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Autism Spectrum Disorder (ASD) is one of the most prevalent neurodevelopmental

disorders, affecting an estimated 1 in 59 children. ASD is highly genetically

heterogeneous and may be caused by both inheritable and de novo gene variations.

In the past decade, hundreds of genes have been identified that contribute to the

serious deficits in communication, social cognition, and behavior that patients often

experience. However, these only account for 10–20% of ASD cases, and patients

with similar pathogenic variants may be diagnosed on very different levels of the

spectrum. In this review, we will describe the genetic landscape of ASD and discuss

how genetic modifiers such as copy number variation, single nucleotide polymorphisms,

and epigenetic alterations likely play a key role in modulating the phenotypic spectrum

of ASD patients. We also consider how genetic modifiers can alter convergent signaling

pathways and lead to impaired neural circuitry formation. Lastly, we review sex-linked

modifiers and clinical implications. Further understanding of these mechanisms is crucial

for both comprehending ASD and for developing novel therapies.
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INTRODUCTION

Autism was first described by Kanner (1943) in a detailed report of 11 children with similar unusual
tendencies. Intriguing common symptoms such as improper facilitation of language, indifference
to other people, and obsessive interests can clearly be discerned while reading Kanner’s thorough
patient history. Twenty-three years later, the first epidemiological study of autism estimated
prevalence to be 4.5 per 10,000 individuals. Estimates have since increased drastically to 1 in 59
individuals affected, with at least three times as many males diagnosed as females (Loomes et al.,
2017). This significant increase in prevalence is partially attributable to both increase in awareness
and evolvement of Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria, from a
childhood form of schizophrenia in 1952, to a core diagnosis covering a spectrum of disorders in
the present (Zeldovich, 2018). The changing landscape of factors required for diagnosis makes it
difficult to quantify the actual increase in prevalence.

According to the current DSM-5 criteria, only two core features make up an autism spectrum
disorder (ASD) diagnosis: (1) persistent deficits in social communication and social interaction
across multiple contexts; and (2) restricted, repetitive patterns of behavior, interests, or activities
(Lai et al., 2014). Because of the broad nature of these definitions, an ASD diagnosis often co-occurs
with other conditions. Motor abnormalities (79%), gastrointestinal problems (up to 70%), epilepsy
(up to 30%), intellectual disability (45%), and sleep disorders (50–80%) are common examples
(Lai et al., 2014). Language disorders are frequently co-occurring and were even included in the
DSM-IV criteria.
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Since autism’s identification as a diagnosis, the medical and
scientific community have put immense effort into determining
the risk factors and etiology. In Kanner’s original assessment, he
makes the unfortunate observation that in addition to patients
having highly intelligent parents, “One other fact stands out
prominently. In the whole group, there are very few really warm-
hearted fathers and mothers” (Kanner, 1943). Thankfully, this
“Refrigerator Mother” theory of autism was quickly disproved.
ASD is now understood to be a disease of complex interaction
between genetics and the environment, with heritability estimates
ranging from 40 to 80% (Chaste and Leboyer, 2012). Extensive
genetic studies have revealed hundreds of genes linked to autism.
Epidemiological investigations have begun to elucidate which
environmental factors might be contributing to risk, but there
is a lot left to understand about how they interact with genetic
predisposition to contribute to ASD etiology.

As is often the case with complex diseases, individuals
with similar pathogenic variants may have drastically varying
phenotypes. For example, people with duplications of proximal
15q range from unaffected to severely disabled (Cook et al., 1997;
Bolton et al., 2001). Genetic modifiers – factors that modulate
the expression of other genes – likely exist when individuals
with the same pathogenic variant present on opposite ends of
the spectrum. In this review, we will discuss what is presently
known about the genetic landscape of ASD, then look at potential
modifiers including copy number variation (CNV), double-hit
mutations, epigenetic influences, and sex-linked effects.

GENETICS OF ASD

Identification of Candidate ASD Risk
Genes
Following the classification of autism by Kanner, research efforts
were undertaken to determine the disease etiology. Though
it was initially assumed to be of environmental origin, an
improved understanding of the role of genetics in human
health soon suggested otherwise. In 1977, Folstein and Rutter
(1977) conducted twin studies upon the observation that
incidence among siblings was 50× higher than average. They
found that monozygotic twins were more likely to share a
diagnosis than dizygotic twins, suggesting a genetic influence.
Bailey et al. (1995) supported this finding, documenting 60%
concordance for monozygotic twins versus no concordant
dizygotic pairs. In addition, risk of a child having ASD was
found to be proportional to the percentage of the genome
they shared with an affected sibling or parent (Constantino
et al., 2010; Risch et al., 2014; Sandin et al., 2014). By
the turn of the century, ASD was established to have
some genetic component, though which genes were involved
remained a mystery.

Early karyotype studies documenting chromosomal
abnormalities began to shed light on which regions of the genome
were involved (Gillberg and Wahlström, 1985). Additional
susceptibility loci screens implicated regions on chromosome
7q, 1p, 3q, 16p, and 15q (IMGSAC, 1998; Barrett et al., 1999;
Buxbaum et al., 2001; International Molecular Genetic Study of

Autism Consortium [IMGSAC], 2001; Liu et al., 2001; Auranen
et al., 2002; Lamb et al., 2002; Shao et al., 2003; Risch et al., 2014).
However, to investigate at gene-level resolution, early studies had
to use the candidate approach. Hypothesized targets included
genes from suspected chromosomal regions that played a critical
role in neurodevelopment, such as homeobox (Hox) family
or Wnt genes. Unsurprisingly, many early studies using this
method were largely inconclusive (Krebs et al., 2002; Lamb et al.,
2002; Talebizadeh et al., 2002; Zhang et al., 2002). Starting in
2001, the candidate approach experienced moderate success with
findings supporting reelin (RELN), aristaless related homeobox
(Arx), methyl-CpG binding protein 2 (MeCP2), neuroligin 3
(NLGN3), neuroligin 4 (NLGN4), tuberous sclerosis complex 2
(TSC2), and ubiquitin protein ligase E3A (UBE3A)’s involvement
in ASD etiology (Persico et al., 2001; Strømme et al., 2002;
Carney et al., 2003; Jamain et al., 2003; Serajee et al., 2003;
Jiang et al., 2004).

