
REVIEW ARTICLE

Genetic-based machine learning systems are competitive
for pattern recognition

Albert Orriols-Puig Æ Jorge Casillas Æ
Ester Bernadó-Mansilla

Received: 13 February 2008 / Revised: 3 June 2008 / Accepted: 2 July 2008 / Published online: 25 July 2008

� Springer-Verlag 2008

Abstract During the last decade, research on Genetic-

Based Machine Learning has resulted in several proposals

of supervised learning methodologies that use evolutionary

algorithms to evolve rule-based classification models.

Usually, these new GBML approaches are accompanied by

little experimentation and there is a lack of comparisons

among different proposals. Besides, the competitiveness of

GBML systems with respect to non-evolutionary, highly-

used machine learning techniques has only been partially

studied. This paper reviews the state of the art in GBML,

selects some of the best representatives of different fami-

lies, and compares the accuracy and the interpretability of

their models. The paper also analyzes the behavior of the

GBML approaches with respect to some of the most

influential machine learning techniques that belong to

different learning paradigms such as decision trees, support

vector machines, instance-based classifiers, and probabi-

listic classifiers. The experimental observations emphasize

the suitability of GBML systems for performing classifi-

cation tasks. Moreover, the analysis points out the strengths

of the different systems, which can be used as recom-

mendation guidelines on which systems should be

employed depending on whether the user prefers to maxi-

mize the accuracy or the interpretability of the models.

Keywords Pattern recognition � Supervised learning �
Fuzzy logics � Genetic-based machine learning �
Learning classifier systems �
Learning fuzzy-classifier systems

1 Introduction

Pattern recognition [83] is concerned with the design of

algorithms that are able to extract novel, useful, and hidden

patterns from repositories of data. In this context, a com-

petent supervised learning technique is required to be able

to (i) identify patterns hidden between a set of descriptive

attributes and a dependent variable, i.e., the output or the

class, (ii) represent these patterns in some legible structure,

and (iii) generalize over the input patterns to produce

compact representations. During the last decades, several

approaches have been designed to totally or partially fulfill

the aforementioned requirements such as decision trees

[73], support vector machines [84], instance-based algo-

rithms [4], and probabilistic classifiers [57].

Recently, Genetic-Based Machine Learning (GBML)

[51] has appeared as an appealing alternative to traditional

learning systems for pattern recognition tasks. GBML

systems are machine learning techniques that use Evolu-

tionary Algorithms (EAs) [31, 43, 50, 63] to search

efficiently over complex search spaces. Initially focused on

the simulation of animal behavior, research on GBML has

been historically conducted from two perspectives: Mich-

igan-style GBML [51, 52] and Pittsburgh-style GBML [22,

80]. The increased understanding of how EAs work [44]

has widened the application of EAs as the heart of different

A. Orriols-Puig (&) � E. Bernadó-Mansilla

Grup de Recerca en Sistemes Intel�ligents,

Enginyeria i Arquitectura La Salle, Universitat Ramon Llull,

Quatre Camins 2, 08022 Barcelona, Spain

e-mail: aorriols@salle.url.edu

E. Bernadó-Mansilla

e-mail: esterb@salle.url.edu

J. Casillas

Department of Computer Science and Artificial Intelligence,

University of Granada, 18071 Granada, Spain

e-mail: casillas@decsai.ugr.es

123

Evol. Intel. (2008) 1:209–232

DOI 10.1007/s12065-008-0013-9



types of learning algorithms. Some of these approaches lay

between the definitions of Pittsburgh- and Michigan-style

GBML, such as the application of EAs mixed with the

Iterative Rule Learning approach (IRL) [85] and the

Genetic Cooperative-Competitive Learning approach

(GCCL) [41, 47]. Other methodologies propose to include

EAs as robust search mechanisms to assist the building of

statistical classifiers [25, 71].

There have also been some advances in the rule repre-

sentation used by GBML systems. First GBML systems

used a binary or ternary rule representation [80, 87]. Later

on, several new representations were introduced to tackle

real-world problems with different types of attributes. Two

of the most prominent rule representations are the interval-

based representation and the fuzzy representation. In an

interval-based representation, each rule variable takes an

interval of values to which the rule is applicable [19, 81,

89]. In a fuzzy rule representation, each variable takes a

fuzzy set or a disjunction of fuzzy sets. The application of

GBML to evolve fuzzy rules has lead to the so-called

Genetic Fuzzy Rule-Based Systems (GFRBSs) [20], which

have received special attention during the last decades

since they provide highly legible models (in which the

inference process is similar to human reasoning) and they

are naturally adapted to deal with uncertainty. Research on

GFRBSs has mainly focused on the use of EAs to learn/

tune different components of a fuzzy-rule based system,

such as the fuzzy sets or the fuzzy rules. The reader is

referred to [48] for an update, sound review on GFRBSs.

The aim of this work is to review some of the most

relevant GBML approaches for pattern recognition and to

compare them with some of the most influential non-evo-

lutionary supervised learning techniques. We include

representatives of the different GBML families for both

non-fuzzy (interval-based) and fuzzy rule representations.

More specifically, we consider the following non-fuzzy

GBML systems: (1) UCS [10], a Michigan-style GBML

method derived from XCS [87] but specialized for super-

vised learning; (2) GAssist [8], one of the best

representatives of Pittsburgh-style GBML systems; and (3)

HIDER [2, 3], a hierarchical GBML that follows the iter-

ative rule learning approach. We also include the following

GFRBSs in our review: (4) HMOF, a Pittsburgh-style fuzzy

GFRBSs that includes some ideas of Michigan-style

GBML [54]; (5) SLAVE [18, 45], a fuzzy iterative rule

learning approach; and (6) Fuzzy LogitBoost [71], a sta-

tistical classifier that introduces a fuzzy representation to

LogitBoost [36]. We describe the six GBML systems and

compare the accuracy and size of the models that they

evolve, highlighting the differences among them.

Later on, we compare the six GBML systems with some

of the most influential pattern recognition methods [94],

including (1) the decision tree C4.5 [73], (2) the instance-

based algorithm IBk [4], (3) the probabilistic classifier

Naı̈ve Bayes [57], (4) the rule-induction method PART

[33], and (5) the support vector machine SMO [72]. In both

analyses, the algorithms are compared on a collection of

twenty real-world datasets extracted from the UCI reposi-

tory [7] and local repositories. Along with this paper, the

partitioned data sets used in the present analysis are made

available at the authors1 with the aim of letting researchers

compare the results obtained with their own learning sys-

tems. The experimental results are statistically compared

following the state of the art in multi-comparison tests [26].

The remainder of this paper is organized as follows.

Section 2 overviews the different families of GBML sys-

tems. Section 3 briefly describes each one of the six GBML

selected for the comparison. Section 4 provides details

about the experimental methodology. Section 5 presents

the results and performs the statistical analysis. Finally,

Sect. 6 summarizes and concludes the work.

2 Genetic-based machine learning

Since Holland presented the first schemes of GBML sys-

tems [51], originally addressed as Learning Classifier

Systems (LCS), the research on GBML has been conducted

from two perspectives: the Pittsburgh approach [80] and

the Michigan approach [52]. Recently, a third methodology

has received an increasing amount of attention: the Incre-

mental Rule Learning approach [85]. These three families

are briefly introduced as follows.

Pittsburgh-style GBML systems resulted of directly

extending genetic algorithms (GAs) [50] to supervised

learning problems. This approach represents an individual

as a rule set. The system maintains a population of can-

didate rule sets whose quality is evaluated with a fitness

function that considers different aspects such as the pre-

diction accuracy and the generality of the rule sets. The

population is evolved by means of the typical genetic

operators, i.e., selection, crossover, and mutation, which

are adapted to deal with rule sets. At the end of the learning

process, the best individual found during the evolutionary

process is used to predict the class of unknown examples.

The first successful developments of Pittsburgh-style

GBML for supervised learning are GABIL [23] and GIL

[6]. A new generation Pittsburgh-style GBML derived

from GABIL can be found in GAssist [8]. One of the most

recent fuzzy systems in this family is the Pittsburgh-style

method with Michigan-style inspired local search pre-

sented by Ishibuchi and Nojima [54].

Michigan-style GBML methods, initially defined as

cognitive systems [52], combine a credit-apportionment

1 http://www.salle.url.edu/*aorriols/DataSets.tgz.

210 Evol. Intel. (2008) 1:209–232

123

http://www.salle.url.edu/~aorriols/DataSets.tgz


system with EAs to evolve populations of accurate rules.

Each individual codifies a single rule; therefore, the whole

population collaborates to predict new input examples. The

rules are evaluated on-line by the credit-apportionment

system. A steady-state genetic algorithm is periodically

applied on the population (or on subpopulations) to dis-

cover new promising rules, which replace other low-fit

rules. Some of the first developments of Michigan-style

GBML are SCS [43] and NewBoole [13]. Although these

systems were able to solve certain classification tasks,

several drawbacks, mainly associated with the achievement

of accurate generalizations, hindered their success. This led

to further research that culminated in the design of XCS

[87], by far the most influential Michigan-style GBML

system. XCS was designed for reinforcement learning,

although it can be used for pattern recognition by consid-

ering that a classification problem is a reinforcement

problem in which maximum rewards are given to correct

classifications and low rewards correspond to incorrect

classifications. On the other hand, classification tasks can

be solved in a more straightforward way using UCS [10], a

system which inherits the main components from XCS but

specializes them to supervised learning.

Iterative Rule Learning GBML systems inherit charac-

teristics from both Pittsburgh- and Michigan-style GBMLs.

It uses a separate-and-conquer methodology to create an

ordered list of individuals [85]. Each individual is repre-

sented by a single rule, as in the Michigan approach. The

system iteratively invokes an EA, which evaluates the

individuals according to their accuracy and generality. The

best individual returned by the EA is added to the end of a

list of rules and all the matching examples are removed

from the training data set. This process is repeated until the

training data set is empty. In test mode, the predicted class

of a new example is given by the first rule in the decision

list that matches the example. One of the most recent

representatives of genetic-based IRL systems is HIDER [2,

3]. For fuzzy representation, SLAVE [18, 45] is one of the

most appealing proposals of IRL GFRBS.

In addition of these three approaches, in the last few

years, EAs have been included as robust search systems in

different machine learning fields, broadening the meaning

of GBML. For example, EAs have been applied in the field

of statistical learning to discover new promising rules in

different boosting algorithms such as AdaBoost [35] and

LogitBoost [36].

3 Description of the GBML systems used

in the comparison

This section briefly describes the six highly-competent

GBML systems included in the comparison: (1) UCS [10,

70], (2) GAssist [8], (3) HIDER [2, 3], (4) HMOF [54, 56],

(5) SLAVE [46], and (6) Fuzzy LogitBoost [71]. For each

system, we explain the type of knowledge representation,

the inference process followed to predict the class of pre-

viously unseen instances, and the learning process used to

evolve the rule set. Table 1 summarizes the main charac-

teristics of each GBML method. For more details, the

reader is referred to the original papers of these methods.

3.1 UCS

UCS [10] is an on-line, model-free Learning Classifier

System which inherits the main components of XCS [87,

Table 1 Summary of the main characteristics of the GBML methods

Rule type and knowledge rep. Inference method Type of GBML

UCS Interval-based rules with fitness

Population of independent rules

Voting policy according to

rule’s fitness

On-line Michigan-style GBML

GAssist Interval-based rules (discretization)

Decision list with an explicit default rule

First matching rule in the

decision list

Pittsburgh-style GBML

HIDER Interval-based rules (natural coding)

Decision list with an implicit default rule

First matching rule in the

decision list

IRL GBML

HMOF Fuzzy rule with hierarchical fuzzy

semantics and a weight

Set of independent classifiers

Winner rule inference

considering fitness

Pittsburgh-style GFRBS with local

search based on EAs

SLAVE Fuzzy rule with number of linguistic

terms prefixed and no weights

Set of independent classifiers

Winner rule inference IRL GFRBS

LogitBoost Fuzzy rule with number of linguistic

terms prefixed and a weight per class

Set of independent classifiers (prefixed

number of classifiers)

Voting policy according to

matching degree and weight

per class

Statistical learning

Evol. Intel. (2008) 1:209–232 211

123



88], but specializes them for supervised learning tasks. The

competitiveness of the system has been clearly demon-

strated, specially in imbalanced domains [69]. In the

following, we describe the knowledge representation, the

inference methodology, and the learning process.

3.1.1 Knowledge representation

UCS evolves a population of classifiers which together

cover the input space. Each classifier consists of a pro-

duction rule of the form condition ?class and a set of

parameters. The condition specifies the set of inputs where

the classifier can be applied.

For continuous inputs, the condition is codified as a set

of intervals [li, ui]
n, which globally represents a hyper

rectangle in the feature space. The class ck of the rule

specifies the class predicted when the condition is satisfied:

if x1 2 ½l1; u1� ^ . . . ^ xn 2 ½ln; un� then ck: ð1Þ

Each rule has the following parameters: (a) accuracy acc;

(b) fitness F; (c) correct set size cs; (d) numerosity num;

and (e) experience exp. Accuracy and fitness are measures

of the quality of the classifier. The correct set size is the

estimated average size of all the correct sets where the

classifier has belonged to. Numerosity is the number of

copies of the classifier and experience is the number of

times that a classifier has been evaluated. In [11], the

limitations of this type of representation with respect to

certain indicators of problem complexity is carefully

analyzed.

3.1.2 Class inference

To classify a test instance, all matching classifiers emit a

vote proportional to their accuracy and fitness, i.e.,

8ci voteci ¼
X

kjck¼ci

Fk � acck: ð2Þ

The most voted class is selected as output.

