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Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries.

This study characterized the clonal population structure, antimicrobial resistance profiles

and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni

strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations

(MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline,

gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than

half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower

percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni

isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution

T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while

C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O)

gene. These resistance determinants were observed in most but not all resistant isolates.

Regarding resistance to erythromycin, different mutations occurred in diverse genetic

loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes,

and the intergenic region between cmeR and cmeABC. Interestingly, and contrary to

previous reports, the A2075G transition mutation in the 23S rRNA gene was only found

in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular

typing by multilocus sequence typing revealed that two sequence types (ST-824 and

ST-2274) were associated to quinolones resistance by the presence of mutations in

the gene gyrA (p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR

multidrug resistant phenotype. In contrast, clonal complex CC-45was linked to increased

susceptibility to the tested antibiotics. The results obtained in this study provide better

understanding of the phenotypic and the molecular basis of antibiotic resistance in

C. jejuni, unraveling some the mechanisms which confer antimicrobial resistance and

particular clones associated to the carriage and spread of resistance genes.

Keywords: broiler, antibiotic resistance, resistance genes, mutations, MLST

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01014
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01014&domain=pdf&date_stamp=2018-05-17
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mm\protect _elhadidy@mans.edu.eg
https://doi.org/10.3389/fmicb.2018.01014
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01014/full
http://loop.frontiersin.org/people/298412/overview
http://loop.frontiersin.org/people/548944/overview


Elhadidy et al. Antibiotic Resistance in Campylobacter jejuni

INTRODUCTION

Campylobacter spp., and in particular Campylobacter jejuni,
are considered among one of the most prevalent zoonotic
foodborne pathogens associated with sporadic diarrhea in
humans. In the European Union, human campylobacteriosis
is by far the most frequent foodborne infection, with more
than 200,000 confirmed human cases/year (EFSA, 2015). Most
of the cases are self-limiting and include symptoms such as
fever, abdominal cramps and watery to bloody diarrhea. In
severe cases, infection might lead to post-infectious neurological
complications such as Guillain-Barré syndrome and Miller-
Fisher syndrome (Humphrey et al., 2007). Consumption
of contaminated poultry is the main source of human
Campylobacter infections (Kaakoush et al., 2015). In poultry, the
pathogen colonizes the gut in relatively high concentrations but
produces few or no clinical symptoms (Luangtongkum et al.,
2006). These high numbers of bacteria can contaminate broiler
carcasses during slaughtering, with the subsequent transmission
of Campylobacter through the food chain (Jeffrey et al., 2001).

Frequent isolation of antimicrobial-resistant Campylobacter
strains of food animal origin represents a public health threat,
as these sources may act as an important vehicle for the
transmission of resistant strains to humans, where the spectrum
of antibiotics efficient for disease treatment will be limited
(Aarestrup and Engberg, 2001). As poultry and poultry products
are considered the main reservoir for Campylobacter food-
borne transmission, the intensive use of antimicrobial agents
for therapy, prophylaxis, or as growth promoters in poultry
production may lead to the selection of resistant strains that can
be transmitted to humans via contaminated food (Aarestrup and
Engberg, 2001). The use of antibiotics as growth promoters was
banned in Europe in 2006 based on the European Community
directive 90/167/EEC. Furthermore, in 2007, the World Health
Organization (WHO) made recommendations for limiting the
routine use of antimicrobials in production animals (Collignon
et al., 2009). All EU member states are required to monitor
antimicrobial resistance (AMR) in broiler flocks. The European
Surveillance of Veterinary Antimicrobial Consumption (ESVAC)
illustrates recent efforts of the European Medicines Agency
to develop a central database on the use of antimicrobial
agents in animals (EMA, 2009). Indeed, different antimicrobial
consumption monitoring programs aimed at mitigating the risk
related to antimicrobial resistance have been established in some
European Countries, and Belgium is currently developing a
veterinary antimicrobial consumption monitoring system (www.
belvetsac.ugent.be).