In the early 2000s, the advent of high throughput sequencing
revolutionized genetic research and enabled investigators to study
ASD on a genome-wide level. Sequencing technology quickly
confirmed that the etiology of ASD was multigenic and highly
heterogeneous, with very few of the same pathogenic variants
present in a significant percentage of afflicted individuals.
It is now known that the average case is a product of
many susceptibility-increasing variations. Only a handful of
ASD-related diseases have monogenic causes, such as Rett
syndrome, fragile X syndrome, tuberous sclerosis, and Schuurs–
Hoeijmakers syndrome (Artuso et al., 2011; Stern et al., 2017;
Woodbury-Smith and Scherer, 2018). Dozens of large-scale
genetic studies have since been conducted on ASD patients
and their families, leading to hundreds of risk genes being
identified.While these proteins have diverse functions, a majority
of reproducible hits come from two broad classes of proteins:
those involved in synapse formation, and those involved in
transcriptional regulation and chromatin-remodeling pathways
(De Rubeis et al., 2014).

Synapse-related risk genes include those encoding cell-
adhesion proteins such as neuroligins, neurexins, and
cadherins; synaptic vesicle cycling proteins synapsin-1
(SYN1) and synapsin-2 (SYN2); ion transport proteins
such as sodium voltage-gated channel alpha subunit 2
(SCN2A), calcium voltage-gated channel subunit alpha1 E
(CACNA1E), calcium voltage-gated channel auxiliary subunit
beta 2 (CACNB2), potassium voltage-gated channel subfamily
Q members 3 and 5 (KCNQ3 and KCNQ5), potassium voltage-
gated channel subfamily D member 2 (KCND2), glutamate
receptor signaling protein SH3 and multiple ankyrin repeat
domains 3 (SHANK3), synaptic Ras GTPase activating protein
1 (SYNGAP1), and gamma-aminobutyric acid type A receptor
gamma3 subunit (GABRG3) (Jamain et al., 2003; Durand et al.,
2012; Schmunk and Gargus, 2013; Giovedí et al., 2014; Stessman
et al., 2017). In vivo data supports the implication of synapse
pathology and abnormal neural network formation in ASD.

Additional susceptibility loci impact transcription of
other proteins through various mechanisms. For example,
multiple studies have found an increased de novo mutation
load in regulatory elements of ASD risk genes in patients
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(Turner et al., 2016, 2017; Short et al., 2018). The broad class of
susceptibility genes that impacts transcription and chromatin-
remodeling pathways includes MeCP2, UBE3A, chromodomain
helicase DNA binding protein 8 (CHD8), activity dependent
neuroprotector homeobox (ADNP), pogo transposable element
derived with ZNF domain (POGZ), fragile X mental retardation
protein (FMRP), and RNA binding forkhead box (RBFOX) genes
(Carney et al., 2003, p. 2; Samaco et al., 2005; De Rubeis et al.,
2014; Stessman et al., 2017; Tran et al., 2019). These pathogenic
variants have the potential to induce extremely widespread
effects. For example, Tran et al. (2019) recently showed that
FMRP and fragile X related protein 1 (FXRP1) mutations can
result in abnormal RNA-editing enzyme activity, resulting in a
global bias for adenosine-to-inosine hypoediting in ASD brains.
Diverse phenotypes that may result are further discussed in the
epigenetics section.

Somatic Mosaicism and ASD Risk

Disease-causing variations were conventionally thought to be
familial/inherited and present in every cell in the body. However,
the role of somaticmosaicism, which is the result of a post-zygotic
DNA mutation, is increasingly being recognized as crucial to
various neurodevelopmental diseases including autism (Poduri
et al., 2013; Ronemus et al., 2014; D’Gama and Walsh, 2018).
During neurogenesis, each progenitor gives rise to roughly five
single nucleotide variants (SNV) per day as the brain rapidly
develops (Bae et al., 2018; D’Gama and Walsh, 2018). Studies
estimate that of de novo pathogenic variations, roughly 5–7% are
postzygotic, though estimates of up to 22% have been reported
(Acuna-Hidalgo et al., 2015; Freed and Pevsner, 2016; Krupp
et al., 2017; Lim et al., 2017). Most mutations are harmless, but
variations in exons can be extremely detrimental. Pathogenic
somatic variations have been connected to ASD, Rett syndrome,
tuberous sclerosis, intellectual disability, schizophrenia, and
many other disorders (Clayton-Smith et al., 2000; Bourdon
et al., 2001; Qin et al., 2010; Gilissen et al., 2014; Acuna-
Hidalgo et al., 2015; Tyburczy et al., 2015; Freed and Pevsner,
2016; Dou et al., 2017; Doyle et al., 2017; Krupp et al., 2017;
D’Gama and Walsh, 2018).