3.1.3 Learning process

During training, UCS incrementally evolves a set of clas-

sifiers. At each learning iteration, the system receives an

input example e and its class c. Then, the system creates

the match set [M], which contains all the classifiers in the

population [P] whose condition matches e. From that, the

correct set [C] is formed, which consists of all the classi-

fiers in [M] that predict class c. If [C] is empty, the

covering operator is activated, creating a new classifier

with a generalized condition matching e, and predicting

class c.

Next, the parameters of all the classifiers in [M] are

updated. The experience of each classifier is increased, and

its accuracy is updated depending on whether the given

prediction was correct. The correct set size cs is calculated

if the classifier belongs to [C]. Then, the fitness is shared

among all the classifiers that participate in [C].

After one learning cycle, a genetic algorithm (GA) is

triggered if the average time since the last application of

the GA on the classifiers in [C] is greater than hGA. In this

case, the GA selects two parents from [C] with a proba-

bility that depends on the classifier’s fitness. The two

parents are copied, creating two new children, which are

recombined and mutated with probabilities v and l,

respectively. Recombination crosses the parent’s condi-

tions by two points. Mutation modifies the lower and upper

bound of an interval according to a uniform distribution.

Finally, each offspring is introduced into the population,

removing another classifier if the population is full.

3.2 GAssist

GAssist [8] is one of the most competitive current Pitts-

burgh-style GBML systems. GAssist was initially derived

from GABIL [23], introducing several modifications that

enabled the system to overcome scalability problems

detected in the first Pittsburgh-style GBML approaches

[34]. The rule representation, the inference methodology,

and the learning process are described as follows.

3.2.1 Knowledge representation

GAssist evolves a set of individuals, each of them repre-

sented by a rule set of variable length, where each rule

consists of a condition and a predicted class ck:

IF ðx1 ¼ V1
1 _ . . . _ x1 ¼ V1

mÞ ^ . . .

^ðxn ¼ Vn
1 ^ . . . ^ xn ¼ Vn

mÞ THEN ck:
ð3Þ

That is, each input variable xi is represented by a dis-

junction of feasible values for this variable. For nominal

variables, (V1
i ,...,Vj

i) are the j possible values that the vari-

able can take. For continuous variables, GAssist applies a

discretization technique to transform the input space into

intervals of values. Several discretization techniques have

been proposed for GAssist. In our experiments, we used a

uniform discretization.

3.2.2 Class inference

The best evolved individual is considered to classify new

input instances. This individual is treated as a decision list

[75]. Therefore, the class of the first matching rule of the

individual is selected as output.

212 Evol. Intel. (2008) 1:209–232

123



3.2.3 Learning process

The core of the system is a near-standard generational

genetic algorithm similar to the one applied in GABIL

[23]. The offspring are evaluated by means of a fitness

function based on the minimum description length prin-

ciple (MDL) [74]. GAssist uses the same crossover

operator defined by GABIL, i.e., a semantically correct

crossover operator [23]. This is a multiple-point crossover

operator that forces that the selected points cut both

parents in the same position of the variable. The mutation

operator randomly adds or removes one value of a given

variable.

GAssist introduces a new deletion operator that permits

to remove rules from individuals, and so, to control their

size. This operator is activated after a predefined number of

iterations and it removes the rules of an individual that do

not match any input example. To avoid an excessive loss of

diversity, this operator is not applied if the individual does

not have a minimum number of rules.

Finally, GAssist controls the runtime of the system by

means of a windowing scheme addressed as Incremental

Learning with Alternating Strata (ILAS). This mecha-

nism splits the training data set into several non-

overlapping subsets of examples, and selects a different

subset at each GA iteration. Thus, ILAS permits to

reduce the training time of a single GA iteration since

fewer examples need to be matched with the new indi-

viduals in the evaluation process. Moreover, in [8], it

was empirically shown that this technique allows for a

better generalization.

3.3 HIDER

HIDER [3] is an iterative rule learning approach that

evolves a set of rules which is made available as a decision

list [75]. HIDER combines ideas of both Michigan- and

Pittsburgh-style GBMLs with the aim of evolving rule sets

that are similar to Pittsburgh-style GBMLs, but reducing

the search space of possible solutions. Moreover, HIDER

incorporates a brand new rule coding addressed as natural

coding [2]. As follows, we provide more details about the

knowledge representation, the inference methodology, and

the learning process.

3.3.1 Knowledge representation

Similarly to GAssist, HIDER represents the knowledge as a

set of rules which takes the form of a decision list. The

main difference between GAssist and HIDER is that the

latter one uses the so-called natural coding to represent

each rule [2]. That is to say, each rule is encoded as

IF x1 ¼ L1 ^ . . . ^ xn ¼ Ln THEN ck; ð4Þ

where Li is a label that is used to map the genotype to the

phenotype of this attribute. This type of representation

permits a one-to-one mapping, i.e., each label Li identifies

one phenotype and each phenotype is identified by a single

label. The possible phenotypes are obtained differently for

categorical and continuous attributes. For categorical

attributes, a different label Li is assigned for each possible

combination of categorical values. Therefore 2‘ possible

combinations are considered, where ‘ is the number of

categorical values for the given attribute. For continuous

attributes, a discretization technique is employed to reduce

the cardinality of the alphabet. The discretization technique

returns a set of cut-points. Then, a label Li is assigned to

each possible combination of two cut-points, which

determine an interval of possible values for the given

attribute. In our experiments we used the Unparameterized

Supervised Discretization algorithm (USD) [42] to obtain

the cut points.

3.3.2 Learning process

The learning process follows a sequential covering method

[40], that is, a separate-and-conquer strategy that progres-

sively discovers rules that explain part of the training

instances. The process is detailed as follows. The system

initializes an empty rule set. Then, at each learning itera-

tion, HIDER invokes a genetic algorithm which supplies a

new rule. This rule is included at the end of the hierarchical

rule set and the examples covered by this rule are removed

from the data set. This process is repeated until the data set

is empty.

The system employs a generational genetic algorithm to

evolve single rules, in which new crossover and mutation

operators have been designed to effectively deal with the

natural coding. For categorical attributes, the crossover

operator generates offspring whose crossed attributes are

obtained from the intersection of a mutation of the parents

values for this attribute. The mutation operator creates new

individuals that are phenotypically close to the parents. For

continuous attributes, similar ideas are followed. The

crossover operator produces offspring whose supports are

inherited from the parent’s supports. The mutation operator

selects one of the closest discretized intervals to the par-

ent’s intervals.

3.3.3 Class inference

Given a new unseen instance, the hierarchical rule set is

searched in order. The class of the first matching rule is

returned as output.

Evol. Intel. (2008) 1:209–232 213

123



3.4 HMOF

In [55], a Pittsburgh-style GFRBS that introduces a local

search operator inspired by Michigan-style GBML was

presented. The system evolved a set of linguistic fuzzy

rules whose fitness was calculated as the classification

accuracy of each rule. Later on, Ishibuchi and Nojima

moved the system to a multi-objective architecture, and

showed the many benefits that the evolutionary multi-

objective learning method provided with respect to its

former proposal [54] . We used the latter approach in our

experiments, which we address as Hybrid Multi-Objective

Fuzzy system (HMOF). In the following, we provide more

details about the knowledge representation, the learning

process, and the inference methodology.

3.4.1 Knowledge representation

HMOF evolves a population of individuals, as done in

Pittsburgh-style GBMLs. Each individual consists of a set

of fuzzy rules, which take the following form

IF x1 is Ak
1 and. . .and xn is Ak

n THEN ck WITH wk;

ð5Þ

where each input variable xi is represented by a linguistic

term or label. The system defines 14 possible linguistic

terms for each attribute, which correspond to Ruspini’s

strong fuzzy partitions with two, three, four, and five uni-

formly distributed triangular-shaped membership

functions. Moreover, the system also uses ‘‘don’t care’’ as

an additional linguistic term, which indicates that the var-

iable matches any input value with maximum matching

degree.

The matching degree lAkðeÞ of an example e with a

single fuzzy rule k is computed as follows. For each vari-

able xi, we compute the membership degree of ei with the

corresponding linguistic term of the variable. Then, the

matching degree of the rule with the example e is deter-

mined by the T-norm (conjunction) of the matching degree

of each input variable. In our experiments, we used the

product as T-norm.

To determine the class predicted by the rule ck and the

weight wk, the system first calculates the confidence with

which the fuzzy rule k predicts each class h, i.e.,

confidenceðkjhÞ ¼
X

8ejclassðeÞ¼h

lAkðeÞ=
X

8e
lAkðeÞ: ð6Þ

That is, the confidence in the class h depends on the ratio

of the sum of the matching degrees with the instances of

class h to the sum of the matching degrees with all the

instances of the data set. The class of the rule ck is the

class with maximum confidence. Finally, wk is computed

as the maximum confidence value minus the sum of the

remaining confidence values.

The learning is guided by three objectives, which are

encoded with each individual: (1) the number of training

patterns correctly classified by the rule set, (2) the number

of fuzzy rules that the individual contains, and (3) the total

number of antecedent conditions of the fuzzy rules. The

multi-objective approach aims at maximizing the first and

third objectives and minimizing the second objective.

3.4.2 Class inference

Given a new input pattern e and the rule set S, the rule k

that maximizes the product of the matching degree with e

and the weight wk is selected. The system returns the class

ck predicted by the winner rule k.

3.4.3 Learning process

The learning process of the system follows closely the

proposal of NSGA-II [24]. That is to say, at the beginning

of the run, the system initializes a population from a set of

randomly selected training examples. The new examples

are evaluated according to the Pareto ranking and the

crowding measure of NSGA-II. Then, at each cycle, the

system repeats Npop times the following three steps:

– Select a pair of parents using binary tournament

selection.

– Apply crossover and mutation, with probabilities Pchi

and Pl, respectively, to generate an offspring. The

crossover operator randomly selects S1 and S2 rules

from each parent to create the offspring, where S1 and

S2 are random numbers ranging from 1 to the length of

each parent. Mutation randomly changes a variable of

the antecedent of the fuzzy rule.

– Apply a single iteration of a Michigan-style GBML

algorithm to the offspring rule set with probability PM.

Then, both the offspring and the parent population are

combined in a single one and the best Npop individuals from

the merged population are selected to build the next popu-

lation. Again, the new individuals are evaluated according to

the Pareto ranking and the crowding distance of NSGA-II.

This procedure is repeated for a certain number of iterations.

The main novelty of this approach with respect to

Pittsburgh-style GBML systems is that it performs a local

search iteration after crossover and mutation. In this cycle,

the system follows the next steps on the selected

individual:

– Compute the fitness of each rule as the number of

examples correctly classified by the rule.

– Apply genetic operators to generate Nr fuzzy rules.

214 Evol. Intel. (2008) 1:209–232

123



– Replace the worst Nr rules of the individual with the

new generated offspring.

When the stop criterion is met, the system returns all the

non-dominated rule sets.

3.5 SLAVE

SLAVE [18, 45] is an inductive learning algorithm based

on a fuzzy-rule representation. SLAVE follows an iterative

rule learning scheme with the aim of reducing the large

search spaces of Pittsburgh-style GBML systems. As fol-

lows, the knowledge representation, the inference process,

and the learning process are explained.

3.5.1 Knowledge representation

SLAVE creates a set of individuals that consist of a single

rule. The condition of each rule is represented in con-

junctive normal form

IF x1 is fAk
1 and. . .and xn is fAk

n THEN ck;

where each input variable xi is represented by a disjunction

of linguistic terms fAk
i ¼ fAi1 or; . . .; or Aini

g; and the con-

sequent ck is the class predicted by the rule. In our

experiments, all the variables share the same semantics,

which are defined by means of triangular-shaped fuzzy

membership functions with five linguistic terms. Notice the

differences between these rules and the ones evolved by

HMOF. In SLAVE, each variable is represented by an

arbitrary number of linguistic terms (in our experiments, a

maximum of five linguistic terms). Therefore, rules can be

generalized by including several linguistic terms per vari-

able. SLAVE simulates the absence of a variable by letting

it take all the possible linguistic terms. On the other hand,

variables of HMOF are represented by a single linguistic

term. Nonetheless, note that, as different fuzzy partitions

are defined, the rules can be easily generalized by taking

linguistic terms that cover larger regions of the feature

space or by taking the ‘‘don’t care’’.

The matching degree lAkðeÞ of an example e with a rule k

is computed as follows. For each variable xi, we compute the

membership degree for each of its linguistic terms, and

aggregate them by means of a T-conorm (disjunction). Then,

the matching degree of the rule is determined by the T-norm

(conjunction) of the matching degree of all the input vari-

ables. In our experiments, we used the maximum and the

product operators as T-conorm and T-norm, respectively.

3.5.2 Inference process

The class of a new example is determined by the rule that

maximizes the matching degree with this example. In case

of having more than one rule with maximum matching

degree, the class of the first matching rule is selected as the

output.

3.5.3 Learning process

Figure 1 illustrates the learning scheme of SLAVE, which

is based on two steps: i) learn one rule from the data set,

and ii) penalize the data covered by the rule. Given a data

set E and a specific class B, the system searches for the rule

that describes more accurately this class. This process is

performed by a steady-state genetic algorithm. The fitness

function of the GA is determined by the training error and

the generality of the rule. Then, this rule is aggregated to

the fuzzy-rule set. If more rules are required to represent all

the examples of class B, the examples covered by the

current rules of class B are removed, and the GA is run

again providing a new rule for class B. The same procedure

is repeated until no more rules are required for class B.

