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Genetic-Based New Fuzzy Reasoning Models with 
Application to Fuzzy Control 

Daihee Park, Abraham Kandel, Fellow, IEEE, and Gideon Langholz, Senior Member, IEEE 

Abstract-The successful application of fuzzy reasoning 
models to fuzzy control systems depends on a number of pa- 
rameters, such as fuzzy membership functions, that are usually 
decided upon subjectively. It is shown in this paper that the 
performance of fuzzy control systems may be improved if the 
fuzzy reasoning model is supplemented by a genetic-based 
learning mechanism. The genetic algorithm enables us to gen- 
erate an optimal set of parameters for the fuzzy reasoning model 
based either on their initial subjective selection or on a random 
selection. It is shown that if knowledge of the domain is avail- 
able, it is exploited by the genetic algorithm leading to an even 
better performance of the fuzzy controller. 

I. INTRODUCTION 
INCE the introduction of the basic methods of fuzzy S reasoning by Zadeh [16], and the success of their first 

application to fuzzy control [9], the Fuzzy Reasoning 
Method (FRM) and its application to fuzzy control have 
been widely studied. However, certain challenging prob- 
lems still remain open, including: 1) the completeness of 
the fuzzy rule base; 2) the subjective definitions of fuzzy 
subsets; and 3) the choice of fuzzy implication operators. 

Recently, Cao et al. [l] have proposed a New Fuzzy 
Reasoning Method (NFRM) which turned out to be su- 
perior to Zadeh’s FRM. Li [8] has applied the NFRM to 
the cart-pole system and compared it with the FRM, 
whereas Yu et al. [15] have applied it successfully to the 
control of an activated sludge plant. 

Nevertheless, in the NFRM, the fuzzy relation matrix, 
determined by the human operator according to his ex- 
perience, plays an important role, but may be difficult to 
extract optimally from the operator, particularly as the 
system increases in complexity. Moreover, whereas the 
selection of acceptable fuzzy membership functions is 
generally a subjective decision, a change in the member- 
ship functions may alter the performance of the fuzzy logic 
controller (FLC) significantly. Procyk and Mamdani [ 141 
introduced an iterative procedure for altering membership 
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functions to improve the performance of an FLC, but it 
is heuristic and still subjective. 

The foregoing discussion indicates that a systematic 
procedure for the design of self-tuning fuzzy controllers 
is needed. It is shown in this paper that the performance 
of fuzzy control systems can be improved by incorporat- 
ing a genetic-based learning mechanism into the NFRM. 
The genetic algorithm facilitates the derivation of the op- 
timal fuzzy relation matrix and fuzzy membership func- 
tions based either on their initial subjective selection or 
on a random selection. It is shown that if knowledge of 
the domain is available, it can be exploited by the genetic 
algorithm leading to an even better performance of the 
fuzzy controller. 

The paper is organized as follows. In Section 11, we 
briefly introduce a dc series motor which is used as an 
example, albeit a simple one, of a controlled process. We 
evaluate the performance of the various FLC’s discussed 
in this paper with respect to this process. In Section 111, 
we discuss the FRM and NFRM controllers. In Section 
IV, we propose a genetic-based new fuzzy reasoning 
model which circumvents some drawbacks of the NFRM. 
Finally, Section V concludes with a brief summary. 

11. DC SERIES MOTOR 
A dc (direct current) series motor is an example of a 

simple, controlled process that can serve as a vehicle for 
the evaluation of the performance of the various control- 
lers discussed in this paper. 

In a dc series motor, the field winding is connected in 
series with the armature. Since the magnetic flux in the 
motor is proportional to the field current, which varies, 
the relationship between the current and the speed at which 
the motor’s shaft rotates is nonlinear in general. 

The particular dc series motor that we use in this paper 
is that investigated by Kiszka et al. [6], [7]. Fig. 1 repro- 
duces the steady-state characteristic of the motor obtained 
by Kiszka and co-workers from actual measurements. 

111. FUZZY MODELS 
A. Fuzzy Reasoning Method 

A block diagram depicting the application of the Fuzzy 
Reasoning Method (FRM) [16] to process control is 
shown in Fig. 2. 
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Fig. 1 .  Actual characteristic of the dc series motor. (Source: [8 Fig. 2.21. 

