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Genetic Basis of Children’s Interstitial Lung Disease

Lawrence M. Nogee, M.D.

Specifi c genetic causes for children’s interstitial lung disease (chILD) have been identifi ed within the past 
decade. These include deletions of or mutations in genes encoding proteins important in surfactant produc-
tion and function (SP-B, SP-C, and ABCA3), surfactant catabolism (GM-CSF receptor), as well as transcription 
factors important for surfactant production (TTF1) or lung development (Fox F1), with heterozygous deletions 
or loss-of-function mutations of the latter resulting in alveolar capillary dysplasia (ACD) with misalignment of 
the pulmonary veins. Familial pulmonary fi brosis in adults may result from mutations in genes encoding com-
ponents of telomerase and SP-A2. While not yet reported in children, the expression of these genes in alveo-
lar type II epithelial cells supports a key role for the disruption of normal homeostasis in this cell type in the 
pathogenesis of interstitial lung disease. The identifi cation of specifi c genetic causes for chILD now allows for 
the possibility of non-invasive diagnosis, and provides insight into basic cellular mechanisms that may allow 
the development of novel therapies.

Introduction

Significant advances have been made in the past decade 
in understanding the underlying causes for children’s 

interstitial lung disease (chILD). The observations that lung 
disease often had its onset in early infancy and was pro-
gressive despite maximal medical treatment and that chILD 
was often familial suggested that genetic mechanisms were 
likely to be important in causing chILD.1,2 While historically 
this heterogeneous group of disorders was classifi ed using 
schema modeled after adult disorders and based upon the 
appearance of the lung pathology, specifi c molecular causes 
have been identifi ed such that these disorders are often no 
longer idiopathic in nature. The recognition that specifi c 
genetic mechanisms cause some forms of chILD can allow 
for specifi c noninvasive diagnostic testing, counseling 
families concerning recurrence risks, prediction of natu-
ral history, and for a classifi cation based upon underlying 
mechanisms of disease. These disorders also provide insight 
into normal lung metabolism, and the underlying mecha-
nisms have implications for the pathogenesis of some forms 
of adult ILD and pulmonary fi brosis. The majority of single 
gene disorders identifi ed to date encode proteins important 
in the function and metabolism of pulmonary surfactant, 
but it seems likely that the number of direct genetic causes 
or contributors to chILD will continue to expand and involve 
other pathways.

Overview of Pulmonary Surfactant 
Components and Metabolism

Pulmonary surfactant is the mixture of lipids and pro-
teins needed to reduce alveolar surface tension and prevent 
end-expiratory atelectasis.3 Inadequate production of pul-
monary surfactant is the main cause of the respiratory dis-
tress syndrome (RDS) in prematurely born infants.4 Genetic 
mechanisms disrupting surfactant production and func-
tion can cause diffuse lung disease in full-term infants that 
clinically and radiographically resembles RDS in premature 
infants, although it does not resolve or respond to exogenous 
surfactant replacement.

Surfactant is produced in alveolar type II cells (AEC2s), 
where it is packaged into lysosomally derived organelles 
called lamellar bodies, which are secreted by exocyt-
osis.5 The secreted surfactant complex must adsorb to the 
air–liquid interface and then spread effi ciently in order to 
effectively reduce surface tension. The principal lipid in 
surfactant responsible for its surface tension lowering prop-
erties is disaturated phosphatidylcholine (DSPC). DSPC, 
however, adsorbs very slowly to an air–liquid interface, and 
the presence of 2 extremely hydrophobic proteins, surfactant 
proteins B (SP-B) and C (SP-C), confers important properties 
upon surfactant lipids to allow for proper surface tension 
lowering.6 Pulmonary surfactant also contains 2 other more 
hydrophilic, structurally related proteins, SP-A and SP-D, 
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maximal medical therapy, including surfactant replacement 
and extracorporeal membrane oxygenation. The disease is 
inherited in an autosomal recessive fashion, and the diagno-
sis can be established by the identifi cation of disease-causing 
mutations on both alleles. A frameshift mutation resulting in 
a net insertion of 2 bases into codon 121 and termed 121ins2 
is the most frequently found SFTPB mutation, has accounted 
for about two-third of the mutant alleles identifi ed to date, 
and its occurrence in unrelated subjects is due to a common 
ancestral origin.29,32,33 Currently, lung transplantation is the 
only effective therapy for severely affected infants com-
pletely unable to produce SP-B.34,35 Rare infants have been 
reported who have exhibited a relatively milder course, and 
survived for months to years, and who usually have muta-
tions that allow for some SP-B production.36,37

