
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

44

Genetic based Algorithm for N – Puzzle Problem

Harsh Bhasin
Computergrad.com
Faridabad, Haryana

Neha Singla
Student, YMCAUST
Faridabad, Haryana

ABSTRACT

N – Puzzle problem is an important problem in mathematics

and has implications in Artificial Intelligence especially in

gaming. The work presented reviews the previous attempts to

solve this problem. A formal definition of the problem has

been presented. The reason why it is considered as NP hard

problem and why Genetic Algorithms (GAs) is applied has

been explained. The work here by presents a GAs based

algorithm to solve N – Puzzle problem. The algorithm has

been analyzed and it is a sturdy belief that the presented

algorithm has complexity better than most of the works

studied. The work is a part of larger endeavor to solve all NP

Hard problems by GAs.

Keywords

N – Puzzle problem, Genetic Algorithms, NP Hard,

Solvability, Iterative Deepening.

1. INTRODUCTION
The work presented here forth introduces a solution of N –

Puzzle problem using Genetic Algorithms (GAs). N – Puzzle

problem is significant both in terms of its computational

complexity and non – availability of a definite algorithm to

solve a problem. The work presented is a part of larger

endeavor to solve all the NP Hard problems using GAs. As a

part of a larger project Travelling Salesman Person problem

[1], Vertex Cover Problem [2], Post correspondence Problem

[3], and Subset Sum Problem [4] have been solved. The

present work concentrates on a problem which is

fundamentally different from all the above problem, as it

seems to have more affinity to the game solving approaches as

compared to the problems stated above. The following

sections concentrate on the Literature Review followed by the

formal definition of the problem. Many Papers have been

studied and analyzed. The reason why it is considered as NP

Hard problem has been explained. The motivation of use of

GAs to the above problem has been explained in the section

on GAs. There are very many instances of the problem that

cannot be solved. Such class has been discussed in a separate

section. The solution presented is robust as far as theoretical

considerations are concerned. A new algorithm has been

proposed and explained in the second last section. It is our

sturdy belief that new algorithm opens the door of genetic

approach to an extremely interesting problem, whose solution

still eludes the fraternity. The last section dwells on the future

scope of the work.

2. LITERATURE REVIEW
An extensive literature review was carried out and many

papers were analyzed. The papers were divided into two

categories, those pertaining to GAs and heuristic search

processes and other section related to N – Puzzle problem.

A valuable insight to the problem was obtained by the work of

Sam Loyd [5]. In the work proposed by Korf, a new heuristic

function was proposed depending upon the sub codes.

According to the author the net cost is lesser but the concept

requires higher order heuristics as well as pruning duplicate

nodes, so the net cost is seemingly not as good as presented

[6]. Another work relied on Manhattan pair distance heuristics

which is a combination of Manhattan distance and pair

distance. The search used is Iterative Deepening A*. The

work is an extension of previous work [7].

Another work by Calabro provides O(n2) algorithm to decide

the solvability and O(n3) moves to solve the problem. The

paper primarily dwells on solvability part and not on the

solution part [8]. The work by Pizlo develops a cognitive

model and analyzes the human behavior by solving the

problem. It is a cognitive Science model and not a

computational model [9].

Some of the works like that of Felner uses pattern databases

which has not been used in presented approach [10][11]. A

distributed approach was presented by Drogoul by using an

eco problem solving model. The strategy is novel but it is

meant more for theoretical analysis [12].

3. N – PUZZLE PROBLEM
N - Puzzle problem consist of a m x m board with N

numbered tiles and a blank space such that, N = m2 – 1.

Values of N can be 8 (3 x 3), 15 (4 x 4), 24 (5 x 5), 35 (6 x 6)

and so on. A tile adjacent to a blank space can slide to a blank

space thus making way for the further arrangements. The

objective is to reach one of the goal state, an instance of

which is shown in Figure 1.