Serious concerns associated with the increasing isolation
frequency of resistant Campylobacter spp. have prompted
the investigation of the resistance mechanisms to these
antimicrobials. In Campylobacter, high levels of resistance to
quinolones and fluoroquinolones are mainly due to single
point mutations in the DNA gyrase gene gyrA, especially a
C257T mutation that results in a T86I substitution (Iovine,
2013). The main mechanism that confers high-level resistance
to macrolides in Campylobacter is the occurrence of point
mutations in the peptidyl encoding region of the 23S rRNA

gene (Vacher et al., 2005). In addition, modifications of the
L4 or L22 ribosomal proteins, mediated by point mutations
in the rplD and rplV genes, respectively, and the presence of
the 23S rRNA methyltransferase gene ermB have been also
identified as resistance mechanisms for macrolides (Pérez-Boto
et al., 2010; Wang et al., 2014; Florez-Cuadrado et al., 2017).
Overexpression of the CmeABC multidrug efflux pump also
works synergistically with these resistance mechanisms to confer
resistance to the action of macrolides (Gibreel et al., 2005).
Resistance to tetracycline, on the other hand, is mediated by
the ribosomal protection protein TetO that is encoded by the
tet(O) gene, located on either the chromosome or on conjugatable
plasmids (Gibreel et al., 2004; Wu et al., 2014).

MLST locus alleles have been previously used as a successful
source-attribution model and in assigning genomes to host
reservoir (Pascoe et al., 2017). In addition to the resistance
mechanisms described above, several reports have previously
highlighted the association of particular sequence types
with certain antimicrobial resistance phenotypes in Europe,
suggesting potential clonal expansion of antimicrobial resistance
phenotypes in recent years (Habib et al., 2009; Cody et al., 2012;
Kittl et al., 2013; Kovač et al., 2014, 2015; Klein-Jöbstl et al.,
2016).

The aim of this study is to determine the frequency of
antimicrobial resistance in a subset of 204 C. jejuni isolates
recovered from broiler carcass swabs in Belgium, and to
investigate the molecular mechanisms of resistance and the
possible associations between antimicrobial resistance profiles
and certain MLST genotypes.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
A collection of 204 C. jejuni isolates were obtained between 2006
and 2015 from broiler carcass samples collected from different
slaughter lines according to the ISO 10272-1 method (ISO
10272-1:ISO, 2006). All isolates were subcultured from −80◦C
frozen stocks onto Columbia agar (Oxoid, United Kingdom) with
5% horse blood (Sigma-Aldrich, United Kingdom). Plates were
incubated at 41.5 ± 1◦C within a gas jar under microaerobic
conditions (6% O2, 7% CO2, 7% H2, and 80% N2), provided by
the Anoxomat (Mark II System, The Netherlands).

Phenotypic Antibiotic Resistance Profiling
Testing for resistance to ciprofloxacin, erythromycin,
gentamicin, nalidixic acid and tetracycline was carried out
by the standard broth microdilution method, using the
commercial diagnostic test for Campylobacter minimum
inhibitory concentrations (MICs) (Sensititre R© plates; Sensititre
Campylobacter plate–EUCAMP, Trek Diagnostic Systems, UK)
and following the manufacturer’s instructions. Briefly, bacterial
suspensions adjusted at approximately 1.5 × 108 CFU/ml
(equivalent to 0.5 McFarland standard) were inoculated into 96-
well microtiter plates containing Mueller–Hinton broth (Oxoid,
UK) supplemented with 5% defibrinated horse blood. Following
bacterial inoculation, the Sensititre Campylobacter Plates
were incubated under microaerobic conditions (Anoxomat,
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Mark II System, The Netherlands) at 37◦C for 48 h. The MIC
was read as the lowest concentration completely inhibiting
visible growth. Resistance against antibiotics was interpreted
using the epidemiologic cut-off values (ECOFFs), following
the guidelines of the European Committee on Antimicrobial
Susceptibility Testing (EUCAST, 2015) (www.eucast.org). C.
jejuni strain ATCC 33560 was included as a quality control in the
antimicrobial susceptibility determinations.

