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Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal 
proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created 
a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to 
multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and 
sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. 
Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has 
been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of 
sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further re-
search in this field. 
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For a long time, sex is always one of the important proposi-
tions in life sciences, because most vertebrates are gono-
choristic and show significant sexual differences in mor-
phology and physiology, which makes life more complex 
and wonderful and promotes some evolutionary biologists 
to believe “sex is the queen of problems in evolutionary 
biology” [1]. Since the phenomenon of hermaphrodite and 
sex reversal in rice field eel (Monopterus albus) was firstly 
reported by famous fish biologist Liu Jian-Kang in 1944 [2], 
which opened a fresh field for research into fish sex mecha-
nism [3], a large number of significant achievements had 
been obtained in basic studies on fish sex and the related 

fields, and applied to the aquaculture practice [4]. Fishes are 
the most species-rich group of vertebrates with nearly half 
of all extant vertebrate species, which serve as an evolu-
tionary link between invertebrates and higher vertebrates [5], 
so that the studies on genetic basis and mechanisms for 
sexual dimorphism and sex determination have been exten-
sively noticed, and some significant progress, especially in 
identification of sex chromosomes and sex determination 
genes, has been achieved [68].  

According to the UN Food and Agriculture Organization 
(FAO) (2014), world fish food supply has outpaced global 
population growth during the last five decades, and the aq-
uaculture fishes have become an important animal protein 
source for most of the world’s population [9]. Since the 
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entry of the 21st century, a global consensus on effect and 
contribution of aquaculture to world fish supplies has 
emerged [10,11], and significant breakthroughs have re-
sulted from the basic and applied studies on sex control 
breeding biotechnologies for sexual dimorphism [12,13]. 
Here, we will review recent breakthrough advancements in 
the studies on genetic basis and regulation mechanism of 
fish sexual dimorphism and sex determination, introduce 
several successful cases of biotechnological manipulations 
for sex control breeding, and thereby look forward to the 
promising prospects for future research in the field.  

1  Diversity of fish reproduction strategies and 
their application in genetic breeding 

1.1  Diversity of reproduction strategies in fish 

Fish is the most abundant and successful group of verte-
brates in the world, with about 32,700 documented species 
(www.fishbase.org). As primitive vertebrates, their repro-
duction strategies have evolved high particularities and 
abundant diversities to adapt to water environment change 
in the habitat [14]. According to the difference of reproduc-
tion strategy, fish can be grouped into unisexuals, her-
maphrodites and gonochorists [15]. The majority of fishes 
are gonochorism, and hermaphroditic phenomena are also 
common, which have been reported in some fishes includ-
ing rice field eel, black sea bream (Acanlhopagrus schegeli) 
and grouper (Epinephelus coioides) [2,1618]. Even in 
gonochoristic rainbow trout (Oncorhynchus mykiss), it was 
found that the sex steroid level change could induce her-
maphrodites, and the hermaphrodites produced YY males 
by self-fertilization of the generated sperm and egg [19].  

1.2  Discovery of multiple modes of unisexual gynogen-
esis and sexual reproduction and the genetic breeding 
application in polyploid gibel carp  

Since the first unisexual fish, the Amazon molly Poecilia 
formosa, was found by American ichthyologist Hubbs et al. 
in 1932, unisexual all-female populations had been reported 
in about 30 fish species, and these unisexual fishes had been 
demonstrated to reproduce by gynogenesis, hybridogenesis 
or parthenogenesis [2023]. Polyploid gibel carp, Carassius 
auratus gibelio, because of the existence of a minor but 
significant portion of males in natural populations and the 
discovery of multiple modes of unisexual gynogenesis and 
sexual reproduction in some gynogenetic clones [23], has 
been noted extensively [12,24]. Through a series of studies, 
various gynogenetic clones and the clone-specific genetic 
markers have been identified, and used to perform studies 
on the evolutionary and ecological genetics [2533]. 
Moreover, some important functional genes have been 
screened, and utilized to study the developmental genetics 

and regulative mechanism on reproduction [3440]. In ad-
dition, a novel nucleo-cytoplasmic hybrid clone A+ has 
been created by sexual mating between clone D female and 
clone A male, and rapidly multiplied up to several hundred 
millions by subsequent more than five generations of uni-
sexual gynogenesis [41]. Owing to the significant growth 
superiority and better resistance to myxosporean pathogen 
parasitized in the liver [41,42], the novel clone variety, as 
nominated “CAS III”, has been cultured throughout China.  

