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Abstract

Sorghum bicolor, a photosynthetically efficient C4 grass, represents an important source of grain, forage, fermentable sugars, and cellulosic
fibers that can be utilized in myriad applications ranging from bioenergy to bioindustrial feedstocks. Sorghum’s efficient fixation of carbon
per unit time per unit area per unit input has led to its classification as a preferred biomass crop highlighted by its designation as an ad-
vanced biofuel by the U.S. Department of Energy. Due to its extensive genetic diversity and worldwide colonization, sorghum has consider-
able diversity for a range of phenotypes influencing productivity, composition, and sink/source dynamics. To dissect the genetic basis of
these key traits, we present a sorghum carbon-partitioning nested association mapping (NAM) population generated by crossing 11 di-
verse founder lines with Grassl as the single recurrent female. By exploiting existing variation among cellulosic, forage, sweet, and grain
sorghum carbon partitioning regimes, the sorghum carbon-partitioning NAM population will allow the identification of important biomass-
associated traits, elucidate the genetic architecture underlying carbon partitioning and improve our understanding of the genetic determi-
nants affecting unique phenotypes within Poaceae. We contrast this NAM population with an existing grain population generated using
Tx430 as the recurrent female. Genotypic data are assessed for quality by examining variant density, nucleotide diversity, linkage decay,
and are validated using pericarp and testa phenotypes to map known genes affecting these phenotypes. We release the 11-family NAM
population along with corresponding genomic data for use in genetic, genomic, and agronomic studies with a focus on carbon-
partitioning regimes.

Keywords: nested association mapping; pericarp color; genome-wide association study; genotype-by-sequencing; carbon-partitioning;
multiparental populations; MPP

Introduction
Current plant resources leveraged for rapid carbon accumulation
often target C4 grasses due to their highly efficient photosynthetic
pathways that effectively assimilate carbon (Carpita and McCann
2008). The C4 photosynthetic pathway is more efficient at using
light, water, and nutrient resources for assimilating CO2 than the
C3 photosynthetic pathway (Sage and Monson 1998). This is a re-
sult of biochemical and anatomical modifications that allow CO2

to be concentrated in bundle sheath cells of the leaf, supporting
greater rates of carboxylation and lower rates of oxygenation by
RuBisCO (Sage and Monson 1998; Edwards et al. 2010; Ermakova
et al. 2020). Plants exhibiting C4 photosynthesis account for ap-
proximately 25% of terrestrial photosynthesis but compose only
about 3% of all vascular plants (Edwards et al. 2010). With grasses

composing approximately 60% of C4 species and capable of rap-
idly accumulating significant biomass, they are prime candidates
for maximizing carbon acquisition and biomass allocation
(Edwards et al. 2010; Olson et al. 2012).

Grass species with C4 photosynthesis such as maize (Zea mays L.),
pearl millet [Pennisetum glaucum (L.) R. Br.], sorghum [Sorghum bicolor
(L.) Moench], sugarcane (Saccharum officinarum L.), and switchgrass
(Panicum virgatum L.) are among the most prominent grasses utilized
in bioenergy production due to their high yields, water-use effi-
ciency, and leaf-level nitrogen-use efficiency (Rooney et al. 2007; Byrt
et al. 2011). C4 plants can achieve a higher leaf area production rate
at lower leaf nitrogen levels, less fertilizer may also be used, thereby
reducing nitrous oxide emissions—a major constituent of global
greenhouse gases (Sage and Zhu 2011). Similarly, grasses provide
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the vast majority of direct and indirect calories for people worldwide
(Pingali 2015), and scientists have historically targeted the mecha-
nisms of domestication (Doebley et al. 2006), inflorescence im-
provement (Krizek and Fletcher 2005), and increased yield
(Wallace et al. 2018), which are all entirely or partly tied to the
plant’s reproductive capacity (Huang et al. 2016; Nadolska-Orczyk
et al. 2017; Hunt et al. 2018; Juliana et al. 2019). However, this hyper-
intense focus on plant reproductive architecture and higher har-
vest index in the 20th century may have precluded a more holistic
understanding of sink/source dynamics and compositional com-
ponents (MacNeill et al. 2017).

Sorghum offers excellent water-use efficiency (Enciso et al.
2015), nitrogen-use efficiency (Gardner et al. 1994), genomic sim-
plicity (Paterson et al. 2009; Goodstein et al. 2012), phenotypic diver-
sity (Calvi~no and Messing 2012), has established genomic tools and
resources (Brenton et al. 2016; McCormick et al. 2018; Boyles et al.
2019; Mace et al. 2019), and sorghum can serve as a dual-purpose
crop (van der Weijde et al. 2013). The original domestication of sor-
ghum in the Sahel region of sub-Saharan Africa—and potentially
additional domestication events (Paterson et al. 1997)—combined
with its subsequent worldwide distribution across both latitudinal
and longitudinal gradients have created immense genetic and
phenotypic diversity which various cultures and communities
have continued to propagate, select, and utilize for both profit and
livelihood (Morris et al. 2013a; Lasky et al. 2015; Smith et al. 2019).
This selection process has resulted in the diversification of sor-
ghum into five botanical races (bicolor, caudatum, durra, guinea,
and kafir) based on a combination of panicle architecture and seed
characteristics as well as the definition of multiple types based on
final process utilization (Klein et al. 2015). The different types may
be classified based on variations in carbohydrate—i.e., carbon—
partitioning regimes, and these types include:

• cellulosic sorghum (carbon primarily partitioned to the
stem)—originally bred in the 1920s (Vinall et al. 1936), again in
the 1970s (Lipinsky and Kresovich 1980), and most recently in
the 2010s—is mainly produced for cellulosic fibers that can be
incorporated into bioenergy and bioindustrial processes
(Rooney et al. 2007)

• forage sorghum (leaves), which is utilized in forage or silage sys-
tems for ruminant agricultural production (Bhattarai et al. 2019)

• grain (starch) sorghum is the most prevalent among the sor-
ghum types and used for feed and food (Boyles et al. 2016;
Sapkota et al. 2020), but may also be used in ethanol produc-
tion through the conversion of starch stored in the grain (Wu
et al. 2010)

• sweet (nonstructural sugars) sorghum is selected and bred for
the extraction of simplified sugars (i.e., sucrose, fructose, and
glucose) in the stem (Murray et al. 2009; Brenton et al. 2020)

While differences in carbon partitioning, translocation, and stor-
age are also common among the other grasses, the mechanisms
mediating these differences on a broad scale are unclear (Vogel
2008; MacNeill et al. 2017; Hartmann et al. 2020).