Molecular Characterization of
Antimicrobial Resistance Phenotypes
Resistance mechanisms were evaluated for quinolones and
fluoroquinolones (nalidixic acid and ciprofloxacin, respectively),
macrolides (erythromycin) and tetracycline. DNA was extracted
from overnight bacterial cultures using a DNeasy Blood &
Tissue Kit (Qiagen, Germany) according to the manufacturer’s
instructions. DNA was eluted in 100 µl of the kit elution
buffer and stored at−20◦C for further molecular analysis of
resistance determinants. C. jejuni isolates displaying resistance
to ciprofloxacin and/or nalidixic acid were screened for a
point mutation that results in the T86I substitution in the
quinolone resistance determining region (QRDR) of gyrA, using
the mismatch amplification mutation assay (MAMA-PCR) as
previously described (Zirnstein et al., 1999). C. jejuni isolates
resistant to tetracycline were screened for the presence of
the tet(O) gene, as previously described by Gibreel et al.
(2004). Erythromycin-resistant isolates were characterized for
five genetic loci potentially responsible for resistance: the 23S
rRNA gene; the rplD and rplV 50S ribosomal subunit genes; the
ermB gene; and the intergenic region between cmeR and cmeABC.
The mismatch amplification mutation assay previously described
by Alonso et al. (2005) was used to identify A2074C and A2075G
point mutations in the 23S rRNA gene previously associated
with high-level erythromycin resistance. Modifications in the L4
and L22 ribosomal proteins were determined using amplification
and sequencing of the rplD and rplV genes, respectively, as
reported elsewhere (Corcoran et al., 2006). The presence of
the ermB gene among resistant strains was assessed previously
described by Zhou et al. (2016). Finally, different polymorphisms
in the regulatory region of cmeABC were screened by PCR
amplification and sequencing of the intergenic region between
the cmeR and cmeA genes. All protocols, primer sequences,
amplification and sequencing conditions were employed as
described by referenced authors.

DNA Sequence Analysis
Amplification products generated were purified using the
QIAquick PCR Purification kit (Qiagen, Germany). Purified
amplicons were sequenced using the ABI PRISM BigDye
terminator cycle sequencing kit (ver. 3.1; Life Technologies,
Grand Island, NY) and standard protocols. DNA sequencing
was performed on an ABI PRISM 3730 DNA Analyzer (Life
Technologies), using POP-7 polymer and ABI PRISM Genetic
Analyzer Data Collection and ABI PRISM Genetic Analyzer
Sequencing Analysis software. Sequences were manually edited
and then compared to those in the current databases using
the BLAST suite of programs. Sequence alignments and SNP

identification was performed using the Lasergene analysis
package (v. 8.0; DNASTAR, Madison, WI).

Analysis of Genetic Similarity Among
Antimicrobial-Resistant Strains
The genetic similarity of antimicrobial-resistant isolates was
analyzed using multilocus sequence typing (MLST) as previously
described (Miller et al., 2005). Amplicons were sequenced
as described above. Allele numbers, sequence types (STs)
and clonal complexes (CCs) were assigned by submitting
the DNA sequences to the Campylobacter PubMLST database
website (https://pubmlst.org/campylobacter/) at the University
of Oxford.

Statistical Analysis
Descriptive statistical analysis of the data was performed
using R version 3.3.2 (R-project). Association among the
different antimicrobial resistance determinants, and between
AMR profiles and MLST STs and CCs were examined using Chi2
or Fisher’s exact tests. The same statistical tests were used to
establish changes or trends in susceptibility to the antimicrobials
tested. Significance was established at α = 0.05.

RESULTS

Antimicrobial Resistance Phenotypes
Fifty-eight (28.4%) isolates were pan-susceptible to all
antimicrobials tested. The highest frequency of resistance
was observed for ciprofloxacin (53.9%), followed by resistance
to nalidixic acid (53.4%), and tetracycline (47%) (Table 1). In
this study, almost all (95.5%) ciprofloxacin resistant isolates were
cross-resistant to nalidixic acid. A low frequency of resistance
was observed for gentamicin (6.9%) and erythromycin (4.9%).
MIC tests yielded 18 different antimicrobial resistance patterns
(Table 2).

Genotypic Characterization of
Antimicrobial Resistance
Isolates that were resistant to ciprofloxacin and/or nalidixic acid
were screened for T86I mutations in the gyrA gene. A total
of 98 isolates that were simultaneously resistant to Cip and
Nal harbored a C257T point mutation that resulted in a T86I
substitution. Five isolates that showed simultaneous resistance
to both antibiotics were negative for this mutation. Four Cipr

TABLE 1 | Antimicrobial resistance rates of C. jejuni from broiler carcasses.