2  Sexual dimorphism and its genetic basis in 
fish 

2.1  Diversity of sexual dimorphism in fish 

Sexual dimorphism is commonly defined as the difference 
between male and female individuals. Sexual dimorphism in 
fish not only includes size dimorphism, shape dimorphism 
and color dimorphism, but also comprises sexual differ-
ences in physiology and behavior [43,44]. Long-term field 
surveys and aquaculture practices have observed significant 
size dimorphism between male and female individuals in 
more than 20 fish species. As listed in Table 1, in more than 
10 fish species including common carp (Cyprinus carpio), 
rainbow trout (Oncorhynchus mykiss), Japanese flounder 
(Paralichthys olivaceus), and half-smooth tongue sole 
(Cynoglossus semilaevis), the females mature later than the 
males so that the nutrient substance in females is able to 
transform into body composition and body weight during 
maturation and reach a larger size than males. On the con-
trary, males mature later and grow faster in more than 10 
fish species, such as tilapia (Oreochromis niloticus), yellow 
catfish (Pelteobagrus fulvidraco), channel catfish (Ictalurus 
punctatus) and rusty parrotfish (Scarus ferrugineus), in 
which males are bigger than females. Especially in some 
sex-changing fishes from females to males, the males grow 
much faster than females because large males have been 
believed to monopolize the right to mate with many females 
[70].Additionally, sexual dimorphism was also observed in 
body shape and color in some ornamental fishes. For exam-
ple, male swordtail fish (Xiphophorus helleri) uniquely has 
a needle-like fin extended from caudal fin margin, which 
owns more ornamental value than the female [71]. The skin 
of male bitterling fish (Rhodeus ocellatus) becomes colorful 
during its breeding season, while the female bitterling fish is 
just silver white in the body [72]. Recent studies have indi-
cated that the physiological responses of the nervous system 
and sense organs also have significant difference between 
males and females in some fish species, and lead to sexual 
dimorphism in behavior [73]. 

2.2  Genetic basis of sexual dimorphism in fish 

Sexual dimorphism commonly exists throughout the animal 
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Table 1  The known fish species with sexual dimorphism in size   

Size dimorphism Species Sex chromosome system References 

Bigger in males 

Yellow catfish (Pelteobagrus fulvidraco) XX-XY [45] 

Nile tilapia (Oreochromis niloticus) XX-XY [46] 

Blue tilapia (Oreochromis aureus) ZW-ZZ [47] 

Ussuri catfish (Pseudobagrus ussuriensis) XX-XY [48] 

Channel catfish (Ictalurus punctatus) XX-XY [49] 

Snakehead (Channa argus Cantor) XX-XY [50] 

Bluegill sunfish (Lepomis macrochirus) XX-XY [51] 

Blackfin sandperch (Parapercis snyderi) ? [52] 

Bluefin tuna (Thunnus maccoyii) ? [53] 

Dark sleeper (Odontobutis obscura) ? [54] 

Rusty parrotfish (Scarus ferrugineus) ? [55] 

Bigger in females 

Common carp (Cyprinus carpio) XX-XY [56] 

Bastard halibut (Paralichthys olivaceus) XX-XY [57] 

Southern Flounder (Paralichthys lethostigma) XX-XY [58] 

Rainbow trout (Oncorhynchus mykiss) XX-XY [59] 

Atlantic salmon (Salmo salar) XX-XY [60] 

Sea bass (Dicentrarchus labrax) XX-XY [61] 

Yellow perch (Perca flavescens) XX-XY [62] 

Atlantic halibut (Hippoglossus hippoglossus) XX-XY [63] 

Chinook salmon (Oncorhynchus tshawytscha) XX-XY [64] 

Herring smelt (Oncorhynchus kisutch) XX-XY [65] 

Half-smooth tongue sole (Cynoglossus semilaevis) ZW-ZZ [66] 

European eels (Anguilla Anguilla) ? [67] 

Spotted scat (Scatophagus argus) ? [68] 

Silver barb (Puntius gonionotus) ? [69] 

 
kingdom, but our knowledge for its mechanism is very lim-
ited. A large number of studies have shown that sexual di-
morphism in vertebrates mainly results from genetic selec-
tion during the evolutionary process [74], and is the conse-
quence of differential expression of sex-biased genes in 
development and growth of embryo, larval and adult [75,76]. 
Theoretically, sex chromosomes and the genes located on 
them may play critical roles in sexual dimorphism [77,78]. 
In some cases, however, sex chromosomes are not the lead-
er of sexual dimorphism, because quantitative genetic stud-
ies have observed discordance between sex chromosomes 
and phenotypic data [79]. Genetic architecture of threespine 
stickleback fish (Gasterosteus aculeatus) is very similar 
between males and females, but many traits show signifi-
cant sexual difference, suggesting that genetic constraints 
for evolution of sex dimorphism might not be so severe and 
absolute as generally thought [80]. 