Then, the same algorithm is followed to learn rules for the

other classes of the domain, resulting in a rule set that

covers all the instances in the training data set.

3.6 Fuzzy LogitBoost

The LogitBoost algorithm [36] is a boosting method sim-

ilar to AdaBoost [35] that uses a greedy version of

generalized backfitting [36] to build an additive model. It

R (A)
B

Learning process

Label B

Structure
gniniarTcisaB

Set

Selection of a Class

Module for selecting
the best rule that
describes this class

Restore all examples
of the Training Set

the Fuzzy Rule Set
Append the rule to

A => B

Elimination
Module of Example

Are
more rules

for this concept
needed? ONSEY

A => Bnot learned

Fuzzy Rule Set

All the class have been learned

E

Fig. 1 Illustrative scheme of the learning process of SLAVE

Evol. Intel. (2008) 1:209–232 215

123



has been experimentally shown that LogitBoost outper-

forms AdaBoost, especially in multi-class problems. Due to

these improvements, LogitBoost was extended to induce

fuzzy classifiers, resulting in the so-called Fuzzy Logit-

Boost algorithm [71]. In the following, we describe the

knowledge representation, the inference methodology, and

the learning process of Fuzzy LogitBoost.

3.6.1 Knowledge representation

Fuzzy LogitBoost creates a set of weak classifiers, which

take the following form

IF x1 is Ak
1 and. . . and xn is Ak

n THEN

ck
1 WITH sk

1; . . .; ck
p WITH sk

p:
ð7Þ

Each input variable xi is represented by a linguistic term Ai
k.

All variables share the same semantics, represented by

triangular-shaped membership functions. The method per-

mits the absence of a variable by not assigning any

linguistic term to this variable. In the consequent, the rule

maintains one weight sj
k for each class j that indicates the

soundness with witch the weak classifier predicts class j.

3.6.2 Class inference

Given a new unknown example e, each rule k votes for

each class according to the weights per class. That is, the

vote for the class c is computed as

votec ¼
X

8k
sk � lAkðeÞ: ð8Þ

The most voted class is returned as output.

3.6.3 Learning process

Fuzzy LogitBoost iteratively invokes an algorithm that

provides a low quality classifier, addressed as weak

hypothesis in the boosting literature. This weak hypothesis

is added to a compound classifier. The goal of the algo-

rithm is to minimize the likelihood of this compound

classifier. For details on the statistical formulation of the

problem, the reader is referred to [36, 71, 78]. Moreover,

the pseudo code of the algorithm is presented in [71].

Instead of giving all this formulation, in this section we

briefly describe the process used to learn the compound

classifier.

Fuzzy LogitBoost generates N classifiers, where N is a

user-set parameter. Each example i in the training dataset

has associated a weight wi that represents the importance of

the example. At each learning iteration, a genetic algorithm

is applied to find a rule that fits accurately the training

data according to the weights of the different examples.

Then, the new generated weak hypothesis is added to the

compound classifier, and the examples in the training

dataset are re-weighted. In that way, in the following

iterations, the search will be focused on examples that are

more difficult to learn. Moreover, at the end of each iter-

ation, a voting strength sj for each class j is assigned to the

new rule. sj is calculated according to the confidence with

which the rule predicts class j.

4 Experimental methodology

This section presents the experimental methodology fol-

lowed to evaluate the six analyzed GBML techniques.

First, we compare the accuracy and the size of the models

evolved by the six GBML learning systems . This analysis

enables us to emphasize the benefits and the drawbacks of

the different systems. Then, the six systems are compared

with several of the most influential learning algorithms that

belong to a wide variety of learning paradigms. In the

following, we provide details of (i) the real-world problems

chosen for the experimentation; (ii) the metrics used to

evaluate the performance and the interpretability of the

models built by the different techniques; (iii) the configu-

ration parameters of the GBML methods; (iv) the learning

techniques included in the comparison of GBML methods

with non-evolutionary machine learning algorithms; and

(iv) the statistical analysis applied to compare the results

obtained with the learning systems.

4.1 Test bed

We selected a collection of twenty real-world data sets

whose characteristics are detailed in Table 2. The problems

represent different characteristics which may pose partic-

ular challenges to the different learning techniques. All

these data sets were obtained from the UCI repository [7],

except for tao, which was chosen from a local repository

[12].

4.2 Comparison metrics

We evaluated the performance and the interpretability of

the models evolved by each learning system. We used the

test accuracy, i.e., the proportion of correct classifications

on previously unseen examples to measure the perfor-

mance of the method. To obtain reliable estimates of this

indicator, we used a ten-fold cross validation procedure

[27]. The partitioned data sets are available at the authors;2

thence, researchers can easily compare their own machine

learning techniques with the results supplied in our com-

parative analysis. The results provided in the next section

2 http://www.salle.url.edu/*aorriols/DataSets.tgz.

216 Evol. Intel. (2008) 1:209–232

123

http://www.salle.url.edu/~aorriols/DataSets.tgz


are averages over ten runs of the GBML systems with

different random seeds.

The comparison of the readability of the models evolved

by the GBML systems is more complicated since the

methods included in the analysis use different rule repre-

sentations (see Sect. 3). In our comparison, we use the

number of rules evolved by the different learning methods

to supply an approximate idea of the model complexity.

We use this indicator to qualitatively compare the model

readability, also considering the intrinsic differences of

interpretability among the rules created by the different

learning techniques. In addition, we also provide the

average number of relevant variables per rule to comple-

ment this information.

4.3 Configuration of GBML techniques

The experiments were ran with the following source codes.

For UCS, we used our own implementation. For GAssist,

we used the open source code3 which was developed by the

authors of the learning system. The results of HIDER,

HMOF, and SLAVE were kindly provided by the authors

of the corresponding methods. For Fuzzy LogitBoost, we

used the KEEL open source platform [5]. For the sake of

repeatability, as follows we detail how the different

learning algorithms were configured. In all cases, we

searched for the best configuration, that is, the configura-

tion which could yield the better results on average. For

HIDER, HMOF, and SLAVE, the authors of the methods

adjusted the configuration of the methods with the aim of

achieving maximum accuracy. For GAssist and UCS, we

used the default configurations reported in the literature

(see [8, 69]). For LogistBoost, we employed the default

configuration provided in the KEEL platform, which is set

according to [71]. In any case, each method used the same

configuration parameters for all the test bed, with the only

exception of HMOF, which varied one parameter for three

specific data sets. Therefore, we employ configurations that

are able to evolve accurate models for different data sets,

showing in this way the robustness of the different learning

systems to the configuration parameters. More specifically,

we used the following configuration parameters for each

method.

– We ran UCS with a maximum population size of 6,400

classifiers during 100,000 iterations. The probabilities

of crossover and mutation were set to 0.8 and 0.4,

respectively. The other parameters of UCS were set to

standard values (see [10, 70] for notation details):

acc0 = 0.99, m = 10, {hGA, hdel, hsub} = 50, d = 0.1,

p# = 0.6.

– GAssist was configured with a maximum population

size of 400 rule sets and was run during 1,500 learning

iterations. The probabilities of crossover and individual

mutation were set both to 0.6. The remaining param-

eters were configured as follows (see [8] for notation

details): initialNumberOfRules = 20, probOne = 0.90,

initMethod = cwinit, numStrata = 2, sizePenaltyMin-

Rules = 4, tournamentSize = 3, defaultClass = auto,

discretizer = UniformWidth, probMerge = 0.05, pro-

bReinitializeBegin = 0.03, probReinitializeEnd = 0,

probSplit = 0.05, hierarchicalSelectionThreshold = 0,

iterationHierarchicalSelection = 24, iterationMDL =

25, useMDL = true, initialTheoryLengthRatio = 0.075,

weightRelaxFactor = 0.90, iterationRuleDeletion = 5,

ruleDeletionMinRules = 12.

– HIDER was configured as follows. Each genetic

algorithm was run during 100 iterations with a popu-

lation of 70 rules. The proportion of crossover was set

to 0.8 and the probability of mutation to 0.5. Moreover,

variables were mutated to open/close intervals with

Table 2 Properties of the data sets

Id. Data set #Inst #Fea #Re #In #No #Cl %Miss

ann Annealing 898 38 6 0 32 5 0

aut Automobile 205 25 15 0 10 6 22.4

bal Balance 625 4 4 0 0 3 0

bpa Bupa 345 6 6 0 0 2 0

cmc Contracep.

method choice

1,473 9 2 0 7 3 0

col Horse colic 368 22 7 0 15 2 98.1

gls Glass 214 9 9 0 0 6 0

h-c Heart-c 303 13 6 0 7 2 2.3

h-s Heart-s 270 13 13 0 0 2 0

irs Iris 150 4 4 0 0 3 0

pim Pima 768 8 8 0 0 2 0

son Sonar 208 60 60 0 0 2 0

tao Tao 888 2 2 0 0 2 0

thy Thyroid 215 5 5 0 0 3 0

veh Vehicle 846 18 18 0 0 4 0

wbcd Wisc. breast-

cancer

699 9 0 9 0 2 2.3

wdbc Wisc. diag.

breast-cancer

569 30 30 0 0 2 0

wne Wine 178 13 13 0 0 3 0

wpbc Wisc. prog.

breast-cancer

198 33 33 0 0 2 2

zoo Zoo 101 17 0 1 16 7 0

The columns describe: the identifier of the Data set (Id.), the name of

the data set (Data set), the number of instances (#Inst), the total

number of features (#Fea), the number of continuous features (#Re),

the number of integer features (#In), the number of nominal features

(#No), the number of classes (#Cl), and the proportion of instances

with missing values (%Miss)

3 http://www.asap.cs.nott.ac.uk/*jqb/PSP/GAssist-Java.tar.gz.

Evol. Intel. (2008) 1:209–232 217

123

http://www.asap.cs.nott.ac.uk/~jqb/PSP/GAssist-Java.tar.gz


probability 0.05. A maximum of 20% of replicated

individuals were allowed in a GA run.

– HMOF was run during 5,000 learning iterations with a

population size of 200 individuals. The crossover and

mutation probabilities of both the Pittsburgh-style

GBML and the local search inspired by a Michigan-

style GBML were set to 0.9 and 1/‘, respectively

(where ‘ is the number of input variables). The

maximum number of rules per individual was fixed to

20. The probability of ‘‘don’t care’’ was set to 0.8 for

all the data sets except for bal, irs, and tao; in these

three data sets, the probability of ‘‘don’t care’’ was set

to 0.5.

– SLAVE used a steady state GA with maximum

population size of 100 individuals. At each iteration,

two new classifiers were generated, which replaced the

two worst rules in the population. To generate these

offspring, two point crossover was applied with prob-

ability 1 and uniform crossover was triggered with

probability 0.01. The GA was stopped after 500

iterations without improving the best individual in the

population.

– For Fuzzy LogitBoost, we fixed the number of rules to

50. To generate each rule, the system used a steady-

state genetic algorithm with ten subpopulations of 100

individuals. The best individual after 2,500 crossover

operations was added to the compound classifier.

Furthermore, the methods implemented different poli-

cies to deal with missing values. UCS, GAssist, and

HIDER replaced the missing values of an attribute with (i)

the average value of the attribute for the class of the

instance in case of continuous attributes or (ii) the most

frequent value of the attribute for the class of the instance

in case of nominal attributes. HMOF, SLAVE, and Fuzzy

LogitBoost did not use a replacement strategy; instead of

this, they assumed that the matching of a rule variable with

a missing value was maximum (i.e., lAkðeiÞ ¼ 1; if ei was

missing).

4.4 Machine learning techniques included in the

comparison

We also compared the competence of the six GBML

techniques with several widely-known machine learning

techniques that represent a large variety of learning para-

digms. More specifically, we compared the GBML

methods with C4.5, IBk, Naı̈ve Bayes, PART, and SMO.

C4.5 [73] is a decision tree that enhances ID3 by intro-

ducing methods to deal with continuous variables and

missing values. IBk [4] is a nearest neighbor algorithm; it

classifies a test instance with the majority class of its k

nearest neighbors. Naı̈ve Bayes [57] is a probabilistic

classifier that estimates the parameters of a Bayesian

model. PART [33] is a learning architecture that combines

the extraction of rules from partial decision trees and the

separate-and-conquer rule learning technique to create a

rule-based classifier without performing global optimiza-

tion. SMO [72] is a widely-used implementation of support

vector machines [84]. In our experiments, we used SMO

with polynomial kernels and SMO with Gaussian kernels.

Table 3 summarizes the main characteristics of these

learning systems. It is worth mentioning that C4.5, nearest

neighbor classifiers, support vector machines, and Naı̈ve

Bayes have been selected among the ten most influential

machine learning techniques in data mining [94].

All these methods were run using WEKA [93]. For all of

them, we used the configuration recommended in the

WEKA platform, with the following exceptions. For IBk,

we ran the experiments with k = {1,3,5,7} and ranked the

results; we selected the configuration that yielded the

higher average rank, that is, k = 5. For SMO with poly-

nomial kernels, we followed a similar strategy. We ran the

system with polynomial kernels of order {1,3,5,10} and

chose the results of the configuration that provided the best

average rank, i.e., polynomial kernels of order 3.