SFTPC mutations were recognized a cause of intersti-
tial lung disease in 2001.38 The age-of-onset and severity 
of symptoms of individuals with SFTPC mutations vary 
greatly, from severe RDS in neonates to apparent idio-
pathic pulmonary fi brosis in the sixth decade, and adults 
with mutations associated with disease in other family 
members may be asymptomatic.39–44 Young infants typic-
ally present with hypoxemia in room air, failure to thrive, 
and diffuse infi ltrates on chest radiograph. Multiple SFTPC 
mutations have been identifi ed and one mutation (c.218T>C, 
p.I73T) has been found in multiple unrelated families and 
accounted for 25%–35% of the mutant SFTPC alleles iden-
tifi ed to date.39–41,43–48 Apparent de novo SFTPC mutations 
resulting in sporadic lung disease have accounted for about 
half of reported cases of SFTPC-related lung disease. All 
mutations identifi ed to date are predicted to alter the amino 
acid sequence of the SP-C proprotein. Disease is believed 
to result from a toxic gain-of-function mechanism whereby 
mutations cause misfolding of proSP-C, protein aggregation, 
and exposure of hydrophobic epitopes in the endoplasmic 
reticulum (ER). These events elicit the unfolded protein re-
sponse and result in ER stress, with eventual alveolar type II 
cell apoptosis and infl ammation.49–55

The optimal therapies of individuals with SFTPC muta-
tions are unknown. Therapeutic lung lavage in infancy, cor-
ticosteroids, and hydroxychloroquine have been reported 
to improve the clinical status in case reports, but the highly 
variable natural history of the disease makes interpretation 
of these uncontrolled observations diffi cult.43,45,56 No rand-
omized, placebo-controlled nor cross-over studies of these 
treatments have been reported. Lung transplantation has 
been performed in individuals with progressive deterior-
ation in lung function.57

ABCA3 defi ciency is the most recently recognized cause 
of surfactant dysfunction but may be the most common.25,30,58 
The phenotype of the initial population of infants studied 
was similar to that of SP-B defi ciency with severe and gen-
erally fatal RDS. However, the clinical course of patients 
with ABCA3 defi ciency is much more variable than that of 
SP-B defi ciency, and prolonged survival is being increas-
ingly recognized.24,30,44,59–68 While many affected infants 
had symptoms of lung disease in the immediate neonatal 
period, onset of respiratory symptoms later in childhood has 
been recognized.59,64,66 There is extensive allelic heterogene-
ity, with mutations throughout the gene having been identi-
fi ed. Several mutations have been studied in in vitro systems, 
and a classifi cation proposed based upon mutations that 

which are part of the collectin family and have important 
roles in innate immunity.7,8 Surfactant is both recycled back 
into type II cells by incompletely characterized mecha-
nisms, as well as catabolized by alveolar macrophages. 
Maturation of the alveolar macrophages is dependent upon 
signaling by granulocyte–macrophage colony-stimulating 
factor (GM-CSF) through binding to a specifi c receptor on 
the surface of the macrophages.9,10 Reduction in the func-
tional amount of GM-CSF due to autoantibodies results in 
defective macrophage clearance of surfactant components 
from the airspaces and the syndrome of alveolar proteinosis 
in older children and adults.11–13

