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ABSTRACT 

N – Puzzle problem is an important problem in mathematics 

and has implications in Artificial Intelligence especially in 

gaming. The work presented reviews the previous attempts to 

solve this problem. A formal definition of the problem has 

been presented. The reason why it is considered as NP hard 

problem and why Genetic Algorithms (GAs) is applied has 

been explained. The work here by presents a GAs based 

algorithm to solve N – Puzzle problem. The algorithm has 

been analyzed and it is a sturdy belief that the presented 

algorithm has complexity better than most of the works 

studied. The work is a part of larger endeavor to solve all NP 

Hard problems by GAs. 
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1. INTRODUCTION 
The work presented here forth introduces a solution of N – 

Puzzle problem using Genetic Algorithms (GAs). N – Puzzle 

problem is significant both in terms of its computational 

complexity and non – availability of a definite algorithm to 

solve a problem. The work presented is a part of larger 

endeavor to solve all the NP Hard problems using GAs. As a 

part of a larger project Travelling Salesman Person problem 

[1], Vertex Cover Problem [2], Post correspondence Problem 

[3], and Subset Sum Problem [4] have been solved. The 

present work concentrates on a problem which is 

fundamentally different from all the above problem, as it 

seems to have more affinity to the game solving approaches as 

compared to the problems stated above. The following 

sections concentrate on the Literature Review followed by the 

formal definition of the problem. Many Papers have been 

studied and analyzed. The reason why it is considered as NP 

Hard problem has been explained. The motivation of use of 

GAs to the above problem has been explained in the section 

on GAs. There are very many instances of the problem that 

cannot be solved. Such class has been discussed in a separate 

section. The solution presented is robust as far as theoretical 

considerations are concerned. A new algorithm has been 

proposed and explained in the second last section. It is our 

sturdy belief that new algorithm opens the door of genetic 

approach to an extremely interesting problem, whose solution 

still eludes the fraternity. The last section dwells on the future 

scope of the work. 

2. LITERATURE REVIEW 
An extensive literature review was carried out and many 

papers were analyzed. The papers were divided into two 

categories, those pertaining to GAs and heuristic search 

processes and other section related to N – Puzzle problem.  

A valuable insight to the problem was obtained by the work of 

Sam Loyd [5]. In the work proposed by Korf, a new heuristic 

function was proposed depending upon the sub codes. 

According to the author the net cost is lesser but the concept 

requires higher order heuristics as well as pruning duplicate 

nodes, so the net cost is seemingly not as good as presented 

[6]. Another work relied on Manhattan pair distance heuristics 

which is a combination of Manhattan distance and pair 

distance. The search used is Iterative Deepening A*. The 

work is an extension of previous work [7]. 

Another work by Calabro provides O(n2) algorithm to decide 

the solvability and O(n3) moves to solve the problem. The 

paper primarily dwells on solvability part and not on the 

solution part [8]. The work by Pizlo develops a cognitive 

model and analyzes the human behavior by solving the 

problem. It is a cognitive Science model and not a 

computational model [9]. 

Some of the works like that of Felner uses pattern databases 

which has not been used in presented approach [10][11]. A 

distributed approach was presented by Drogoul by using an 

eco problem solving model. The strategy is novel but it is 

meant more for theoretical analysis [12]. 

3. N – PUZZLE PROBLEM 
N - Puzzle problem consist of a m x m board with N 

numbered tiles and a blank space such that, N = m2 – 1. 

Values of N can be 8 (3 x 3), 15 (4 x 4), 24 (5 x 5), 35 (6 x 6) 

and so on. A tile adjacent to a blank space can slide to a blank 

space thus making way for the further arrangements. The 

objective is to reach one of the goal state, an instance of 

which is shown in Figure 1. 

The description of the problem consists of states, initial state, 

goal state, path cost and successor function. Formally, 

P = (Q, q0, F, f, C) 

Where, 

Q = Set of states 

q0 = Initial state 

F = Final state. This can be one of the goal states already 

defined. 

f = Function called successor function which generates the 

next state. This state can be described a move left, right, up or 

down. 

C = Path cost. It is the number of steps in the path considering 

each move to be of unit cost. 

This problem requires elicitation of transition rules and 

definite way of estimating the cost and making the heuristics. 

The moves in an N – puzzle problem generate a new 

configuration. The effect of move on the configuration is 

depicted in Figure 2. 
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Fig 1. Goal State for 8 – puzzle, 

15 – puzzle and 24 – puzzle problems. 
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3.1 8 – Puzzle Problem 
The 8 puzzle problem consists of eight numbered, movable 

tiles set in a 3x3 frame. One cell of the frame is always empty 

thus making it possible to move an adjacent numbered tile 

into the empty cell. The problem is to change the initial state 

to goal state by sliding the tiles, one at a time, in minimum 

moves. One of the instances of the initial and the final state 

are depicted in Figure 3. 