Table 3 Summary of the main characteristics of the machine learn-

ing techniques included in the comparison: C4.5, IBk, Naive Bayes

(NB), Part, and SMO

Paradigm Knowledge representation and

inference method

C4.5 Decision-tree

induction

Decision-tree

Inference: class given by the

corresponding leaf

IBk Instance-based

learning

No general model

Inference: class determined by

the majority class of the k nearest

neighboors

NB Statistical modeling Probabilities of a Bayesian

model

Inference: the output is the class

with maximum probability

Part Rule induction based

on decision-tree

induction and a

separate-and-

conquer approach

Ordered list of rules. Continuous

variables represented by float-

coded attributes

Inference: the output is the class

of the first matching rule in the

ordered list

SMO Neural networks

(support vector

machines)

Weights of the support vector

machines

Inference: The class is

determined by the decision

function represented by the SVM

218 Evol. Intel. (2008) 1:209–232

123



4.5 Statistical analysis

We followed the recommendations pointed out by

Demšar [26] to perform the statistical analysis of the

results. As suggested by Demšar, we used non-parametric

statistical tests to compare the accuracies and sizes of the

models built by the different learning systems. We

avoided using parametric tests since they require strong

conditions on the input data and the tests to check these

conditions are ineffective unless large volumes of data

are provided.

To compare multiple learning methods, we first applied

a multi-comparison statistical procedure to test the null

hypothesis that all the learning algorithms obtained the

same results on average. Specifically, we used the Fried-

man test [37, 38], the non-parametric equivalent to the

analysis of variance ANOVA test [32]. If the Friedman test

rejected the null hypothesis, post-hoc tests were applied.

Our first concern was to study whether each learning

algorithm significantly differed from the best technique.

For this purpose, we applied several post-hoc statistical

tests. Firstly, we applied the Bonferroni–Dunn test [30],

which defines that one learning method performs signifi-

cantly differently from a control method (in our

experiments, we used the best ranked system as the control

method) if the corresponding average rank differs by, at

least, a critical distance CD computed as

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n‘ðn‘ þ 1Þ

6nds

s

ð9Þ

where n‘ is the number of learning techniques, nds is the

number of data sets, and qa is the critical value based on the

Studentized range statistic [79]. The Bonferroni–Dunn test

enables us to graphically illustrate the results by means of

the critical distance; thus, it permits to easily visualize the

significant differences among groups of learning systems.

Nonetheless, the Bonferroni–Dunn test is said to be less

powerful than other non-parametric tests. For this reason,

to complement the multi-comparison statistical analysis,

we used the Holm’s step-down procedure [49, 53]. Holm’s

test compares each classifier i with a control learning

technique, which has to be the best ranked technique, by

computing the z-value

zib ¼ ðRi � RbÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n‘ðn‘ þ 1Þ

6nds

s

ð10Þ

where Rb is the rank of the best ranked learning tech-

nique, and Ri is the rank of the learning method that is to

be compared with the best technique. Next, the p-value pi

is calculated from each zib. All the pi are sorted so

that p1\p2\� � �\pn‘ . Then, the Holm’s procedure

starts with the most significant pi, i.e., p1. If p1 is below

a/(n‘-1) the corresponding hypothesis is rejected and the

second hypothesis is tested. This strategy is repeated until

we find the first hypothesis that cannot be rejected. In

this case, all the remaining hypothesis are retained as

well. In the next section, we apply the Bonferroni–Dunn

test at a = 0.10 and the Holm’s procedure at a = 0.05.

We use a larger significance level in the Bonferroni–

Dunn test since it is more conservative than the Holm’s

procedure.

Finally, we also applied pairwise comparisons to com-

pare pairs of learning algorithms. For this purpose, we used

the non-parametric Wilcoxon signed-ranks test [86] and

provided the approximative p-values computed as indi-

cated in [79].

5 Comparison

Firstly, the analysis provided in this section compares the

behavior of the six GBML techniques, highlighting the

advantages and weaknesses of the different GBML para-

digms. Next, the GBML techniques are compared with

some of the most influential machine learning techniques

for pattern recognition. The experimental results show the

robustness and competitiveness of the GBML approaches

in the realm of pattern recognition.

5.1 Comparison of the six analyzed GBML techniques

Tables 4 and 5 show the test accuracies and the number of

rules of the models obtained with the GBML methods. For

HMOF, we supply the results that correspond to the solu-

tion of the Pareto front that has the best training accuracy.

The accuracy and size of the models created by HIDER in

the son problem are not provided since the system could

not evolve rules that covered the test instances; this

behavior was due to the high dimensionality of the problem

with respect to the number of instances. The last two rows

of the table show the average rank and the absolute position

in the ranking of each method. To complement the infor-

mation of the model sizes, Table 6 provides the average

number of variables used per rule in the GBML models.

We statistically analyzed the results to detect significant

differences among the accuracy and the size of the models

evolved by the different learning methods. The multi-

comparison Friedman’s test rejected the null hypotheses

that (i) all the systems performed the same on average with

p = 1.22 9 10-4, (ii) the number of rules of the models

was equivalent on average with p = 5.55 9 10-15, and

(iii) the average number of variables per rule was equiva-

lent on average with p = 6.05 9 10-8. Therefore, we

applied the post-hoc Bonferroni–Dunn test (at a = 0.10) to

detect (i) which learning methods performed equivalently

Evol. Intel. (2008) 1:209–232 219

123



Table 4 Comparison of

percentage test accuracy

achieved by the six GBML

techniques on the twenty real-

world problems

The two last rows show the

average rank of each learning

algorithm (Rank) and its

position in the ranking (Pos)

Problem UCS GAssist HIDER HMOF SLAVE LogitBoost

ann 99.05 ± 1.39 97.88 ± 1.70 96.17 ± 2.23 97.56 ± 1.63 96.78 ± 2.21 76.20 ± 1.66

aut 77.41 ± 7.23 68.63 ± 4.13 68.80 ± 12.09 66.87 ± 11.26 70.71 ± 6.91 32.63 ± 3.22

bal 77.32 ± 4.03 79.57 ± 2.10 70.54 ± 3.37 92.18 ± 1.41 72.01 ± 6.03 88.30 ± 3.68

bpa 67.54 ± 9.63 62.24 ± 4.82 62.94 ± 3.76 65.09 ± 7.69 59.99 ± 4.75 64.46 ± 9.02

cmc 50.27 ± 4.32 53.58 ± 4.19 48.52 ± 3.29 53.16 ± 5.72 46.09 ± 3.82 51.10 ± 3.65

col 96.26 ± 3.21 94.30 ± 2.29 77.00 ± 4.92 84.50 ± 5.23 82.88 ± 3.92 63.06 ± 1.08

gls 70.04 ± 9.08 65.06 ± 7.99 66.27 ± 3.35 61.01 ± 9.49 57.62 ± 13.18 68.18 ± 8.06

h-c 79.72 ± 7.79 80.09 ± 6.16 74.93 ± 5.20 79.17 ± 4.51 77.86 ± 7.14 62.09 ± 4.52

h-s 74.63 ± 6.83 77.67 ± 5.82 74.11 ± 9.58 84.07 ± 4.29 76.30 ± 4.74 59.33 ± 4.43

irs 95.40 ± 4.51 96.20 ± 3.08 96.67 ± 4.71 95.50 ± 4.16 93.33 ± 5.96 95.33 ± 3.55

pim 74.61 ± 5.01 73.76 ± 2.99 74.47 ± 4.20 76.17 ± 2.03 72.28 ± 5.71 71.84 ± 4.43

son 76.49 ± 10.65 75.81 ± 10.37 – 75.43 ± 10.88 73.07 ± 7.51 53.38 ± 1.63

tao 87.00 ± 3.55 91.59 ± 2.29 86.44 ± 2.85 91.10 ± 2.39 82.14 ± 2.25 91.73 ± 2.56

thy 95.13 ± 4.22 92.52 ± 3.06 93.84 ± 5.26 94.16 ± 4.60 91.29 ± 7.19 97.08 ± 3.94

veh 71.40 ± 4.50 67.00 ± 2.82 64.30 ± 2.12 63.35 ± 2.71 66.55 ± 4.85 37.25 ± 4.76

wbcd 96.28 ± 1.92 95.59 ± 2.04 96.27 ± 2.65 95.39 ± 2.44 96.43 ± 2.04 94.12 ± 2.72

wdbc 95.96 ± 2.75 94.24 ± 2.49 88.08 ± 4.78 95.77 ± 2.41 91.74 ± 3.59 62.74 ± 0.65

wne 96.13 ± 4.14 93.19 ± 6.35 91.68 ± 4.54 96.60 ± 4.72 94.35 ± 3.62 85.02 ± 9.74

wpbc 69.40 ± 8.70 72.33 ± 5.26 63.73 ± 5.59 79.48 ± 8.52 75.73 ± 5.83 76.35 ± 2.23

zoo 96.78 ± 5.35 93.97 ± 5.44 95.80 ± 4.87 92.50 ± 7.20 96.50 ± 6.26 41.89 ± 6.65

Rank 2.20 3.00 4.30 2.85 4.15 4.50

Pos 1 3 5 2 4 6

Table 5 Comparison of the

number of rules of the models

created by the six GBML

techniques on the twenty real-

world problems

The two last rows show the

average rank of each learning

algorithm (Rank) and its

position in the ranking (Pos)

Problem UCS GAssist HIDER HMOF SLAVE LogitBoost

ann 4410.2 ± 200.7 5.3 ± 0.3 11.8 ± 1.0 6.8 ± 7.2 8.0 ± 0.9 50.0 ± 0.0

aut 4064.2 ± 69.4 6.9 ± 0.4 18.1 ± 2.6 7.5 ± 6.6 17.4 ± 2.0 50.0 ± 0.0

bal 1712.1 ± 77.5 8.2 ± 0.6 6.0 ± 0.0 3.3 ± 4.1 22.2 ± 2.4 50.0 ± 0.0

bpa 2602.7 ± 220.3 6.4 ± 0.6 4.3 ± 0.2 7.0 ± 6.0 5.8 ± 1.5 50.0 ± 0.0

cmc 3175.1 ± 62.6 15.4 ± 1.9 50.9 ± 3.9 6.5 ± 4.5 48.6 ± 6.0 50.0 ± 0.0

col 3445.6 ± 249.3 4.5 ± 0.5 10.8 ± 0.6 7.3 ± 6.2 7.0 ± 1.1 50.0 ± 0.0

gls 3013.0 ± 114.4 4.7 ± 0.5 11.2 ± 0.6 6.6 ± 9.1 14.6 ± 2.3 50.0 ± 0.0

h-c 2892.6 ± 146.2 6.4 ± 0.7 6.1 ± 0.2 6.9 ± 7.9 6.4 ± 0.9 50.0 ± 0.0

h-s 3499.2 ± 115.6 5.5 ± 0.3 4.2 ± 0.3 6.2 ± 7.2 7.1 ± 0.9 50.0 ± 0.0

irs 634.3 ± 201.6 3.1 ± 0.1 3.0 ± 0.0 4.1 ± 2.2 3.0 ± 0.0 50.0 ± 0.0

pim 3225.1 ± 138.7 7.2 ± 0.6 5.4 ± 0.2 7.3 ± 8.4 13.3 ± 3.2 50.0 ± 0.0

son 5999.1 ± 95.9 4.6 ± 1.0 – 6.3 ± 8.0 8.5 ± 1.1 50.0 ± 0.0

tao 609.5 ± 123.7 5.9 ± 0.4 3.0 ± 0.0 7.1 ± 2.4 3.0 ± 0.0 50.0 ± 0.0

thy 1282.9 ± 202.9 4.1 ± 0.3 4.0 ± 0.4 5.2 ± 1.9 4.6 ± 0.5 50.0 ± 0.0

veh 4601.2 ± 56.0 6.9 ± 0.7 19.8 ± 0.6 6.6 ± 8.2 25.9 ± 4.0 50.0 ± 0.0

wbcd 1799.1 ± 118.1 3.5 ± 0.2 2.0 ± 0.0 5.3 ± 3.8 5.0 ± 1.5 50.0 ± 0.0

wdbc 5078.8 ± 36.9 4.3 ± 0.3 20.7 ± 0.7 5.8 ± 3.7 5.1 ± 0.8 50.0 ± 0.0

wne 3412.6 ± 290.7 3.2 ± 0.2 5.5 ± 0.3 3.9 ± 4.0 3.6 ± 0.9 50.0 ± 0.0

wpbc 5077.6 ± 26.1 3.9 ± 0.3 18.1 ± 0.3 4.6 ± 10.0 9.9 ± 2.8 50.0 ± 0.0

zoo 1243.7 ± 63.3 6.2 ± 0.3 7.5 ± 0.3 8.0 ± 8.5 7.3 ± 0.5 50.0 ± 0.0

Rank 6.00 1.70 2.63 2.80 2.93 4.95

Pos 6 1 2 3 4 5

220 Evol. Intel. (2008) 1:209–232

123



to the best ranked method according to the test accuracy

(i.e., UCS); (ii) which methods evolved models whose

number of rules was equivalent to the best ranked method

according to the model size (i.e., GAssist); and (iii) which

methods had an equivalent number of variables per rule to

the best ranked method in this respect (i.e., LogitBoost).

Figure 2 illustrates the results of this statistical analysis,

comparing all systems by means of both the accuracy and

the number of rules of the model. For the sake of clarity,

the plot does not consider the number of variables per rule

since the post-hoc test only detected a significant differ-

ence: UCS created rules with a higher number of variables

than LogitBoost. To contrast the results, we also applied

the Holm’s step-down procedure, which is said to be more

powerful than the Bonferroni–Dunn test and does not make

any additional assumptions on the data. The Holm’s test at

a = 0.05 detected the same significant differences among

learning methods.