Reproduced by permission of Elsevier Science Publishers.) 
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Fig. 2 .  Structure of a fuzzy rule-based control system [2]. 

Throughout this paper, we adopt the following fuzzy 
conditional statements to describe a certain situation: 

IF Xis  A(1), THEN Y is B(l), 

ALSO 

IF X is A ( 2 ) ,  THEN Y is B(2), 

ALSO 
(1) 

IF X is A (n) THEN Y is B(n) 

where X and Y are two variables, and A ( l ) ,  - , A (n)  
and B( l ) ,  , B(n)  are linguistic descriptions of X and 
Y, respectively, which can be quantified by the fuzzy sub- 
sets AT and BT for each i in the ranges of X and Y. The 
fuzzy conditional statements (1) can be formalized in the 
form of the fuzzy relation R ( X ,  Y) [16] 

R ( X ,  Y )  = ALSO (R1, RZ, * * , Ri, * * 7 R,) 
where ALSO represents a sentence connective which 
combines the Ri's into the fuzzy relation R ( X ,  Y), and Ri 
denotes the fuzzy relation between X and Y determined by 
the ith fuzzy conditional statement, namely, 

Ri = j pA*i(x) @ pB*i (y ) / (x ,  y > ,  i = 1929 * , n  

where @ is a fuzzy implication operator. 
Having established a fuzzy relation R ( X ,  Y) between 

two variables X and Y, the compositional rule of inference 

is then applied to infer the fuzzy subset B for Y,  given a 
fuzzy subset A for X: 

B = A 0 R ( X ,  Y )  

where o is a compositional operator. 
In order to calculate the deterministic value of a lin- 

guistic variable Y, which is defined as a variable whose 
value is a sentence in a natural or artificial language, the 
following defuzzification method is applied [6]-[7] : 

m 

Y = Yk/m 
k =  I 

where y is a particular value of the variable Y,  Yk is the 
support value in which the membership function &*k( y )  
reaches its maximum grade of membership, and m is the 
number of such support elements. 

In Table I ,  we list several fuzzy implication operators 
which will be used in this paper. It should be noted that 
the sentence connective ALSO in the linguistic descrip- 
tion is interpreted as intersection ( A Le., minimum). 

To see how the FRM can be applied in the context of 
a fuzzy rule-based control system (Fig. 2), let the con- 
trolled process be the dc series motor introduced in Sec- 
tion 11. Observing the relationship between the armature 
current I and the speed N of the motor's shaft (Fig. l ) ,  
the process operator may formulate the following linguis- 
tic descriptions to specify the static characteristic of the 
motor (source: [6, eq. (2.2)]. Reproduced by permission 
of Elsevier Science Publishers): 

IF I = null 

ALSO 

IF Z = zero 

ALSO 

THEN N = very large 

THEN N = large 

IF I = small THEN N = medium 

ALSO 

IF I = medium THEN N = small 

ALSO 

IF I = large 

ALSO 

THEN N = zero 

If I = very large THEN N = zero (2) 

where Z and N are the linguistic variables corresponding 
to the current and speed, respectively. Notice that the first 
linguistic statement in (2) is not apparent in Fig. 1 .  It 
reflects the fact that, in a dc series motor, if the load is 
disconnected from the motor shaft, high speeds would re- 
sult because of the small armature current that flows [ 2 ] .  

From the verbal descriptions (2), we see that the vari- 
able I has six linguistic values: NULL, ZERO, SMALL, 
MEDIUM, LARGE, and VERY LARGE, whereas the 
variable N has five: ZERO, SMALL, MEDIUM, 
LARGE, and VERY LARGE. The membership functions 
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TABLE I 
FUZZY IMPLICATION OPERATORS 

Notes: a and b are particular values of the variables A and B ,  respectively. @“(a) and p B ( b )  are the grades of mem- 
bership of a and b,  respectively. x denotes the Cartesian product and * denotes the arithmetic product. U and V are 
the universes of discourse of A and B,  respectively. 