The description of the problem consists of states, initial state,

goal state, path cost and successor function. Formally,

P = (Q, q0, F, f, C)

Where,

Q = Set of states

q0 = Initial state

F = Final state. This can be one of the goal states already

defined.

f = Function called successor function which generates the

next state. This state can be described a move left, right, up or

down.

C = Path cost. It is the number of steps in the path considering

each move to be of unit cost.

This problem requires elicitation of transition rules and

definite way of estimating the cost and making the heuristics.

The moves in an N – puzzle problem generate a new

configuration. The effect of move on the configuration is

depicted in Figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

45

 8 – puzzle

 15 - Puzzle

24 - Puzzle

1 2 3

4 5 6

7 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

Fig 1. Goal State for 8 – puzzle,

15 – puzzle and 24 – puzzle problems.

Initial Configuration

Moving Tile 2 left

in Initial Configuration

Moving Tile 8 right

in Initial Configuration

Moving Tile 6 up

in Initial Configuration

Moving Tile 5 down

in Initial Configuration

 Fig 2. Depiction of moves in

 an N - puzzle problems.

4 5 7 10

 8 2 12

3 6 9 11

14 13 15 1

4 5 7 10

8 2 12

3 6 9 11

 14 13 15 1

4 5 7 10

8 2 12

3 6 9 11

14 13 15 1

4 5 7 10

8 6 2 12

3 9 11

14 13 15 1

4 7 10

8 5 2 12

3 6 9 11

14 13 15 1

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

46

3.1 8 – Puzzle Problem
The 8 puzzle problem consists of eight numbered, movable

tiles set in a 3x3 frame. One cell of the frame is always empty

thus making it possible to move an adjacent numbered tile

into the empty cell. The problem is to change the initial state

to goal state by sliding the tiles, one at a time, in minimum

moves. One of the instances of the initial and the final state

are depicted in Figure 3.

4 5 7

8 1 2

3 6

 Initial State Goal State

 Fig 3: Instance of 8 – Puzzle Problem

3.2 15 – Puzzle Problem
The 15 puzzle problem consists of 15 squares numbered from

1 to 15 that are placed in a box leaving one position out of the

16 empty. The goal is to reposition the squares from a given

arbitrary starting arrangement by sliding them one at a time

into the final configuration. One of the instances of the initial

and the final state are depicted in Figure 4.

4 5 7 10

8 1 2 12

3 6 9 11

14 13 15

 Initial State Final State

 Fig 4: Instance of 15 – Puzzle Problem

3.3 Conventional Solution
There are various methods of solution of the above problem.

Most easy to understand is brute force algorithm. Considering

the fact that, there can be at maximum 3 slides, if the empty

space is somewhere in between the board and minimum of 1,

if the empty space is at corner of the board. If we construct a

state space tree of the problem and use the concept of depth

limited search, stopping at the nth level, then the maximum

complexity can be 3n+1 – 1. Assume that the value of n at

which we intend to stop is 18, then, the value of complexity

factor comes out to be 1162261466. These many instructions

if performed at the speed of 103 instructions per second,

evaluates to 1162261 seconds, which is equivalent to 13.4

days in a normal desktop computer. In order to find out a

better solution, suppose we decide to have 25 levels in the

state space tree, then, by the above calculations it will take

26.8 years for a normal desktop computer to solve the

problem.

The above statistics point to the fact that it is a NP Hard

problem. The data collected proves the above fact. The above

fact has also been proved by Kendall [13]. To solve a 3 x 3

problem, which is solvable, it requires .01 seconds to run an

exhaustive search algorithm whereas for a 24 puzzle problem,

the time required is 12 billion years.

One of the ways of handling the above problem is A*

algorithm which takes into account, the cost travelled so far

and the heuristic to reach the final destination. In most of the

papers studied, Manhattan heuristic is taken as a heuristic

function. The work proposed intense to solve the above

problem by applying genetic algorithms as they are best suited

for finding out the solution from amongst the large set of

solution.