The following observations can be drawn from the sta-

tistical analysis of the results:

– UCS has the best average rank in terms of test

accuracy, followed by HMOF and GAssist, which

performed equivalently to UCS. UCS significantly

outperformed SLAVE, HIDER, and Fuzzy LogitBoost.

Nonetheless, UCS created the largest models among all

the methods. UCS’s models consisted of thousands of

Table 6 Comparison of the

average number of variables of

the rules created by the six

GBML techniques on the

twenty real-world problems

The two last rows show the

average rank of each learning

algorithm (Rank) and its

position in the ranking (Pos)

Problem UCS GAssist HIDER HMOF SLAVE LogitBoost

ann 16.57 ± 0.44 9.51 ± 2.53 10.18 ± 0.30 3.68 ± 1.01 2.54 ± 0.45 5.36 ± 0.13

aut 16.20 ± 0.24 7.74 ± 1.04 22.60 ± 0.21 4.17 ± 0.92 4.87 ± 0.85 5.38 ± 0.21

bal 3.76 ± 0.04 2.43 ± 0.53 1.17 ± 0.00 2.52 ± 0.47 2.70 ± 0.05 2.10 ± 0.03

bpa 5.17 ± 0.22 3.68 ± 0.58 2.27 ± 0.20 3.52 ± 0.52 4.08 ± 0.54 1.68 ± 0.12

cmc 6.22 ± 0.06 5.32 ± 1.61 4.10 ± 0.08 3.32 ± 0.57 4.22 ± 0.15 2.61 ± 0.23

col 9.99 ± 0.36 4.81 ± 1.76 8.59 ± 0.16 2.10 ± 0.45 3.01 ± 0.59 2.61 ± 0.23

gls 7.78 ± 0.19 2.85 ± 0.54 6.52 ± 0.11 3.42 ± 0.74 3.71 ± 0.40 3.41 ± 0.17

h-c 7.37 ± 0.21 4.92 ± 0.71 6.14 ± 0.12 2.63 ± 0.87 3.68 ± 0.38 2.89 ± 0.24

h-s 10.75 ± 0.14 3.23 ± 0.33 3.62 ± 0.14 3.31 ± 0.49 3.93 ± 0.37 2.80 ± 0.22

irs 3.28 ± 0.27 1.55 ± 0.22 1.00 ± 0.01 1.93 ± 0.26 1.50 ± 0.17 1.83 ± 0.11

pim 6.90 ± 0.21 3.56 ± 0.59 4.31 ± 0.20 3.50 ± 0.48 3.90 ± 0.25 2.57 ± 0.14

son 27.11 ± 1.31 2.32 ± 0.32 - 3.36 ± 0.77 6.64 ± 1.86 4.05 ± 0.19

tao 1.93 ± 0.05 2.03 ± 0.32 1.00 ± 0.00 1.80 ± 0.16 1.33 ± 0.00 0.27 ± 0.03

thy 4.30 ± 0.20 2.09 ± 0.33 1.58 ± 0.11 2.36 ± 0.32 2.80 ± 0.24 2.05 ± 0.12

veh 15.70 ± 0.17 3.31 ± 0.53 14.82 ± 0.14 6.47 ± 1.11 6.33 ± 0.63 4.55 ± 0.20

wbcd 5.86 ± 0.36 3.74 ± 0.55 2.90 ± 0.32 2.83 ± 0.48 3.69 ± 0.70 4.00 ± 0.25

wdbc 24.97 ± 0.34 3.49 ± 0.66 28.26 ± 0.13 2.59 ± 0.55 3.40 ± 0.51 3.64 ± 0.21

wne 9.76 ± 0.39 0.62 ± 0.00 8.80 ± 0.22 3.10 ± 0.77 3.87 ± 0.51 4.88 ± 0.21

wpbc 28.00 ± 0.24 4.97 ± 0.77 28.79 ± 0.16 4.70 ± 1.31 6.91 ± 1.37 3.98 ± 0.29

zoo 5.44 ± 0.29 1.72 ± 0.20 1.16 ± 0.07 3.06 ± 0.60 1.26 ± 0.16 3.71 ± 0.13

Rank 4.75 2.10 2.80 1.55 2.35 1.45

Pos 6 3 5 2 4 1

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

UCS

GAssist

HIDER
HMOF

SLAVE

LogitBoost

CD = 1.38

C
D

 =
 1

.3
8

Accuracy Rank

P
op

ul
at

io
n 

S
iz

e 
R

an
k

Accuracy and Population Size Comparison

Fig. 2 Visual comparison of the accuracy and the number of rules of

the models evolved by the six GBML systems. The figure plots an

ellipse for each learning technique, which is centered on its average

performance rank and its average rank of the number of rules. The

semi-major and semi-minor axes of each ellipse have been sized

proportionally to the standard deviation of the accuracy and

population size rank, respectively. Dashed lines indicate the regions

for which either the population size or the accuracy is equivalent to

the best ranked method according to a Bonferroni–Dunn test at

a = 0.10

Evol. Intel. (2008) 1:209–232 221

123



interval-based rules, each one with a large number of

variables, in the majority of the problems. Thus, even

using a rule-based representation, this high number of

rules may hinder the readability of the evolved

knowledge. Therefore, UCS appeared to be the best

alternative if we need highly accurate models regard-

less of its interpretability. It is worth noting that UCS is

an on-line learning algorithm, so that, differently from

all the other presented approaches, it can learn from

data streams [1, 21]. In fact, this is one of the reasons

why UCS models consisted of a large number of rules.

– GAssist created the populations with the smallest

number of rules, which were significantly smaller than

the rule sets evolved by Fuzzy LogitBoost and UCS.

Moreover, the rules contained few variables in their

conditions. The sizes of the models built by HIDER,

HMOF, and SLAVE did not significantly differ from

the sizes of the rule sets constructed by GAssist.

– In general, GAssist and HMOF turned out to be the

most robust methods of the comparison regarding the

two objectives that we are analyzing here. Both

learning methods built models whose accuracy and

size did not differ from the best ranked method for each

indicator. Besides, their rules contained few relevant

variables. Thence, they reached a good equilibrium

between accuracy and interpretability, being the best

alternatives when the user searches for highly inter-

pretable and accurate models in pattern classification

tasks.

– SLAVE and HIDER emerged as good alternatives in

terms of model size, although the accuracy of their

models significantly differed from UCS, the most

accurate system of the comparison. Below, we further

compare the readability of the models evolved by the

different learning systems by analyzing carefully the

types of rules created by them.

– Fuzzy LogitBoost presented the poorest results of all

the comparison. It degraded the accuracy of the other

two fuzzy learning methods. Moreover, it evolved

considerably larger model sizes, since the population

size was a fixed parameter.

To further analyze the interpretability of the models

created by the different learning techniques, Fig. 3 reports

partial examples of the models evolved by the six GBML

systems on the two-dimensional tao problem. Figure 4

complements this information by plotting an example of a

rule set evolved by each learning system. That is, for each

learner, we considered a single run and depicted all the

rules contained in the final population as follows. For the

interval-based techniques, we plotted the hyper rectangle

defined by the intervals of the two variables of the rule.

Note that GAssist and HIDER make the rules available as a

decision list; thus, there are overlapping rules (the most

specific rules tend to be at the beginning of the decision

list). For the fuzzy systems, we depicted the hyper rect-

angle defined by the supports of the linguistic terms

contained in each variable. In these systems, there are also

overlapping rules; a rule inference mechanism that con-

siders the information provided by the matching rules is

applied to predict the final class. This analysis, together

with the statistical comparison of the model sizes, enables

us to qualitatively extract the following conclusions

regarding the readability of the models created by the

different learning systems:

– SLAVE uses the simplest rules to represent the

knowledge (see Fig. 3). It creates linguistic fuzzy rules

whose variables are defined by a disjunction of five

linguistic terms. Rules can be regarded as independent

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3 Examples of part of the models evolved by a UCS, b GAssist,

c HIDER, d HMOF, e SLAVE, and f Fuzzy LogitBoost for the two-

dimensional tao problem. The fuzzy methods SLAVE and Fuzzy

LogitBoost use the following five linguistic terms per variable: {XS,

S, M, L, XL}. HMOF uses 15 linguistic terms per variable that

correspond to the four fuzzy partitions {S2, L2}, {S3, M3, L3}, {S4,

MS4, ML4, L4}, and {S5, MS5, M5, ML5, L5} and the ‘‘don’t care’’

symbol

222 Evol. Intel. (2008) 1:209–232

123



classifiers that are experts in the region of the feature

space that they cover. Rules does not have any weight

associated. Then, the inference process chooses the

class of the rule that maximizes the matching with the

new unknown example. If more than one rule maxi-

mally matches the input instance, the class of the first

matching rule is returned as the output. Thus, this

simple inference process facilitates the readability of

the evolved knowledge.

– HMOF representation differs from SLAVE rules in two

aspects (see Fig. 3). First, each variable is defined by a

single label, which is chosen among fifteen possible

linguistic terms. Second, the HMOF rules have a

weight associated, which is used to infer the class of

any test instance. We consider that this knowledge

representation is slightly more complex than the

representation used by SLAVE. Nevertheless, note

that, in general, HMOF needed a smaller number of

rules than SLAVE in the tested problems. Thus, in

global, both knowledge representations may be simi-

larly interpretable.

– Fuzzy LogitBoost employs rules whose variables are

defined by a single linguistic term. Each rule maintains

a weight per class, which indicates the confidence of

the rule on the class. Thus, these rules are the least

interpretable among those evolved by the fuzzy learn-

ing techniques.

– GAssist and HIDER create a similar knowledge

representation, which is made available as a decision

list. The main difference between both is that, in

GAssist, each variable can be represented by a

disjunction of values, which enables the system to

evolve slightly smaller rule sets than those created by

HIDER. Moreover, GAssist forces the creation of a

default rule. On the other hand, HIDER does not

require to create this default rule, but the system

architecture makes a strong pressure toward its crea-

tion; therefore, this default rule is usually present in

HIDER models. Note that this type of representation is

by far less interpretable than the presented fuzzy

models for two main reasons. Firstly, because rules’

variables are defined by intervals instead of linguistic

terms. Secondly, because the rules of GAssist and

HIDER depend on the context, while the rules of the

three fuzzy learning methods are independent classifi-

ers. That is to say, in GAssist and HIDER, a rule is used

to infer the class of a new test instance only if all the

previous rules in the decision list do not match the input

instance. Thus, the context of the rules (i.e., the

conditions of the previous rules in the decision list)

has to be considered to read the whole rule set. For

example, note that in Fig. 4c and d there are several

rules of one class that contain rules of other classes; this

aspect is not present in UCS’s rule sets (see Fig. 4b).

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(a) Domain

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(b) UCS

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(c) GAssist

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(d) HIDER

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(e) HMOF

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(f) SLAVE

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

(g) LogitBoost

Fig. 4 Examples of the rules evolved by b UCS, c GAssist, d HIDER, e HMOF, f SLAVE, and g Fuzzy LogitBoost for the two-dimensional tao

problem (a). In the three fuzzy systems, in addition, the fuzzy inference is applied to finally infer the class

Evol. Intel. (2008) 1:209–232 223

123



Therefore, this makes evident a trade-off between the

size of the models and the interpretability of individual

rules. In some cases, slightly bigger populations of

more interpretable rules may be preferred by human

experts.

– UCS uses interval-based rules which predict a class for

the region of the feature space that they cover. These

rules can be easily interpreted individually. Nonethe-

less, as mentioned in the above discussion, the main

problem of UCS is that it tends to evolve large rule sets,

hindering the readability of the whole model. Although

several reduction techniques have been proposed over

the years [28, 39, 91], reduced populations are still

bigger than those evolved by GBML systems [67], such

as GAssist, HIDER, HMOF, and SLAVE.

– The three fuzzy learning techniques define the rule

variables with linguistic terms that belong to a shared

semantic. For this reason, the rules partition the feature

space in uniformly distributed hyper rectangles (see

Fig. 4e, f and g). On the other hand, the interval-based

learning methods can define independent intervals for

each attribute, which enables these systems to build

hyper rectangles that fit the decision boundaries more

accurately (see Fig. 4b, c, and d).

The study performed herein has highlighted the

strengths and weaknesses of the different approaches for

pattern recognition tasks. We showed that the rule-based

representation permits the evolution of highly accurate

models that can be easily interpreted by human experts. In

the next section, we compare these systems to some of the

most used machine learning techniques. The aim of the

following study is to analyze whether GBML is a com-

petitive alternative to deal with new challenging

classification problems.

5.2 Comparison with other machine learning

techniques

We now study the competitiveness of the six GBML sys-

tems with respect to some of the most influential methods

from several learning paradigms. Table 7 provides the test

accuracy achieved by (1) the decision tree C4.5, (2) the

instance-based algorithm IBk, (3) the probabilistic classi-

fier Naı̈ve Bayes, (4) the rule-induction method PART, and

the support vector machine SMO with (5) polynomial

kernels of order 3 and (6) Gaussian kernels. Table 8 ranks

the performance obtained with the six machine learning

techniques and the six GBML methods (see Table 4). The

last two rows of the table show the average rank and the

absolute position in the ranking of each of the twelve

learning techniques.