Surfactant Metabolic Dysfunction Disorders

Mutations in genes encoding 3 different proteins with 
important roles in surfactant function and metabolism, SP-B, 
SP-C, and member A3 of the ATP-binding cassette family of 
transporters (ABCA3), result in lung disease with overlap -
ping clinical, radiographic, and lung histopathological fea-
tures. SP-B is a 79-amino acid extremely hydrophobic protein 
that is encoded by a single gene on chromosome 2 (SFTPB) 
that directs the production of a larger proprotein from which 
the mature SP-B peptide found in the airspaces is generated 
by post-translational proteolytic processing at both the N- 
and C-termini. SP-C is a 35-amino acid extremely hydropho-
bic protein that is encoded by a small gene on chromosome 8 
(SFTPC). Like SP-B, mature SP-C is generated by post-trans-
lational proteolytic processing at both the N- and C-termini 
of a larger precursor protein (proSP-C).14 Both SP-B and 
SP-C are found in mammalian-derived surfactants used for 
replacement therapy in newborns with RDS, and are critical 
for the effectiveness of these products.15 ABCA3 is a member 
of a family of transporters that hydrolyze ATP to move sub-
stances across biological membranes.16 The 1,704-amino acid 
protein contains 2 membrane-spanning and 2 nucleotide-
binding domains, and is encoded by a large gene on chro-
mosome 16 (ABCA3).17,18 ABCA3 is expressed in a number of 
tissues, but most highly in the lung, where it is localized to 
the limiting membrane of lamellar bodies within the alveo-
lar type II cells.19–21 Other members of the ABCA subfamily 
transport lipids, and given its localization, it is likely that 
ABCA3 facilitates the transport of lipids essential for sur-
factant function, in particular DSPC into lamellar bodies, 
a hypothesis that is supported by data derived from obser-
vations in humans and experimental animals.22,23 Reduced 
surface tension-lowering ability and amounts of surfactant 
phospholipids, particularly PC, DSPC, and phosphatidylg-
lycerol (PG), were demonstrated in lung fl uid obtained 
from ABCA3-defi cient infants.24 AEC2s of ABCA3-defi cient 
infants and mice contain small organelles with densely 
packed membranes and eccentrically placed electron-dense 
cores instead of normally formed lamellar bodies, consistent 
with a role for ABCA3 in lamellar body biogenesis.25–27

Human lung disease due to an inability to produce SP-B 
was the fi rst recognized genetic cause of surfactant dys-
function.28 Affected infants are generally full-term and 
 develop symptoms and signs of lung disease within hours 
of birth, and radiographically have diffuse lung disease that 
resembles RDS in prematurely born infants.29–31 The lung 
disease is usually relentlessly progressive, and the major-
ity of affected infants die within 3 months of birth despite 
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Alveolar Capillary Dysplasia with Misalignment 
of the Pulmonary Veins

ACD is a disorder of lung development involving inad-
equate development of the pulmonary capillary bed and 
with pulmonary veins found in the same bronchovascular 
bundles as pulmonary arteries rather than associated with 
pulmonary lymphatics.85–87 Affected infants typically pre-
sent with severe pulmonary hypertension in the neonatal 
period that is unresponsive to medical management and 
ultimately fatal. Rarely, somewhat milder cases with later-
onset presentation and more prolonged survival have been 
reported.88–92 The diagnosis is made primarily through 
histological examination of lung tissue, although cardiac 
catheterization may also be helpful. The incidence is un-
known, but ACD accounted for the majority of cases of lung 
developmental disorders as determined by biopsy in one 
series93 and for 5 of 9 cases of fatal neonatal lung disease in a 
series from the UK.94 Extrapulmonary-associated anomalies 
have been observed in 50%–75% of cases, and the occurrence 
of familial cases supports a genetic mechanism.95

Recently microdeletions in 16q24.1 were found in a group 
of children with lung pathology fi ndings of ACD along with 
other anomalies, including cardiac, gastrointestinal, and 
genitourinary anomalies.96 This region includes the genes 
for several members of the forkhead box (Fox) family of 
transcription factors, and sequence analysis revealed hetero-
zygous loss-of-function FoxF1 mutations in 4 of 18 patients 
with ACD examined, supporting the role of this transcrip-
tion factor in the pathogenesis of the pulmonary phenotype, 
although the mechanism remains unknown.