1 

C 
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MotorCurrent 
Fig. 3 .  Membership functions of the fuzzy subsets for motor current I .  

of the fuzzy subsets for the motor current I and speed N 
are shown in Figs. 3 and 4, respectively. 

Fig. 5 shows the results obtained by Kiszka et al. [6]-  
[7] using the implication operator R2, R4, R5, R2,, or R2* 
(see Table I). These operators resulted in the smallest 
mean square error, e 2 ,  used to estimate the discrepancy 
between the motor’s actual (measured) characteristic (Fig. 
1) and that produced through the application of the FRM, 
where 

U 0 

e* = C ( n ~  - n , ~ ~ /  C n;i.  
i =  1 i =  1 

(3) 

”.” 
400 800 1200 1600 
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Fig. 4. Membership functions of the fuzzy subsets for motor speed N. 
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Fig. 5. Actual and FRM-produced motor characteristic (e2 = 2.504 * 
10-2). 

Here, nri is the actual speed value for some current value 
i, n,; is the corresponding FRM-produced value, and u is 
the number of discretization intervals of N .  

While the FRM offers model-free estimation of the con- 
trol system characteristics, and may prove more robust 
and easier to modify than a mathematical model of the 
process, the results obtained depend on the number of fac- 
tors, such as: 1) the completeness of the fuzzy rule base; 
2) the subjective definitions of the fuzzy subsets; 3) the 
choice of fuzzy implication operators; and 4) the defuz- 
zification procedure that calculates the deterministic value 

r----- ~ 

of a fuzzy set. _ _ _ _ - -  Y 

B. New Fuzzy Reasoning Method 
The New Fuzzy Reasoning Method (NFRM) [l] is 

shown schematically in Fig. 6 .  In this figure, x = [ x , ,  x2 ,  
, x,] is a vector consisting of the membership de- 

grees of the real-valued input x ,  y = [ y l ,  y2, - * - , yml is 
a vector consisting of the membership degrees of the out- 
put variable y ,  and R is an n X m fuzzy relation matrix 
whose elements wV (i = 1 ,  2, - * , n ; j  = 1, 2, * - * , 
m) indicate the relation degree between the ith linguistic 
descrintion for X and the ith linguistic description for Y. 

. . .  
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TABLE I1 
Fuzzy RELATION MATRIX R ,  

R 

Zero Small Medium Large Very Large 

0.0 0.0 0.0 0.0 1 .o 
0.0 0.0 0.0 1 .o 0.0 
0.0 0.0 1 .o 0.0 0.0 

Medium 0.0 1.0 0.0 0.0 0.0 
Large 1.0 0.0 0.0 0.0 0.0 
Very Large 1.0 0.0 0.0 0.0 0.0 

n-linguistic m-linguistic 
dcscriptioN descdpQN 

for X fox Y 
Fig. 6 .  NRFM schema. 

The y l ’ s  are determined by 

YC = ‘J * wJl 

whereas the real number y in the universe of Y is evaluated 
using the moment method [ 11 : 

(4) 

where the J;’s are the central values of the membership 
functions of the linguistic descriptions for Y. 

The NFRM algorithm can be described as follows. 
1) Determine the linguistic descriptions of the input 

variable X and the output variable Y,  and their member- 
ship functions. 

2) For a given real-valued input X = x ,  determine the 
membership degree corresponding to each linguistic de- 
scription of X by means of the fuzzy membership func- 
tions. That is, obtain x = [ x , ,  * , x,] where x ,  is the 
membership degree of the ith linguistic description of X. 

3) Determine the fuzzy relation matrix R between the 
linguistic descriptions of X and Y. These relations are 
based on the expert’s knowledge which is given in terms 
of linguistic descriptions. 

- , ym] in terms 
of the vector x and the fuzzy relation matrix R: 

Y = c (J ;  * YJ)/C YJ 

4) Calculate the vectory = [ y , ,  y2, - 

y = x o R .  

It should be noted that, throughout this paper, we use the 
sum-of-product operator for the compositional operator in 
the NFRM. 

5 )  Using the moment method (4), transform the vector 
y to the corresponding real number y in the universe of 
the variable Y. 