Until recently, our understanding of somatic mosaicism in
ASD was restricted primarily to case reports (Oliveira et al., 2003;
Sauter et al., 2003; Papanikolaou et al., 2006; Havlovicova et al.,
2007; Yurov et al., 2007; Castermans et al., 2008; Kakinuma et al.,
2008; Vorstman et al., 2011). Several recent investigations of
whole exome-sequencing (WES) data from large cohorts have
been instrumental in shaping our understanding of the role
of somatic mosaicism, which is currently estimated to account
for roughly 3–5% of simplex ASD cases (Freed and Pevsner,
2016; Krupp et al., 2017). Lim et al. (2017) used WES analysis
of 5,947 ASD-affected families and determined that somatic
variations in autistic individuals were more likely to be in critical
exons than variations in control siblings. Interestingly, they
found that the pathogenic variants had enhanced expression
in the amygdala, an area critical for emotional response and
social awareness (Rasia-Filho et al., 2000). In another large WES
study, new risk genes identified were enriched in the cerebellum,
which suggests potential coordination difficulty that could be

related to gait disorders common in autistic children (Dou
et al., 2017). Freed and Pevsner (2016) analyzed 2,388 families
and identified an ascertainment bias for pathogenic mosaic
variations in ASD individuals relative to unaffected siblings.
These large-scale sequencing studies of post-zygotic mutations
have both confirmed previously implicated candidate genes, such
as SCN2A, in addition to revealing dozens of new risk genes and
establishing somatic mosaicism as a significant factor in ASD
etiology (Lim et al., 2017).

CNVs Contribute to ASD Susceptibility

Copy number variations (CNVs) are submicroscopic structural
variants in chromosomes that include duplications, deletions,
translocations, and inversions, sometimes stretching several
kilobases (Marshall et al., 2008). CNV can either be inherited or
arise de novo (Thapar and Cooper, 2013). Many genes may be
affected with these changes, but not all are necessarily drivers
of disease. Studies have found a higher load of rare, genic
CNVs in autistic individuals, implicating these variants in ASD
pathology (Sebat et al., 2007; Pinto et al., 2010; Pizzo et al., 2019).
CNV is now understood as an extremely important contributing
factor in ASD susceptibility, and current estimates postulate
that these variations directly cause roughly 10% of ASD cases
(Geschwind, 2011).

Studies of how individual CNVs contribute to ASD have
been done for more frequent structural variants, such as 16p11.2
duplications. The majority of the 25 genes in this region
are highly active during nervous system development and are
critical for proper formation (Blaker-Lee et al., 2012). While
the alteration of many genes involved in development suggests
a mechanism for the diverse symptoms observed in ASD,
Golzio et al. (2012) reported that only one gene in the 16p11.2
region, potassium channel tetramerization domain containing 13
(KCTD13), seems to be the major driver for neuropsychiatric
disease. Duplications or deletions of this gene are thought to
affect synaptic transmission through altered regulation of Ras
homolog family member A (RHOA) (Escamilla et al., 2017).
However, Escamilla et al. (2017) also hypothesized that KCTD13
deletions alone are not likely to be sufficient for disease. Mouse
models suggest another gene in the 16p11.2 region as a driver
of disease – mitogen-activated protein kinase 3 (MAP3) –
with deletions resulting in altered cortical cytoarchitecture and
reduced brain size (Pucilowska et al., 2015). Likely, the real driver
of disease in 16p11.2 duplications or deletions is not from just one
gene, but an interaction of all 25 contributing to susceptibility.
Iyer et al. (2018) systematically investigated interaction between
genes in the 16p11.2 region, using RNAi in Drosophila to test 565
pairwise knockdowns. In addition to 24 modifying interactions
discovered between pairs of genes within the 16p11.2 region,
they also found 46 interactions between 16p11.2 genes and others
involved in neurodevelopment (Iyer et al., 2018). This strongly
suggests that modifying interactions within CNVs result in the
complex phenotypes observed and may not be elucidated from
studies with single genes, a phenomenon that is likely true for
other CNV regions in addition to 16p11.2.

The disease mechanisms of other CNVs are less frequently
studied due to the paucity of commonly affected regions. Even the
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most prevalent ASD-associated CNVs, such as 15q11-13 as well as
16p11.2, are only present in roughly 1% of autism cases (Kumar
et al., 2008; Marshall et al., 2008; Weiss et al., 2008; Marshall
and Scherer, 2012). In addition, there are no known CNVs with
complete penetrance; studies that find CNVs with significant
correlation to ASD often detect non-ASD carriers, or ASD
siblings without the variant (Marshall et al., 2008). One useful
approach in the midst of this heterogeneity is to assess common
functional networks affected. Repeatedly, studies have shown
that autistic individuals have deletions in synaptic genes, such as
SHANK3, dipeptidyl peptidase-like 10 (DPP10), neuroligins, and
neurexins (The Autism Genome Project Consortium et al., 2007;
Marshall et al., 2008; Glessner et al., 2009; Pinto et al., 2010, 2014;
Marshall and Scherer, 2012). Other common functional gene
sets with rare CNVs include those involved in cell proliferation
and development, chromatin regulation, and ubiquitin pathways
(Glessner et al., 2009; Pinto et al., 2010, 2014).

With certain CNVs, copy number dosage appears to
affect disease phenotype. For example, Horev et al. (2011)
observed a dose-dependent effect and change in brain structure
in mice with 16p11.2 deletions and duplications, but this
effect is not as established in humans (Kumar et al., 2008).
Another study investigating CNV in the locus containing
the UBE3A gene also report a positive correlation between
duplication and autistic traits in mice, as well as decreased
glutamatergic synaptic transmission (Smith et al., 2011). In
humans, Stefansson et al. (2014) analyzed a 15q11.2 CNV
region of autistic individuals and found two brain areas with
dose-dependent structural and functional effects. Interestingly,
some non-ASD/schizophrenic controls who were diagnosed
with dyslexia and dystaxia also exhibited the same structural
changes (Stefansson et al., 2014). In another study with
humans, Girirajan et al. (2013) reported a dose-dependent
effect from their microarray analysis with identified CNVs in
ASD-associated genes, finding a positive correlation between
duplication size increase and autism severity increase, but
no correlation between duplication size and non-verbal IQ.
CNV are often critical and complex contributors to ASD
risk, but patients with similar structural variants may have
highly variable phenotypes. Following sections will discuss how
non-causative modifiers play an important role in modulating
CNV pathogenicity.