The multi-comparison Friedman test rejected the null

hypothesis that all the twelve learning systems performed

the same on average with p = 1.56 9 10-5. We applied

the post-hoc Bonferroni–Dunn test at a = 0.10 to detect

Table 7 Test accuracy

achieved by C4.5, IB5, Naı̈ve

Bayes, PART, SMO with

polynomial kernels of order 3

(SMOp3), and SMO with

Gaussian kernels

Problem C4.5 IB5 Naı̈ve Bayes PART SMOp3 SMOrbf

ann 98.90 ± 0.88 97.34 ± 1.66 86.33 ± 3.60 98.57 ± 1.25 99.34 ± 0.57 91.90 ± 2.39

aut 80.94 ± 10.30 64.03 ± 7.57 58.79 ± 13.49 74.41 ± 8.66 78.09 ± 5.58 45.55 ± 7.47

bal 77.42 ± 3.60 88.18 ± 3.50 90.57 ± 2.27 82.86 ± 3.66 91.20 ± 2.93 88.30 ± 3.42

bpa 62.31 ± 5.19 58.85 ± 7.65 55.97 ± 14.33 67.56 ± 5.46 59.97 ± 3.03 57.99 ± 1.17

cmc 52.62 ± 4.52 46.51 ± 2.57 50.65 ± 4.50 50.04 ± 2.52 48.75 ± 3.91 42.70 ± 0.61

col 85.32 ± 5.08 81.49 ± 7.76 78.23 ± 5.86 84.51 ± 3.70 75.59 ± 6.72 82.41 ± 5.98

gls 66.15 ± 6.87 64.68 ± 11.09 48.95 ± 7.41 66.62 ± 9.56 66.15 ± 10.40 35.65 ± 4.83

h-c 78.45 ± 9.30 83.16 ± 6.68 82.80 ± 5.45 74.20 ± 9.11 78.59 ± 6.55 82.48 ± 5.95

h-s 79.26 ± 7.65 80.74 ± 7.16 83.33 ± 6.59 80.00 ± 7.45 78.89 ± 7.21 82.59 ± 8.38

irs 94.00 ± 5.84 96.00 ± 4.66 96.00 ± 3.44 94.00 ± 7.98 92.67 ± 5.84 93.33 ± 6.29

pim 74.23 ± 2.85 73.32 ± 4.37 75.80 ± 6.12 74.88 ± 4.23 76.70 ± 3.66 65.11 ± 0.54

son 71.07 ± 12.99 84.05 ± 11.79 69.71 ± 9.87 74.38 ± 9.90 85.52 ± 11.19 69.26 ± 9.25

tao 95.92 ± 1.51 97.14 ± 1.01 80.98 ± 2.45 94.33 ± 1.56 84.22 ± 2.03 83.63 ± 2.20

thy 94.91 ± 3.35 94.85 ± 5.16 97.16 ± 3.32 94.33 ± 6.63 88.91 ± 7.64 69.83 ± 2.23

veh 71.14 ± 4.40 68.91 ± 3.44 46.28 ± 4.06 73.39 ± 2.86 83.30 ± 4.68 41.71 ± 2.66

wbcd 94.99 ± 3.09 97.14 ± 2.02 96.15 ± 2.12 95.71 ± 2.15 96.42 ± 1.94 96.13 ± 2.27

wdbc 94.40 ± 3.58 96.78 ± 1.65 93.13 ± 2.76 94.46 ± 3.73 97.58 ± 1.71 92.88 ± 3.82

wne 93.89 ± 6.65 96.67 ± 3.88 97.19 ± 2.96 93.30 ± 6.30 97.75 ± 2.91 39.93 ± 2.60

wpbc 71.61 ± 15.26 78.85 ± 10.39 69.45 ± 11.50 70.05 ± 10.70 81.25 ± 9.12 72.97 ± 11.40

zoo 92.81 ± 6.92 90.47 ± 8.37 94.47 ± 5.98 93.81 ± 7.19 97.83 ± 4.72 76.03 ± 14.60

224 Evol. Intel. (2008) 1:209–232

123



which learning techniques performed differently from the

best ranked method. Figure 5 graphically represents the

rank of each technique and connects with a line the clas-

sifiers whose performance does not statistically differ from

the best ranked method. We also applied the Holm’s step-

down procedure, which yielded the same statistical

conclusions.

The statistical analysis shows that UCS is the best

ranked method of the comparison, achieving a better

average rank than widely-used machine learning tech-

niques such as the support vector machine SMO, the

instance-based classifier IBk, and the decision tree C4.5

among others. Moreover, the study also detects that seven

learning methods perform equivalently to UCS: the two

GBML methods HMOF and GAssist; and the five machine

learning techniques SMO with polynomial kernels of order

3, IBk, PART, C4.5, and Naı̈ve Bayes.

We complemented the statistical study by comparing

each pair of learning systems. It is well known that pair-

wise comparisons increase the risk of rejecting null

hypotheses that are actually true. Herein, we assume this

risk with the aim of providing further information about the

excellence of the different methods. Table 9 shows the

approximate p-values of the pairwise comparison accord-

ing to a Wilcoxon signed-ranks test. The symbols � and �
indicate that the method in the row significantly improves/

degrades the performance obtained with the method in the

column at a significance level of 0.05. Similarly, the

symbols + and - are used to denote a non-significant

Table 8 Ranking of the performance achieved by C4.5, IB5, Naı̈ve Bayes, PART, SMO with polynomial kernels of order 3 (SMOp3), SMO

with Gaussian kernel (SMOrbf), and the six GBML techniques

C4.5 IB5 Naı̈ve Bayes PART SMOp3 SMOrbf UCS GAssist HIDER HMOF SLAVE LogitBoost

ann 3 7 11 4 1 10 2 5 9 6 8 12

aut 1 9 10 4 2 11 3 7 6 8 5 12

bal 9 6 3 7 2 4.5 10 8 12 1 11 4.5

bpa 6 10 12 1 9 11 2 7 5 3 8 4

cmc 3 10 5 7 8 12 6 1 9 2 11 4

col 3 8 9 4 11 7 1 2 10 5 6 12

gls 5.5 8 11 3 5.5 12 1 7 4 9 10 2

h-c 8 1 2 11 7 3 5 4 10 6 9 12

h-s 6 4 2 5 7 3 10 8 11 1 9 12

irs 8.5 3.5 3.5 8.5 12 10.5 6 2 1 5 10.5 7

pim 7 9 3 4 1 12 5 8 6 2 10 11

son 8 2 9 6 1 10 3 4 12 5 7 11

tao 2 1 12 3 9 10 7 5 8 6 11 4

thy 4 5 1 6 11 12 3 9 8 7 10 2

veh 4 5 10 2 1 11 3 6 8 9 7 12

wbcd 11 1 6 8 3 7 4 9 5 10 2 12

wdbc 6 2 8 5 1 9 3 7 11 4 10 12

wne 7 3 2 8 1 12 5 9 10 4 6 11

wpbc 8 3 10 9 1 6 11 7 12 2 5 4

zoo 8 10 5 7 1 11 2 6 4 9 3 12

Rank 5.90 5.38 6.73 5.63 4.73 9.20 4.60 6.05 8.05 5.20 7.93 8.63

Pos. 6 4 8 5 2 12 1 7 10 3 9 11

The two last rows show the average rank of each system (Rank) and its position in the ranking (Pos)

4 5 6 7 8 9 10

↓

C4.5

5.9

↓

IB5

5.38

↓
Naive Bayes

6.73

↓
Part

5.63

↓

SMOp3

4.73

↓
SMOrbf

9.2

↓
UCS

4.6

↓
GAssist

6.05

↓

HIDER

8.05

↓
HMOF

5.2

↓
SLAVE

7.93

↓
LogitBoost

8.63

CD = 2.9747

Fig. 5 Visual comparison of the performance of the non-evolutionary

and the GBML techniques. The learning systems connected with a

line are those that perform equivalently to the best ranked learning

method according to a Bonferroni–Dunn test at a = 0.10

Evol. Intel. (2008) 1:209–232 225

123



improvement/degradation. The symbol = indicates that

each method outperforms and degrades the other in the

same number of data sets. The same information is

graphically illustrated in the graph of Fig. 6, where each

method is depicted in one vertex of the graph, and signif-

icant improvements (at a = 0.05) of one learning method

with respect to another are plotted with a directed edge

labeled with the corresponding p-value. To facilitate the

visualization, SMO with Gaussian kernel and Fuzzy Log-

itBoost were not included in the graph, since they were

outperformed by most of the learning techniques. The

pairwise analysis confirms the aforementioned conclusions.

Moreover, it detects further differences between each pair

of learning systems. Note that UCS, GAssist, and HMOF

are never significantly outperformed. Moreover, HMOF

significantly surpasses Naı̈ve Bayes.

So far, we have shown the high performance of the

models evolved by the GBML methods. Now, we quali-

tatively evaluate their readability with respect to the

models evolved by the other six machine learning tech-

niques. For this purpose, Fig. 7 provides examples of the

models built by SMO, PART, C4.5, and Naı̈ve Bayes. The

model of IBk is not supplied since it does not build any

global model; IBk is a lazy learning method that searches

the k nearest neighbors for each test instance, and returns

the majority class among them.

The least interpretable models are given by SMO. It

creates models that consist of 2
nc

� �
support vector

machines (SVM), where nc is the number of classes (see

Fig. 7a). Each SVM is formed by ‘ + 1 real-valued

weights, where ‘ is the number of attributes of the problem.

Thus, this type of model has low explanatory capabilities.

On the other hand, Naı̈ve Bayes builds models formed by a

set of parameters which estimate the independent proba-

bility functions and the so-called class-priors of a Bayesian

model (see Fig. 7b). These types of models can be easily

interpreted from a probabilistic framework. The compari-

son between this type of knowledge and rule-based systems

is not trivial and it is out of the scope of our study. For

further details on the probabilistic models, the reader is

referred to [65], where a framework that maps a Naı̈ve

Bayes classifier into a Neuro-Fuzzy Classifier is developed.

Table 9 Pairwise comparisons of the learning methods by means of a Wilcoxon signed-ranks test

C4.5 IB5 Naı̈ve Bayes PART SMOp3 SMOrbf UCS GAssist HIDER HMOF SLAVE LogitBoost

C4.5 0.709 0.263 0.904 0.421 0.007 0.204 0.941 0.004 0.478 0.012 0.011

IB5 = 0.053 0.794 0.411 0.000 0.852 0.455 0.040 0.911 0.019 0.005

Naı̈ve Bayes - - 0.247 0.067 0.033 0.135 0.108 0.695 0.012 0.601 0.021

Part + - = 0.296 0.006 0.232 0.433 0.004 0.641 0.014 0.006

SMOp3 + + + + 0.003 0.654 0.296 0.021 0.709 0.004 0.007

SMOrbf � � � � � 0.006 0.003 0.263 0.000 0.027 0.573

UCS + = + + - � 0.218 0.000 0.550 0.002 0.007

GAssist - - + - - � - 0.012 0.765 0.017 0.017

HIDER � � - � � + � � 0.014 0.490 0.167

HMOF + = � = - � - - � 0.011 0.001

SLAVE � � + � � � � � + � 0.057

LogitBoost � � � � � - � � - � -

The above diagonal contains the approximate p-values. The below diagonal shows a symbol �=� if the method in the row significantly

outperforms/degrades the method in the column at a significance level of .05 and + / = /- if there is no significant difference and performs

better/equal/worst

Fig. 6 Illustration of the significant differences of the performance

among the GBML systems and the non-evolutionary learning

techniques according to a Wilcoxon signed-ranks test at a = 0.05.

An edge L1 !
pvalue

L2 indicates that the method L1 outperforms the

method L2 with the corresponding pvalue. To facilitate the visualiza-

tion, LogitBoost and SMO with Gaussian kernel, the two most

outperformed algorithms, are not included in the graph

226 Evol. Intel. (2008) 1:209–232

123



C4.5 constructs decision trees in which the nodes rep-

resent a condition over one variable of the problem (see

Fig. 7d). Decision trees and rule-based systems create

similar models; in fact, the paths from the root node to each

leaf of a decision tree can be regarded as an individual rule.

PART builds rule sets which are interpreted as decision

lists, similarly to GAssist and HIDER. To qualitatively

compare these two knowledge representations to those of

the GBML systems, Table 10 reports the average number

of leaves of C4.5 decision trees and the average number of

rules created by PART. Note that PART created smaller

models than C4.5. Nonetheless, both approaches built lar-

ger models than those evolved by GAssist, HIDER,

HMOF, and SLAVE according to a Wilcoxon signed-ranks

test at a = 0.05.

The overall analysis provided in this section emphasized

the competitiveness of the different GBML approaches for

supervised learning with respect to some of the best rep-

resentative methods of different machine learning

paradigms. UCS is the learning algorithm that resulted in

the most accurate models in average. GAssist and HMOF

also yielded competitive results in terms of accuracy.

Besides, GBML approaches, and more specifically, GAs-

sist and HMOF, resulted in models that were by far more

readable than those created by any other of the tested

machine learning techniques; moreover, the statistical

analysis highlighted that these models were as accurate as

the models evolved by UCS, the best performer.

5.3 Further considerations

Finally, we discuss two further aspects that typically have

discouraged the use of GBML in new challenging prob-

lems: the parametrization and the run time of the GBML

methods.