Rank Class Antimicrobial Break points

(mg/L)

No. of resistant

isolates (%)

| Aminoglycosides Gentamicin >2 14 (6.9%)

Macrolides Erythromycin >4 10 (4.9%)

Quinolones and

fluoroquinolones

Ciprofloxacin >0.5 110 (53.9%)

Nalidixic acid >16 109 (53.4%)

|| Tetracyclines Tetracycline >1 96 (47%)
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TABLE 2 | Distribution of antimicrobial resistance patterns and MLST sequence types among C. jejuni from broiler carcasses.

Antimicrobial resistance profilea No. of isolates n (%) Sequence types

Sensitive 58 (28.4%) ST-19 (1), ST-137 (2), ST-21 (4), ST-25 (1), ST-38 (1),

ST-42 (1), ST-45 (7), ST-48 (2), ST-50 (7), ST-51 (1), ST-61 (1), ST-257 (2), ST-267 (1), ST-400

(1), ST-415 (1), ST-418 (1),

ST-475 (1), ST-464 (1), ST-538 (1), ST-583 (3), ST-606 (1),

ST-607 (1), ST-791 (1), ST-1044 (4), ST-1045 (1), ST-1326 (1),

ST-2187 (1), ST-2314 (1), ST-3115 (1), ST-3293 (1),

ST-3544 (1), ST-3548 (1), ST-4354 (1), ST-5018 (1), ST-5903 (1)

TET 25 (12.2%) ST-48 (1), ST-50 (1),ST-141 (1), ST-257 (1), ST-464 (1), ST-879 (4), ST-2314 (1),ST-2324 (1),

ST-2547 (1), ST-2641 (1), ST-2803 (1), ST-2844 (2), ST-3547 (1)

ST-4602 (1), ST-5970 (1), ST-7953 (1), ST-7954 (1), ST-7960 (1), ST-8636 (1), ST-8637 (1),

ST-8639 (1)

CIP 3 (1.5%) ST-572 (1), ST-775 (1), ST-2132 (1)

ERY 2 (1%) ST-42 (1), ST-4776 (1)

NAL 3 (1.5%) ST-45 (1),ST-51 (1), ST-2027 (1)

GEN 2 (1%) ST-45 (1), ST-122 (1)

Q 36 (17.6%) ST-19 (3), ST-21 (4), ST-48 (3), ST-50 (1), ST-61 (1), ST-53 (1),

ST-122 (1), ST-267 (1), ST-305 (1), ST-324 (1), ST-572 (2),

ST-607 (1), ST-775 (1), ST-824 (4), ST-883 (1), ST-982 (1),

ST-905 (1), ST-1519 (1), ST-1707 (1), ST-2258 (1), ST-4800 (1), ST-5018 (2), ST-8638 (1),

ST-8640 (1)

NAL TET 2 (1%) ST-51 (1), ST-2844 (1)

CIP TET 1 (0.5%) ST-2882 (1)

ERY TET 1 (0.5%) ST-1519 (1)

Q TET 58 (28.4%) ST-19 (2), ST-21 (2), ST-44 (1), ST-46 (2), ST-48 (1), ST-50 (3),

ST-51 (1), ST-141(1), ST-354 (2), ST-492 (1), ST-464 (5),

ST-824 (1), ST-877 (1), ST-883 (2), ST-904 (2), ST-969 (1),

ST-990 (3), ST-2135 (2), ST-2153 (1), ST-2252 (1), ST-2254 (3),

ST-2274 (10), ST-2324 (1), ST-3015 (3), ST-3017 (1),

ST-3155 (1), ST-3546 (1), ST-3720 (1), ST-3769 (1), ST-7487 (1)

Q GEN 2 (1%) ST-305 (1), ST-824 (1)

CIP GEN ERY 1 (0.5%) ST-2844 (1)

CIP GEN TET 2 (1%) ST-474 (1), ST-3015 (1)

NAL GEN TET 1 (0.5%) ST-45 (1)

Q GEN TET 1 (0.5%) ST-606 (1)

Q ERY GEN 1 (0.5%) ST-50 (1)

Q ERY TET 1 (0.5%) ST-262 (1)

Q ERY GEN TET 4 (2%) ST-48 (1), ST-354 (1), ST-824 (1), ST-8641 (1)

aMDR strains are in bold and underlined. Q: CIP+NAL.