In contrast to the varying ploidy levels in sugarcane (2n¼ 20 to
200), sorghum is a diploid species (2n¼ 20) with an approximately
730 Mb genome making it a simpler model for genomic research,
and in contrast to maize, sweet sorghum can both yield high bio-
mass and has been intensively bred to accumulate fermentable
sugars—primarily sucrose—in their stems (Calvi~no and Messing
2012). Both corn and sugarcane are also very energy and water in-
tensive, whereas sorghum’s high water-use efficiency allows it to
be grown on marginal or nonarable land (Ali et al. 2008). The

accumulation of fermentable sugars in sweet sorghum is benefi-
cial since ethanol produced from cellulose has a higher produc-
tion cost compared to ethanol produced from fermentable sugars
(Calvi~no and Messing 2012). Sweet and cellulosic sorghums dem-
onstrate a significant range in compositional traits and are
amendable to significant modifications in carbon partitioning be-
tween structural and nonstructural carbohydrate composition
(Zhao et al. 2009; Mullet et al. 2014; Brenton et al. 2016).

Nested association mapping (NAM) populations are a type of
multiparent population generated by crossing several diverse
founders with one recurrent parent (Buckler et al. 2009; Ladejobi
et al. 2016). Because the chance of recombination is lower over
short genetic distances and a specific number of generations, the
genomes of the resulting recombinant inbred-lines (RILs) contain
chromosomal segments that are a mixture of their parental
genomes (Stich 2009). In contrast to diversity panels, NAM popu-
lations require a fewer number of SNPs for whole-genome scans,
have higher statistical power, are less sensitive to genetic hetero-
geneity, and use marker information more efficiently while main-
taining high-allele richness (Yu and Buckler 2006). As such, NAM
populations have been used in a variety of plant systems includ-
ing maize (Yu et al. 2008; McMullen et al. 2009), barley (Maurer
et al. 2015), wheat (Bajgain et al. 2016), rice (Fragoso et al. 2017),
Brassica napus (Hu et al. 2018), and sorghum (Marla et al. 2019).

The development of the Sorghum Carbon-Partitioning NAM
(CP-NAM) population involved the collection of phenotypically
and genetically diverse accessions from the Sorghum Bioenergy
Association Panel (BAP) (Brenton et al. 2016; Flinn et al. 2020) such
that all five of the major botanical races are represented as well
as the four major types. Several of these accessions are also pho-
toperiod sensitive. Photoperiod sensitivity is well-documented in
sorghum (Quinby 1967; Major et al. 1990; Rooney and Aydin 1999)
and is known to be regulated by at least six maturity genes, Ma1–
Ma6 (Rooney and Aydin 1999). Photoperiod sensitive sorghum do
not transition to reproductive growth until day lengths fall below
approximately 12 h 20 min, allowing for the increased accumula-
tion of structural and nonstructural carbohydrates (Rooney and
Aydin 1999). As such, these accessions represent extremes in
their ability to accumulate and partition carbon.

The recurrent parent, Grassl, was selected due to its ability to
accumulate substantial biomass and fermentable carbohydrates
per unit time and area (Kresovich et al. 1988). Grassl is also highly
resistant to Peronosclerospora sorghi and Puccinia purpurea, resistant
to Sporisorium [Sphacelotheca] reiliana and tolerant to the maize
dwarf mosaic virus (Kresovich et al. 1988). The construction of
this NAM complements the existing sorghum resources and the
ongoing reference genome assemblies, pan-genomics projects,
and database development which should increase the utility and
accessibility for researchers worldwide (Boyles et al. 2019). The in-
corporation of photoperiod sensitive, nontemperately adapted
material provides germplasm that is not confounded by the prev-
alence of dwarfing and photoperiod insensitive alleles (Wang
et al. 2020). Here, we perform a quality assessment of the CP-
NAM as a genomic resource and validate the population for use
in genomic studies using pericarp and testa phenotypes as posi-
tive controls to map known genes affecting these phenotypes.

Materials and methods
Plant materials and phenotyping
The CP-NAM parents were grown in Florence, South Carolina, at
the Clemson University Pee Dee Research and Education Center
in 2013 and 2014 with two complete randomized blocks planted

2 | G3, 2021, Vol. 11, No. 4

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/4/jkab060/6157831 by U

.S. D
epartm

ent of Justice user on 17 August 2022



each year as a part of work done by Brenton et al. (2016). As ma-
ture plant height exceeded irrigation pivot height in many acces-
sions, irrigation was halted approximately 90 days after planting.
Seed treatment was performed as described in Brenton et al.
(2016). The selected traits included anthesis date, stalk weight,
leaf weight, panicle weight, juice weight, brix, wet weight, dry
weight, total weight, plant height, acid detergent fiber, neutral
detergent fiber, nonfibrous carbohydrates, lignin, and water-
soluble carbohydrates (Table 2 and Supplementary Table S1)
(Brenton et al. 2016). Plant height was measured at physiological
maturity or harvest from the stalk base to either the panicle apex
or the shoot apical meristem apex in the event a panicle did not
develop. Samples were dried at 40 �C to a constant weight before
measuring dry weight. Compositional data were generated from
dried samples using a Perten DA7250 near-infrared spectroscopy
(NIR) instrument (https://www.perten.com) as described in
Brenton et al. (2016). The CP-NAM parent PI329311 is not repre-
sented in the agronomic data due to an inability to acquire suffi-
cient germplasm.