 

4 5 7 

8 1 2 

3 6  

      Initial State                                    Goal State 

           Fig 3: Instance of 8 – Puzzle Problem 

3.2 15 – Puzzle Problem 
The 15 puzzle problem consists of 15 squares numbered from 

1 to 15 that are placed in a box leaving one position out of the 

16 empty. The goal is to reposition the squares from a given 

arbitrary starting arrangement by sliding them one at a time 

into the final configuration. One of the instances of the initial 

and the final state are depicted in Figure 4.  

 

4 5 7 10 

8 1 2 12 

3 6 9 11 

14 13 15  

          Initial State                                       Final State 

                 Fig 4: Instance of 15 – Puzzle Problem 

3.3 Conventional Solution 
There are various methods of solution of the above problem. 

Most easy to understand is brute force algorithm. Considering 

the fact that, there can be at maximum 3 slides, if the empty 

space is somewhere in between the board and minimum of 1, 

if the empty space is at corner of the board. If we construct a 

state space tree of the problem and use the concept of depth 

limited search, stopping at the nth level, then the maximum 

complexity can be 3n+1 – 1. Assume that the value of n at 

which we intend to stop is 18, then, the value of complexity 

factor comes out to be 1162261466. These many instructions 

if performed at the speed of 103 instructions per second, 

evaluates to 1162261 seconds, which is equivalent to 13.4 

days in a normal desktop computer. In order to find out a 

better solution, suppose we decide to have 25 levels in  the 

state space tree, then, by the above calculations it will take 

26.8 years for a normal desktop computer to solve the 

problem. 

The above statistics point to the fact that it is a NP Hard 

problem. The data collected proves the above fact. The above 

fact has also been proved by Kendall [13]. To solve a 3 x 3 

problem, which is solvable, it requires .01 seconds to run an 

exhaustive search algorithm whereas for a 24 puzzle problem, 

the time required is 12 billion years. 

One of the ways of handling the above problem is A* 

algorithm which takes into account, the cost travelled so far 

and the heuristic to reach the final destination. In most of the 

papers studied, Manhattan heuristic is taken as a heuristic 

function. The work proposed intense to solve the above 

problem by applying genetic algorithms as they are best suited 

for finding out the solution from amongst the large set of 

solution. 

In the above statements, for every move, maximum 3 possible 

moves have been considered and not 4. The reason being, we 

will not move a tile which has already being moved in a 

previous step. So for every move, there can be at max 3 

possible moves. Therefore, in the next level there will be 32 

moves and so on. The state space tree has been shown in 

Figure 5. It is evident that if we move to nth level then the 

upper bound of the complexity becomes 3n + 1 – 1, which is 

equivalent to 3n + 1 thus giving O(3n) complexity. The above 

discussion proves that the complexity of brute force search 

mechanism is exponential. 

 

 

 

 

 

 

 

 

 

 

                             Fig 5: State Space Tree 

4. SOLVABILITY 
In N – Puzzle problem, there are total of N +1 tiles which 

contains distinct numbers and a blank space. These N+1 tiles 

can result in (N+1)! initial configurations. Out of these much 

configurations only half of the configurations are solvable and 

others are not. Thus only (N+1)! / 2 initial configurations can 

lead to goal configuration using limited number of moves.  

Given an initial configuration, it can be checked whether the 

configuration is solvable or not. The steps for determining 

solvability are as follows: 

Step 1: Shift the blank tile at the bottom right corner of the 

grid. This can be easily done. 

1 2 3 

4 5 6 

7 8  

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  
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Step 2: Calculate Permutation Inversion for each tile. An 

inversion is when a tile precedes another tile with a lower 

number on it [14]. 

For example consider a configuration shown in Figure 6. 

Consider tile 12, there are 11 tiles numbered 1 – 11, with 

smaller number than 12, that appear after 12. Thus inversion 

number for tile 12 is 11. 

Consider tile 14, there are 6 tiles numbered 5, 9, 3, 8, 13 and 

6, with smaller number than 14, that appear after 14. Thus, 

inversion number for tile 14 is 6. 

12 1 10 2 

7 11 4 14 

5 9 15 3 

8 13 6  

Fig 6: Configuration 

Inversion number of the tiles is as follows: 

Tile 12  11 inversions 

Tile 1    0   inversions 

Tile 10  8   inversions 

Tile 2    0   inversions 

Tile 7    4   inversions 

Tile 11  6   inversions 

Tile 4    1   inversions 

Tile 14  6   inversions 

Tile 5    1   inversions 

Tile 9    3   inversions 

Tile 15  4   inversions 

Tile 3    0   inversions 

Tile 8    1   inversions 

Tile 13  1   inversions 

Tile 6    0   inversions 

Step 3: Calculate the sum of inversions for all the tiles. 