Nals isolates presented C257T point mutations in the QRDR.
However, two Cipr Nals isolates (cj1396, cj2940) had no C257T
point mutation in the gyrA gene; similarly, none of the six Cips

Nalr isolates harbored this mutation in the gyrA gene. Isolates
that were resistant to ciprofloxacin and/or nalidixic acid but had
no C257T mutation in the gyrA gene showed MICs in the range
of 4-32 mg/L for CIP and 32-256 mg/L for Nal.

The erythromycin-resistant strains were screened for the
presence of 23S rRNA, rplD, rplV and cmeRABC locus mutations
tentatively associated previously with erythromycin resistance
in Campylobacter. Within the 23S rRNA gene of these strains,
the A2074G mutation was not observed in any of the isolates
and the A2075G mutation was identified in only one isolate
displaying a high level of erythromycin resistance (>256 mg/L).

Further analysis of the rplD and rplV genes (encoding the 50S
ribosomal subunit proteins L4 and L22, respectively) identified
several different potential amino acid substitutions (Table 3).
The following predicted amino acid substitutions were observed
in L4: V121A (two isolates), T177S (one isolate), M192I (two
isolates), V196A (five isolates). For L22, more diverse amino
acid substitutions were identified including: Q24R (one isolate),
V65I (eight isolates), G74A (ten isolates), A103V (one isolate),
T109S (ten isolates), A111E (ten isolates), and A114T (ten
isolates). Using the erythromycin-sensitive C. jejuni strain NCTC
11168 as a “wild-type” reference strain, four CmeR alleles were
identified among the erythromycin-resistant isolates (Table 3,
Figure S1A). Additionally, sequencing of the cme RAIVS (cmeR-
cmeA intervening sequence) region identified three alleles, with
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TABLE 3 | Minimum Inhibitory concentrations (MICs), 23S rRNA gene mutations, ribosomal protein substitutions and cmeRABC locus alleles in 10 erythromycin-resistant

C. jejuni isolates.

Strain Ery MIC (mg/L) Mutation in 23S

rRNA gene

ermB Ribosomal protein polymorphisms cmeR RAIVS

L4 mutation L22 mutation

810 >256 A2075G – A196V V65I, G74A, T109S, A111E, A114T 3 3

1062 >256 WT – A196V V65I, G74A, T109S, A111E, A114T WT WT

1396 >256 WT – 0 G74A, A103V, T109A, A111E, A114T 4 4

656 12 WT – 0 Q24R, V65I, G74A, T109A, A111E, A114T 2 2

713 128 WT – A196V V65I, G74A, T109S, A111E, A114T NT NT

783 32 WT – A196V V65I, G74A, T109S, A111E, A114T 3 3

856 6 WT – M192I, V121A G74A, T109A, A111E, A114T 2 2

872 >256 WT – 0 V65I, G74A, T109S, A111E, A114T WT WT

1680 >256 WT – M192I, V121A, T177S V65I, G74A, T109A A111E, A114T 2 2

2136 12 WT – A196V V65I, G74A, T109S, A111E, A114T 5 4

WT, wild type (with respect to C. jejuni strain NCTC 11168); NT, not tested; RAIVS, cmeRA intervening sequence. For cme locus alleles, see also Figure S1.

respect to strain NCTC 11168 (Table 3, Figure S1B). In addition
to two SNPs, allele cmeRAIVS4 contained a six base insertion.