A great deal of data accumulation of the completely se-
quenced genomes, transcriptomes, and proteomics from 
model and farmed fishes provides a previous basis for us to 
explore the genetic and molecular mechanism of sex di-
morphism [12]. As we have known, size dimorphism in 
vertebrates mainly results from the different growth rate 
between male and female individuals, and the growth rate is 
regulated by growth hormone (GH)/insulin-like growth 
factor (IGF) and other related factors secreted by the hypo-
thalamic-pituitary-gonad axis and other tissues [81]. So far,  

the discovered factors in fish growth hormone axis include 
GH/growth hormone receptor (GHR)/IGFs [82] and corti-
cotropinreleasing hormone (CRH)/pro-opiomelanocortin 
(POMC)/melanocortin receptors (MCRs) [83]. In swordtails 
of the genus Xiphophorus, the expression level of mc4r 
gene was found to accordingly increase in XX females or 
males, small XY males, intermediate and large XY males. 
In addition, its B allele lacking two cysteine residues is only 
expressed in XY males, and its expression level is closely 
related to male body size [84]. In Nile tilapia, comparative 
transcriptome analysis in ovary and testis also revealed dif-
ferential expression genes during sex differentiation [85]. 
Recently, Jing et al. [86] used solexa high-throughput se-
quencing technology to compare gene and microRNA ex-
pression patterns in gonads of XX females, XY males and 
YY super-males, and attempted to reveal the molecular ba-
sis of sexual dimorphism in body size through analyzing 
expression difference of growth-related genes between adult 
males and females in the hypothalamus and pituitary (un-
published data).  

In addition, it has been found in some fishes that sexual 
dimorphism in color, body shape, physiology and behavior 
is also controlled by some key genes. For example, in Lake 
Malawi cichlid fishes, the color dimorphism between males 
and females is probably controlled by the expressional and 
functional difference of pax7 gene [87], and the neo-sex 
chromosome in stickleback has significant correlation with 
the physiology and reproductive behavior [88]. 
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3  Genetic basis of sex determination in fish  

3.1  Diversity of sex determination systems in fish 

In teleost fish, sex determination is a plastic process that is 
usually governed by the interaction between genetic (genet-
ic sex determination) and environmental (environmental sex 
determination) factors [89,90]. A variety of environmental 
factors, such as hormones, temperature, pH, density, light 
intensity and hypoxia, may affect sex determination path-
way. Much evidence indicates that in many fish species 
with genetic sex determination, environmental factors such 
as temperature may overwhelm the effect of genetic factors 
at the edge of temperature tolerance threshold [91,92].  

For most gonochoristic fish species, the mechanism of 
genetic sex determination is usually determined by either a 
critical gene or polygene on sex chromosomes or autosomes 
[8]. In single gene system, sex is determined by a critical 
gene on sex chromosome [6]. XX/XY male heterogametic 
system and ZZ/ZW female heterogametic system are two 
main sex determination systems in fish species, and several 
variants including XX/XO, XX/XY1Y2, X1X2X1X2/ 
X1X2Y, X1X2X1X2/X1X2X1, ZZ/ZO and ZZ/ZW1W2 
also exist in a few of fish species, whereas no heteromor-
phic sex chromosomes have been found in most of fish spe-
cies [93]. Even in fish with heteromorphic sex chromo-
somes, it is difficult to identify sex chromosomes by cyto-
genetics and fluorescence in situ hybridization techniques, 
since the differentiation and divergent degree of sex chro-
mosome is still very low [4,94]. 

Many current data from most studies have shown that sex 
of some fish species is determined by either several loci 
dispersed throughout the genome, or multiple allele combi-
nations located on a preferential pair of chromosomes, 
which has been designated as polygenic sex determination 
(PSD) system [95,96]. In zebrafish [97,98], Lake Malawi 
cichlid fish [99] and European sea bass [100] that do not 
have typical XX/XY or ZZ/ZW sex determination system, 
sex is determined by multiple genes on several chromo-
somes. At whiles, sex determination locus is variable in 
different strains or subspecies of the same fish species, in 
which there are more than two types of sex determination 
systems. These situations may be caused by several reasons 
including recombination or fusions between the extant sex 
chromosomes and autosomes [101103]. 