A total of 11 RIL families were generated using diverse sor-
ghum lines and female Grassl (Table 1), which resulted in ap-
proximately 200–274 individuals for each RIL family between
diverse sorghum lines including bicolor, caudatum, durra,
guinea, kafir, kafir-bicolor, and female Grassl (Table 3). Plant
accessions were obtained through the Agricultural Research
Service-Germplasm Resources Information Network (ARS-GRIN)
(http://www.ars-grin.gov). Families derived from PI329311 and

PI510757 were crossed in Puerto Vallarta, Mexico in the winter of
2012. All other crosses were made in the winter of 2013. The F1s
were grown out in Florence, South Carolina the following sum-
mers—2012 for the two families above and 2013 for the rest.
Subsequent generations were grown in Puerto Vallarta each year.
The panicles of each generation were bagged to prevent outcross-
ing and ensure selfing. The F6 RILs were phenotyped for testa pig-
mentation and pericarp color where three seeds were selected to
represent each line. Pericarp color was visually assessed and cat-
egorized as red, brown, yellow, or white (Supplementary Figure
S1). Subsequently, the grain was split with a razor blade, and the
testa was visually inspected for the presence or absence of pig-
mentation (Choi et al. 2019).

Genotype-by-sequencing data production and
processing
Genotyping by sequencing (GBS) data were generated at the
University of Wisconsin using leaf tissue collected from 2-week-
old seedlings for each individual at the F6 generation. DNA was
extracted using a modified CTAB protocol and double-digested
using the enzymes PstI and MspI, which improve the fidelity of
SNP markers, are better at reducing genomic complexity and gen-
erate a more uniform library than ApeKI (Poland et al. 2012;
Thurber et al. 2013). GBS libraries were single-end sequenced us-
ing an Illumina HiSeq2500 sequencer except for one plate which
was sequenced on a NovaSeq6000 resulting in 100-bp reads. GBS
were processed using Tassel version 5.2.52 (Bradbury et al. 2007)

Table 2 CP-NAM parent agronomic and physiological traits

Accessiona Days to Harvest Stalk weight (kg) Leaf weight (kg) Panicle weight (kg)b Brix WSC (%DM)

PI154844 163.25 6 5.19 2.57 6 1.01 0.39 6 0.15 0.14 6 0.07 12.95 6 1.67 �
PI22913 122.67 6 2.31 1.31 6 0.4 0.17 6 0.04 0.14 6 0.03 13.9 6 0.95 27.4
PI229841 136 6 18.97 1.05 6 0.26 0.19 6 0.07 0.24 6 0.06 10.35 6 3.41 16.48 6 3.33
PI297130 158.5 6 4.95 2.59 0.43 6 0.1 � 11.8 6 0.99 24.92 6 1.8
PI297155 114 6 7.66 0.56 6 0.08 0.16 6 0.08 0.14 6 0.06 6.33 6 1.55 �
PI506069 159 6 7.07 2.13 0.44 6 0.11 � 7.9 6 0.28 10.03 6 5.3
PI508366 156 2.38 0.4 6 0.1 � 6.35 6 0.07 12.1 6 3.61
PI510757 157 6 2.83 2.56 0.55 6 0.01 � 7.15 6 2.9 25.91 6 1.55
PI563295 138.25 6 14.34 1.87 6 0.6 0.24 6 0.07 0.16 6 0.08 14.38 6 3.55 31.84 6 9.51
PI586454 114.25 6 8.42 1.18 6 0.31 0.2 6 0.05 0.12 6 0.04 11.73 6 1.86 �
PI655972 110.5 6 3.7 0.49 6 0.03 0.14 6 0.04 0.13 6 0.07 8.78 6 2.35 9.5 6 2.32

Cells contain the mean 6 the standard deviation for each trait where replicate data were available. Single-replicate data do not contain standard deviations, and
missing data are represent by “�.”

a PI329311 did not have adequate germplasm for inclusion.
b Photoperiod sensitive lines did not produce panicles.

Table 1 NAM parent characteristics

Common name Accession Race Origin Sorghum type Pericarpa Testab

Grassl PI154844 Caudatum Uganda Cellulosic r y
Chinese Amber PI22913 Bicolor China Sweet b y
IS 2382 PI229841 Kafir South Africa Grain r y
IS 13613 PI297130 Caudatum Uganda Cellulosic w y
IS 13633 PI297155 Kafir Uganda Grain r y
IS 11069 PI329311 Durra Ethiopia Cellulosic y n
Mbonou PI506069 Guinea-bicolor Togo Cellulosic y n
MA 38 PI508366 Guinea Mali Cellulosic w n
AP79-714 PI510757 Durra Cameroon Cellulosic w n
Rio PI563295 Durra-caudatum Maryland, USA Sweet w y
Leoti PI586454 Kafir-bicolor Hungary Sweet r y
Pink Kafir PI655972 Kafir Kansas, USA Forage w n

The characteristics of each NAM parent include the common name, USDA plant introduction numbers, botanical race, original source of germplasm, type as
defined in the introduction, pericarp color, and presence or absence of pigmentation within the testa layer.

a b, brown; r, red; y, yellow, and w, white.
b y, pigmented and n, not pigmented.
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following the GBS version 2 pipeline procedures (Glaubitz et al.
2014). Tags were aligned to the BTx623 version 3.1 annotated refer-
ence genome (McCormick et al. 2018), obtained from Phytozome
(Goodstein et al. 2012), using BWA version 0.7.17 (Li and Durbin
2010). Beagle version 5.1 was used to impute missing genotype
data in the variant call format (VCF) file resulting from the Tassel
pipeline (Browning et al. 2018). Prior to mapping, SNPs were pruned
using Plink (–indep 50 5 2) to reduce the number of associations
derived from SNPs within LD blocks.

SNP density plots were generated using R-CMplot version 3.6.0
(https://github.com/YinLiLin/R-CMplot). The inbreeding coeffi-
cient, nucleotide diversity and Tajima’s D were calculated on
family-specific VCFs using VCFtools version 0.1.16 (Danecek et al.
2011). Nucleotide diversity and Tajima’s D (–window 100000)
were plotted in R (R Core Team 2019) by chromosome for each
family (Supplementary Figures S6 and S7). The effects of SNPs
were predicted using snpEff (Cingolani et al. 2012) and plotted us-
ing MultiQC (Ewels et al. 2016), and linkage disequilibrium (LD)
statistics were calculated using Plink v1.90b6.10 (Purcell et al.
2007). The LD decay plot was generated using PopLDdecay
(Zhang et al. 2019) with a 300 kb window and custom R scripts
were LD decay was estimated for individual chromosomes as
well as genome-wide (Hu et al. 2019). The sorghum reference ge-
nome was also in silico digested using restriction sites for the
enzymes PstI (CTGCA—G) and MspI (C—CGG) using a custom R
script adapted from Hu et al. (2019), and the segment lengths
from the digestion were obtained using the R package SimRAD
(Lepais and Weir 2014) and plotted using a custom CPython script
(Van Rossum and Drake 2009) and the package seaborn (Waskom
et al. 2017).