To illustrate the application of the NFRM to the dc se- 
ries motor, we consider two fuzzy relation matrices R1 
and R2 (shown in Tables I1 and 111, respectively) com- 
mensurate with the linguistic statements (2). The results 
are shown in Figs. 7 and 8, respectively. Judging by the 
mean-square error, we see that the choice of Table I1 is a 
bad one relative to that of Table 111. 

As indicated by the mean square error in these exam- 
ples, it seems that the NFRM controller outperforms the 
FRM controller. In addition, although not shown here, 
the NFRM controller requires less time than the FRM 
controller to execute the control tasks. Nevertheless, the 
results obtained through the application of the NFRM still 

TABLE 111 
Fuzzy RELATION MATRIX R2 

I\N Zero Small Medium Large Very Large 

Null 0.0 0.0 0.0 0.0 1 .o 
Zero 0.0 0.0 0.0 0.5 0.9 
Small 0.0 0.0 0.5 0.9 0 .3  
Medium 0.5 1 .o 0 .2  0.0 0.0 
Large 1.0 0.5 0.0 0.0 0.0 
Very Large 1.0 0.2 0.0 0.0 0.0 

1- r 

“t..,,...... 0 1 2  3 4 5 6 7 8 9 10 11 

Motorcurrent 
Fig. 7.  Actual and NFRM-produced motor characteristic corresponding to 

R, of Table 2 (e2 = 2.633 * lo-’). 
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Fig. 8 .  Actual and NRFM-produced motor characteristic corresponding to 
Rz of Table 111 (e2 = 8.556 * 

depend on the same factors as in the FRM case, except 
for the choice of fuzzy implication operators, and in ad- 
dition, they also depend on the choice of the fuzzy rela- 
tion matrix R. 
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IV. GENETIC-BASED NEW FUZZY REASONING MODELS 
As was noted previously, the performance of NFRM- 

based controllers mainly depends on the subjective selec- 
tion of the fuzzy relation matrix, and on the subjective 
definition of the fuzzy subsets. 

One way in which these dependencies can be circum- 
vented is by incorporating genetic learning mechanisms 
into the NFRM. In this section, first we introduce some 
rudimentary aspects of genetic algorithms, and then show 
how a genetic algorithm can be applied in the context of 
the NFRM. In particular, we show that the performance 
of fuzzy control systems can be improved by using a ge- 
netic algorithm to facilitate the derivation of the optimal 
fuzzy relation matrix and fuzzy membership functions. 

A. Genetic Algorithms 
Genetic algorithms (GA’s) are powerful search and op- 

timization algorithms, based on semblance of natural ge- 
netics, which can be characterized by the following fea- 
tures [ 111. 

1) A scheme for encoding solutions (referred to as 
chromosomes) to the problem. 

2) An evaluation function that rates each chromosome 
relative to the others in the current set of chromosomes 
(referred to as population). 

3) An initialization procedure for the population of 
chromosomes. 

4) A set of operators which are used to manipulate the 
genetic composition of the population. 

5) A set of parameters that provide the initial settings 
for the algorithm and operators, as well as the algorithm’s 
termination condition. 

The terminology of genetic algorithms originated from 
natural genetics. A candidate solution is called a chro- 
mosome and consists of a linear list of genes, where each 
gene can assume a finite number of values (alleles). A 
population consists of a finite number of chromosomes. 
The genetic algorithm (GA) evaluates a population and 
generates a new one iteratively, with each successive pop- 
ulation referred to as a generation. Given an initial pop- 
ulation G(O), the GA generates a new generation 
G(t + 1) based on the previous generation G(t)  as fol- 
lows: 

1) t = 0; 
2) Generate an initial population G(t);  
3) Evaluate G ( t ) ;  
4) If some termination conditions are met, go to Step 

5) Generate new generation G ( t  + 1) from G ( t ) ;  
6) Evaluate G(t + 1); 
7) Return to Step 4; 

The evaluation function that we use, by which the GA 
rates each chromosome relative to the others in the current 
generation, is given by 

8; 

9) stop. 

(5 )  

where e2 is the mean-square error defined in (3). This 
evaluation function assigns the maximal ranking to that 
chromosome whose selection yields the minimal mean 
square error for the NFRM controller. It should be noted 
that through this choice of evaluation function, namely, 
its dependency on e*, the GA is incorporated into the 
NFRM so that the FLC performance can be maximized. 