In the above example, sum = 46. 

Rule: Odd permutation inversions of the puzzle are impossible 

to solve [15], all even permutations are solvable [16]. Archer 

also presented a simple proof of above rules [17]. 

Thus, the above configuration is solvable as the permutation 

inversion is even. 

Consider another configuration as shown in Figure 7. 

 

 

 

 

 

 

 

13 10 11 6 

5 7 4 8 

1 12 14 9 

3 15 2  

Fig 7: Configuration 

Inversion number of the tiles is as follows: 

Tile 13  12 inversions 

Tile 10  9   inversions 

Tile 11  9   inversions 

Tile 6    5   inversions 

Tile 5    4   inversions 

Tile 7    4   inversions 

Tile 4    3   inversions 

Tile 8    3   inversions 

Tile 1    0   inversions 

Tile 12  3   inversions 

Tile 14  3   inversions 

Tile 9    3   inversions 

Tile 3    1   inversions 

Tile 15  1   inversions 

Tile 2    0   inversions 

Sum = 59 

Since, the number is odd, the above arrangement of the puzzle 

cannot be solved. 

5. GENETIC ALGORITHMS 
GAs are adaptive systems capable of solving problem by 

mimicking Nature. They are computational analogy of the 

theory of natural selection employing variation. To implement 

variation, variation-inducing operators are used such as 

mutation and crossover. Reproduction is done by evaluating 

the fitness of a chromosome using fitness function. 

5.1 Algorithm 
Step 1: Randomly generate an initial population P(0). 

Step 2: Compute and save the fitness score f(p) for each 

individual p in the current population P(t). The fitness score is 

a measure of how good that chromosome is at solving the 

problem to hand. 

Step 3: Select two members from the current population. The 

chance of being selected is proportional to the chromosomes 

fitness value. Roulette wheel selection is a commonly used 

method. 

Step 4: Generate new chromosome for P(t+1) from P(t) to 

produce offspring via genetic operators. 

Step 5: Repeat step 3 until a new generation P(t+1) is 

completed. 

Step 6: Repeat step 2 until satisfying solution is obtained or 

futile value is reached. 

The process has been explained in the Figure 8. 
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            Fig 8: Process of Genetic Algorithms 

5.2 Crossover 
Crossover operator has the significance as that of crossover in 

natural genetic process. In this operation two chromosomes 

are taken and a new chromosome is generated by taking some 

attributes of first chromosome and the rest from second 

chromosome. In GAs a crossover can be following types: 

5.2.1 Single Point Crossover 
Single Point Crossover is performed by selecting a random 

gene along the length of the chromosomes and swapping all 

the genes after that point. 

Eg. Given two chromosomes, choose a random bit along the 

length, say at position 9, and swap all the bits after that point. 

The Single Point crossover operator is shown in Figure 9. 

 

10001001110010010 

01010001001000011 
 

10001001101000011 

01010001010010010 

Fig 9: Single Point crossover 

5.2.2 Two Point crossover 
In this crossover, two crossover points are selected. The Two 

Point crossover operator is shown in Figure 10. 

 

10001001110010010 

01010001001000011 
 

10001001001010010 

01010001110000011 

Fig 10: Two Point crossover 

5.2.3 Uniform Crossover 
In this crossover bits are uniformly copied from both the 

chromosomes. The Uniform crossover operator is shown in 

Figure 11. 

 

10001001110010010 

01010001001000011 
 

10010001110010011 

01001001001000010 

Fig 11: Uniform crossover 

5.2.4 Cut and Splice Crossover 
The Cut and Splice approach, results in a change in length of 

the children strings. The reason for this difference is that each 

parent string has a separate choice of crossover point. The Cut 

and Splice crossover operator is shown in Figure 12. 
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10001001110010010 

01010001001000011 
 

10001000011 

01010001001001110010010 

Fig 12: Cut and Splice crossover 

5.2.5 Crossover Rate 
Crossover Rate is the chance that two chromosomes will swap 

their bits. A good value for this is around 2% - 5%.  

5.3 Mutation 
Mutation is a genetic operator used to maintain genetic 

diversity from one generation of population to the next. It is 

similar to biological mutation [18]. Mutation allows the 

algorithm to avoid local minima by preventing the population 

chromosomes from becoming too similar to each other [19]. 

The Mutation operator is shown in Figure 13. 