NAM population contrast and structure
Data for the Tx430 grain NAM was accessed from Dryad (Hu et al.
2019) and filtered using the individuals unique to the Tx430 grain
NAM (Bouchet et al. 2017). The variants for both the Tx430 grain
and CP-NAM had the reference alleles corrected using a custom
script (https://github.com/jlboat/CP-NAM) before merging the
populations using VCFtools (Danecek et al. 2011). The merged var-
iants were filtered using VCFtools for <20% missing data, and the
common SNPs were used to assess genotypic diversity between
the two populations. Principal component analysis (PCA) was
performed on the individual and merged populations using
SNPRelate (Zheng et al. 2012). In the CP-NAM PCA plot, Grassl is
represented by “x” for clarity.

Population structure was estimated from the pruned SNPs us-
ing ADMIXTURE (Alexander and Lange 2011). Fivefold cross-

validation was used to determine the optimal number of ancestral
populations, K, by selecting the model that had the lowest cross-
validation error (K¼ 15; Supplementary Figure S11). The Q matrix
of the selected model—representing the ancestry fractions of indi-
viduals—was then sorted by ancestry coefficient for each subpop-
ulation such that individuals with coefficients >50% were
assigned to the corresponding subpopulation. Subpopulations
were classified as Q1–Q15 as determined by the column containing
the sorted ancestry coefficient. This classification was used to rep-
resent ancestral admixture of individuals in the CP-NAM PCA.

Quantitative trait loci mapping
The imputed genotype matrix was filtered to create a separate
VCF file for each RIL family using VCFtools (Danecek et al. 2011).
Variants with minor allele frequency (MAF) <0.05 and missing
data (>0.3) were removed from each family using VCFtools before
converting RIL genotypes to ABH format using Genotype-
Corrector (Miao et al. 2018), where A and B alleles were derived
from parents A and B, respectively, and H represents a heterozy-
gous marker call. Pseudomarkers were inserted into the genetic
map at 1 cM intervals prior to calculating conditional genotype
probabilities. The conditional probabilities of the true genotypes
were estimated using a hidden Markov model for each RIL family
with a genotyping error rate of 0.0001 and Haldane’s mapping
function (Kosambi 2016). Quantitative trait loci (QTL) were
mapped for each RIL family using both Haley-Knott regression
(Haley and Knott 1992) and a linear mixed model accounting for
relationships among individuals using a random polygenic effect
using R qtl2 version 0.22 (Broman et al. 2019). Kinship matrices
were calculated using the allele probabilities and incorporated
into a linear mixed model genome scan performed using along
with pericarp phenotypic data (Broman et al. 2019). Due to re-
duced noise in the linear mixed model results, Haley-Knott re-
gression results are not discussed.

Genome-wide association studies
The software GEMMA version 0.98.1 (Zhou and Stephens 2014)
was used for genome-wide association studies (GWAS). The im-
puted VCF file containing the entire NAM was converted to Plink
format using VCFtools (Danecek et al. 2011) before using Plink
(Purcell et al. 2007) to generate the accompanying phenotype files.
GEMMA was then used to calculate a standardized relatedness
matrix—where the genotype data are standardized before esti-
mating a relatedness matrix (Astle and Balding 2009)—for linear
mixed modeling on the filtered data (–miss¼ 0.3 –maf¼ 0.05)
(Zhou and Stephens 2014). Models were initially run with princi-
pal components (PCs) as covariates. However, the inclusion of
PCs did not alter associated variants. As a result, all models de-
scribed did not contain PCs. Univariate and multivariate models
were run to determine the effects of testa pigmentation on the
mapping of pericarp color. Where univariate linear mixed models
were fit using the following form:

y ¼Waþ xbþ uþ e; u � MVNnð0; ks�1KÞ;

where y is a vector of pericarp colors for n individuals; W is a ma-
trix of covariates including a column of 1 s for estimating the
intercept; a is a vector of the corresponding coefficients; x is an
n-vector of genotypes; b is the effect size of the marker; u is a vec-
tor of random effects; e is a vector of errors; s�1 is the variance of
the residual errors; k is the ratio between the two variance com-
ponents; K is a known n� n standardized relatedness matrix
(Zhou and Stephens 2014).

Table 3 RIL family statistics

Male parent No. indiv. No. markers Avg. inbreeding coefficient

PI22913 203 9,258 0.62
PI229841 209 7,422 0.60
PI297130 243 8,770 0.60
PI297155 216 7,470 0.61
PI329311 240 9,460 0.58
PI506069 204 7,756 0.59
PI508366 232 7,097 0.63
PI510757 274 7,193 0.58
PI563295 245 6,656 0.56
PI586454 200 8,038 0.57
PI655972 223 7,430 0.63

The columns from left to right are the male parent plant introduction number
(column 1), the total number of individuals (column 2), markers in each family
(column 3), and the average inbreeding coefficient (column 4).
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Models included a univariate model using pericarp color with
all phenotypes, a univariate model with binary encodings for the
yellow phenotype—where yellow is 1 and all other phenotypes
are 0, a univariate pericarp model with testa pigmentation as a
covariate, a univariate model with pericarp color and testa pig-
mentation covariate based on three pericarp colors (red, yellow,
and white), and a multivariate model using both pericarp color
and testa pigmentation. Where the multivariate linear mixed
model was fit using the following form:

Y ¼WAþ xbT þ Uþ E;

where Y is a n� d vector of n individuals and d phenotypes—
namely pericarp color and testa pigmentation; W is a vector of 1 s
to estimate the intercept; A is a matrix of the corresponding coef-
ficients; x is an n-vector of genotypes; b is a d-vector of marker ef-
fect sizes for the d phenotypes; U is an n� d matrix of random
effects; and E is an n� d matrix of errors (Zhou and Stephens
2014). Manhattan and Q-Q plots were generated using R-CMplot
version 3.6.0 (https://github.com/YinLiLin/R-CMplot).