The number of parameters of the majority of GBML

systems is one of the first arguments against their use. As

described in the Sect. 3, several parameters need to be

specified before running the learning techniques. These

parameters permit to tune the system’s behavior for par-

ticular learning problems. Nonetheless, note that the

(a) (b)

(c) (d)

Fig. 7 Examples of part of the

models evolved by a SMO, b
Naı̈ve Bayes, c PART, and d
C4.5 for the two-dimensional

tao problem

Table 10 Average number of leaves of the decision trees built by

C4.5 and average number of rules created by PART

Problem C4.5 PART

ann 49 ± 5 15 ± 2

aut 61 ± 10 21 ± 5

bal 90 ± 4 37 ± 3

bpa 49 ± 5 9 ± 2

cmc 269 ± 18 168 ± 13

col 7 ± 1 9 ± 1

gls 48 ± 3 15 ± 1

h-c 48 ± 6 21 ± 2

h-s 33 ± 2 18 ± 2

irs 8 ± 1 4 ± 1

pim 37 ± 5 7 ± 2

son 27 ± 2 8 ± 1

tao 72 ± 4 17 ± 4

thy 15 ± 1 4 ± 0

veh 136 ± 4 32 ± 5

wbcd 24 ± 3 10 ± 1

wdbc 21 ± 2 7 ± 1

wne 10 ± 1 5 ± 1

wpbc 23 ± 3 7 ± 3

zoo 18 ± 3 8 ± 1

Evol. Intel. (2008) 1:209–232 227

123



GBML systems were run with the same configuration for

all the data sets of the comparison and under this param-

eterization they empirically demonstrated to be, at least, as

good as the non-evolutionary machine learning techniques.

Therefore, the default configuration can be used as a valid

approximation for any new problem. In this context, con-

figuration parameters can be seen as an opportunity to tune

the method for particular data sets. Moreover, several

heuristics can be designed to tune the system based on

either the problem characteristics or the signals received

during evolution. For example, in [68] an heuristic proce-

dure that adjusts XCS according the apparent niche

imbalance observed during learning was designed, pro-

viding an impressive improvement in highly imbalanced

domains.

The run time of the different algorithms is also a

burden typically associated to GBML methods, although

the current increasing amount of computational resources

is diminishing this problem. In our analysis, the learning

time was not compared since the source codes were

implemented with different programming languages, and

the experiments were run in different machines. How-

ever, by analyzing the learning process of the different

methods, the following appreciations can be made. In

general, Pittsburgh-style GBML consume a lot of com-

putational resources since all the rules of each new

individual have to be evaluated with all the training data

set. Moreover, the search space is huge since individuals

represent sets of rules. In our comparison, HMOF was

probably the most time-consuming algorithm, since it

combined the Pittsburgh-style approach with a local

search. In contrast, GAssist consumed moderate resources

thanks to the different approaches that have been

expressly designed to reduce its run time [8]. Michigan-

style systems also tended to present high run-times,

mostly due to the cost of creating the subsequent match

sets. Finally, incremental rule learning approaches had a

low run time as they incrementally reduce the search

space. HIDER was one of the quickest approaches, pre-

senting the lower computational time among all the

tested GBML systems. SLAVE had a higher computa-

tional cost since it considers all the original data set for

learning each one of the classes. Fuzzy LogitBoost had a

computational cost which was similar to SLAVE’s cost

since it ran a genetic algorithm for discovering each

weak hypothesis.

Finally, it is worth noting that all the research in parallel

genetic algorithms [17] can be applied to speed up GBML

systems. For example, first steps toward the parallelization

of Michigan-style GBML methods [14], Pittsburgh-style

GBML techniques [58], IRL GBML systems [59], and

GFRBSs [64] have been taken. Besides, several techniques

have been recently developed to speed up GBML systems

such as fitness surrogates for Pittsburgh-style GBML [61]

and fast rule matching schemes for GBML [60].

6 Summary and conclusion

6.1 Summary

In this paper, we studied whether genetic-based machine

learning systems are competitive for pattern recognition.

We reviewed different GBML families and chose six state-

of-the-art GBML systems. This selection included methods

that use fuzzy and non-fuzzy rule representations. Then, we

carefully compared the accuracy and the readability of the

models evolved by the six approaches. This analysis per-

mitted us to highlight the strengths and weaknesses of the

different learning techniques, also pointing out some rec-

ommendations on which GBML system should be use

depending on the requirements of the user. When the pri-

ority is to obtain highly accurate models, UCS appeared to

be the best choice, since it was the best performer of the

comparison. When the model interpretability was the pri-

mary goal, SLAVE turned up to be the best alternative,

since it could evolve a compact and highly legible model

based on linguistic fuzzy rules. Besides, other approaches

such as GAssist and HMOF showed a nice balance between

accuracy and interpretability, being able to evolve highly

accurate and readable models.

We further investigated on the competitiveness of these

GBML approaches by comparing them with some of the

representatives of several machine learning paradigms. The

different methods were adjusted to maximize accuracy. For

example, several kernels were used for the support vector

machine approaches and different neighbor recovery

strategies were tested for the instance-based algorithms. In

both cases, the configuration with the best results was

selected for the comparison. The analysis of the results

clearly highlighted the competitiveness of the GBML

approaches. Again, UCS was the method that yielded the

most accurate models among the GBML systems and the

non-evolutionary systems. Besides, GBML also excelled in

terms of interpretability. For example, GAssist and HMOF

resulted in more readable models than the remaining

machine learning techniques, maintaining a statistically

equivalent test accuracy. All these results may encourage

machine learning practitioners to consider GBML approa-

ches to face new challenging problems.

6.2 SWOT analysis

All the evidence provided through the experimentation is

summarized in the SWOT analysis presented in Table 11,

where strengths represent the main advantages of GBML,

228 Evol. Intel. (2008) 1:209–232

123



weaknesses show its drawbacks, opportunities outline some

suggested further lines of investigation, and threats include

some optional approaches considered by other methods

that could compete with GBML.

GBML systems have five important strengths. Firstly,

they present high performance, which supports their use to

deal with new challenging problems. Secondly, the use of

an EA enables the learning methods to optimize the rule

sets over complex search spaces. Thirdly, EAs also permit

to optimize multiple objectives. This issue is essential in

pattern recognition, since different objectives such as the

prediction error and the size of the classification model

have to be minimized. Notice that dealing with multiple

objectives is a non-trivial task for non-evolutionary algo-

rithms. Fourthly, GBML is able to evolve highly legible

models by creating either a reduced set of interval-based

rules or slightly larger sets of linguistic fuzzy rules. Lastly,

as shown in the different GBML approaches presented in

this paper, GBML has the ability to incorporate charac-

teristics of other machine learning paradigms.

GBML has a principal weakness: the high run-time

typically associated to its learning algorithms. The most

competent GBML approaches tested in our analysis pre-

sented a higher average run-time than C4.5, one of the

quickest non-evolutionary systems of the comparison.

Other technical issues also appear as weaknesses of the

system. On one hand, GBML systems tend to have a large

number of configuration parameters; this question has been

carefully discussed in Sect. 3. On the other hand, it is said

that complete theoretical frameworks are lacking for

GBML, which has been historically inspired by the

inventiveness of the natural processes. In response to this

respect, first theoretical frameworks [29] and facet-wise

analyses [15] have been developed. Finally, the last

weakness of GBML is its low visibility in the machine

learning community. Recent advances on both GBML

theory and applications may help encourage GBML tech-

niques usage as competent, accurate, and reliable machine

learning systems.

There are also some threats to GBML that are worth

mentioning. First, a user may prefer quicker learning

techniques to build approximate models of the input data.

Second, there are some non-evolutionary methods that are

able to perform the tasks associated to different GBML

families such as on-line learning from data streams [66].

Third, the wider visibility of some non-evolutionary sys-

tems, jointly with the availability of their open source

implementations, may cloud GBML visibility in research

fields. During the last few years, the GBML community

has striven to make the source codes of the most competent

GBML systems available. One of the most significant

efforts toward this direction can be found in the KEEL

platform4 [5].

We finally mention the many opportunities of GBML.

The first opportunity is that EAs can be easily parallelized,

decreasing their convergence time (see, for example [14,

58, 61, 64]). Secondly, the flexibility of the EAs let GBML

systems deal with different types of representations. For

example, GBML approaches have been applied to evolve

tree-based representations [62], hyper ellipsoidal repre-

sentations [16], and gene expression programs [92]. In fact,

some GBML architectures can be addressed as ensemble

Table 11 SWOT analysis of genetic-based machine learning

Strengths Weaknesses

Highly accurate models; comparable with the state-

of-the-art in classification

Capabilities to explore complex search spaces

Capabilities to optimize multiple objectives

Highly legible rule-based representation

Good at incorporating best bits of other ML paradigms

High requirements of computational resources

Large number of configuration parameters

Lack of a theoretical framework

Poor visibility in the pattern recognition community

Opportunities Threats

Evolutionary Algorithms naturally support parallelization

Flexibility to deal with different knowledge

representations (representation-blind techniques)

Prepared to deal with unusual data types: data streams

(Michigan-style GBML) and vague data (GFRBSs)

Possibility of forming part of ensembles. They can

also be used as an ensemble themselves

Application to other types of learning tasks

Other learning techniques may build accurate and

interpretable models more quickly

Specific-designed methods for dealing with unusual

data types such as data streams

More visible methods in pattern recognition may

discourage the use of GBML systems

Open source codes of traditional machine learning

techniques available in Internet

4 http://www.keel.es.

Evol. Intel. (2008) 1:209–232 229

123

http://www.keel.es


systems that evolve different weak classifiers. For instance,

the Michigan-style architecture can be regarded as an

ensemble of classifiers that are experts on the region of the

feature space that they cover. This naturally supports the

co-evolution of different representations. On the other

hand, ensembles of several GBML systems can be

designed to improve learning performance for both Mich-

igan-style GBML systems (see [14]) and Pittsburgh-style

GBML methods (see [9]).

The third opportunity is due to the inclusion of a fuzzy

representation to GBML systems. The use of fuzzy logic

permits GBML methods to be easily adapted to deal with

vague and uncertain data [76, 77], which is very common

in real-world problems. Finally, as GBML methods typi-

cally present a general-purpose architecture, they can be

applied to other types of tasks such as regression [90] and

clustering [82].

Acknowledgments The authors would like to warmly thank Raúl

Giráldez (Pablo de Olavide University), Yusuke Nojima (Osaka

Prefecture University), and Raúl Pérez (University of Granada) for

providing us with the experimental results of HIDER, HMOF, and

SLAVE, respectively. The authors also wish to acknowledge the

Ministerio de Educación y Ciencia for its support under projects

TIN2005-08386-C05-01 and TIN2005-08386-C05-04, and Generali-
tat de Catalunya for its support under grants 2005FI-00252 and

2005SGR-00302.

References

1. Aggarwal C (ed) (2007) Data streams: models and algorithms.

Springer, Heidelberg

2. Aguilar-Ruiz JS, Giraldez R, Riquelme JC (2007) Natural

encoding for evolutionary supervised learning. IEEE Trans Evol

Comput 11(4):466–479

3. Aguilar-Ruiz JS, Riquelme JC, Toro M (2003) Evolutionary

learning of hierarchical decision rules. IEEE Trans Syst Man

Cybern B 33(2):324–331

4. Aha DW, Kibler DF, Albert MK (1991) Instance-based learning

algorithms. Mach Learn 6(1):37–66

5. Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus MJ, Ventura S,

Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández

JC, Herrera F (2008) KEEL: a software tool to assess evolu-

tionary algorithms to data mining problems. Soft Comput

(forthcoming)

6. Anikow CZ (1993) A knowledge-intensive genetic algorithm for

supervised learning. Mach Learn 13(2–3):189–228

7. Asuncion A, Newman DJ (2007) UCI Machine learning

repository: http://www.ics.uci.edu/*mlearn/MLRepository.html.

University of California

8. Bacardit J (2004) Pittsburgh genetic-based machine learning in

the data mining era: representations, generalization and run-

time. PhD thesis, Ramon Llull University, Barcelona, Catalonia,

Spain

9. Bacardit J, Krasnogor N (2008) Empirical evaluation of ensemble

techniques for a pittsburgh learning classifier system. In: Learn-

ing classifier systems, revised selected papers of the international

workshop on learning classifier systems 2006–2007. Springer,

Heidelberg

10. Bernadó-Mansilla E, Garrell JM (2003) Accuracy-based learning

classifier systems: models, analysis and applications to classifi-

cation tasks. Evol Comput 11(3):209–238

11. Bernadó-Mansilla E, Ho TK (2005) Domain of competence of

XCS classifier system in complexity measurement space. IEEE

Trans Evol Comput 9(1):1–23

12. Bernadó-Mansilla E, Llorà X, Garrell JM (2002) XCS and

GALE: a comparative study of two learning classifier systems on

data mining. In: Advances in learning classifier systems volume

2321 of LNAI. Springer, Heidelberg, pp 115–132

13. Bonelli P, Parodi A (1991) An efficient classifier system and its

experimental comparison with two representative learning

methods on three medical domains. In 4th international confer-

ence on genetic algorithms, pp 288–295

14. Bull L, Studley M, Bagnall A, Whittley I (2007) Learning clas-

sifier system ensembles with rule-sharing. IEEE Trans Evol

Comput 11(4):496–502

15. Butz MV (2006) Rule-based evolutionary online learning sys-

tems: a principled approach to LCS analysis and design volume

109 of studies in Fuzziness and Soft Computing. Springer,

Heidelberg

16. Butz MV, Lanzi PL, Wilson SW (2008) Function approximation

with XCS: hyperellipsoidal conditions, recursive least squares,

and compaction. IEEE Trans Evol Comput. doi:10.1109/TEVC.