10001001110010010 

 

10001001010010010 

Fig 13: Mutation operator 

5.3.1 Mutation Rate 
Mutation Rate is the chance that a bit within a chromosome 

will be flipped (0 becomes 1, 1 becomes 0). This is usually a 

very low value for binary encoded genes, say 0.2% - 0.5%. 

5.4 Why Genetic Algorithms are being 

used 
N – Puzzle being NP Hard problem, if solved using brute 

force technique requires a lot of time which is exponential in 

nature. Facts regarding this have already been explained in the 

previous section. The problem has many optimal solutions 

and to reach one of the optimal solution GAs have been 

proved robust and best. The puzzle is not a graph based 

problem, therefore, is suitable to be represented as a state 

space tree. A chromosome of a genetic population can serve 

as a path from initial state to goal state as explained in further 

section. It eliminates the requirement for evaluating all the 

paths of the tree that can be generated. This gives the optimal 

solution in lesser time and with less number of moves. GAs 

are known to be better than randomized algorithm as they are 

more robust.   

6. PROPOSED ALGORITHM 
Step 1: POPULATION GENERATION 

 Generate a population of n chromosomes. Each chromosome 

has 2m cells, where m is an integer indicating the 

proportionate size of the chromosome. At the end of the 

algorithm the significance of m will become clearer as it also 

gives an idea of the level of iterative deepening. The 

algorithm for the generation of population is given below:  

 

for each chromosome 

 for each cell 

  if(random()%100 > 50) 

   cell = 1 

  else 

   cell = 0 

Step 2: ENCODING 

For a particular chromosome, make pairs of two cells. Each 

pair is converted into a binary number and remainder is 

evaluated when the number is divided by 3. The output can be 

0, 1 or 2. 

0 stands for the first child of the present node in the state 

space tree, 1 stands for the second child and 2 stands for the 

third child. Here the numbering is taken in anticlockwise 

order. 

If it is the case of a blank tile at the edge, then there will be 

two cases and not three and in that case modulo 2 is taken 

instead of modulo 3. 

In case of a blank tile at the corner, there will be one case and 

modulo 1 will be done. 

Step 3: CHROMOSOME ACCEPTANCE TEST 

The above step gives us ~m levels, since each chromosome 

has 2m cells. These levels are traversed and while traversing, if 

the configuration become unsolvable as defined earlier, then 

that chromosome is rejected. 

Step 4: PATH TESTING AND CROSSOVER 

From amongst, the remaining chromosomes, if any path gives 

us the solution then stop. It is to be noted that there can be 1 

solution for particular instance of a problem. If it is not the 

case, then from all the chromosomes evaluated, we take two 

configurations, as in, 2 chromosomes and apply crossover 

operator to them. This gives us an all together new path which 

is to be traversed to see its effect. 

Step 5: MUTATION 

If by crossover, a solution is not obtained, then a mutant 

configuration is generated by randomly making a move. This 

can be implemented by using Pseudo Random Number 

Generator and changing the path at  ith level. 

Step 6: ITERATIVE DEEPENING 

The value of m is incremented in order starting from m = 2. 

This will provide the strength of Iterative Deepening along 

with a blend of heuristic search. 

If the allotted resources or time exceeds a particular threshold 

as defined, then futility is said to be reached and the algorithm 

stops.  

The process has been depicted in the Figure 14. 
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Fig 14: Genetic Based Solution to N puzzle Problem 

6.1 Complexity Analysis 
The above algorithm is better than the existing ones in terms 

of time complexity. The calculation of the complexity has 

been explained in this section. If the number of bits in a 

particular chromosome is taken as the power of 2, then at the 

nth level the total traversals become O(log N). Where N = 2 m – 

1.Thus, the complexity will be O(log22
m – 1) ~ O(m – 1). 

This, results in the simple calculations for analysis of the 

results in term of complexity.  

7. CONCUSION AND FUTURE SCOPE 
A new algorithm has been proposed. It gives a sequential 

approach in solving the problem. Moreover, it is intended to 

establish precise theoretical study of the above problem which 

will also help in other peripheral problems. It is intended to 

implement the proposed algorithm in C# language and 

analyze the results obtained by deriving regression equations 

and performing the requisite statistical tests. The tests will 

instill the confidence in the proposed algorithm. 

While analyzing the complexity of the solution proposed in 

terms of time, by taking the length of chromosome as power 

of 2, the calculations for complexity become simpler. Due to 

simplicity, unknown constants of regression equation can be 

easily computed. 

The use of single point crossover has been proposed above. It 

is intended to analyze the effect of two point crossover, multi 

point crossover, cut and splice crossover on the problem and 

complexity obtained. 

After the above things, it is intended to apply Diploid Genetic 

Algorithms to solve the problem, to have lesser complexity 

and better results. 
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