Association of MLST Sequence Types (STs)
and Clonal Complexes (CCs) With
Antimicrobial Resistance Patterns and
gyrA Mutations
The analysis was restricted only on those STs and CCs
represented by five or more isolates. The distribution of MICs
for the different antibiotics among the sequence types revealed
minor differences, except for strains from ST-824 (p = 0.016)
and ST-2274 (p= 0.002), which were significantly more resistant
to ciprofloxacin and nalidixic acid than strains from other STs
(Figure 1). The distribution of MICs for the different antibiotics
among the clonal complexes revealed that strains from CC-
45 were more sensitive against ciprofloxacin (p < 0.001),
tetracycline (p = 0.0201) and nalidixic acid (p = 0.047) than
strains from other clonal complexes.

The statistical analyses revealed that three STs were
significantly associated with the presence of gyrA mutations.
These are ST-2274 (p = 0.001), and ST-824 (p = 0.02), which
showed a higher proportion of isolates with gyrA mutations.
On the other hand, ST-45 did not show any isolate with gyrA
mutation (p = 0.01). The prevalence of gyrA mutations was also
significantly linked to the clonal complex CC-574 (p = 0.02937),
while all CC-45 (p= 0.047) isolates showed no gyrAmutations.

DISCUSSION

The rising trend of antimicrobial resistance among C. jejuni
strains represents a serious public health concern. In recent
years, many studies conducted worldwide reported high levels
of resistance to ciprofloxacin and tetracycline, and emerging
resistance to macrolides (Engberg et al., 2001; Luangtongkum
et al., 2009). Therefore, continuous monitoring of resistance
rates and mechanisms of resistance is crucial to combat the

potential spread of AMR C. jejuni across the food chain.
This study was conducted to provide better insight into the
dynamics and molecular epidemiology of C. jejuni antibiotic
resistance by characterizing 204 isolates from broiler carcasses
obtained in Belgium over a decade (2006–2015). The majority
of antimicrobials screened (all antimicrobials used except
tetracycline) are critically important for human health, being
classified in the Rank I by theWorldHealth Organization (WHO,
2011).

In this study, approximately half of the isolates were resistant
to nalidixic acid (53.9%), ciprofloxacin (53.4%) or tetracycline
(47%). These levels of resistance are consistent with recent data
obtained in another Belgian study carried out in 2007 that
analyzed C. jejuni isolates from chicken meat (Habib et al., 2009).
However, these resistance levels are moderately higher than those
reported in other studies previously conducted in Belgium (Van
Looveren et al., 2001; Mattheus et al., 2012). Mattheus et al.
(2012) performed a surveillance analysis in poultry meat over
the period 2004–2009, reporting the following resistance figures:
39.5% for nalidixic acid, 38.0% for ciprofloxacin and 40.8% for
tetracycline. Similar findings were observed in 1998 in another
study of AMR that included C. jejuni strains isolated from
broilers, where rates of resistance to nalidixic acid, ciprofloxacin
and tetracycline were 44.2, 44.2, and 34.4%, respectively (Van
Looveren et al., 2001). The combination of these results reflects
the relatively high resistance to these antimicrobials among
Belgian C. jejuni isolates and a slight increase of AMR in
C. jejuni over the last two decades in poultry production.
Fluoroquinolones have commonly been used to treat infection in
poultry production, while tetracyclines have been frequently used
in animal production to treat infections and as growth promoters
over the last 50 years (Giacomelli et al., 2014). The high resistance
rates observed for these antimicrobials may be the consequence
of their continuous overuse.

C. jejuni isolates that were resistant to ciprofloxacin and/or
nalidixic acid were screened for the presence of a T86I amino acid
substitution in the QRDR of the gyrA gene. The present results
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FIGURE 1 | Minimum spanning tree of MLST data for the 204 C. jejuni isolates. Each node represents a particular ST, and the size of the circle is proportional to the

number of isolates sharing the same ST. Inside the circles, the colors reflect the number of antimicrobial resistances. Green color represents isolates with less than 3

antimicrobial resistances while red color represents isolates with three or more resistances. Each individual sequence type is distinguished by separate circles and

linked by lines indicating allelic variation. STs belonging to the same CC are color-shaded.