2007.903551 (forthcoming)

17. Cantú-Paz E (2001) Efficient and accurate parallel genetic algo-

rithms. Kluwer, Dordrecht

18. Castillo L, González A, Pérez R (2001) Including a simplicity

criterion in the selection of the best rule in a genetic fuzzy

learning algorithm. Fuzzy Sets Syst 120:309–321

19. Corcoran AL, Sen S (1994) Using real-valued genetic algorithms

to evolve rule sets for classification. In: International conference

on evolutionary computation, pp 120–124

20. O. Cordón, Herrera F, Hoffmann F, Magdalena L (2001) Genetic

fuzzy systems: evolutionary tuning and learning of fuzzy

knowledge bases volume 19 of advances in fuzzy systems—

aplications and theory. World Scientific

21. Dam HH, Lokan C, Abbass HA (2007) Evolutionary online data

mining: an investigation in a dynamic environment. In: Evolu-

tionary computation in dynamic and uncertain environments

volume 51/2007 of studies in computational intelligence.

Springer Berlin/Heidelberg, pp 153–178

22. de Jong KA, Spears W (1991) Learning concept classification

rules using genetic algorithms. In: Proceedings of the interna-

tional joint conference on artificial intelligence. Sidney, pp 651–

656

23. de Jong KA, Spears WM, Gordon DF (1993) Using genetic

algorithms for concept learning. Genetic algorithms for machine

learning. In: John J, Grefenstette (eds) A special issue of machine

learning, vol 13, 2–3, pp 161–188

24. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 6(2):182–197

25. del Jesús MJ, Hoffmann F, Navascués LJ, Sánchez L (2004)

Induction of fuzzy-rule-based classifiers with evolutionary

boosting algorithms. IEEE Trans Fuzzy Syst 12(3):296–308

26. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

27. Dietterich TG (1998) Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Comput

10(7):1895–1924

28. Dixon PW, Corne DW, Oates MJ (2004) A ruleset reduction

algorithm for the XCSI learning classifier system. In: Lecture

Notes in Computer Science, vol 2661/2003. Springer, Heidelberg,

pp 20–29

230 Evol. Intel. (2008) 1:209–232

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://dx.doi.org/10.1109/TEVC.2007.903551
http://dx.doi.org/10.1109/TEVC.2007.903551


29. Drugowitsch J, Barry AM (2008) A formal framework and

extensions for function approximation in learning classifier sys-

tems. Mach Learn 70(1):45–88

30. Dunn OJ (1961) Multiple comparisons among means. J Am Stat

Assoc 56:52–64

31. Eiben AE, Smith JE (2003) Introduction to evolutionary com-

puting. Springer, Berlin

32. Fisher RA (1959) Statistical methods and scientific inference. 2nd

edn. Hafner Publishing Co, New York

33. Frank E, Witten IH (1998) Generating accurate rule sets without

global optimization. In: Proceedings of the 15th international

conference on machine learning. Morgan Kaufmann, San Fran-

cisco, pp 144–151

34. Freitas A (2002) Data mining and knowledge discovery with

evolutionary algorithms. Springer, Heidelberg

35. Freund Y, Schapire RE (1996) Experiments with a new boosting

algorithm. In: International conference on machine learning,

pp 148–156

36. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic

regression: a statistical view of boosting. Ann Stat 32(2):337–

374

37. Friedman M (1937) The use of ranks to avoid the assumption of

normality implicit in the analysis of variance. J Am Stat Assoc

32:675–701

38. Friedman M (1940) A comparison of alternative tests of signifi-

cance for the problem of m rankings. Ann Math Stat 11:86–92

39. Fu C, Davis L (2002) A modified classifier system compaction

algorithm. In: GECCO’02: Proceedings of the 2002 genetic and

evolutionary computation conference. Morgan Kaufmann Pub-

lishers Inc., San Francisco, pp 920–925

40. Fürnkranz J (1999) Separate-and-conquer rule learning. Artif

Intell Rev 13(1):3–54

41. Giordana A, Neri F (1995) Search-intensive concept induction.

Evol Comput 3(4):375–419

42. Giráldez R, Aguilar-Ruiz JS, Riquelme JC (2002) Discretization

oriented to decision rules generation. In: Knowledge-based

intelligent information engineering systems and allied technolo-

gies (KES’02). IOS Press, pp 275–279

43. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. 1st edn, Addison Wesley, Reading

44. Goldberg DE (2002) The design of innovation: lessons from and

for competent genetic algorithms. 1st edn. Kluwer, Dordrecht

45. González A, Pérez R (1998) Completeness and consistency

conditions for learning fuzzy rules. Fuzzy Sets Syst 96:37–51

46. González A, Pérez R (1999) SLAVE: a genetic learning system

based on an iterative approach. IEEE Trans Fuzzy Syst 7(2):176–

191

47. Greene DP, Smith SE (1993) Competition-based induction of

decision models from examples. Mach Learn 13:229–257

48. Herrera F (2008) Genetic fuzzy systems: taxonomy and current

research trends and prospects. Evol Intell 1(1):27–46. doi:

10.1007/s12065-007-0001-5

49. Hochberg Y (1988) A sharper Bonferroni procedure for multiple

tests of significance. Biometrika 75:800–802

50. Holland JH (1975) Adaptation in natural and artificial systems.

The University of Michigan Press, Ann Arbor

51. Holland JH (1976) Adaptation. In: Rosen R, Snell F (eds) Pro-

gress in theoretical biology, vol 4. Academic Press, New York, pp

263–293

52. Holland JH, Reitman JS (1978) Cognitive systems based on

adaptive algorithms. In: Waterman DA, Hayes-Roth F (eds)

Pattern-directed inference systems. Academic Press, San Diego,

pp 313–329

53. Holm S (1979) A simple sequentially rejective multiple test

procedure. Scand J Stat 6:65–70

54. Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accu-

racy tradeoff of fuzzy systems by multiobjective fuzzy genetics-

based machine learning. Int J Approx Reason 44(1):4–31

55. Ishibuchi H, Yamamoto T (2005) Rule weight specification in

fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst

13(4):428–435

56. Ishibuchi H, Yamamoto T, Murata T (2005) Hybridization of

fuzzy GBML approaches for pattern classification problems.

IEEE Trans Syst Man Cybern B Cybern 35(2):359–365

57. John GH, Langley P (1995) Estimating continuous distributions in

bayesian classifiers. In: 11th conference on uncertainty in artificial

intelligence. Morgan Kaufmann, San Mateo, pp 338–345

58. Llorà X, Garrell JM (2001) Knowledge-independent data mining

with fine-grained parallel evolutionary algorithms. In: GE-

CCO’01: Proceedings of the 2th annual conference on genetic

and evolutionary computation. Morgan Kaufmann Publishers,

San Mateo, pp 461?‘468

59. Llorà X, Reddy R, Matesic B, Bhargava R (2007) Towards better

than human capability in diagnosing prostate cancer using

infrared spectroscopic imaging. In GECCO’07: Proceedings of

the 9th annual conference on genetic and evolutionary compu-

tation. ACM, New York, pp 2098–2105

60. Llorà X, Sastry K (2006) Fast rule matching for learning classifier

systems via vector instructions. In: GECCO’06: Proceedings of

the 8th annual conference on Genetic and evolutionary compu-

tation. ACM, New York, pp 1513–1520

61. Llorà X, Sastry K, Yu T-L, Goldberg DE (2007) Do not match,

inherit: fitness surrogates for genetics-based machine learning

techniques. In: GECCO’07: Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation. ACM, New

York, pp 1798–1805

62. Llorà X, Wilson SW (2004) Mixed decision trees: minimizing

knowledge representation bias in lcs. In: GECCO’04: Proceed-

ings of the genetic and evolutionary computation conference.

Springer, LNCS, vol 3103, pp 797–809

63. Michalewicz Z (1999) Genetic algorithms + data structures =

evolution programs. 3rd edn. Springer, Heidelberg

64. Nojima Y, Ishibuchi H, Kuwajima I (2008) Parallel distributed

genetic fuzzy rule selection. Soft Comput (forthcomming)

65. Nurnberger A, Borgelt C, Klose A (1999) Improving naive Bayes

classifiers using neuro-fuzzy learning. In: Proceedings of the

1999 conference on neural information processing, vol 1, Perth,

pp 154–159

66. Núñez M, Fidalgo R, Morales R (2007) Learning in environments

with unknown dynamics: towards more robust concept learners. J

Mach Learn Res 8:2595–2628

66. Orriols-Puig A, Bernadó-Mansilla E (2004) Analysis of reduction

algorithms for XCS classifier system. In: Recent advances in

artificial intelligence research and development number 113 in 1.

IOS Press, pp 383–390

68. Orriols-Puig A, Bernadó-Mansilla E (2006) Bounding XCS

parameters for unbalanced datasets. In: GECCO’06: Proceedings

of the 2006 genetic and evolutionary computation conference.

ACM Press, New York, pp 1561–1568

69. Orriols-Puig A, Bernadó-Mansilla E (2008) Evolutionary rule-

based systems for imbalanced datasets. Soft Comput J. doi:

10.1007/s00500-008-0319-7

70. Orriols-Puig A, Bernadó-Mansilla E (2008) Revisiting UCS:

description, fitness sharing and comparison with XCS. In:

Advances at the Frontier of LCSs. Springer, Heidelberg

71. Otero J, Sánchez L (2006) Induction of descriptive fuzzy clas-

sifiers with the logitboost algorithm. Soft Comput 10(9):825–835

72. Platt J (1998) Fast training of support vector machines using

sequential minimal optimization. In: Advances in Kernel meth-

ods—support vector learning. MIT Press, Cambridge

Evol. Intel. (2008) 1:209–232 231

123

http://dx.doi.org/10.1007/s12065-007-0001-5
http://dx.doi.org/10.1007/s00500-008-0319-7


73. Quinlan JR (1995) C4.5: programs for machine learning. Morgan

Kaufmann Publishers, San Mateo

74. Rissanen J (1978) Modeling by shortest data description. Au-

tomatica 14:465–471

75. Rivest RL (1987) Learning decision lists. Mach Learn 2(3):229–

246

76. Sánchez L, Couso I (2007) Advocating the use of imprecisely

observed data in genetic fuzzy systems. IEEE Trans Fuzzy Syst

15(4):551–562

77. Sánchez L, Couso I, Casillas J (2007) Modeling vague data with

genetic fuzzy systems under a combination of crisp and imprecise

criteria. In: Proceedings of the 2007 IEEE symposium on com-

putational intelligence in multicriteria decision making, pp 346–

353

78. Schapire RE, Singer Y (1999) Improved boosting algorithms

using confidence-rated predictions. Mach Learn 37(3):297–336

79. Sheskin DJ (2000) Handbook of parametric and nonparametric

statistical procedures. Chapman & Hall, London

80. Smith SF (1980) A learning system based on genetic adaptive

algorithms. PhD thesis. University of Pittsburgh, USA

81. Stone C, Bull L (2003) For real! XCS with continuous-valued

inputs. Evol Comput 11(3):299–336

82. Tammee K, Bull L, Ouen P (2007) Ycsc: a modified clustering

technique based on lcs. J Digit Inf Manage 5(3):160–167

83. Theodoridis S, Koutroumbas K (2006) Pattern Recognition, 3rd

edn. Elsevier, Amsterdam

84. Vapnik V (1995) The nature of statistical learning theory.

Springer, New York

85. Venturini G (1993) SIA: a supervised inductive algorithm with

genetic search for learning attributes based concepts. In: Brazdil

PB (eds) Machine learning: ECML-93 - Proc. of the European

conference on machine learning. Springer, Berlin, pp 280–296

86. Wilcoxon F (1945) Individual comparisons by ranking methods.

Biometrics 1:80–83

87. Wilson SW (1995) Classifier fitness based on accuracy. Evol

Comput 3(2):149–175

88. Wilson SW (1998) Generalization in the XCS classifier system.

In: 3rd annual conf. on genetic programming. Morgan Kaufmann,

San Mateo, pp 665–674

87. Wilson SW (2000) Get real! XCS with continuous-valued inputs.

In: Learning classifier systems. From foundations to applications

LNAI, Springer, Berlin, pp 209–219

90. Wilson SW (2002) Classifiers that approximate functions. J Nat

Comput 1(2):211–234

91. Wilson SW (2002) Compact rulesets from XCSI. In: Advances in

learning classifier systems, 4th international workshop, Lecture

Notes in Artificial Intelligence, vol 2321. Springer, Heidelberg,

pp 197–210

92. Wilson SW (2008) Classifier conditions using gene expression

programming. Technical report, IlliGAL Report No. 2008001,

Urbana-Champaign IL 61801, USA

93. Witten IH, Frank E (2005) Data mining: practical machine

learning tools and techniques, 2nd edn. Morgan Kaufmann, San

Francisco

94. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H,

McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M,

Hand DJ, Steinberg D (2007) Top 10 algorithms in data mining.

Knowl Inf Syst 14(1):1–37

232 Evol. Intel. (2008) 1:209–232

123


	Genetic-based machine learning systems are competitive�for pattern recognition
	Abstract
	Introduction
	Genetic-based machine learning
	Description of the GBML systems used �in the comparison
	UCS
	Knowledge representation
	Class inference
	Learning process

	GAssist
	Knowledge representation
	Class inference
	Learning process

	HIDER
	Knowledge representation
	Learning process
	Class inference

	HMOF
	Knowledge representation
	Class inference
	Learning process

	SLAVE
	Knowledge representation
	Inference process
	Learning process

	Fuzzy LogitBoost
	Knowledge representation
	Class inference
	Learning process


	Experimental methodology
	Test bed
	Comparison metrics
	Configuration of GBML techniques
	Machine learning techniques included in the comparison
	Statistical analysis

	Comparison
	Comparison of the six analyzed GBML techniques
	Comparison with other machine learning techniques
	Further considerations

	Summary and conclusion
	Summary
	SWOT analysis

	Acknowledgments
	References