The GA uses three basic operators to manipulate the 
genetic composition of a population: reproduction, cross- 
over, and mutation. Reproduction is a process by which 
the most highly rated chromosomes (in accordance with 
the evaluation function) in the current generation are re- 
produced (copied) in the new generation. The copies are 
entered into a mating pool for further genetic operations. 

Crossover provides a mechanism for chromosomes to 
mix and match attributes through random processes. First, 
pairs of reproduced chromosomes (referred to as parents) 
from the mating pool are selected at random. Second, an 
arbitrary gene position (called the crossover site) is se- 
lected at random. Third, the genes following the cross- 
over site are swapped between the two chromosomes in 
each pair, resulting in two new offsprings. For example, 
if the parents are represented by the vectors [ a l ,  b , ,  cI ,  
4 ,  ell and [a2, b2, c2, 4 ,  e21 and [a2, b2, c2, 4, ell. 

The third step of the crossover operation may be ap- 
plied to all pairs of parents, or  it may be applied, as we 
do here, only to some selected pairs. In the latter case, 
the selection is determined by the crossover probability. 
For example, if the crossover probability is 0.9, then 90% 
of the pairs are crossed, whereas the remaining 10% are 
added to the next generation without crossover. 

Mutation is the occasional alteration of some gene val- 
ues in a chromosome. Every gene in each chromosome is 
a candidate for mutation, and its selection is determined 
by the mutation probability. The mutation probability is 
kept usually at a low value to avoid losing a large number 
of good chromosomes. The current value of the selected 
gene is then replaced either by a random number or by a 
value that is either 110% or 90% of its current value by 
a 50% chance within the given range of values. In sub- 
sequent sections, the former is used in conjunction with 
the derivation of the fuzzy membership functions whereas 
the latter is used to derive the fuzzy relation matrix. 

The parameter settings for the GA are summarized in 
Table IV. In most cases we base the initialization proce- 
dure of the GA on the initial selection of the fuzzy relation 
matrix and/or the fuzzy membership functions. In prac- 
tice, these are usually subjective selections based on the 
human expert’s interpretation of the linguistic variables. 
However, to show that such initial knowledge of the do- 
main leads to an even better performance of the fuzzy 
controller, we compare in Section IV-B the results ob- 
tained by the GA when the initialization is based on prior 
knowledge with those obtained from random initializa- 
tion. 

The termination condition for the GA occurs when the 
maximum generation number (100 in our case; see Table 
IV) is reached. 
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TABLE IV 
PARAMETER SETTINGS FOR THE GA 

TABLE V 
GA-GENERATED FUZZY RELATION MATRIX BASED ON R2 INITIALIZATION 

Population Size 50 
Generation Number 100 
Crossover Probability 0.9 
Mutation Probability 0.1 

The remainder of this section summarizes our results 
and is structured as follows: In Section IV-B, we use the 
GA to generate the optimal fuzzy relation matrix based on 
prior knowledge of it (for our purpose, we use R2 of Table 
I11 for the initial selection), and also based on a random 
initial selection. The fuzzy membership functions used in 
Section IV-B are those shown in Figs. 3 and 4. In Section 
IV-C, we use the GA to generate the optimal fuzzy mem- 
bership functions for the dc motor current I ,  based on an 
initial selection provided by the human expert (Fig. 3 rep- 
resents the prior knowledge in this case). The fuzzy mem- 
bership functions for the dc motor speed N and the fuzzy 
relation matrix used in Section IV-C are those shown in 
Fig. 4 and Table 111, respectively. Finally, in Section IV- 
D, we generate the optimal fuzzy relation matrix and 
fuzzy membership functions for the dc motor current by 
initializing the GA with prior knowledge provided in Ta- 
ble I11 and Fig. 3, respectively. The fuzzy membership 
functions for the dc motor speed used in Section IV-D are 
those shown in Fig. 4. 