Epigenetic Regulation and ASD

Genes with epigenetic-modulating functions are highly involved
in ASD susceptibility. A recent review of 215 candidate genes
estimated that 19.5% are epigenetic regulators, suggesting the
potential for diverse disease phenotypes from few pathogenic
variants (Duffney et al., 2018). Another study suggested that
risk genes with high penetrance were typically located in the
nucleus and involved in modulation of expression, or tied to
the protein-protein interaction network essential in guiding
CNS developmental patterning (Casanova et al., 2016). Twin
studies particularly demonstrate the profound ways epigenetics
can modulate disease phenotype; for example, a study of
50 pairs of monozygotic twins discordant for ASD reported
numerous autism-associated differentially methylated regions,

with methylation patterns at some CpG sites common to
symptom groups (Wong et al., 2014).

Though the scientific and medical community still has a great
deal to learn about epigenetic modulation of ASD, patterns have
emerged from large-scale epigenomic studies. Susceptibility loci
often include genes involved in methylation such as KMT2C,
lysine methyltransferase 5B (KMT5B), and lysine demethylase
6B (KDM6B); chromatin remodeling proteins including MeCP2,
CHD8, and POGZ; RNA-binding/splicing proteins such as FMRP
and the RBFOX family, post-translational modification proteins
like UBE3A, mindbomb E3 ubiquitin protein ligase 1 (MIB1); or
transcription factors like ADNP and additional sex combs like
3 (ASXL3) (De Rubeis et al., 2014). Targets of these proteins
can range from few to hundreds, and often include pathways
previously implicated in autism, such as synaptic formation. To
demonstrate how mutations in a single epigenetic regulator can
modify many other risk genes, we will look more in depth at two
key susceptibility genes:MeCP2 and UBE3A.

MeCP2 is a chromatin modifier that is consistently implicated
in ASD. In a healthy individual, the binding action of MeCP2
has been shown to regulate many genes with synaptic function,
such as GABRB3, brain derived neurotrophic factor (BDNF),
distal-less homeobox 5 (DLX5), insulin like growth factor binding
protein 3 (IGFBP3), cyclin dependent kinase like 1 (CDKL1),
protocadherin beta 1 (PCDHB1), protocadherin 7 (PCDH7),
and lin-7 homolog A (LIN7A) (Samaco et al., 2005; Kubota
and Mochizuki, 2016). It also serves post-translational functions
(Cheng and Qiu, 2014). In addition, MeCP2 is the rate-limiting
factor in regulating glutamatergic synapse formation during
development, which implicates its involvement in yet another
important aspect of ASD pathology (Chao et al., 2007). MeCP2
is shown to be reduced in the frontal cortex of ASD individuals
due to increased methylation of its promoter (Samaco et al., 2005;
Nagarajan et al., 2006, 2008).

UBE3A, an E3 ubiquitin protein ligase, is a second important
epigenetic regulator strongly implicated in ASD pathology. It is
modulated by MeCP2, but can be causative on its own (Samaco
et al., 2005, p. 2). UBE3A lies in the chromosomal region 15q11-
13, which is commonly duplicated in autism. Dose-dependent
effects have been positively correlated with reduced excitatory
synaptic transmission, delay of first word, and psychomotor
regression (Guffanti et al., 2011; Smith et al., 2011; Xu et al.,
2018). The mechanism of UBE3A’s pathological activity can be
hypothesized based on its function as a ubiquitin ligase, which
targets proteins for degradation, but research is still revealing
exactly how these dose-dependent impairments occur. Lee et al.
(2014) identified four proteosome-related proteins that were
direct substrates of UBE3A. Overexpression of UBE3A and
one of its substrates, proteasome 26S subunit, non-ATPase 4
(Rpn10), led to increased accumulation of ubiquitinated proteins,
suggesting a proteostatic imbalance. Proteosome health has been
strongly implicated in dendritic spine outgrowth, linking UBE3A
with one of the key pathologies observed in autism (Hamilton
et al., 2012; Puram et al., 2013). Its involvement in Wnt signaling
could also cause significant perturbation during development (Yi
et al., 2017).MeCP2 andUBE3A are just two examples of how one
altered gene can have extremely far-reaching effects.
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Large-scale epigenetic studies have also helped achieve a
broader picture of epigenetic mis-regulation in ASD. Sun et al.
(2016) conducted a histone acetylome-wide association study
on 257 post-mortem prefrontal and temporal cortex samples.
Surprisingly, they found that >68% of both syndromic and
idiopathic cases shared a common acetylome signature at roughly
5,000 enhancer regions (Sun et al., 2016). Intriguingly, a SHANK3
mouse model of autism displayed rescued behavioral phenotypes
when treated with a potent histone deacetylase inhibitor,
reinforcing the role of epigenetics in ASD (Qin et al., 2018).
Ladd-Acosta and coworkers measured over 485,000 CpG loci
in post-mortem brain tissue from 40 individuals and identified
four differentially methylated regions. Three sites were found in
cortical tissue: the proline rich transmembrane protein 1 (PRRT1)
3’ UTR, promoter regions of tetraspanin 32 (TSPAN32), and
C11orf21. The last site, an alternative promoter for succinate
dehydrogenase complex flavoprotein subunit A pseudogene 3
(SDHAP3), was found in cerebellar tissue (Ladd-Acosta et al.,
2014). Affected pathways implied in these studies and others
include synaptic transmission, immune function, ion transport,
andGABAergic genes (Nardone and Elliott, 2016; Sun et al., 2016;
Andrews et al., 2017; Zhubi et al., 2017).