3.2  Plasticity of sex differentiation in fish 

In most gonochoristic fish, such as yellow catfish, meda-
ka(Oryzias latipes) and common carp, the gonad develop-
ment process initiates from undifferentiated state, and then 
differentiates into testis or ovary. However, in a small 
number of gonochoristic fish including zebrafish and Euro-
pean eel, the undifferentiated gonad first develops into ova-
ry-like structure. At juvenile stage, the ovarian structure is 

regressed in near half of the population and eventually de-
velops into a normal testis [104,105]. Sex differentiation is 
dependent on sex determination, but the whole process of 
embryonic development, sex determination and differentia-
tion is exposed to the outside environment with many varia-
ble factors, so that fish must utilize diverse types of sex de-
termination mechanisms and plastic patterns of sex differ-
entiation to gradually adapt to the habitat environment dur-
ing the evolution [6,92,106]. 

In most of fish species, no matter whether there is a sex 
determining gene or not, the change of sex steroid concen-
tration or temperature is able to induce sex reversal, and 
thereby leads to the discordance between genetic and physi-
ological phenotypes [44,92,93]. Temperature is the main 
factor affecting sex differentiation, because a lot of observa-
tions have shown in most of temperature-sensitive fishes 
that the male proportion increases along with elevation of 
hatching temperature, and low temperature is able to induce 
ovarian development [107109]. Estrogen and androgen are 
essential for female and male sexual differentiation and 
gonadal development. At early stage of fish sex differentia-
tion, when endogenous steroids are not produced or not 
enough in vivo, optimal dose of exogenous steroids can 
change the direction of gonadal sex differentiation [6,92]. In 
protogynous hermaphrodite groupers, 17-methyltestos- 
terone could induce sex reversal from females to males 
[110], which lead to up-regulation of dmrt1 expression 
[111,112], and down-regulation of cyp19a1a and sox3 ex-
pression [113,114]. On the other hand, estrogen treatment 
could promote male-to-female sex reversal in tilapia, and 
resulted in the inhibition of dmrt1 expression [115]. When 
XX medaka was exposed to high water temperature, the 
physiological males could be induced along with decreasing 
expression of cyp19a1a, whereas co-treatment with 
17β-estradiol (E2) inhibited the sex reversal [116]. Besides 
sex hormone, aromatase inhibitors (Fadrozole and Letrozole) 
could reduce the enzyme activity and thereby led to mascu-
linization, which had been used to induce female-to-male 
sex reversal in tilapia and medaka [117,118]. Godwin ana-
lyzed the influence of social factors on sex determination 
and differentiation of reef fish, and explored the advantages 
of this plasticity mechanism in evolution [119]. In a 
sex-changing fish Thalassoma bifasciatum, it was found 
that whether the males either directly differentiated or firstly 
produced as females and then sex-reversed to males largely 
depended on the social environment signals that they re-
ceived at early stage of sex determination [120]. 

3.3  Sex-determining (SD) genes in fish 

3.3.1  SD genes in fish with XX/XY sex determination system 

SD genes mainly refer to the genes that transiently express 
in the undifferentiated gonad and directly determine the 
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bipotential gonad into either a testis or an ovary. Sry gene, 
the first SD gene discovered in vertebrates, is located on 
Y-chromosome and initiates testicular differentiation 
[121,122]. Dmy/dmrt1bY is the first SD gene identified in 
fish, and it is also located on Y-chromosome in Oryzias 
latipes, a species of medaka [123]. Subsequently, five other 
SD-related genes, such as gsdf in Oryzias luzonensis, sox3 
in Oryzias dancena, amhr2 in Takifugu rubripes, Amhy in 
Odontesthes hatchery and sdY in Oncorhynchus mykiss, 
were respectively identified from several teleost fish with 
XX/XY sex determination system. During testis differentia-
tion, their expressed products were also localized on early 
differentiating cells of testis tissue. Moreover, the mutation 
of dmy, sox3, amhr2 and sdY or knockdown of amhy led to 
male-to-female sex reversal in XY males, while transgenic 
over-expression of sox3, sdY and gsdf genes caused fe-
male-to-male sex reversal in XX females, suggesting that 
they should be male SD genes and play critical roles in male 
sex determination [124128]. A large number of studies 
have confirmed that most male SD genes including dmy in 
medaka, are the duplications of Dmrt1 (dsx and mab-3 re-
lated transcription factor 1) [129,130]. It had been detected 
in medaka that dmrt1 mutation caused a male-to-female sex 
reversal, suggesting that dmrt1 should be essential for 
maintaining testis differentiation in the Dmy-triggered male 
sex determination pathway [131,132].  