B. Optimal Fuzzy Relation Matrix 

Since the fuzzy relation matrix used in conjunction with 
the dc motor is a 6 X 5 matrix, each chromosome is rep- 
resented by an array of length 30. Each gene corresponds 
to a fuzzy relation degree whose value is any real number 
between 0 and 1. 

The GA generates the optimal fuzzy relation matrix [in 
accordance with (5)] based on R2, the assumed prior 
knowledge provided by the human expert. The fuzzy 
membership functions used by the NFRM controller are 
those shown in Figs. 3 and 4. 

The population of 50 chromosomes (see Table IV) is 
initialized by associating one of the chromosomes with 
the fuzzy relation matrix R2 (Table 111), whereas the re- 
maining chromosome are randomly initialized from the 
range [0, 11. This guarantees that the performance of the 
GA-assisted NFRM controller will be at least as good as 
that of the original NFRM controller (Section 111-B). As 
was mentioned before, mutation in this case is based on 
changing a selected gene's value to either 110% or 90% 
of its current value by a 50% chance within the given 
range [0, 13. 

The resulting GA-generated fuzzy relation matrix and 
dc motor characteristic are shown in Table V and Fig. 9, 
respectively. As indicated by the mean square error, the 
performance of the NFRM controller with the GA-gen- 
erated fuzzy relation matrix has improved significantly 
relative to the performance of the NFRM controller with 

I\N Zero Small Medium Large Very Large 

Null 0.000 0.000 0.000 0.000 1 .ooo 
Zero 0.000 0.000 0.000 0.234 0.980 
Small 0.OOO O.OO0 0.868 0.422 0.139 
Medium 0.190 0.430 0.752 0.000 0.OOO 
Large 0.562 0.886 0.000 0.000 0.OOO 
Very Large 1.OOO 0.287 0.000 0.000 0.OOO 

"t 
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Fig. 9. Actual and GA-produced motor characteristic based on R2 (eZ = 
1.727 * 

R2 as the fuzzy relation matrix (compare Fig. 9 with 
Fig. 8). 

Rather than initialize the chromosomes as was men- 
tioned above, consider now initializing the entire popu- 
lation randomly from the range [0, 11. The resulting GA- 
generated fuzzy relation matrix and dc motor character- 
istic are shown in Table VI and Fig. 10, respectively. As 
can be seen, the mean square error in this case is an order- 
of-magnitude greater than that in Fig. 9 and is only 
slightly better than the mean-square error shown in 
Fig. 8. 

The difference in the results due to the two initialization 
procedures (one which is based on a priori knowledge, 
albeit subjective, and the other which is randomly based) 
seems to support the notion that prior knowledge en- 
hances the performance of a GA-assisted NFRM control- 
ler. In addition, the convergence rate of the GA initialized 
with prior knowledge is markedly faster than that of the 
randomly initialized GA, as shown in Fig. 11. 

C.  Optimal Fuzzy Membership Functions 
The design of FLC's has been, for the most part, a trial- 

and-error process. In particular, Park et a l . ,  [12]-[13] 
have shown how the often subjective selection of fuzzy 
membership functions affects the performance of the FLC. 
However, they did not provide a systematic way to adjust 
the fuzzy membership functions. On the other hand, Pro- 
cyk and Mamdani [14] introduced an iterative procedure 
for altering membership functions to improve the per- 
formance of an FLC, but it is heuristic and subjective. 

The usefulness of GA's for learning fuzzy membership 
functions, so that FLC design can become more efficient, 
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TABLE VI 
GA-GENERATED FUZZY RELATION MATRIX BASED ON RANDOM 

INITIALIZATION 

3 is obtained from (6) by setting asmall = 2, Psmall = 4, 
and ysmall = 6, yielding 

f(x; 2, 4, 6) = 0, 

f ( x ;  2, 4, 6) = 0.5 * (x - 2), 

i f x  5 2, 

if 2 < x s 4 

0.014 0.015 0.027 0.089 1.000 f ( x ;  2, 4, 6) = -0.5 * (x - 6) if 4 < x s 6 

I\N Zero Small Medium Large Very Large 

Null 0.021 0.028 0.070 0.213 1,000 
Zero 
Small 0.104 0.130 0.066 1.000 0.025 
Medium 0.681 0.485 0.013 0.132 0.366 
Large 1.000 0.113 0.098 0.126 0.027 i f x  > 6 f(x; 2, 4, 6) = 0, 
Very Large 1.ooO 0.161 0.050 0.034 0.034 Now, for each fuzzy subset i, we set up the following 