In the above statements, for every move, maximum 3 possible

moves have been considered and not 4. The reason being, we

will not move a tile which has already being moved in a

previous step. So for every move, there can be at max 3

possible moves. Therefore, in the next level there will be 32

moves and so on. The state space tree has been shown in

Figure 5. It is evident that if we move to nth level then the

upper bound of the complexity becomes 3n + 1 – 1, which is

equivalent to 3n + 1 thus giving O(3n) complexity. The above

discussion proves that the complexity of brute force search

mechanism is exponential.

 Fig 5: State Space Tree

4. SOLVABILITY
In N – Puzzle problem, there are total of N +1 tiles which

contains distinct numbers and a blank space. These N+1 tiles

can result in (N+1)! initial configurations. Out of these much

configurations only half of the configurations are solvable and

others are not. Thus only (N+1)! / 2 initial configurations can

lead to goal configuration using limited number of moves.

Given an initial configuration, it can be checked whether the

configuration is solvable or not. The steps for determining

solvability are as follows:

Step 1: Shift the blank tile at the bottom right corner of the

grid. This can be easily done.

1 2 3

4 5 6

7 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

47

Step 2: Calculate Permutation Inversion for each tile. An

inversion is when a tile precedes another tile with a lower

number on it [14].

For example consider a configuration shown in Figure 6.

Consider tile 12, there are 11 tiles numbered 1 – 11, with

smaller number than 12, that appear after 12. Thus inversion

number for tile 12 is 11.

Consider tile 14, there are 6 tiles numbered 5, 9, 3, 8, 13 and

6, with smaller number than 14, that appear after 14. Thus,

inversion number for tile 14 is 6.

12 1 10 2

7 11 4 14

5 9 15 3

8 13 6

Fig 6: Configuration

Inversion number of the tiles is as follows:

Tile 12  11 inversions

Tile 1  0 inversions

Tile 10  8 inversions

Tile 2  0 inversions

Tile 7  4 inversions

Tile 11  6 inversions

Tile 4  1 inversions

Tile 14  6 inversions

Tile 5  1 inversions

Tile 9  3 inversions

Tile 15  4 inversions

Tile 3  0 inversions

Tile 8  1 inversions

Tile 13  1 inversions

Tile 6  0 inversions

Step 3: Calculate the sum of inversions for all the tiles.

In the above example, sum = 46.

Rule: Odd permutation inversions of the puzzle are impossible

to solve [15], all even permutations are solvable [16]. Archer

also presented a simple proof of above rules [17].

Thus, the above configuration is solvable as the permutation

inversion is even.

Consider another configuration as shown in Figure 7.

13 10 11 6

5 7 4 8

1 12 14 9

3 15 2

Fig 7: Configuration

Inversion number of the tiles is as follows:

Tile 13  12 inversions

Tile 10  9 inversions

Tile 11  9 inversions

Tile 6  5 inversions

Tile 5  4 inversions

Tile 7  4 inversions

Tile 4  3 inversions

Tile 8  3 inversions

Tile 1  0 inversions

Tile 12  3 inversions

Tile 14  3 inversions

Tile 9  3 inversions

Tile 3  1 inversions

Tile 15  1 inversions

Tile 2  0 inversions

Sum = 59

Since, the number is odd, the above arrangement of the puzzle

cannot be solved.

5. GENETIC ALGORITHMS
GAs are adaptive systems capable of solving problem by

mimicking Nature. They are computational analogy of the

theory of natural selection employing variation. To implement

variation, variation-inducing operators are used such as

mutation and crossover. Reproduction is done by evaluating

the fitness of a chromosome using fitness function.

5.1 Algorithm
Step 1: Randomly generate an initial population P(0).

Step 2: Compute and save the fitness score f(p) for each

individual p in the current population P(t). The fitness score is

a measure of how good that chromosome is at solving the

problem to hand.