Actually, dmy has not been revealed as a universal SD 
gene in any other kind of fish, soon after it was identified as 
the first SD gene in medaka Oryzias latipes, suggesting that 
SD genes are diverse in fish. In other medaka fish Oryzias 
luzonensis and Oryzias dancena, gsdf and sox3 take the 
place of dmy as new SD genes [124,125]. Using ge-
nome-wide linkage analysis and association mapping strat-
egy, Kamiya et al. [126] have found that only a SNP (C/G) 
polymorphism in the kinase domain of Amhr2 gene is asso-
ciated with sex phenotype in fugu and two other species of 
Takifugu, but not in Tetraodon. These data suggest that sex 
determination is diverse among different species even in the 
same genus. In addition, the hotei homogenous mutation in 
the kinase domain of Amhr2 also led to male-to-female sex 
reversal in XY medaka males [133]. Therefore, Amhr2 
plays a pivotal role in sex determination of fugu and meda-
ka, mainly through the function of its kinase domain.  

3.3.2  Sex-determining genes in fish with ZZ/ZW sex de-
termination system 

Sex determination system in birds is ZZ (male)/ZW (female) 
system, and the first male SD gene, Dmrt1 on the 
Z-chromosome, is identified in chickens [134]. DM-W, a 
W-linked paralogue of Dmrt1 that antagonizes the tran-
scriptional activity of DMRT1, was further identified as an 
ovary-determining gene from frog Xenopus laevis with a 
ZZ/ZW SD system [135,136]. In teleost fish with ZZ/ZW 
sex determination system, no definitive SD genes have been 
detected, but many candidate SD genes have already ap-

peared. 
Recently, Chen et al. [137] reported the whole genome 

sequencing of a ZZ/ZW type fish, the half-smooth tongue 
sole. Through phylogenetic analysis, a high level of ho-
mology was detected between half-smooth tongue sole and 
avian W and Z chromosomes. They found a functional 
dmrt1 located on the Z-chromosome and its homologous 
pseudogene on the W chromosome. Similar to the expres-
sion pattern of other SD genes, the dmrt1 was revealed to 
specifically express in male germ cells and pre-somatic cells 
of the undifferentiated gonad at sex-determination stage and 
persists at high levels during testis development. In ZW 
females, the dmrt1 promoter was hypermethylated and si-
lenced, whereas it was demethylated and activated in ZW 
pseudomales, which resulted in the upregulation of dmrt1 
expression to a level as normally developing ZZ males by 
dosage compensation. Moreover, female-specific genes on 
W chromosome were found to be inhibited by methylation 
regulation in pseudomales [138,139]. All the above data 
suggest that, similar to avian, not only part of the genes on 
fish Z chromosome has effective and variable dosage com-
pensation, but also W chromosome contains a part of sex 
determination or the dosage compensation mechanism [139]. 
Obviously, the novel understanding from whole genome 
sequence analysis of the farmed fish is an exciting stimulus 
for further study on SD genes of ZZ/ZW system [140,141].  

In addition, two potential SD genes, amh and dmrta2, 
were mapped to the sex-determination loci in ZZ/ZW type 
turbot (Scophthalmus maximus) and tilapia by applying 
sex-associated markers and QTL analysis [142,143]. Xu et 
al. [144] also observed regulative role of dmrta2 in 
zebrafish spermatogenesis.  

3.4  Network modules of sex determination in fish 

The known SD genes in fish, such as dmy and amhy, have 
been demonstrated to be respective duplicated gene of the 
autosomal dmrt1 and amh on Y chromosome [123,127]. 
Gene duplication is a common phenomenon because all 
teleosts are hypothesized to have experienced another 
“fish-specific” (3R) whole genome duplication event during 
the ancestral lineage evolution [32,145147]. Actually, the 
master SD genes in vertebrates, such as Sry, dmy, amhr2, 
amhy and gsdf are either key factors for gonadal differentia-
tion or their duplications. However, sdY, a male-specific 
gene on Y chromosome in rainbow trout and most species 
of salmonids, is a truncated copy of autosomal irf9 (inter-
feron regulatory factor 9) [148]. Recent continuous discov-
ery about new SD genes strengthens the hypothesis that not 
only downstream key factors or related genes for gonadal 
differentiation but also some other genes involved in dif-
ferent developmental process are able to recruit to the top 
signal of SD pathway through either directness or duplica-
tion [15,149].  