Mor et al. (2015) took a different approach, using small RNA
sequencing data and correlating results to genome-wide DNA
methylation data to find dysregulated miRNAs. miRNAs that
were found to be significantly expressed in the ASD brain were
linked to synaptic function, consistent with data from numerous
other studies. They also discovered a link to the oxytocin
receptor (OXTR) gene, suggesting attenuated OXTR expression
in the autistic brain. This finding was supported by a study that
found fetal membranes from preterm birth had hypermethylated
OXTR, potentially linking an environmental risk factor to a
pathological mechanism (Behnia et al., 2015). Another risk gene
with epigenetic functions is engrailed homeobox 2 (EN2), a
homeobox gene with an unusual methylation pattern in ASD
that has been hypothesized to cause abnormal cerebellar Purkinje
growth (James et al., 2013). The list of ASD risk genes with
epigenetic functions is vast, suggesting a mechanism by which
few mutations can result in widespread misregulation of gene
expression. Because of this, genes with epigenetic functions
and their substrates may be promising targets of therapies. For
example, mutations in FMRP, a chromatin remodeler, result in
widespread gene expression abnormalities, but a recent study
found that inhibition of FMRP target bromodomain containing 4
(BRD4) alleviated many of the disease characteristics (Korb et al.,
2017). Proteins with epigenetic-regulating function may also be
key targets of disease modifiers, a concept that will be discussed
later in this review.

ASD Risk Genes Overlap With Other
Diseases
Large-scale sequencing studies of major psychiatric diseases
have revealed extensive overlap in risk loci, challenging the
classification of these conditions as distinctive disorders. In
2013, the Cross-Disorder Group of the Psychiatric Genomics
Consortium (PGC) conducted a massive study with 33,332 cases

and 27,888 controls in order to identify pathogenic variants
shared between ASD, schizophrenia, bipolar disorder, ADHD,
and major depressive disorder (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013; Cross-Disorder Group
of the Psychiatric Genomics Consortium et al., 2013). In addition
to establishing varying degrees of pair-wise crossover, they
found loci that reached genome-wide significance for all five
disorders near the following genes: inter-alpha-trypsin inhibitor
heavy chain 3 (ITIH3), arsenite methyltransferase (AS3MT),
calcium voltage-gated channel subunit alpha1 C (CACNA1C),
and CACNB2. Glessner et al. (2017) have also conducted
a large-scale meta-analysis of structural variants across the
same diseases and correlated structural variants in the loci
of dedicator of cytokinesis 8 (DOCK8) and KN motif and
ankyrin repeat domains 1 (KANK1) with all five conditions.
Schork et al. (2019) recently hypothesized that abnormal gene
regulation in radial glia and interneurons during mid-gestation
is a mechanism of shared risk, after using GWAS to identify
susceptibility loci in genes including phosphodiesterase 1A
(PDE1A), protein phosphatase 1 regulatory inhibitor subunit
1C (PPP1R1C), RHOA, immunoglobulin superfamily member
11 (IGSF11), and sortilin related VPS10 domain containing
receptor 3 (SORC3).

Studies also report shared susceptibility genes across a
more restricted set of psychiatric diseases. For example, ASD,
intellectual disability (ID), and schizophrenia have been found
to share risk loci in FMRP targets, CHD5, CHD8, SCN2A,
and neurexin 1 (NRXN1) (Iossifov et al., 2014; Wang et al.,
2019). Wang et al. (2019) also found commonalities across
ASD, ID, and bipolar disorder with increased incidence of
de novo pathogenic variants in periodic circadian regulator 1
(PER1) and lysine methyltransferase 2C (KMT2C). Khanzada
et al. (2017) found 23 susceptibility genes common to ASD,
bipolar disorder, and schizophrenia including dopamine receptor
D2 (DRD2), cholinergic receptor nicotinic alpha 7 subunit
(CHRNA7), 5-hydroxytryptamine receptor 2A (HTR2A), solute
carrier family 6member 3 (SLC6A3), and tryptophan hydroxylase
2 (TPH2). Hit genes were primarily involved in dopamine
and serotonin homeostasis, suggesting a potential mechanism
for abnormal emotional regulation observed across all three
disorders (Khanzada et al., 2017). The immense crossover
revealed in these studies intriguingly suggests some level of
shared etiology across psychiatric conditions, despite having
clinically distinct presentations.

Of the four other diseases assessed in the PGC study,
the most highly correlated disease to ASD was schizophrenia
(Cross-Disorder Group of the Psychiatric Genomics Consortium
et al., 2013). Previous epidemiological studies had suggested
their linkage, reporting increased risk of ASD in children with
schizophrenic parents and significant co-morbidity of child-
onset schizophrenia and autism (Rapoport et al., 2009; Sullivan
et al., 2012). A follow-up report to the 2013 PGC study
estimated genetic correlation between the two diseases to be
23%, with shared risk loci including several genes involved in
neurodevelopment, such as forkhead box P1 (FOXP1), exostosin
glycosyltransferase 1 (EXT1), astrotactin 2 (ASTN2), mono-
ADP ribosylase 2 (MACROD2), and histone deacetylase 4
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(HDAC4) (The Autism Spectrum Disorders Working Group
of The Psychiatric Genomics Consortium, 2017). In addition
to susceptibility genes involved in neurodevelopment, other
studies have also reported shared susceptibility in genes affecting
chromatin remodeling, oxidative stress response, and lipid
metabolism (McCarthy et al., 2014; Lim et al., 2017).