The FoxF1 mutations and 16q24.1 microdeletions were 
apparent de novo events, and did not account for all of the 
cases of ACD examined. An autosomal recessive pattern of 
inheritance has been implicated in some familial cases of 
ACD, and thus there are almost certainly other genes that 
can result in this phenotype.95 However, these observations 
provide the means for a non-invasive diagnosis in some 
cases, and confi rm one genetic basis for this disorder.

GM-CSF Receptor Defi ciency

One of the histological features of surfactant dysfunc-
tion is an accumulation of granular, eosinophilic material in 
the distal airspaces, a fi nding that resembles what is seen in 
pulmonary alveolar proteinosis (PAP) in adults. The onset 
of symptoms in PAP is usually more insidious and slowly 
progressive, and while the airspaces are fi lled with proteina-
ceous material the underlying lung architecture is generally 
well preserved without the AEC2 hyperplasia, mesenchymal 
thickening, and fi brosis observed with surfactant dysfunction 
disorders. Moreover, the molecular basis for PAP is due to the 
presence of neutralizing antibodies to GM-CSF, leading to 
impairment of alveolar macrophage development and failure 
of the macrophages to properly catabolize surfactant.97 PAP is 
thus a distinct entity clinically, pathologically, and mechanis-
tically, and the term congenital alveolar proteinosis to describe 
newborns with surfactant dysfunction is best avoided.

GM-CSF acts through binding to a specifi c receptor that 
has 2 components, a specifi c α chain and a β chain that is 
also shared by the receptors for IL-3 and IL-5. Ablation of 
the β chain in mice resulted in the phenotype of PAP in 

either preclude ABCA3 production or intracellular transport 
(type I), or impair the ability of protein to bind and/or 
 hydrolyze ATP or transport phospholipids across membranes 
(type II).69–72 One specifi c mutation, the substitution of valine 
for glutamic acid in codon 292 (p.E292V or c.875A>T) has 
been identifi ed in multiple unrelated children with gener-
ally milder disease and the phenotype of chILD. In vitro 
studies indicate that this mutation results in less impairment 
in ABCA3 function than other type II mutations.72 These 
fi ndings support the hypotheses that retained function may 
attenuate disease severity, and that genotype may thus be 
able to predict phenotype to some extent and even a small 
boost in ABCA3 production or function could improve the 
clinical status of such patients. The fi nding that corticoster-
oids increased ABCA3 expression in vitro provide a rationale 
for such treatment, although clinical data beyond anecdotal 
reports supporting the effi cacy of steroids (or other treat-
ments) for individuals with proven ABCA3 defi ciency are 
lacking.73

Thyroid Transcription Factor 1 
Haploinsufficiency

Thyroid transcription factor 1 (TTF1), also known as 
Nkx2.1 or TITF1, is a member of the homeobox family of 
transcription factors that is critically important for the 
expression of multiple genes important in surfactant produc-
tion and function, including those for SP-A, SP-B, SP-C, and 
ABCA3. The gene is located on the long arm of chromosome 
14 (14q13.3), and TTF1 is also expressed in the thyroid gland, 
where it is critical for thyroid development, as well as in the 
central nervous system, particularly in the basal ganglia.