equations : 
ai := (ai + Si )  - vi 
pj := ( P i  + Si) 
yj := ( T i  + S i )  + vi 

where Si and v i  are adjustment coefficients. The coefficient 
ai makes the ith membership function shift to the right or 
to the left without changing its shape, whereas the coef- 
ficient vi makes the ith membership function for ith fuzzy 
subset shrink or expand. 

In this section, we use the GA to find the optimal values 
1 2 3 4 5 6 7 8 9 10 11 of Si and vi for the fuzzy membership functions of the dc 

motor current Z according to the evaluation function (5). 

400 

0 l:: Mototcllm3lt 

Fig. 10. Actual and GA-produced motor characteristic based on random 
initialization (e2 = 1.370 * 
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Fig. 1 1 .  Convergence rates of GA-knowledge and GA-random. 

was already mentioned in the literature [5], [ 101. In this 
section, we show the mechanics of generating optimal 
fuzzy membership functions in the context of the NFRM 
controller. 

The membership functions for each fuzzy subset can be 
derived from a base function whose parameters may be 
adjusted to fit any specific membership function. This base 
function is defined as 

f(x; ai, Pi, Ti)  = 0, i f x  I ai 

f(x; ai, Pi, yi> = (x - ai)/(& - ai), if ai < x 5 Pi  

f(x; ai, Pi ,  Ti> = (x - yi)/(Pi - Ti) ,  if Pi < x 5 Y; 

f(x; ai, Pi ,  Y;) = 0, if x > yi (6) 
where ai, Pi, and yi are parameters. For example, the 
membership function for the fuzzy subset “Small” in Fig. 

For the first and last fuzzy membership functions, we set 
PnuII (x) = 1 if x 5 Pnuu and Pverylarge(X) = 1 if x 2 
Pverylarge. The coefficients ai and v i  are any real numbers 
taken from the range [-1.5, 1.51. Since there are two 
coefficients and six fuzzy membership functions for the 
motor current, the length of each chromosome is 12. 

The GA generates the optimal fuzzy membership func- 
tions [in accordance with (5)] for the dc motor current 
based on the membership functions in Fig. 3, the assumed 
prior knowledge provided by the human expert. The fuzzy 
membership functions for the motor speed and the fuzzy 
relation matrix used by the NFRM controller are those 
given in Fig. 4 and Table 111, respectively. 

The population of 50 chromosomes (see Table IV) is 
initialized by setting all the genes of one of the chromo- 
somes to 0 (corresponding to the fuzzy membership func- 
tions defined in Fig. 3), whereas the remaining chromo- 
somes are initialized randomly from the range [ - 1.5, 
1.51. This guarantees that the performance of the GA-as- 
sisted NFRM controller will be at least as good as that of 
the original NFRM controller (Section III-B). As was 
mentioned in Section IV-A, mutation in this case is based 
on changing the selected gene’s value randomly within 
the range [-1.5, 1.51. 

The resulting GA-generated fuzzy membership func- 
tions for the motor current and the dc motor characteristic 
are shown in Figs. 12 and 13, respectively. We see that 
the mean square error in this case is slightly worse than 
that of Fig. 9, but it is an order-of-magnitude smaller than 
the mean square error shown in Fig. 8. 

D. Simultaneous Derivation of Optimal Fuuy Relation 
Matrix and Fuzzy Membership Functions 

In this section, we use the GA to find simultaneously 
the optimal fuzzy relation matrix and the fuzzy member- 
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TABLE VI1 
NEW UZZY RELATION MATRIX 1 .o 

I\N Zero Small Medium Large Very Large 

Null 0.000 0.000 0.000 o.Oo0 0.891 
Zero 0.000 O.Oo0 0.000 0.113 0.900 8 0.6 

E 
's Small 0.000 0.000 0.868 0.650 0.241 

Medium 0.495 0.891 0.192 0.000 0.000 
Large 0.722 0.593 O.Oo0 0.000 0.000 

0.2 Very Large 0.882 0.266 0.000 0.000 0.000 

1 o.8 

j 0.4 

0.0 
0 2 4 6 8 10 

Mom Current 

Fig. 12. GA-generated fuzzy membership functions for motor current I .  