Data availability
Raw GBS data are available at the European Nucleotide Archive
under the project accession PRJEB40592. The Tx430 NAM data
were accessed from dryad at doi: 10.5061/dryad.63h8fd4 (Hu et al.
2019). Scripts are available on GitHub (https://github.com/jlboat/
CP-NAM) under MIT License. Code freezes are available for BWA
and PopLDdecay via Singularity containers (Kurtzer et al. 2017)
and were executed using Singularity version 3.5.3. Containers
may be directly pulled from SingularityHub: https://singularity-
hub.org/collections/2877. Supplemental materials available at
figshare: https://figshare.com/s/0ba752156d0cb7fb6404. CP-NAM
seeds are available upon request.

Results
CP-NAM parent carbon-partitioning diversity
The CP-NAM parents were selected due to the broad phenotypic
variance of their carbon-partitioning traits (Table 2 and
Supplementary Table S1). The selected traits capture the primary
above-ground carbon-partitioning regimes represented by the ma-
jor sorghum types. The overall distribution of each phenotype was
largely consistent across years and replicates (Supplementary
Figure S2), and the phenotypic distributions across all accessions
was quite broad (Supplementary Figure S3). Due to the photope-
riod sensitivity of many of the parental accessions, significant
quantities of structural and carbohydrates are accumulated across
both stems and leaves, and appreciable nonstructural carbohy-
drates are stored within the stems (Table 2 and Supplementary
Table S1). Accessions that did not flower (i.e., photoperiod sensitive
accessions) were not included in the panicle weight data since
they never produced panicles.

In silico digestion and single-nucleotide
polymorphisms
The complete NAM population genotypic data contained 144,087
SNPs after imputation of the original SNP calls, which corre-
sponds to an average density of one SNP per 5 kb. The subtelo-
meric SNP density was higher than the pericentromeric regions
(Supplementary Figures S4 and S5). To assess the putative restric-
tion sites for PstI and MspI restriction enzymes, the BTx623 refer-
ence genome was in silico digested (Supplementary Figures S6 and
S7), and as seen with SNP density, restriction sites were primarily

concentrated in subtelomeric regions with gaps surrounding cen-
tromeric regions. The patterns of nucleotide diversity were
largely consistent across families with greater diversity seen
around centromeres (Supplementary Figure S8). Similarly, pat-
terns of Tajima’s D statistics were more variable around centro-
meres and typically positive across all families and
chromosomes except for some regions showing strong directional
selection (Supplementary Figure S9). The effects of all SNPs were
analyzed using snpEff (Cingolani et al. 2012) and plotted using
MultiQC (Ewels et al. 2016) (Supplementary Data 1). The overall
transition-transversion ratio was 1.649 with about half of the var-
iant effects occurring upstream or downstream of known loci, ap-
proximately 20% of effects falling into intergenic regions, and the
remaining 30% occurring within genic regions. The impacts of
most effects were predicted to be modifier effects (85%) with the
remaining effects distributed approximately equally among low,
moderate, and high impact (5% each). The LD decay was esti-
mated for individual chromosomes as well as genome-wide
(Figure 1). The genome-wide LD decays to r2< 0.2 around 100 kb,
and Chr 6 exhibits consistently higher LD compared to the other
chromosomes.

Validating RIL families
Pruning reduced the number of SNPs from 144,087 to 57,603, and
after filtering SNPs with a MAF < 0.05, that number was further re-
duced to 38,682. Marker counts for individual families ranged from
about 7000 to over 9000, and the average inbreeding coefficients
were approximately 0.6 for all families (Table 3). Among the RILs,
all families had at least one QTL for pericarp color except for the
PI229841, PI297155, and PI586454 RILs (Supplementary Tables S2
and S3; Supplementary Figures S29–S39). Most families had a QTL
located on Chr 4 (62.4 Mb), but there were also hits on Chr 1
(PI508366 and PI563295 RILs), two (PI508366 RILs), seven (PI297130
and PI506069 RILs), and nine (PI655972 RILs). Notably, the PI563295
RILs had a significant QTL spanning 23 Mb on Chr 1 for pericarp
color. Because QTL mapping results closely overlapped GWAS
results, all genetic mapping results discussed henceforth with be
based on GWAS results.

NAM population contrast and structure
For further quality control, a PCA was performed for the CP-NAM.
As expected, RILs were oriented toward their corresponding
parents, which is indicative of the genetic mosaicism within
these lines (Figure 2). The first 10 PCs account for 34.7% of the ge-
nomic variation with the first two PCs explaining 7.80 and 6.18%

Figure 1 Linkage decay (Pearson’s correlation coefficient squared)
plotted against the distance in kilobases across the genome.
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of the variation, respectively. Similarly, a PCA was conducted us-
ing the set of common SNPs (8289) between the Tx430 grain NAM
and the CP-NAM (Supplementary Figure S10) to compare the ge-
netic differences between the two populations. Substantial varia-
tion was observed both within and between the NAM populations
(Supplementary Figures S11 and S12). The first PC clearly sepa-
rated the two NAM populations and accounted for 19% of the var-
iance—substantially higher than the 7.5% for the first PC of
individual NAM populations—while the second PC accounted for
5% of the variance (Supplementary Figure S11). The distribution
of common SNPs between the two NAM populations was similar
across the genome (Supplementary Figure S10) as compared to
the distribution within the CP-NAM alone (Supplementary
Figures S4 and S5).

Analysis of population admixture resulted in the identification
of 15 ancestral populations within the CP-NAM (Figure 3).
Multiple subgroups were identified within the major sorghum bo-
tanical races. When the ancestral population classification was
superimposed over the CP-NAM PCA, admixture among RIL fami-
lies is clearly identifiable (Figure 4).

Genome-wide association studies
Univariate GWAS for pericarp color
The GWAS for the entire NAM population identified six signifi-
cant peaks across four chromosomes. Chromosome one con-
tained a single broad peak—also identified by the PI563295 RILs
QTL mapping—that was somewhat resolved by binary encoding
for yellow pericarp (as described below). Two hits were identified
on Chr 2 (at 6,940,113 and 57,797,411), and the most significantly
associated SNP was near 62 Mb on Chr 4 (62,215,490 bp; 3.76E-31).
There were also two hits on Chr 7 (9,097,206 and 44,198,228 bp)
(Figure 5 and Supplementary Figure S14). We also mapped all
pericarp colors with testa as a covariate to account for the spread
of tannin from the testa layer and the traditional (red, yellow,
and white) colors, but the differences were minimal compared to
three GWAS discussed here (Supplementary Figures S15 and
S16).

