(R2):R122–128. DOI: 10.1093/hmg/ddn288 [PubMed: 18852200] 

de Jong S, Boks MPM, Fuller TF, Strengman E, Janson E, de Kovel CGF, … Ophoff RA. A Gene Co-
Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-
Use and Enriched for Brain-Expressed Genes. PLoS ONE. 2012; 7(6):e39498.doi: 10.1371/
journal.pone.0039498 [PubMed: 22761806] 

Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, … Cerrato F. Discovery Of The 
First Genome-Wide Significant Risk Loci For ADHD. bioRxiv. 2017:145581.

Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, … Milham MP. The autism brain 
imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in 
autism. Mol Psychiatry. 2014; 19(6):659–667. DOI: 10.1038/mp.2013.78 [PubMed: 23774715] 

Ducharme S, Hudziak JJ, Botteron KN, Albaugh MD, Nguyen TV, Karama S, Evans AC. Decreased 
Regional Cortical Thickness and Thinning Rate Are Associated With Inattention Symptoms in 

Szekely et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.brainres.2010.09.101
http://dx.doi.org/10.1016/j.brainres.2010.09.101
http://dx.doi.org/10.1016/j.ijdevneu.2005.01.003
http://dx.doi.org/10.1016/j.ijdevneu.2005.01.003


Healthy Children. Journal of the American Academy of Child & Adolescent Psychiatry. 2012; 
51(1):18–27. e12. doi:http://dx.doi.org/10.1016/j.jaac.2011.09.022. [PubMed: 22176936] 

El-Sayed E, Larsson JO, Persson HE, Santosh PJ, Rydelius PA. “Maturational lag” hypothesis of 
attention deficit hyperactivity disorder: an update. Acta Pædiatrica. 2003; 92(7):776–784. DOI: 
10.1111/j.1651-2227.2003.tb02531.x

Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2014; 
31(9):1466–1468. [PubMed: 25550326] 

Friedman J, Roze E, Abdenur JE, Chang R, Gasperini S, Saletti V, … Blau N. Sepiapterin reductase 
deficiency: a treatable mimic of cerebral palsy. Ann Neurol. 2012; 71(4):520–530. DOI: 10.1002/
ana.22685 [PubMed: 22522443] 

Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozendaal N, Van Os J, Marcelis M. The effects 
of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical 
volume and cortical thickness measurements. PLoS ONE. 2012; 7(6):e38234. [PubMed: 
22675527] 

Hamshere ML, Langley K, Martin J, Agha SS, Stergiakouli E, Anney RJ, … Thapar A. High loading 
of polygenic risk for ADHD in children with comorbid aggression. Am J Psychiatry. 2013; 170(8):
909–916. DOI: 10.1176/appi.ajp.2013.12081129 [PubMed: 23599091] 

Hibar DP, Medland SE, Stein JL, Kim S, Shen L, Saykin AJ, … Thompson PM. Genetic clustering on 
the hippocampal surface for genome-wide association studies. Medical image computing and 
computer-assisted intervention : MICCAI … International Conference on Medical Image 
Computing and Computer-Assisted Intervention. 2013; 16(2):690–697.

Higuera-Matas A, Montoya GL, Coria SM, Miguens M, Garcia-Lecumberri C, Ambrosio E. 
Differential gene expression in the nucleus accumbens and frontal cortex of lewis and Fischer 344 
rats relevant to drug addiction. Curr Neuropharmacol. 2011; 9(1):143–150. DOI: 
10.2174/157015911795017290 [PubMed: 21886580] 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, … Eskin E. Variance component 
model to account for sample structure in genome-wide association studies. Nat Genet. 2010; 42(4):
348–354. doi:http://www.nature.com/ng/journal/v42/n4/suppinfo/ng.548_S1.html. [PubMed: 
20208533] 

Kang MW, Lee ES, Yoon SY, Jo J, Lee J, Kim HK, … Kim H. AKR1B10 is associated with smoking 
and smoking-related non-small-cell lung cancer. J Int Med Res. 2011; 39(1):78–85. [PubMed: 
21672310] 

Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, … Jaddoe VW. The 
Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016; 31(12):1243–1264. 
DOI: 10.1007/s10654-016-0224-9 [PubMed: 28070760] 

Kraemer HC, Yesavage JA, Taylor JL, Kupfer D. How Can We Learn About Developmental Processes 
From Cross-Sectional Studies, or Can We? Am J Psychiatry. 2000; 157(2):163–171. DOI: 
10.1176/appi.ajp.157.2.163 [PubMed: 10671382] 

Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation 
matrix. Heredity (Edinb). 2005; 95(3):221–227. DOI: 10.1038/sj.hdy.6800717 [PubMed: 
16077740] 

Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, … Rapoport JL. Cerebellar 
development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 
2007; 164(4):647–655. DOI: 10.1176/ajp.2007.164.4.647 [PubMed: 17403979] 

Medina-Gomez C, Felix JF, Estrada K, Peters MJ, Herrera L, Kruithof CJ, … Rivadeneira F. 
Challenges in conducting genome-wide association studies in highly admixed multi-ethnic 
populations: the Generation R Study. Eur J Epidemiol. 2015; 30(4):317–330. DOI: 10.1007/
s10654-015-9998-4 [PubMed: 25762173] 

Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, … Farrer LA. Multiple loci 
influencing hippocampal degeneration identified by genome scan. Ann Neurol. 2012; 72(1):65–75. 
DOI: 10.1002/ana.23644 [PubMed: 22745009] 

Mindnich RD, Penning TM. Aldo-keto reductase (AKR) superfamily: Genomics and annotation. 
Human Genomics. 2009; 3(4):362–370. DOI: 10.1186/1479-7364-3-4-362 [PubMed: 19706366] 

Szekely et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.jaac.2011.09.022
http://www.nature.com/ng/journal/v42/n4/suppinfo/ng.548_S1.html


Mooney MA, McWeeney SK, Faraone SV, Hinney A, Hebebrand J, Nigg JT, Wilmot B. Pathway 
analysis in attention deficit hyperactivity disorder: An ensemble approach. Am J Med Genet B 
Neuropsychiatr Genet. 2016; 171(6):815–826. DOI: 10.1002/ajmg.b.32446 [PubMed: 27004716] 

Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, … Nelson S. Meta-analysis of 
genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child 
Adolesc Psychiatry. 2010; 49(9):884–897. DOI: 10.1016/j.jaac.2010.06.008 [PubMed: 20732625] 

NIDA. Recruitment begins for landmark study of adolescent brain development [Press release]. Sep, 
2016. Retrieved from https://www.drugabuse.gov/news-events/news-releases/2016/09/recruitment-
begins-landmark-study-adolescent-brain-development

Nymberg C, Jia T, Ruggeri B, Schumann G. Analytical strategies for large imaging genetic datasets: 
experiences from the IMAGEN study. Annals of the New York Academy of Sciences. 2013; 
1282(1):92–106. DOI: 10.1111/nyas.12088 [PubMed: 23488575] 

Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M, … Watkins K. Genes, 
maternal smoking, and the offspring brain and body during adolescence: Design of the Saguenay 
Youth Study. Hum Brain Mapp. 2007; 28(6):502–518. DOI: 10.1002/hbm.20402 [PubMed: 
17469173] 

Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE. Genetic influences on human brain 
structure: a review of brain imaging studies in twins. Hum Brain Mapp. 2007; 28(6):464–473. 
DOI: 10.1002/hbm.20398 [PubMed: 17415783] 

Redcay E, Courchesne E. When is the brain enlarged in autism? A meta-analysis of all brain size 
reports. Biological Psychiatry. 2005; 58(1):1–9. [PubMed: 15935993] 

Reich W. Diagnostic Interview for Children and Adolescents (DICA). Journal of the American 
Academy of Child & Adolescent Psychiatry. 2000; 39(1):59–66. doi:http://dx.doi.org/
10.1097/00004583-200001000-00017. [PubMed: 10638068] 

Rohde K, Federbusch M, Horstmann A, Keller M, Villringer A, Stumvoll M, … Bottcher Y. Genetic 
variants in AKR1B10 associate with human eating behavior. BMC Genet. 2015; 16:31.doi: 
10.1186/s12863-015-0189-9 [PubMed: 25887478] 

Rubia K. Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of 
the National Academy of Sciences. 2007; 104(50):19663–19664. DOI: 10.1073/pnas.0710329105

Schwantes-An TH, Sung H, Sabourin JA, Justice CM, Sorant AJ, Wilson AF. Type I error rates of rare 
single nucleotide variants are inflated in tests of association with non-normally distributed traits 
using simple linear regression methods. BMC Proc. 2016; 10(Suppl 7):385–388. DOI: 10.1186/
s12919-016-0060-7 [PubMed: 27980666] 

Shah RD, Samworth RJ. Variable selection with error control: another look at stability selection. 
Journal of the Royal Statistical Society Series B-Statistical Methodology. 2013; 75(1):55–80. DOI: 
10.1111/j.1467-9868.2011.01034.x