+ actual 
* GA-poduced 

0- ' ' I I I I I  I I I 

1 2  3 4 5 6 7 8 9 10 11 

MotorCurrent 
Fig. 13. Actual and GA-produced motor characteristic (e2 = 2.009 * 

d 

ship functions for the dc motor current I .  These are gen- 
erated based on R2 (Table 111) and Fig. 3, which represent 
the assumed prior knowledge provided by the human ex- 
pert. The fuzzy membership functions for the motor speed 
used by the NFRM controller are those given i? Fig. 4. 

Each chromosome consists of an array of length 42. 
The first 30 genes are allocated to the fuzzy relation ma- 
trix, the genes values being any real number between 0 
and 1 (see Section IV-B). The next 12 genes are allocated 
to the fuzzy membership functions of the motor current, 
the genes' values being any number from the range [ - 1.5, 
1.51 (see Section IV-C). Since each chromosome consists 
of two different subchromosomes (one for the fuzzy re- 
lation matrix and the other for the fuzzy membership 
functions), we treat the two subchromosomes as inde- 
pendent entities as far as crossover and mutation are con- 
cerned, but treat both as a single entity as far as the re- 
production operator is concerned. 

The population of 50 chromosomes (see Table IV) is 
initialized so that one of the chromosomes inherits the 
prior knowledge given in Table I11 and Fig. 3, whereas 
the remaining chromosomes are initialized at random. 

The resulting GA-generated optimal fuzzy relation ma- 
trix and fuzzy membership functions are shown in Table 
VI1 and Fig. 14, respectively, and the dc motor charac- 
teristic is shown in Fig. 15. Judging by the mean square 
error, the result in this case is the best thus far. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 2 4 6 8 10 

Motor Current 

Fig. 14. New fuzzy membership functions for motor current I 

0' I I I I I  I , ,  

1 2  3 4 5 6 7 8 9 10 11 

Motor Current 

Fig. 15. Actual and GA-produced characteristic (eZ = 5.68 * 

V. CONCLUSION 
In this paper, we studied several fuzzy controllers and 

analyzed their performance using a dc series motor as the 
controlled process. We have shown that the performance 
of NFRM controllers can be enhanced significantly by in- 
cluding a genetic algorithm in the loop whose function is 
to search for optimal fuzzy relation matrix and/or fuzzy 
membership functions. It was shown that better results are 
obtained if the search procedure is initialized from prior 
knowledge provided by an expert. Consequently, by in- 
corporating genetic algorithm leaming mechanism into the 
NFRM we can alleviate some of the drawbacks associated 
with the NFRM, in particular, its dependence on the sub- 
jective fuzzy relation matrix and the subjective definition 
of the fuzzy subsets. 

Our results indicate that the best performance of the 
NFRM controller is obtained when the space of both the 
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fuzzy membership functions and the fuzzy relation matrix 
is searched by the genetic algorithm. As far as the fuzzy 
membership functions are concerned, other researchers 
have already established that their choice can affect sig- 
nificantly the performance of fuzzy controllers. Our re- 
sults seem to lend additional support to this observation. 
In addition, in the context of NFRM controllers, we see 

[I51 C. Yu, Z. Cao, and A. Kandel, “Application of fuzzy reasoning to 
the control of an activated sludge plant,” Fuzzy Sets and Syst . ,  vol. 
38, pp. 1-14, 1990. 

[16] L. A. Zedeh, “Outline of a new approach to the analysis of complex 
systems and decision processes,” IEEE Trans. Syst . ,  Man, Cybern., 

SMC3, pp. 28-443 1973. 

that the fuzzy relation matrix also plays an important role 
in terms of the performance of the fuzzy controller. 

Further investigation is required to study the space-time 
complexity of the controller algorithm. The particular 
pertinent issues are the time required for the algorithm to 
run, and scaling-up the algorithm to problems of greater 
complexity. 
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