Univariate GWAS for yellow pericarp
Since the GWAS containing all phenotypes failed to identify the
yellow seed1 (y1) locus (Sobic.001G397900), the phenotypes were
then given binary encodings for yellow pericarp color. With binary
phenotypes for yellow pericarp color, we were able to identify a

peak near y1 (Figure 6, Supplementary Figure S18; Table 4) and in-
crease the significance for the second peak on Chr 2
(57,797,411 bp) identified in the standard encoding GWAS. The hit
on Chr 4 is the same SNP as that for the univariate pericarp map-
ping. The SNP on Chr 7 (9,097,206 bp) mapped in the univariate
GWAS for all pericarp colors is within a 1 Mb proximity of the SNP
on chromosome seven (8,111,484 bp) mapped here and highly cor-
related (r2¼ 0.83). The additional SNP on Chr 10 (56,346,032 bp)
falls within a QTL (56,223,543–56,564,728 bp) previously identified
when mapping endosperm carotenoid content—though the exact
gene regulating the trait is unclear (Fernandez et al. 2008; Mace
et al. 2019).

Multivariate GWAS for pericarp color and testa pigmentation
Multivariate GWAS for the entire NAM population had peaks sim-
ilar to those identified in the univariate analyses (Figure 7;
Table 4) with the exception of novel peaks on chromosomes six
and 10. The peak on Chr 6 (55,070,387 bp) is close to a known QTL
(55,653,174–55,805,785 bp) mapped using brown grain pigmenta-
tion (Rhodes et al. 2014). The multivariate GWAS identified two
SNPs around 42 Mb on Chr 7, one of which is the same SNP as the
univariate GWAS (Chr7:44,198,228 bp). These two SNPs were
highly correlated with each other (r2¼ 0.97) even though there is
approximately 5 Mb between them. Last, a peak at Chr10
(1,948,816 bp) was identified, which was unique to the multivari-
ate analysis.

Discussion
Sorghum was domesticated around 5,000 years ago and has since
become a major cereal crop and the primary crop of arid zones
(De Wet and Harlan 1971; Smith et al. 2019). Sorghum has histori-
cally been valued as a crop for its stem sugars and grain (Wall
and Blessin 1970; Subramanian et al. 1987)—with improvement
focusing on a single nonstructural carbohydrate either sucrose or
starch, respectively (Murray et al. 2008; Saballos 2008) and more
recently as a source of biomass (Murray et al. 2008). In contrast to
some other C4 grains and grasses, sorghum production can be
successful in low- and high-input agriculture due to its ability to
grow in marginal soils, and it serves as a dual-purpose crop due
to the production of both grain and stem sugars (Calvi~no and
Messing 2012). The diverse carbon-partitioning regimes of sor-
ghum provide a unique opportunity to study the processes un-
derlying source-sink relationships in the C4 grasses. In addition,
the genetic properties of sorghum such as its compact, diploid ge-
nome (730 Mb) (Paterson et al. 2009), the availability of genetic

Figure 2 Principal component analysis plot using the whole CP-NAM
population. Parents are labeled with the common name. The individual
samples of the recurrent parent, Grassl, are additionally labeled with “x.”
Each RIL family is represented by the male parent PI.

Figure 3 Genome-wide, population admixture of the CP-NAM.
Individuals (x-axis) are shown as vertical bars colored in proportion to
their estimated ancestry within each cluster (y-axis) based upon 15
ancestral populations (K¼ 15) where each genetically distinct ancestral
population is given a unique color.
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and genomic resources (Brenton et al. 2016; McCormick et al. 2018;
Boyles et al. 2019; Mace et al. 2019) and broad phenotypic

variability (Morris et al. 2013a) further establish sorghum as a vi-
tal crop for not only bioenergy (Calvi~no and Messing 2012) but
also carbon partitioning more generally (Slewinski 2012).

As the cost of developing genomic resources has continued to
decline, sorghum has seen an increase in publicly available geno-
mic resources (Boyles et al. 2019). Genetic mapping populations
are designed to effectively dissect the genomic architecture un-
derlying specific traits, and sorghum mapping population resour-
ces include diversity panel (Morris et al. 2013a; Brenton et al.
2016), grain NAM (Bouchet et al. 2017; Marla et al. 2019), multipar-
ent advanced generation intercross (Ongom and Ejeta 2018) and
mutagenized populations (Xin et al. 2008; Addo-Quaye et al. 2018).
As the number of available populations increases, newly estab-
lished populations should demonstrate unique utility, whether
that be easier management, improved throughput, a specific phe-
notypic focus, or better statistical design. For instance, all four,
alternative sorghum NAMs focus on grain sorghum (Boyles et al.
2019), and the CP-NAM uniquely allows for the genetic dissection
of pathways facilitating carbon-partitioning regimes that may be
exploited for bioenergy traits as well. The CP-NAM parents were
selected from the BAP to maximize the phenotypic and genetic
diversity of their carbon-partitioning traits. Preliminary pheno-
typic characterization of the parents was done as a part of
Brenton et al. (2016). These phenotypes covered a variety of agro-
nomic and physiological traits (Supplementary Figures S2 and S3;
Table 2 and Supplementary Table S1) and demonstrate substan-
tial diversity among the CP-NAM parents. In particular, the CP-
NAM parents are able to accumulate significantly more struc-
tural and nonstructural carbohydrates than grain sorghum due
to the inclusion of photoperiod sensitive lines (Rooney and Aydin

Figure 4 CP-NAM PCA with admixture coloration. Individuals were classified as Q1–Q15 as determined by the proportion of ancestral admixture. Cells
1–11 represent individual RIL families represented by the paternal identifier while the 12th cell contains the entire CP-NAM population.

Figure 5 Univariate GWAS for pericarp pigmentation. The �log10 P-
values (y-axis) are plotted against the position on each chromosome (x-
axis). Each circle represents a SNP, and the red dashed line represents
the Bonferroni-corrected threshold.