Shaw P, De Rossi P, Watson B, Wharton A, Greenstein D, Raznahan A, … Chakravarty MM. Mapping 
the development of the basal ganglia in children with attention-deficit/hyperactivity disorder. J Am 
Acad Child Adolesc Psychiatry. 2014; 53(7):780–789. e711. DOI: 10.1016/j.jaac.2014.05.003 
[PubMed: 24954827] 

Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, … Giedd J. Cortical development in 
typically developing children with symptoms of hyperactivity and impulsivity: support for a 
dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry. 2011; 168(2):143–
151. DOI: 10.1176/appi.ajp.2010.10030385 [PubMed: 21159727] 

Shaw P, Gogtay N, Rapoport J. Childhood psychiatric disorders as anomalies in neurodevelopmental 
trajectories. Hum Brain Mapp. 2010; 31(6):917–925. DOI: 10.1002/hbm.21028 [PubMed: 
20496382] 

Sinnott JA, Kraft P. Artifact due to differential error when cases and controls are imputed from 
different platforms. Human genetics. 2012; 131(1):111–119. [PubMed: 21735171] 

Sripada CS, Kessler D, Angstadt M. Lag in maturation of the brain’s intrinsic functional architecture in 
attention-deficit/hyperactivity disorder. Proceedings of the National Academy of Sciences. 2014; 
111(39):14259–14264. DOI: 10.1073/pnas.1407787111

Szekely et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.drugabuse.gov/news-events/news-releases/2016/09/recruitment-begins-landmark-study-adolescent-brain-development
https://www.drugabuse.gov/news-events/news-releases/2016/09/recruitment-begins-landmark-study-adolescent-brain-development
http://dx.doi.org/10.1097/00004583-200001000-00017
http://dx.doi.org/10.1097/00004583-200001000-00017


Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, … Thompson PM. 
Identification of common variants associated with human hippocampal and intracranial volumes. 
Nat Genet. 2012; 44(5):552–561. DOI: 10.1038/ng.2250 [PubMed: 22504417] 

Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, Risch N. Estimating kinship in 
admixed populations. Am J Hum Genet. 2012; 91(1):122–138. DOI: 10.1016/j.ajhg.2012.05.024 
[PubMed: 22748210] 

Tick NT, van der Ende J, Koot HM, Verhulst FC. 14-year changes in emotional and behavioral 
problems of very young Dutch children. J Am Acad Child Adolesc Psychiatry. 2007; 46(10):1333–
1340. DOI: 10.1097/chi.0b013e3181337532 [PubMed: 17885575] 

Wallace GL, Eric Schmitt J, Lenroot R, Viding E, Ordaz S, Rosenthal MA, … Giedd JN. A pediatric 
twin study of brain morphometry. J Child Psychol Psychiatry. 2006; 47(10):987–993. DOI: 
10.1111/j.1469-7610.2006.01676.x [PubMed: 17073977] 

Walters JTR, Rujescu D, Franke B, Giegling I, Vásquez AA, Hargreaves A, … Owen MJ. The Role of 
the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia 
GWAS Follow-Up. American Journal of Psychiatry. 2013; 170(8):877–885. DOI: 10.1176/
appi.ajp.2013.12020226 [PubMed: 23903335] 

Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. 
Nat Rev Genet. 2010; 11(12):843–854. [PubMed: 21085203] 

White T, El Marroun H, Nijs I, Schmidt M, van der Lugt A, Wielopolki PA, … Verhulst FC. Pediatric 
population-based neuroimaging and the Generation R Study: the intersection of developmental 
neuroscience and epidemiology. Eur J Epidemiol. 2013; 28(1):99–111. DOI: 10.1007/
s10654-013-9768-0 [PubMed: 23354984] 

Szekely et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Manhattan plot for the white matter growth phenotypes based on GWAS meta-analyses of 

LONG and Generation R. The blue line corresponds to p=5x10−8 (genome wide 

significance), while the red line corresponds to p=1.25x10−8 (genomewide significance 

adjusted for multiple traits).
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Figure 2. 
Regional plot of lead signal for white matter. SNPs are depicted by circles, and the color of 

the circle indicates the amount of LD between that SNP and rs12386571. Plot created using 

LocusZoom (www.locuszoom.org).
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Table I

Basic description of the two cohorts

LONG cohort (N=458) Generation R (N=257)

M(SD) or % M(SD) or % p-value

Age (years) at scan 1 11.47 (3.54) 7.70 (0.86) <0.001

Age (years) at scan 2 16.13 (4.72) 10.23 (0.68) <0.001

Males 59.2 52.5 0.098

ADHD diagnosis 26.0 3.0 <0.001

White/Caucasian 88.2 68.9 <0.001

Note. Continuous variables were compared between the two cohorts using t-tests, categorical variables were compared using χ2 tests.
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