Step 3: Select two members from the current population. The

chance of being selected is proportional to the chromosomes

fitness value. Roulette wheel selection is a commonly used

method.

Step 4: Generate new chromosome for P(t+1) from P(t) to

produce offspring via genetic operators.

Step 5: Repeat step 3 until a new generation P(t+1) is

completed.

Step 6: Repeat step 2 until satisfying solution is obtained or

futile value is reached.

The process has been explained in the Figure 8.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

48

 Fig 8: Process of Genetic Algorithms

5.2 Crossover
Crossover operator has the significance as that of crossover in

natural genetic process. In this operation two chromosomes

are taken and a new chromosome is generated by taking some

attributes of first chromosome and the rest from second

chromosome. In GAs a crossover can be following types:

5.2.1 Single Point Crossover
Single Point Crossover is performed by selecting a random

gene along the length of the chromosomes and swapping all

the genes after that point.

Eg. Given two chromosomes, choose a random bit along the

length, say at position 9, and swap all the bits after that point.

The Single Point crossover operator is shown in Figure 9.

10001001110010010

01010001001000011

10001001101000011

01010001010010010

Fig 9: Single Point crossover

5.2.2 Two Point crossover
In this crossover, two crossover points are selected. The Two

Point crossover operator is shown in Figure 10.

10001001110010010

01010001001000011

10001001001010010

01010001110000011

Fig 10: Two Point crossover

5.2.3 Uniform Crossover
In this crossover bits are uniformly copied from both the

chromosomes. The Uniform crossover operator is shown in

Figure 11.

10001001110010010

01010001001000011

10010001110010011

01001001001000010

Fig 11: Uniform crossover

5.2.4 Cut and Splice Crossover
The Cut and Splice approach, results in a change in length of

the children strings. The reason for this difference is that each

parent string has a separate choice of crossover point. The Cut

and Splice crossover operator is shown in Figure 12.

Generate Initial

Population P[0]

Calculate fitness

score f[p] for each

chromosome

Roulette wheel

Selection

Apply genetic

Operators

 Crossover

 mutation

New

Population

Completed

?

Optimal

Solution

reached ?

No

No

Yes

Yes

Exit

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

49

10001001110010010

01010001001000011

10001000011

01010001001001110010010

Fig 12: Cut and Splice crossover

5.2.5 Crossover Rate
Crossover Rate is the chance that two chromosomes will swap

their bits. A good value for this is around 2% - 5%.

5.3 Mutation
Mutation is a genetic operator used to maintain genetic

diversity from one generation of population to the next. It is

similar to biological mutation [18]. Mutation allows the

algorithm to avoid local minima by preventing the population

chromosomes from becoming too similar to each other [19].

The Mutation operator is shown in Figure 13.

10001001110010010

10001001010010010

Fig 13: Mutation operator

5.3.1 Mutation Rate
Mutation Rate is the chance that a bit within a chromosome

will be flipped (0 becomes 1, 1 becomes 0). This is usually a

very low value for binary encoded genes, say 0.2% - 0.5%.

5.4 Why Genetic Algorithms are being

used
N – Puzzle being NP Hard problem, if solved using brute

force technique requires a lot of time which is exponential in

nature. Facts regarding this have already been explained in the

previous section. The problem has many optimal solutions

and to reach one of the optimal solution GAs have been

proved robust and best. The puzzle is not a graph based

problem, therefore, is suitable to be represented as a state

space tree. A chromosome of a genetic population can serve

as a path from initial state to goal state as explained in further

section. It eliminates the requirement for evaluating all the

paths of the tree that can be generated. This gives the optimal

solution in lesser time and with less number of moves. GAs

are known to be better than randomized algorithm as they are

more robust.