Many studies have also found a significant correlation between
autistic and ADHD scored traits. This includes a study of
autistic symptoms in ADHD probands and siblings, autistic trait
correlation in an ADHD twin sample, and an association between
autistic and ADHD traits in the general population (Reiersen
et al., 2007; Ronald et al., 2008; Mulligan et al., 2009; Stergiakouli
et al., 2017). Nijmeijer et al. (2010) identified five specific genetic
loci that were associated with ASD traits in children with ADHD:
7q36, 16p13, 18p11, 15q24, and 12q24. A study investigating the
overlap of pathological structural variants in ADHD and ASD
found significant overlap in genes related to a wide variety of
processes, including the nicotinic receptor signaling pathway and
cell division (Martin et al., 2014). The shared heritability of ASD
and ADHD is still being explored, and is further discussed in a
review by Rommelse et al. (2010).

Since ASD is a multigenic and highly heterogeneous disease
that often co-occurs with other conditions, it can be difficult to
distinguish which genes truly have overlapping risk for multiple
psychiatric conditions, and which variations are responsible for
the common disease phenotypes. For example, the ubiquitin
ligase gene UBE3A is implicated in both autism and Angelman
Syndrome, a condition distinct from ASD but with similar
symptoms, such as movement and speech defects. Interestingly,
Angelman Syndrome is generally associated with UBE3A
deletions, while ASD can be caused by duplications – yet the
same individual can be diagnosed with both syndromes (Peters
et al., 2004; Williams et al., 2010; Smith et al., 2011; Kalsner
and Chamberlain, 2015; Yi et al., 2015). Another example is
intellectual disability, which co-occurs with autism in roughly
45% of cases (Lai et al., 2014). Multiple studies have found
that ASD and intellectual disability share risk loci (Pinto et al.,
2010; McCarthy et al., 2014), but overlapping phenotypes are
a potentially confounding factor. Similarly, other risk genes for
ASD are epigenetic regulators whose effectors are associated
with different diseases (Samaco et al., 2005; Pinto et al., 2010;
Michaelson et al., 2017). The interaction and overlap between
psychiatric disorders is complex, and much is left to discern
regarding shared disease mechanisms.

MODIFIERS IN ASD

Genetic Modifiers
Though significant progress has been made in determining
genetic causes of ASD, many aspects of how pathogenic variants
regulate genetic susceptibility remain unknown. Individuals
with the same variants can have widely heterogeneous disease
presentations and levels of disability. Presence of second
modulating variants that may interact with other susceptibility
loci are one possible explanation of this heterogeneity. This
“second hit” could be somatic – a phenomenon first proposed
to cause disease by Alfred Knudson in the context of

retinoblastomas – or in the germline, a “two-locus model”
previously explored in conditions such as Hirschprung disease
(Knudson, 1971; Fisher and Scambler, 1994; McCallion et al.,
2003). To date, genetic evidence supporting a multiplex theory
of autism has primarily been found for germline second-hits.
Studies with CNVs will be discussed first, followed by a brief
overview of known modulating SNPs. These investigations of
how non-causative variants may modify the ASD phenotype are
challenging to undertake, as few autistic individuals have the
same pathogenic variants. In addition, there is not yet a complete
understanding of which CNVs and SNPs are pathogenic in ASD.

One way to circumvent these issues is to investigate an autism
subtype with a monogenic cause, such as Rett Syndrome. Artuso
et al. (2011) used this strategy and identified 15 “likely” and
14 “unlikely” modulators of the RTT phenotype based on array
comparative genome hybridization with eight RTT subjects.
Another valuable approach is to assess monozygotic twins with
a discordant phenotype. Several studies have assessed potential
differences in CNVs or epigenetic regulation in discordant
monozygotic twins, revealing potential methylation pattern
differences in one case and anomalies in the 2p25.3 region in
another (Bruder et al., 2008; Kunio et al., 2013; Rio et al.,
2013). However, a study involving 100 twin pairs failed to
find differences in CNVs that could explain the discordant
phenotypes (Stamouli et al., 2018). The authors still acknowledge
postzygotic mosaicism as a potential modifier and encourage
more studies to help develop a clearer understanding of CNV
modulating activity.

A handful of reports also exist of putative modifying CNVs
in polygenic ASD cases with unrelated subjects. For example,
Girirajan et al. (2012) found that children with two CNVs
not known to be pathological were eight times more likely
to be diagnosed with developmental delay than controls. In
the same year, a study of SHANK2 pathogenic variants found
abnormalities in both individuals with neuropsychiatric disease
and controls, suggesting the presence of additional variants
in order to cause disease. Three of the patients with de
novo SHANK2 mutations were also found to have deletions
of CHRNA7 and cytoplasmic FMR1 interacting protein 1
(CYFIP1) – both previously implicated in ASD – supporting
a “multiple-hit” model of autism (Leblond et al., 2012).
CHRNA7 was also suggested as a potential modifier in an
earlier study by Szafranski et al. (2010). Barber et al. (2013)
provided further support for a multiple-loci model of ASD
upon finding that patients with 16p12.1 duplications had a
more severe phenotype when a second large CNV was present.
Included in these hypothesized modifier regions were genes G
protein regulated inducer of neurite outgrowth 2 (GPRIN2) –
previously implicated as a modifier in the study by Artuso
et al. (2011) – and steroid sulfatase (STS), which was formerly
thought to be non-causative (Li et al., 2010). More recently,
an analysis of 20,226 patient records revealed 19 patients
with CNVs in contactin 6 (CNTN6), a gene hypothesized to
be involved in neurodevelopmental disorders including ASD
(Repnikova et al., 2019). The authors were not able to find
any significant genotype-phenotype relationships and concluded
that CNV in CNTN6 were likely benign or modifying, but not
causative of disease.
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In addition to CNVs, there may be thousands of smaller
pathogenic variants – such as SNPs and indels – that also
modulate severity. For example, in a study of developmental
delay, individuals that only carried a specific 16p12.1
microdeletion had a less severe phenotype than individuals
with random second variants (Girirajan et al., 2010). One
study of individuals with 22q11.2 deletion syndrome – all
haploinsufficient for an mGluR network gene – found that 20%
who were co-diagnosed with autism had second-hit pathogenic
variants, while only 2% of 22q11DS individuals without autism
had second hits (Wenger et al., 2016). Bonnet-Brilhault et al.
(2016) assessed a family affected with ID and ASD due to
NLGN4X pathogenic variants and found that individuals with
ASD – but not ID or controls – had second-hit variants in
glycine receptor beta (GRLB) and ankyrin 3 (ANK3). Additional
evidence may exist, but GWAS and WES studies have tended to
focus on causative susceptibility loci. Therefore, other variants
which are not causative by themselves are not often emphasized
or even reported. The emerging study of all types of genetic
modifiers is a relatively recent development, and continuing
advancements in sequencing technology, analyzing software, and
expansion of databases should lay the framework for significant
advancements in the near future.