A role for TTF1 in human lung disease was initially 
recognized in full- or near-term neonates with RDS and 
hypothyroidism who had complete deletions of one copy of 
the Nkx2.1 locus.74,75 Subsequently, complete loss-of-function 
mutations on one allele (haploinsuffi ciency) were recognized 
in individuals with a phenotype of hypothyroidism, neuro-
logical manifestations, particularly choreoathetoid move-
ments, and pulmonary disease ranging from neonatal RDS 
to chronic respiratory symptoms in childhood.75–77 TTF1 
mutations were also reported as the cause of benign familial 
chorea, in which the affected individuals were not recog-
nized to have pulmonary symptoms.78–80 The term “brain–
thyroid–lung” syndrome has been used to describe the 
phenotype, although the extent of symptoms related to each 
organ involvement is highly variable, such that patients may 
have normal or borderline thyroid function and normal pul-
monary function by history, although many of the patients 
have not been formally evaluated for lung disease.81–84 Fatal 
lung disease has been reported, and reported lung histopa-
thology fi ndings are consistent with surfactant dysfunction. 
Whether TTF1 mutations can result in a phenotype with 
only pulmonary manifestations is unknown. However as 
thyroid function may be normal, and the initial neurological 
symptoms may be non-specifi c (hypotonia, developmental 
delay) with chorea developing later, it is possible that this 
mechanism is not considered in young infants with chILD. 
The mechanisms for lung disease due to TTF1 haploinsuf-
fi ciency presumably relate to decreased production of sur-
factant components, in particular SP-B, SP-C, and ABCA3, 
but this has not been rigorously examined.
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in other genes not yet established as having a role in sur-
factant metabolism and dysfunction are also a cause of this 
phenotype.

Genetic Approach to Diagnosis

Specifi c features of each chILD disorder with known 
genetic etiologies are summarized in Table 1. The identifi -
cation of specifi c genetic causes of chILD provides a means 
for establishing a diagnosis non-invasively. Timely diagno-
sis will allow for accurate counseling regarding prognosis, 
avoiding unnecessary therapies, and referral for specifi c 
therapies such as lung transplantation if indicated. However, 
clinical genetic testing is expensive, not all disorders have a 
known genetic cause, and not all mutations in a gene are 
detected by current approaches. Interpretation of results of 
genetic testing may not be straightforward. Determination 
of whether novel missense mutations or ones close to splice 
junctions cause lung pathology or are simply rare yet benign 
polymorphisms may not be possible. There is also no easy 
way to distinguish whether a child heterozygous for only 
one SFTPB or ABCA3 disease-causing mutation is affected or 
simply a carrier with a different underlying mechanism for 
disease. Rapidly progressive disease may preclude waiting 
for the results of genetic testing. Lung biopsy thus remains 
important for diagnosis in some patients.

Newborns with hypoxemic respiratory failure and dif-
fuse disease radiographically due to surfactant dysfunc-
tion or ACD are not distinguishable on clinical criteria from 
those with reversible causes of lung disease. A positive 
family history of lung disease, lack of clinical risk factors 
associated with severe lung disease in full-term infants, and 
failure to improve in the expected timeframe should prompt 
consideration of one of these disorders. Extrapulmonary 
organ involvement, including cardiac, gastrointestinal, or 
genitourinary tract anomalies suggests the possibility of 
ACD and FoxF1 haploinsuffi ciency, and hypothyroidism 
or CNS abnormalities suggests TTF1 haploinsuffi ciency. As 
deletions in the regions involving the loci responsible for 
both conditions have been reported, a comparative genomic 
hybridization assay should be considered, along with tar-
geted mutational testing for FoxF1 and TTF1, respectively. If 
the disease solely involves the lungs, mutational analysis for 
ABCA3 and SP-B defi ciencies should be considered. SFTPC 
testing in critically ill neonates should be performed if prior 
testing for ABCA3 and SP-B is negative and a strong index of 
suspicion for surfactant dysfunction persists (Fig. 1). Lung 
biopsy still may be needed in some cases.