Figure 6 Univariate GWAS for binary encoding of yellow pericarp
pigmentation. The �log10 P-values (y-axis) are plotted against the
position on each chromosome (x-axis). Each circle represents a SNP, and
the red dashed line represents the Bonferroni-corrected threshold.
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1999; Brenton et al. 2016). The accumulation of carbon is also var-
iable across the parts of the plants with parental accessions dif-
ferentially allocating carbon to the various sinks (Table 2).

To further distinguish this population, we provide a compari-
son of the CP-NAM to an existing, publicly available sorghum
grain NAM population developed with RTx430 as the recurrent
parent (Bouchet et al. 2017). We selected Tx430 NAM because it
was not a backcross NAM as two of the existing NAM populations
are, and of the two remaining sorghum NAMs, Tx430 was the
only population with publicly available variants at the time of
writing. These NAM populations were both sequenced using GBS
and share 8289 SNPs in common with <20% missing data
(Supplementary Figures S10 and S11). While the Tx430 grain
NAM used ApeKI restriction digest, we utilized a double digest us-
ing the enzymes PstI and MspI, which improve the fidelity of SNP
markers, are better at reducing genomic complexity and generate
a more uniform library than ApeKI (Supplementary Figures S6
and S7) (Poland et al. 2012; Thurber et al. 2013). The two popula-
tions are both genotypically diverse (Supplementary Figure S11)
and yet distinct as the first principal component (PC1), which
explains over 19% of the variation, effectively separates the two
populations. The CP-NAM also exhibits significant diversity
across families as demonstrated by nucleotide diversity
(Supplementary Figure S8), Tajima’s D (Supplementary Figure
S9), and PCA (Figure 2).

Population structure was also assessed to determine the de-
gree of ancestral genetic admixture captured by the CP-NAM
(Figure 3). Cross-validation identified 15 major ancestral popula-
tions represented in the CP-NAM with notable admixture occur-
ring even within RIL families (Figure 4). This admixture is evident
across different sorghum races and the major sorghum types—
revealing that the CP-NAM captures a notable portion of sorghum
diversity. The RIL families from PI329311, PI510757, PI563295, and
PI655972, exhibit the strongest degree of population subdivision
relative to the other RILs and represent three of the four major
sorghum types. RILs derived from paternal bicolor races (i.e.,
PI22913 and PI506069) also demonstrate higher admixture than
RILs derived from other races such as kafir (i.e., PI229841 and
PI229155), which is known to be geographically limited and exhib-
its stronger genetic bottleneck (Deu et al. 2006; Klein et al. 2008;
Sapkota et al. 2020). The representation of historical admixture
within the CP-NAM permits the elucidation of the mechanisms
regulating carbon partitioning among the various sorghum types
since their initial divergence. As LD influences the resolution at
which we can identify trait mapping and informs breeding deci-
sions, the LD decay was estimated for individual chromosomes
as well as genome-wide (Figure 1). The genome-wide LD decays
to r2< 0.2 around 100 kb, and Chr 6 exhibits consistently higher
LD compared to the other chromosomes, which is consistent
with previous findings concerning limited recombination on Chr
6 (Hu et al. 2019) and a high degree of synteny between sorghum
and Oryza sativa L. (Kim et al. 2005).

Sorghum pericarp and testa pigmentation are well-
characterized domestication traits, which are regulated by a few
loci (Zhang et al. 2015) and therefore serve as good quality-control
targets for genetic validation of new genomic resources (Morris
et al. 2013b). Sorghum seed color phenotypes vary based upon ca-
rotenoid and polyphenol compounds present within the corre-
sponding kernel layers (Rhodes et al. 2014). The primary pericarp
colors—red, yellow, and white—are regulated by the R and y1
loci, but due to additional loci that further modulate pericarp
color such as I (intensifier), S (spreader), and Z (mesocarp thick-
ness), pericarp color also comes in black, brown, orange, and pink
as well as ranges of those colors varying in tint, shade or even
spotted (Dykes et al. 2013; Rhodes et al. 2014).

Table 4 Top associations from the NAM GWAS

Model Chromosome Position Wald P-value Genes

Univariate Pericarp 1 � � <block too large>
Univariate Pericarp 2 6,940,113 1.23E-10 tan2
Univariate Pericarp 2 57,797,411 2.26E-06 Classical Z locus; Sobic.002G190000
Univariate Pericarp 4 62,215,490 3.76E-31 tan1
Univariate Pericarp 7 9,097,206 4.86E-15 Unknown
Univariate Pericarp 7 44,198,228 2.66E-08 Unknown
Univariate Yellow 1 71,320,809 1.39E-08 y1
Univariate Yellow 2 57,797,411 2.50E-09 Classical Z locus; Sobic.002G190000
Univariate Yellow 4 62,215,490 7.70E-17 tan1
Univariate Yellow 7 8,111,484 2.00E-10 Unknown
Univariate Yellow 10 56,346,032 6.96E-08 Putative carotenoid regulator
Multivariate Pericarp 1 � � <block too large>
Multivariate Pericarp 2 6,940,113 5.00E-16 tan2
Multivariate Pericarp 4 62,215,490 3.82E-37 tan1
Multivariate Pericarp 4 62,463,940 1.55E-76 tan1
Multivariate Pericarp 6 55,070,387 6.89E-06 Putatively tt16 ortholog
Multivariate Pericarp 7 8,111,484 5.54E-25 Unknown
Multivariate Pericarp 7 39,531,969 5.51E-16 Unknown
Multivariate Pericarp 7 44,198,228 6.02E-16 Unknown
Multivariate Pericarp 10 1,948,816 4.30E-52 waxy

For each significant association, the model, chromosome containing the SNP, SNP position, wald t-test P-value, and putative gene in LD with the significant SNP are
identified.