Epigenetics and the Environment
Autism susceptibility is currently estimated to be 40–80%
genetic. Environmental factors – likely acting through
epigenetic regulation as the major mechanism – presumably
compromise the remainder of the risk. Hundreds of potential
environmental factors have been suggested to contribute to risk,
such as increased parental age (especially paternal), maternal
complications or infections during pregnancy, or prenatal
exposure to anticonvulsants (Rasalam et al., 2005; Kong et al.,
2012; O’Roak et al., 2012; Ohkawara et al., 2015). In-depth
reviews of these findings can be found elsewhere (Gardener et al.,
2009; Chaste and Leboyer, 2012; Liu et al., 2016; Karimi et al.,
2017; Modabbernia et al., 2017; Bölte et al., 2019). In this review,
we will only discuss the epigenetic modifying effects of valproic
acid – an anticonvulsant – as one example of the widespread
modifications that an environmental factor can induce. Valproic
acid has been hypothesized to modify gene expression through
histone deacetylase inhibition activity and is sometimes used to
induce an autistic phenotype in animal models (Kataoka et al.,
2013). Examples of its far-reaching effects include apoptotic cell
death in the neocortex, decreased proliferation in the ganglionic
eminence, increased homeobox A1 (HOXA1) expression,
abnormal serotonergic differentiation via Achaete-Scute family
BHLH transcription factor 1 (ASCL1) silencing, disrupted
serotonin homeostasis in the amygdala, dendritic spine loss,
reduced prefrontal dopaminergic activity, and disruption of
the glutamatergic/GABAergic balance (Stodgell et al., 2006;
Dufour-Rainfray et al., 2010; Kataoka et al., 2013; Wang et al.,
2013; Jacob et al., 2014; Takuma et al., 2014; Hara et al., 2015;
Iijima et al., 2016; Mahmood et al., 2018).

In more thorough studies of the mechanism of action,
Go et al. (2012) found that rats exposed to valproic acid in
utero presented enhanced proliferation of neural progenitors

and delayed neurogenesis by upregulating Wnt1 expression
and activating the GSK-3β/β-catenin pathway, leading to
macrocephaly. Another study found that valproic acid increased
BDNF by two transcriptional mechanisms involving MeCP2
and tissue plasminogen activator (tPA). This increase in BDNF
is proposed to alter neurite outgrowth, impairing synapse
formation (Ko et al., 2018). Finally, Kolozsi et al. (2009) observed
a downregulation of NLGN3 – a highly implicated autism risk
gene involved in synapse formation – in both hippocampal
and somatosensory cortex of valproate-exposed mice. Examples
of other proposed environmentally modulated mechanisms of
ASD risk exist, but the literature supporting valproic acid is an
excellent example of the heterogeneous effects one environmental
factor can induce. Further research is strongly needed to
determine how the environment modulates ASD risk.

Clearly, epigenetics can have a profound impact on the
transcriptome of an organism. Pathogenic variants in even one
epigenetic-regulating gene or effects from the environment can
cause widespread gene dysregulation. Epigenetic modulators can
themselves be causative of disease, but they may also exacerbate
or ameliorate the disease phenotype by influencing expression of
risk genes. More genome-wide studies are needed to understand
the common ASD epigenome, and whether certain epigenetic
markings might be protective or detrimental to individuals who
are genetically susceptible. In addition, more studies are needed
to decipher epigenetics as a link between environmental risk
factors and genetic susceptibility. There is a possibility that
certain environmental factors could have protective epigenetic
effects, providing potential avenues for therapy.

Sex-Linked Modifiers
It is well established that ASD affects males at much higher rates
than females. The reasons for this are not yet completely clear.
Some studies argue that differential expression between genders
may result in an under-diagnosis of females, as males tend to
present more external behavior (e.g., aggression or increased
repetitive behavior) and females tend to present more internal
behavior (e.g., depression and avoiding demands) (Werling and
Geschwind, 2013). While this may contribute to the rates of
diagnosis, other possibilities include that the female sex is
protective and/or males are particularly vulnerable. This may be
due to influence from hormones, genetics, or other unknown
factors. The genetically heterogeneous nature of ASD makes
it likely that all these elements are involved – sex bias varies
drastically based on factors such as which CNVs are causative
or which comorbidities are present, suggesting diverse means by
which a sex bias may occur (Amiet et al., 2008; Polyak et al.,
2015). Potential mechanisms of sex-specific modulation will be
discussed briefly, although more thorough reviews are available
elsewhere (Ferri et al., 2018).