Undifferentiated gonad in fish is commonly thought to 
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have double potentials to trigger testis development or ova-
ry development. When sex determination “switch” is initi-
ated by master sex-determining gene, a genetic network of 
sex determination and differentiation that is composed by 
some conserved sex differentiation genes will be activated 
(Figure 1). These downstream sex-related genes can regu-
late the expression of sex steroid hormones, and thereby 
direct the development of functional gonads with the sex 
phenotype [150152]. A new idea believes that fish sex 
determination is neither a single genetic cascade reaction 
nor a result of hierarchical cascades by genetic network, but 
the reciprocal links between different genetic modules 
which functionally interact with each other [15,153]. As 
shown in Figure 1, in fish with XX/XY sex determination 
system, high expression of the master male sex determina-
tion gene on Y chromosome, such as dmy, sox3, amhr2, sdY, 
or amhy, is able to initiate different modules in genetic net-
work of sex determination and testis differentiation so that 
activate the essential genes for testis development, such as 
dmrt1, sox9 and amh, and thereby completes male for-
mation. Conversely, the absence of master male sex deter-
mination gene on X chromosomes leads to other module 
activation in genetic network of female sex determination 
and ovary differentiation, and thereby induces the expres-
sion of ovary formation-related genes, such as cyp19a1, 
foxl2, sf1 and wnt4 [154,155]. 

Recent findings in sex-changing fish indicate that some 
sex differentiation-related genes are also regulated by epi-
genetic modifications [156,157]. In juvenile males of Euro-
pean sea bass, the cyp19a promoter was found to have dou-
ble levels of DNA methylation than the females, in which 
exposure to high temperature increased the promoter meth-
ylation levels in females and suppressed the ability of SF-1 
and Foxl2 to stimulate its transcription [156]. Similarly, in 
hermaphrodite and sex-changing rice field eel, the cyp19a1a 
promoter was also discovered to be hypermethylated in the 
ovotestis and testis compared with the ovary, and the natural  

 

 
Figure 1  A schematic diagram of sex determination and gonad (testis or 
ovary) differentiation in fish with XX/XY sex determination system.  

sex changing could be reversed by DNA methylation inhib-
itor 5-aza-2′-deoxycytidine [157]. 

4  Sex control biotechnology and its breeding 
application in fish 

Growth is one of the most valuable economic traits for fish 
genetic improvement. Because some fish species display 
different growth rate and body size, all-female or all-male 
population production has significant economic implica-
tions in aquaculture. As mentioned above, fish genetic 
breeding scientists have performed a lot of studies in some 
aquaculture fish species with growth and size dimorphism 
between females and males. Through these studies, 
sex-linked genetic markers or X chromosome-linked and Y 
chromosome-linked genetic markers and the marker-   
assisted sex control breeding biotechnology have been suc-
cessfully exploited, and thereby provided convenient and 
practical technological approaches for sex control breeding 
application in fish [12,158,159]. In the past five years, only 
Chinese scientists have successfully produced many 
mono-sex novel varieties in some farmed fish species, such 
as Yellow catfish “all-male No.1”, all-female “North floun-
der No.1”, all-female “North flounder No.2” and Tilapia 
“Luxiong No.1”. Based on these significant breakthrough 
advances, this section will highlight some novel ideas and 
new biotechnological approaches for future sex control 
breeding in fish.  

4.1  Interspecific hybridization and production of 
all-males and all-females in fish 

Interspecific hybridization not only improves fish economic 
traits including growth rate, survival rate, disease resistance, 
cold tolerance and hypoxia tolerance [160,161], but also 
utilizes to produce high ratio offspring of males or females. 
The most representative case is massive production of 
all-male population by interspecific hybridization between 
different tilapia species. As early as 1960, Hickling [162] 
firstly reported the generation of all-male tilapia population 
by crossing female O. mossambicus (XX) with male O. 
hornorum (ZZ). Subsequently, a large number of interspe-
cific crossings were performed between multiple tilapia 
species, and the hybrid offspring between Nile tilapia and 
Aureus tilapia was found to have significant advantages in 
growth, survival and male proportion [163,164]. Moreover, 
when Nile tilapia was hybridized with the variety “Xiaao 
No.1” selected from blue tilapia by population breeding, the 
hybrid offspring produced more than 93% males that were 
applied to massive aquaculture in China [165]. In bass, 
100% all-female offspring could be generated by specific 
hybridization between different species [166], but the sex 
determination system and mechanism for monosex genera-
tion remain unclear [167]. 
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4.2  Artificial gynogenesis and all-female population 
production 

As another important approach for producing monosex fish 
population, artificial gynogenesis generally refers to the 
haploid egg activation by genetically inactivated sperm and 
the activated egg development into diploid offspring after 
chromosome doubling. Therefore, the genetic information 
of these offspring is almost from their female parent [4]. 
After artificial gynogenesis, a XX all-female population will 
be produced if the parents have a XY/XX sex determination 
system, whereas ZZ male and WW female, not all-female 
offspring will be theoretically produced from the parents 
with ZZ/ZW sex determination system. 