6. PROPOSED ALGORITHM
Step 1: POPULATION GENERATION

 Generate a population of n chromosomes. Each chromosome

has 2m cells, where m is an integer indicating the

proportionate size of the chromosome. At the end of the

algorithm the significance of m will become clearer as it also

gives an idea of the level of iterative deepening. The

algorithm for the generation of population is given below:

for each chromosome

 for each cell

 if(random()%100 > 50)

 cell = 1

 else

 cell = 0

Step 2: ENCODING

For a particular chromosome, make pairs of two cells. Each

pair is converted into a binary number and remainder is

evaluated when the number is divided by 3. The output can be

0, 1 or 2.

0 stands for the first child of the present node in the state

space tree, 1 stands for the second child and 2 stands for the

third child. Here the numbering is taken in anticlockwise

order.

If it is the case of a blank tile at the edge, then there will be

two cases and not three and in that case modulo 2 is taken

instead of modulo 3.

In case of a blank tile at the corner, there will be one case and

modulo 1 will be done.

Step 3: CHROMOSOME ACCEPTANCE TEST

The above step gives us ~m levels, since each chromosome

has 2m cells. These levels are traversed and while traversing, if

the configuration become unsolvable as defined earlier, then

that chromosome is rejected.

Step 4: PATH TESTING AND CROSSOVER

From amongst, the remaining chromosomes, if any path gives

us the solution then stop. It is to be noted that there can be 1

solution for particular instance of a problem. If it is not the

case, then from all the chromosomes evaluated, we take two

configurations, as in, 2 chromosomes and apply crossover

operator to them. This gives us an all together new path which

is to be traversed to see its effect.

Step 5: MUTATION

If by crossover, a solution is not obtained, then a mutant

configuration is generated by randomly making a move. This

can be implemented by using Pseudo Random Number

Generator and changing the path at ith level.

Step 6: ITERATIVE DEEPENING

The value of m is incremented in order starting from m = 2.

This will provide the strength of Iterative Deepening along

with a blend of heuristic search.

If the allotted resources or time exceeds a particular threshold

as defined, then futility is said to be reached and the algorithm

stops.

The process has been depicted in the Figure 14.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.22, August 2012

50

Fig 14: Genetic Based Solution to N puzzle Problem

6.1 Complexity Analysis
The above algorithm is better than the existing ones in terms

of time complexity. The calculation of the complexity has

been explained in this section. If the number of bits in a

particular chromosome is taken as the power of 2, then at the

nth level the total traversals become O(log N). Where N = 2 m –

1.Thus, the complexity will be O(log22
m – 1) ~ O(m – 1).

This, results in the simple calculations for analysis of the

results in term of complexity.

7. CONCUSION AND FUTURE SCOPE
A new algorithm has been proposed. It gives a sequential

approach in solving the problem. Moreover, it is intended to

establish precise theoretical study of the above problem which

will also help in other peripheral problems. It is intended to

implement the proposed algorithm in C# language and

analyze the results obtained by deriving regression equations

and performing the requisite statistical tests. The tests will

instill the confidence in the proposed algorithm.

While analyzing the complexity of the solution proposed in

terms of time, by taking the length of chromosome as power

of 2, the calculations for complexity become simpler. Due to

simplicity, unknown constants of regression equation can be

easily computed.

The use of single point crossover has been proposed above. It

is intended to analyze the effect of two point crossover, multi

point crossover, cut and splice crossover on the problem and

complexity obtained.

After the above things, it is intended to apply Diploid Genetic

Algorithms to solve the problem, to have lesser complexity

and better results.

8. REFERENCES
[1] Harsh Bhasin and Neha Singla, (2012), “Harnessing

Cellular Automata and Genetic Algorithms To

Solve Travelling Salesman Problem’, International

Conference on Information, Computing and

Telecommunications, (ICICT -2012), pp. 72 – 77.

[2] Harsh Bhasin and Gitanjali, (2012), “Harnessing Genetic

Algorithm for Vertex Cover Problem”, International

Journal on Computer Science and Engineering (IJCSE),

Vol. 1, Issue 2, pp. 218 - 223.