showed that this mutation was absent in some isolates that were
resistant only to ciprofloxacin or nalidixic acid, and five isolates
that showed simultaneous resistance to both antimicrobials.
This observation is in agreement with previous reports that
suggest that this substitution does not confer universal resistance
to all quinolone antibiotics and concluded that quinolone
resistance might also be attributed to other unknown resistance
mechanisms (Dionisi et al., 2004; Corcoran et al., 2005; Bolton
et al., 2013). This idea is further supported by the fact that
although T86I mutations in the gyrA gene have been previously
reported to be associated with high levels of resistance to nalidixic
acid (MIC 64-256 mg/L) and ciprofloxacin (MIC 16-64 mg/L)
(Engberg et al., 2001), we identified three Nalr isolates (cj473,
cj3408, cj2500), one Cipr isolate (cj2940) and two Nalr Cipr

isolates (cj1062, cj857) without the gyrA T86I mutation that

nevertheless exhibited MICs within those ranges. Future studies
will be directed to identify additional mutations, other than gyrA
T86I, that also confer resistance to ciprofloxacin and/or nalidixic
acid.

In this study, the low resistance rates to erythromycin and
gentamicin are consistent with earlier reports in Belgian C.
jejuni strains isolated from broiler meat. For instance, previously
reported resistance levels to erythromycin and gentamicin were
as low as 0.7 and 1.4% (Habib et al., 2009), 6.3 and 0% (Van
Looveren et al., 2001), and 6 and 12.9% (Mattheus et al., 2012).
These results are also in agreement with another European
study performed in Italy (Giacomelli et al., 2014). Despite the
common use of macrolides in poultry, for instance the use
of tylosin in young birds (Giacomelli et al., 2014), the low
resistance to erythromycin found in our study may be due to the
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slower development of erythromycin-resistant mutants during
exposure to antibiotics, the reduced biological fitness of resistant
mutants and/or their reduced ability to survive in the absence
of selective pressure (Luangtongkum et al., 2009; Luangtonkum
et al., 2012). The infrequent isolation of strains resistant to the
aminoglycoside gentamicin might be attributed to the rare use of
this antimicrobial agent as a prophylactic or therapeutic agent in
broiler production systems (Rodrigo et al., 2007).

A2074G and A2075G mutations in region V of the 23S rRNA
gene have been previously reported as prominent contributors
to high-level macrolide resistance in Campylobacter (Niwa
et al., 2001; Vester and Douthwaite, 2001; Haanperä et al.,
2005; Corcoran et al., 2006; Caldwell et al., 2008). However,
in this study, A2074G was not identified and A2075G was
identified in only one isolate displaying high level erythromycin
resistance. Indeed, the A2075G mutation was absent in five high-
level erythromycin-resistant isolates (MIC > 128 mg/L). These
findings are similar to previous observations from broiler flocks
in Italy, where only 3.1% (1/36) of the macrolide-resistant C.
jejuni isolates carried the A2075G mutation in the 23S rRNA
gene and none harbored the A2074Gmutation (Giacomelli et al.,
2012). This observation could be due to a lower frequency of
occurrence of these mutations in the 23S rRNA gene in C.
jejuni when compared to C. coli as previously hypothesized by
Giacomelli et al. (2012). The absence of this mutation among
low-level erythromycin-resistant isolates was nonetheless not
unexpected, as this mutation has been linked to high-level
erythromycin resistance (Alonso et al., 2005). These results
prompted us to investigate other possible alternative mechanisms
of macrolide resistance, including modifications in the 50S
ribosomal subunit proteins L4 and L22 and modifications at the
CmeABC efflux pump locus.

As ribosomal components, the 50S subunit proteins L4
and L22 are highly conserved proteins in bacteria. Therefore,
mutations in the genes encoding the L4 and L22 proteins affect
the binding of macrolides to the 50S ribosomal subunit, resulting
in macrolide resistance (Gibreel and Taylor, 2006; Belanger
and Shryock, 2007). In Campylobacter, mutations in the large
loop of the L4 protein (residues 55–77) and the L22 protein
(residues 78–98) have been confirmed to be associated with
macrolide resistance in various strains. In the present study,
all mutations observed were found outside of the loop regions
of the L4 or L22 proteins (Table 3). Furthermore, some of the
identified mutations were previously identified both in resistant
and susceptible isolates, for example V121A, A196V, A111E,
and A114T in the L4 or L22 proteins (Corcoran et al., 2006).
Thus, although it is possible that the ribosomal proteinmutations
observed here may contribute to macrolide resistance, it is likely
that mutations external to the L4 and L22 proteins are the basis
of the observed erythromycin resistance in these strains.