Gibel carp has the capacity of unisexual gynogenesis, 
and it is feasible to produce all-female offspring when its 
eggs are activated by heterologous common carp sperm, in 
which the aquaculture of all-female gynogenetic offspring 
has become a typical case of sex control breeding applica-
tion in fish aquaculture [23]. Through a combining ap-
proach of artificial gynogenesis and sex reversal, all-female 
population was also produced in common carp and used for 
aquaculture practice [60]. Recently, artificial gynogenesis 
has been performed in many marine fish species, such as 
flounder [168], red sea bream (Pagrosomus major) [169], 
sea bass [170], spotted halibut (Verasper variegatus) [171], 
and half-smooth tongue soles [172]. Especially in flounder, 
several gynogenetic clones have been obtained [173175]. 
Based on these artificial clone strains, the Beidaihe experi-
ment station of the Chinese Academy of Fishery Sciences 
have successively bred two aquaculture varieties of flounder, 
“north flounder No.1” and “north flounder No.2”.  

Generally, the gynogenetic offspring is composed of 
all-females. However, a certain part of male individuals 
have also been recorded in some gynogenetic fishes result-
ing from distant hybridization, such as in Poecilia formosa 
and in Carassius auratus red var. [176178], which may 
have exploitable significance and potential in fish genetic 
breeding. 

4.3  Identification of sex-specific markers and sex 
chromosome-specific markers 

For most fish species, the degree of sex chromosome dif-
ferentiation is very low and it is difficult to discriminate 
through sex chromosome morphology. In addition, fish sex 
is easily influenced by environment factors, especially by 
temperature [179], which often results in inconstancy be-
tween physiology phenotype and sex genotype. So it is im-
portant and meaningful to search for a convenient and 
forthright method to identify fish genetic sex in aquaculture. 
In some fish species, fish genetic scientists have success-
fully identified a great number of sex-specific or sex chro-
mosome-specific markers by multiple techniques including 
AFLP (amplified fragment length polymorphism), SNP 

(single nucleotide polymorphism), RAPD (random ampli-
fied polymorphic DNA), SSR (simple sequence repeats) and 
QTL (quantitative trait locus) (Table 2). Obviously, these 
markers establish a profound foundation for identifying fish 
genetic sex and sex chromosomes, and offer a high efficient 
technology approach for massive production of all-male or 
all-female populations [12,180].  

4.4  Biotechnological approaches of sex control breed-
ing in fish  

During early gonadal differentiation, exogenous steroid 
hormone treatment could effectively induce sex reversal in 
fish. So far, the hormone-induced sex reversal has been 
prohibited to directly produce monosexual fish population, 
because we are still uncertain whether the hormone deriva-
tives generated during the metabolic process can quickly 
degenerate or not [4,12,197]. In consideration of food secu-
rity, the feasible way is to use the hormone-induced sex 
reversal fish as parents to breed monosexual offspring in 
aquaculture. 

In common carp and crucian carp, Chinese scientists 
have successfully incorporated artificial gynogenesis and 
sex reversal techniques to quickly establish all-female pop-
ulations [198,199]. Based on the identification of X chro-
mosome-specific and Y chromosome-specific markers 
[49,180], Yellow catfish “all-male No. 1”, a novel aquatic 
variety, has been produced by using a biotechnological ap-
proach of sex control breeding [12,200]. Accordingly, we 
have proposed an integrative sex control breeding approach 
for mass production of all-male population in XX/XY sex 
determination system fish by 17α-ethinyloestradiol (EE2) 
treatment and by Y chromosome-specific marker (YSM) 
and X chromosome-specific marker (XSM) selection [12]. 
The technological approach for production of all-female 
population is simpler than that for all-male population in 
XX/XY fish. The XX physiological males can be either 
produced by sex reversal after artificial gynogenesis, or 
selected by the Y chromosome-specific marker (YSM) and 
X chromosome-specific marker (XSM) from sex reversal 
progeny through 17α-methyltestosterone (MT) treatment. 
And, the batch XX physiological males can be obtained 
from the MT treated offspring between XX male and XX 
female mating. Finally, mass production of all-females can 
be produced by the mating of XX males and females (Fig-
ure 2). 