[3] Harsh Bhasin and Nishant Gupta, (2012), Randomized

algorithm approach for solving PCP, IJCSE 2012;

4(1):106-113. ICID: 976303

[4] Harsh Bhasin and Neha Singla, (2012), Modified Genetic

Algorithms Based Solution to Subset Sum Problem,

IJARAI Vol. 1 (1).

[5] Hayes, Richard. (2001), 'The Sam Loyd 15-Puzzle'. -

Dublin, Trinity College Dublin, Department of Computer

Science, TCD-CS-2001-24, pp28.

[6] Richard E. Korf and Larry A. Taylor, (1996), 'Finding

optimal solutions to the twenty-four puzzle', in

Proceedings AAAI 1996, pp. 1202–1207

[7] Bauer, Bernard, (1994), The Manhattan Pair Distance

Heuristic for the 15 Puzzle, Paderborn, Germany.

[8] Chris Calabro, (2005), Solving the 15-Puzzle.

[9] Zygmunt Pizlo; Zheng Li, (2005), Solving combinatorial

problems: The 15-puzzle. Memory & Cognition, Vol. 33

Issue 6, p1069.

[10] Ariel Felner and Amir Adler, (2005), "Solving the 24

Puzzle with Instance Dependent Pattern Databases".

Proceedings of the Sixth International Symposium on

Abstraction, Reformulation and Approximation (SARA-

05), pages 248-260.

[11] Ariel Felner, Richard E. Korf and Sarit Hanan, (2004),

“Additive Pattern Database Heuristics”, Journal of

Artificial Intelligence Research (JAIR), 22:279-318.

[12] Alexis Drogoul and Christophe Dubreuil, (1993), 'A

Distributed Approach to. N-Puzzle Solving', Proceedings

of the Distributed Artificial Intelligence, pp. 95 – 108.

[13] Graham Kendall, Andrew J. Parkes, Kristian Spoerer,

(2008), A Survey of NP-Complete Puzzles.ICGA Journal

31(1), pp. 13-34.

[14] http://www.cs.bham.ac.uk/~mdr/teaching/modules04/jav

a2/TilesSolvability.html

[15] Johnson, W. W. (1879). Notes on the ”15” Puzzle.

American Journal of Mathematics 2(4):397–404.

[16] Story, W. E. (1879) "Notes on the '15 Puzzle. II.' " ,

American Journal of Mathematics 2, 399-404.

[17] Archer, Aaron F. (1999), "A modern treatment of the 15

puzzle", The American Mathematical Monthly 106 (9):

793–799.

[18] S. Thrun, (1995) “Learning to Play the Game of Chess”,

In G. Tesauro, D. Touretzky, and T. Leen, editors,

Advances in Neural Information Processing

Systems(NIPS) 7, Cambridge, MA, MIT Press.

[19] H. Bhasin and S. Bhatia, (2011), “Application of Genetic

Algorithms in Machine learning”, IJCSIT, Vol. 2 (5).

STEP 1
•POPULATION GENERATION

STEP 2
•ENCODING

STEP 3

•CHROMOSOME ACCEPTANCE
TEST

STEP 4
•PATH TESTING AND CROSSOVER

STEP 5
•MUTATION

STEP 6
•ITERATIVE DEEPENING

http://www.ise.bgu.ac.il/faculty/felner/newsite/publications/sara111a.pdf
http://www.ise.bgu.ac.il/faculty/felner/newsite/publications/sara111a.pdf
http://www.ise.bgu.ac.il/faculty/felner/newsite/publications/jairpdb.ps
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kendall:Graham.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Parkes:Andrew_J=.html
http://www.informatik.uni-trier.de/~ley/db/journals/icga/icga31.html#KendallPS08
http://www.informatik.uni-trier.de/~ley/db/journals/icga/icga31.html#KendallPS08
http://en.wikipedia.org/wiki/American_Mathematical_Monthly