In C. jejuni, transcriptional regulation of the efflux pump
operon cmeABC is carried out by the repressor CmeR, which
binds specifically to an inverted repeat (IR) in the intervening
sequence between cmeR and cmeA (Lin et al., 2005a). This IR
overlaps the predicted−35 region in the cmeABC promoter (Lin
et al., 2005b; see also Figure S1B). Lin et al. (2005b) demonstrated
that a single bp deletion in the two deletion in the two bp IR

spacer resulted in decreased CmeR binding with a concomitant
elevation of fluoroquinolone resistance. In this study, mutations
were identified in the cmeR-cmeA intergenic region; however one
of the mutations, A58T in alleles cmeRAIVS2-3 (Figure S1B),
might be expected to improve the IR and thus lead to enhanced
CmeR binding. Only one of the mutations, a six bp insertion
in allele cmeRAIVS4, is predicted to disrupt the IR, increasing
the spacer between the two IR half sites from two to eight
bp. However, this insertion would also increase the spacing
between the predicted −35 and −16/−10 regions of PcmeABC

and thus might result in decreased transcription of cmeABC,
despite the potential loss of repression by CmeR. Mutations
were also observed in CmeR (Table 3, Figure S1A); however,
the effect of these mutations on macrolide resistance remains
to be determined, especially as it is unknown how these CmeR
alleles interact with the RAIVS IR region. Taken together with
the results of the 23S rRNA and L4/L22 analyses, the genetic
basis of macrolide resistance in the ten strains identified in this
study is largely unknown. Additional research will be necessary,
potentially requiring whole genome sequencing and further
analysis of CmeR binding to PcmeABC, in order to determine the
cause or causes of macrolide resistance in these strains.

Previous studies have observed an association between some
sequence types (STs) or clonal complexes (CCs), in C. jejuni
isolated from different sources, and resistance to quinolones and
tetracycline, suggesting a local clonal expansion of resistance
phenotypes arising from the use of antimicrobials in different
animal and human settings (Habib et al., 2009; Cody et al., 2012;
Kittl et al., 2013; Kovač et al., 2014, 2015; Klein-Jöbstl et al., 2016).
The correlation between CC-45 and susceptibility to quinolones
and tetracycline observed in this study is in agreement with
a study conducted by Habib et al. (2009) on C. jejuni isolates
from chicken meat preparations in Belgium. To the best of our
knowledge, this is the first study that reports an association of
ST-824 and ST-2274 with resistance to ciprofloxacin and nalidixic
acid. Interestingly, the correlation between ST-2274 and the CIP-
NAL-TET AMR profile was notable. Considering that ST-2274 is
among the most common STs found in Belgium (Elhadidy et al.,
2018), these results suggest that ST-2274 is among the genotypes
mainly responsible for the spread of this AMR pattern.

In conclusion, this study examined the mechanisms and
the clonal expansion of antimicrobial resistance among C.
jejuni strains isolated from broiler carcasses in Belgium. The
previously-reported resistance mechanisms monitored in this
study were not found in all resistant isolates, suggesting that
resistance to the tested antibiotics might be attributed to other
unknown resistance mechanisms.
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Figure S1 | Allelic variation within CmeR and the cmeR-cmeA intervening

sequence. For the erythromycin-resistant isolates, the predicted CmeR protein

sequences and the RAIVS (cmeR-cmeA intervening sequence) nucleotide

sequences were determined. Relative to the erythromycin-sensitive C. jejuni strain
NCTC 11168, four CmeR and three RAIVS alleles were identified. These alleles

(and the respective sequences from strain NCTC 11168) were aligned using

MegAlign (v. 8.0, DNASTAR, Madison, WI). Using the sequences of strain NCTC

11168 as “wild-type,” amino acid substitutions within the CmeR alleles (A) and

nucleotide changes within the RAIVS alleles (B) are boxed. Half sites of the

inverted repeat (IR) are shaded in gray. Predicted−35, −16, and−10 regions are

labeled. Promoter and IR regions are as described in Lin et al. (2005a).
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