5  Conclusion and outlook  

Over the past few decades, the slow progress in discovery 
of SD genes and sex chromosome in fish mainly results 
from the shortness of genetic information and genomic re-
sources. Recently, rapid development of high-throughput 
DNA sequencing technique, massive accumulation of ge- 
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Table 2  A list of sex-specific markers or sex chromosome-specific markers and their associated genes 

Species 
Sex determination 
system 

The identified 
tech niques 

Marker type and quantity 
Associated 
genes 

References 

Yellow catfish (Pelteobagrus fulvidraco) XX/XY AFLP Two X- and Y-specific markers  [49] 

  genomic walking Two X- and Y-specific markers; 
One different length X and Y markers 

 [180] 

Channel catfish (Ictalurus punctatus) XX/XY Sequencing and 
analysis 

One male-specific marker  [181] 

African catfish (Clarias gariepinus) XX/XY RAPD Two male-specific markers  [182] 

Rainbow trout (Oncorhynchus mykiss) XX/XY AFLP Fifteen male-specific markers  [183] 

  gene expression One Y-linked marker sdY [128] 

Patagonian pejerrey (Odontesthes hatcheri) XX/XY AFLP One male-specific marker  [184] 

  gene expression One Y-linked marker amhy [127] 

Japanese pufferfish (Takifugu rubripes) XX/XY SNP One Y-linked marker Amhr2 [126] 

Japanese medaka (Oryzias latipes) XX/XY gene expression One Y-linked marker dmy [123] 

Philippine medaka (Oryzias luzonensis) XX/XY gene expression One Y-linked marker gsdf [124] 

Indian ricefish (Oryzias dancena) XX/XY gene expression One Y-linked marker sox3 [125] 

Platyfish (Xiphophorus maculates) XX/XY Sequence analysis One Y-linked marker MC4R [84] 

Fathead minnow (Pimephales promelas) XX/XY AFLP Eight male-specific markers 
One male-specific marker 

 [185] 

Nine-spined stickleback (Pungitius pungitius) XX/XY SSR One male-specific marker  [186] 

Common carp (Cyprinus carpio) XX/XY RAPD One male-specific marker  [187] 

Nile tilapia (Oreochromis niloticus) XX/XY 
 

AFLP 
RAPD, AFLP 

Three male-specific markers 
Four X- linked markers 
Five Y-linked markers 

 [188] 
[189] 

Turbot (Scophthalmus maximus) ZZ/ZW RAPD One female-specific marker wnt4, foxl2 [190] 

  RAPD One male-specific marker amh, dmrta2 [191] 

Spotted halibut (Verasper variegatus) ZZ/ZW AFLP Two female-specific markers  [192] 

Atlantic halibut (Hippoglossus stenolepis) XX/XY SSR Three female-specific markers  [193] 

Half-smooth tongue sole ZZ/ZW AFLP, SSR Seven and one female-specific markers  [70,174] 

(Cynoglossus semilaevis)  Genomic sequencing One Z-linked marker dmrt1 [137] 

Yellowtail (Seriola quinqueradiata) ZZ/ZW SSR One female-specific marker  [194] 

Rock bream (Oplegnathus fasciatus) X1X1X2X2/X1X2Y AFLP Four male-specific markers  [195] 

matrinxã ( Brycon amazonicus )  RAPD One female-specific marker PIGW [196] 

 

 

Figure 2  A schematic diagram of mass production of all-female popula-
tion through an integration approach of gynogenesis, methyltestosterone 
(MT) treatment, and X chromosome-specific marker (XSM) and Y chro-
mosome-specific marker (YSM) identification in fish with XX/XY sex 
determination system.   

nomic and transcriptomic data, and extensive utilization of 
comparative phylogenetic methods have greatly promoted 

the pace of genetic basis studies on fish sex determination 
[201]. Many sex-linked or sex chromosome-specific molec-
ular markers have been rapidly developed and start to be 
efficiently applied to aquaculture. Moreover, the gene tar-
geting and editing approaches, such as TALEN (transcrip-
tion activator-like effector nuclease) and CRISPR (clustered 
regularly interspaced short palindromic repeats)/Cas9 
(CRISPR-associated 9), have made it easier to perform 
functional experiments in fish [202204]. It is expected that 
a new era is coming for studying genetic basis of sex di-
morphism and sex determination and biotechnological ma-
nipulation of sex control breeding. 
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