Figure 7 Multivariate GWAS for pericarp color and testa pigmentation.
The �log10 P-values (y-axis) are plotted against the position on each
chromosome (x-axis). Each circle represents a SNP, and the red dashed
line represents a Bonferroni-corrected threshold.
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Condensed tannins—a subtype of polyphenol—strongly con-
tribute to kernel pigments in sorghum grain and are regulated by
two loci—traditionally known as B1 and B2 but recently identified
as, which corresponds to tannin 1 (tan1) [Sobic.004G280800; (Wu
et al. 2012)] and tannin 2 (tan2) [Sobic.002G076600; (Wu et al. 2019)] –
with duplicate recessive interaction. When either locus contains
homozygous recessive alleles, condensed tannins fail to accumu-
late within the sorghum grain (Wu et al. 2019) which otherwise
confer a brown pigmentation to grains. Brown pericarp, in particu-
lar, is associated with significantly higher proanthocyanidin con-
centrations (Rhodes et al. 2014) and may be used to predict the
nutritional value of sorghum grains since brown seed color is asso-
ciated with anti-nutritive compounds such as tannins which also
confer a bitter taste (Sedghi et al. 2012; Ebadi et al. 2019). Similarly,
the y1 locus encodes a MYB family transcription factor that regu-
lates phlobaphene—another phenolic compound—biosynthesis
(orthologous to Arabidopsis tt2) yielding a yellow pericarp while
loss of function confers a white color (Ibraheem et al. 2010; Rhodes
et al. 2014), and the R locus confers a red tint to the pericarp but
only with dominant y1 (Doggett 1987).

By employing a variety of phenotypic encodings as well as uni-
variate and multivariate GWAS, we were able to identify a number
of these well-established loci as well as three additional loci. The
univariate pericarp color GWAS (Figure 5) resulted in six peaks
across four chromosomes. The lack of distinct peaks on Chr 1 has
been previously observed when mapping 3-deoxyanthocyanid
concentrations—associated with grain pigmentation (Rhodes et al.
2014)—and pericarp color where precise mapping of the y1 gene,
in particular, can prove difficult (Morris et al. 2013b). The two hits
for pericarp color on Chr 2 likely correspond to (tan2)
(Sobic.002G076600) for the first SNP (Mace and Jordan 2010; Wu
et al. 2019) while the hit around 58 Mb—previously identified by
Rhodes et al. (2014) when mapping grain color and Hu et al. (2019)
using mesocarp thickness—corresponds to Sobic.002G190000.
Here, mapping of binary phenotypes based on yellow pericarp
color circumvents issues associated with brown phenotypes that
simply removing brown failed to resolve. Brown pericarp is known
to mask the expression of R and y1 genes—located on chromo-
somes three and one, respectively—because the phenotype is gen-
erated by the spread of tannin from the testa layer (Morris et al.
2013b). As such, we additionally performed a multivariate GWAS
with both pericarp and testa pigmentation (Figure 7). However, we
were unable to map the R locus—possibly due to the potentially
complicating pericarp phenotypes present in this population.

Using a multivariate GWAS for both pericarp and testa color,
we were able to identify tan1 and tan2 loci (Figure 7). Both loci
along with the region near Chr10:56,346,032 previously associ-
ated with carotenoid content, Sobic.006G213900 on Chr 6 and y1
regulate polyphenolic compounds, and most of these genes are
known components of the flavonoid pathway (Rhodes et al. 2014).
The presence of these compounds directly affects kernel color.
Sobic.006G213900 encodes a MADS-box transcription factor
orthologous to Arabidopsis transparent testa 16 (tt16), while the
peak at Chr10 (1,948,816 bp) may correspond to waxy
(Sobic.010G022600), which encodes a glycosyl-transferase ortholo-
gous to Arabidopsis granule-bound starch synthase 1 (Figure 7). All
GWAS had a peak for tan1, which commonly occurs due to the
strong effect of tannin content on pericarp color (Wu et al. 2012).
Similarly, identification of Sobic.002G190000—a gene encoding a
zinc-finger protein that colocalizes with the classical Z locus,
which is known to regulate mesocarp thickness (Wu et al. 2019)—
is consistent with the impact of mesocarp thickness on perceived
kernel color (Mace and Jordan 2010; Hu et al. 2019). Both locations

on Chr 7 were previously associated with inflorescence traits
with the earlier peak (Chr7:9,097,206 bp) falling within a QTL for
inflorescence width and the later SNP (Chr7:44,198,228 bp) associ-
ating with dry inflorescence weight (Zhang et al. 2015). It is possi-
ble that the identified SNPs are either novel sources of variation
or are in LD with known inflorescence traits. Last, the putative
identification of waxy in the multivariate GWAS may result from
either differing starch concentrations or composition in the grain
or the SNP may simply fall within a common linkage block. The
alleles putatively associated with waxy segregated in PI22913 and
PI586454 RIL families both of which are sweet sorghums with bi-
color and kafir-bicolor racial backgrounds. It may be that as more
carbon is allocated to starch production and concentrations in-
crease, pericarp color may lighten since pure starch is white. The
impacts of alterations in carbon partitioning may confer either
large systemic changes—as seen between different sorghum
types—or small changes—as even a trait as innocuous as per-
ceived pericarp color could be subject to change.

We created a NAM population in sorghum that specifically
captures the contrasting phenotypic traits needed to character-
ize, define, and model the complexities of carbon fixation, trans-
location, and utilization within an amendable model system. The
dynamics of these carbon partitioning features can all be cap-
tured by this population because it incorporates every sorghum
type in a structured population that can be used for traditional
linkage or association mapping, eQTL studies, or physiological
and agronomic modeling experiments (Guo et al. 2010; Slewinski
2012; Irving 2015). Each type is defined by its own source/sink re-
lationship and compositional construction which influences
plant metabolism, photosynthetic capability, and carbon fixation
and sequestration potential (Irving 2015). As more emphasis is
placed on the role of agronomy, management, and crop selection
in carbon sequestration, a suitable model will be needed to fully
elucidate the complex interactions that define the carbon costs
and benefits of cropping options, especially as it relates to sor-
ghum (Popp et al. 2011; Hammer et al. 2019).

In summary, the CP-NAM provides unique benefits to
researchers and scientists seeking to understand, characterize,
and exploit plant systems to increase overall productivity and tai-
lor agronomic crops for specific usages that ultimately increase
the availability of nutritious food and sustainable feedstocks to
address both the shortage of arable land and the continuous re-
lease of greenhouse gas emissions from human activities. The
creation and characterization of this population addresses the
fundamental lack of genomic resources for nonfood usages of
crop species and shifts focus from the entrenched emphasis on
grain production to a more robust system tailored to overall pro-
ductivity, which could ultimately lead to yield gains in food and
feed production. The CP-NAM can serve as a fundamental re-
source to explicate the relationship among carbon fixation, se-
questration, and productivity to create crops for both the
traditional and future needs of agricultural production.
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