As prolonged survival is unusual in children with SP-B 
defi ciency or ACD, testing for SFTPB mutations or FoxF1 
mutations and deletions is likely to have very low yield in 
older children with diffuse lung disease. Genetic testing for 
SFTPC and ABCA3 mutations should be considered in older 
children who present with hypoxemia, failure-to-thrive, 
and/or diffuse lung disease by imaging studies when no 
clear diagnosis has been established. The onset of symp-
toms in the neonatal period favors ABCA3 defi ciency as 
the mechanism, whereas later onset of symptoms is more 
typical of SFTPC mutations, but there is suffi cient overlap 
in the age-of-onset of symptoms that analyzing both genes 
is often necessary, and heterozygosity for an ABCA3 muta-
tion may infl uence the course of patients with SFTPC muta-
tions. Neurological symptoms, particularly choreoathetoid 

homozygous null animals.98,99 Functional defi ciency of β 
chain was reported in 1997 in children with infantile onset 
of PAP, but the early phenotype of these children was not 
consistent with that of PAP, and no convincing defect in 
the gene encoding the β chain (CSF2RB) was identifi ed or 
has yet been reported.100 Clear genetic defects in the gene 
encoding the α chain (CSF2RA), which is located in the pseu-
doautosomal region of the X chromosome, were recently 
reported as a cause for PAP in children.101,102 These reports 
convincingly establish that genetic mechanisms can disrupt 
GM-CSF signaling and result in PAP in childhood. The inci-
dence and prevalence of this disorder are unknown, as are 
the extent of variability in the age of onset due to mutations 
in this pathway. While there may be clinical overlap with 
chILD, the lung pathology is likely to remain distinct from 
that of surfactant dysfunction and other forms of chILD.

Lung disease with features of PAP can also be seen in 
children with lysinuric protein intolerance (LPI), a disorder 
of cationic amino acid transport caused by mutations in the 
solute carrier gene, SLC7A7.103,104 Children affected by this 
autosomal recessive disorder may have episodes of hyper-
ammonemia, recurrent vomiting, and failure to thrive, but 
can present with pulmonary symptoms in infancy.105–107 
While the basic defect for LPI has been elucidated, the mech-
anisms for PAP resulting from this disorder are unknown. 
The recurrence of pulmonary disease in an infant follow-
ing heart–lung transplantation suggests that correcting the 
metabolic defect in pulmonary epithelial cells did not re-
solve the underlying pathophysiology.108

Surfactant Protein A2 and Telomerase Mutations 
in Adults with Familial Pulmonary Fibrosis

Mutations in the genes encoding the components of telom-
erase (TERT, TERC) have been reported as a cause of familial 
pulmonary fi brosis in adults, and recently mutations in one 
of the genes encoding surfactant protein A, SFTPA2, have 
been reported in association with the phenotype of familial 
pulmonary fi brosis and pulmonary adenocarcinoma.109–112 
In addition to synthesizing surfactant components includ-
ing SP-A, AEC2s are the progenitor cells for type I cells 
following lung cell injury, and telomerase is necessary for 
the maintenance of a dividing cell population. While muta-
tions in these genes have not yet been reported as a cause 
of chILD, these observations further support a key role for 
injury to the AEC2 in the pathogenesis of ILD and pulmo-
nary fi brosis.

Pathology

The lung pathology fi ndings associated with surfactant 
dysfunction are discussed elsewhere in this issue. The fi nd-
ings at the level of light microscopy are not specifi c for a 
given disorder, although electron microscopy can be help-
ful in distinguishing SP-B and ABCA3 defi ciencies from 
other causes of surfactant dysfunction. Genetic testing, 
which is now available for many of these disorders in clini-
cal diagnostic labs, is needed to provide a specifi c diagnosis, 
although there are children with lung pathology fi ndings 
of surfactant dysfunction in whom testing for mutations in 
all known genes has proved negative. These observations 
suggest that either genetic variants in regions of the genes 
not examined, such as untranslated regions, or mutations 
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