Multiple studies argue that the female sex is protective
toward ASD susceptibility (Robinson et al., 2013; Pinto et al.,
2014). For example, the average mutational burden in diagnosed
females is much higher than in males, suggesting that males
have a lower mutational burden threshold (Jacquemont et al.,
2014; Desachy et al., 2015). Another study by Robinson et al.
(2013) investigated nearly 10,000 dizygotic autistic twin pairs and
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FIGURE 1 | Genetic modifiers in autism spectrum disorder. Autism is estimated to be 40–80% heritable. However, both genetic and non-genetic factors modulate

the penetrance of risk genes, resulting in a highly heterogeneous disease phenotype for similar pathogenic variants. Examples of genetic modulators include CNV,

epigenetics, and double-hit mutations. Examples of non-genetic modifiers include environmental exposures and sex-linked modifiers.

found that siblings of female probands had significantly worse
symptoms than siblings of male probands. Many investigations
have also found that unaffected mothers may carry the same
mutation as their affected male children. One particularly well-
documented example for this is the 15q11-13 duplication (Cook
et al., 1997; Schroer et al., 1998; Gurrieri et al., 1999; Boyar
et al., 2001). This region codes for GABAA receptors, which
is supported by the observation of perturbed GABA signaling
in ASD (Al-Otaish et al., 2018). The discovery that estrogens
rescue ASD phenotypes in both zebrafish and mouse models of
autism is an especially convincing piece of evidence for the female
protective theory (Macrì et al., 2010; Hoffman et al., 2016).

It is also possible that the female sex is not protective,
but males are particularly vulnerable. Three studies of gene
expression patterns noted males generally had a higher
expression of genes implicated in ASD, such as chromatin
regulators and genes related to immune involvement (Ziats and
Rennert, 2013; Shi et al., 2016; Werling et al., 2016). A study
with rat models of ASD reported male-specific downregulation
of MeCP2 leading to abnormal glutamate activity, providing
another potential mechanism for male-specific vulnerability
(Kim et al., 2016). Interestingly, multiple studies have found
decreased levels of aromatase – an enzyme that catalyzes
the conversion of testosterone to estradiol – in the brains
of adolescent ASD individuals (Sarachana et al., 2011; Crider
et al., 2014). Decreased aromatase has also been associated with
decreased RAR-related orphan receptor A (RORA), an ASD-
associated gene that is oppositely regulated by male and female
hormones (Nguyen et al., 2010; Sarachana et al., 2011). Hu
et al. (2015) found a much stronger correlation between RORA
expression and that of its targets in the cortex of male mice

relative to female mice, suggesting that RORA-deficient males
may have greater dysregulation of genes than females.

Of course, there may also be a combination of female-
specific protective and male-specific deleterious effects. For
example, Jung et al. (2018) recently assessed sexually dimorphic
traits in a CHD8+/N2373K mouse model of autism. While male
mice demonstrated abnormal social behaviors such as isolation-
induced self-grooming, female behavior was similar to controls.
Neuronal excitability was also enhanced in males and suppressed
in females. Transcriptomes were distinct, with female mice
revealing an enrichment for ECM molecules, likely providing a
protective effect.

A likely mechanism of divergent modulation is from
differential effects of sex hormones, which have been
hypothesized to play an important role in ASD pathology
for both males and females (Baron-Cohen et al., 2005, 2015;
Whitehouse et al., 2010; Honk et al., 2011; Ferri et al., 2018). For
example, testosterone and estrogen have been shown to have
contrasting effects on the immune system (Lenz et al., 2013;
Roved et al., 2017), which has been repeatedly shown to play a
pathological role in ASD (Estes and McAllister, 2015; Koyama
and Ikegaya, 2015; Kim et al., 2017; McCarthy and Wright, 2017;
Nadeem et al., 2019). Schwarz et al. (2011) analyzed biomarkers
from individuals with Asperger’s syndrome and found 24
male-specific and 17 female-specific hits, including many
immune-related molecules. Spine density, another phenotype
strongly implicated in autism (Comery et al., 1997; Irwin et al.,
2001; Hutsler and Zhang, 2010; Durand et al., 2012; Takuma
et al., 2014; Tang et al., 2014; Liu et al., 2017a,b; Soltani et al.,
2017), is also affected by testosterone (Hatanaka et al., 2015).
Key molecules involved in neurotransmission such as GABA,
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glutamate, serotonin, and BDNF are all implicated in ASD and
modulated by sex hormones (Kim et al., 2016, p. 2; Saghazadeh
and Rezaei, 2017; Al-Otaish et al., 2018; Edwards et al., 2018; Ferri
et al., 2018; Garbarino et al., 2018; Zieminska et al., 2018). It is
not yet clear whether the majority of differences between male
and female presentation of ASD arise from differential regulatory
actions of sex hormones or from othermodifiers, but the presence
of a sexually dimorphic phenotype is well established. Future
research will likely elucidate a clearer picture of the identity and
mechanisms of sex-specific modifiers.

CLINICAL IMPLICATIONS AND FUTURE
PERSPECTIVES

When autism was first described, it was hypothesized to
be an environmentally caused disease. Decades of research
have since revealed that autism is a highly heterogeneous
and extremely complex genetic condition. Even though
great progress had been made in identifying hundreds of
risk genes, very little is known about the different types
of modifiers that may exacerbate or ameliorate disease
severity. Such modifiers could include epigenetics, sex-linked
modifiers, CNVs, double-hit mutations, or environmental
factors (see Figure 1).

It may take many more decades of research before the
scientific community has an accurate picture of how these
modulators contribute to the etiology of ASD. However, this

understanding is critical for the development of effective
therapies. Due to the extremely diverse genetic phenotype of
patients, personalized medicine may be a future avenue for
maximally effective treatment. A condensed series of genetic
tests – such as a microarray with identified risk loci – could be
an expedient and cost-effective solution to determining genetic
etiology. Alternatively, therapies may be developed to address
convergent disease phenotypes that encompass multiple genetic
etiologies, such as neuronal hyperexcitability and abnormal
synaptic function. Autism research has come astonishingly far
in just a half a century. There is much more work to be done,
but continued investigation will eventually lead to a cohesive
understanding of the interplay between causative genetic factors
and disease modifiers in the etiology of ASD.
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