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Abstract 

Phenotypic determination of antimicrobial resistance in bacteria is very important for diagnosis and treatment, 

but sometimes this procedure needs further genetic evaluation. Whole-genome sequencing plays a critical role in 

deciphering and advancing our understanding of bacterial evolution, transmission, and surveillance of antimicrobial 

resistance. In this study, whole-genome sequencing was performed on nineteen clinically extraintestinal Escherichia 

coli isolates from chicken, cows and swine and showing different antimicrobial susceptibility. A total of 44 different 

genes conferring resistance to 11 classes of antimicrobials were detected in 15 of 19 E. coli isolates (78.9%), and 22 

types of plasmids were detected in 15/19 (78.9%) isolates. In addition, whole-genome sequencing of these 19 isolates 

identified 111 potential virulence factors, and 53 of these VFDB-annotated genes were carried by all these 19 isolates. 

Twelve different virulence genes were identified while the most frequent ones were gad (glutamate decarboxylase), 

iss (increased serum survival) and lpfA (long polar fimbriae). All isolates harbored at least one of the virulence genes. 

The findings from comparative genomic analyses of the 19 diverse E. coli isolates in this study provided insights into 

molecular basis of the rising multi-drug resistance in E. coli.
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Introduction
Antimicrobial resistance (AMR) in bacteria is an impor-

tant issue related to the health of both human and ani-

mals (McDermott et al. 2016; Zawack et al. 2016). It has 

been reported that AMR bacteria are responsible for 

about 50,000 deaths in people each year in the USA and 

Europe, and 700,000 global death (Bottacini et  al. 2017) 

(Zhang et  al. 2017). Studies suggested that the agricul-

tural use of antimicrobial agents increases the number 

of human infections caused by drug-resistant bacteria 

(O’Neill 2015). �us, the AMR monitoring system should 

focus not only on humans, but also animal hosts and the 

associated environments (Zhang et al. 2017).

Escherichia coli is a well-known commensal of the gas-

trointestinal tract of numerous animals, and also involved 

in intestinal and extraintestinal pathologies (Tenaillon 

et al. 2010; Croxen and Finlay 2010). E. coli show a clonal 

population structure with the delineation of at least 

seven main phylogenetic groups (Desjardins et  al. 1995; 

Clermont et al. 2011). �e chromosomal elasticity of the 

strains helps E. coli to adapt to different environments 

(Touchon et al. 2009).

One of the key issues with E. coli is its role in the dis-

semination and emergence of bacterial antimicrobial 

resistance. Most of the resistance properties emerge 

from commensal bacteria in the gastrointestinal tract 

(Andremont 2003) where the bacteria grow to higher 

density, allowing horizontal transfers of resistance genes 
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between strains from a single species, and even between 

species and genera. One of the mechanisms involved in 

the spread of AMR is the emergence of some specific 

clones that acquire resistance genes, mostly via mobile 

genetic elements including plasmids, gene cassettes, 

transposons, and other integrative genetic elements 

(Woodford et al. 2011).

Because of its high level of discriminatory power, 

microbial Whole Genome Sequencing (WGS) strategy 

plays an important role in the investigation and surveil-

lance of foodborne disease outbreak (Kröger et al. 2012). 

Better understanding of bacterial evolution, outbreaks, 

and transmission events revealed with the advent of 

WGS approach has been shown in a number of recent 

studies as well as from the surveillance of antimicrobial 

resistance (Zankari et al. 2012). It has significant advan-

tages compared to other commonly used drug resist-

ant testing approaches. WGS as a diagnostic method 

to detect bacterial antimicrobial resistance is particu-

larly important where congruence exists between phe-

notype and genotype, and where phenotypic testing is 

prohibitively slow for slow-growing bacteria. Epidemi-

ology has benefited greatly from high-throughput WGS 

in the aspects of identifying and tracking drug-resistant 

organisms as well as of identifying their genetic diversity 

(Organization 2014).

�e main aim of this study is to investigate the genetic 

diversity and relationship of E. coli clinical strains col-

lected from chicken, cows and swine in China. �e E. coli 

clinical strains were further characterized and assigned 

to the unique profiles of virulence factors and antimicro-

bial resistance genes.

Materials and methods
Bacterial strains

A total of 19 E. coli isolates (10 from chicken, 5 from 

swine, 4 from cows) were selected for WGS analysis in 

this study. �e selection of these isolates was based on 

their significantly different phenotypes of antimicrobial 

resistance (Yassin et al. 2017a, b) (Table 1).

Whole genome sequencing and data analysis

Genomic DNA from all the 19 E. coli isolates were 

extracted, end repaired, ligated to specific adaptors and 

subject to paired-end sequencing using Illumina HiSeq 

2500 by PE125 strategy at Beijing Novogene Bioinfor-

matics Technology Company (Beijing, China). After 

filtering raw reads, the clean reads were de novo assem-

bled into contigs using the CLC Genomics Workbench. 

�e assembled genomes were analyzed by using online 

software tools provided by the Centre of Genomic Epi-

demiology (https ://www.genom icepi demio logy.org/). 

In addition, CGE ResFinder 2.1 was used to identify the 

antimicrobial resistance genes in the assembled genomes 

using (Zankari et al. 2012). �e minimum percentage of 

the gene length detected and the identity threshold was 

set to be a 90.0% identity for a positive match between a 

target genome and the reference database.

�e MLST server database v1.7 (Larsen et  al. 2012) 

and the Virulence Finder server database v1.2 (Joensen 

et  al. 2014) in the CGE website were used to identify 

virulence genes and housekeeping genes (adk, fumC, icd, 

gyrB, mdh, purA, recA). �e scaffolds of each isolate were 

incorporated into these tools as described in CGE, with 

an identity threshold set to be 98%. �e profile of rep-

licons of bacterial plasmids was identified by the use of 

PlasmidFinder-1.3 (Carattoli et al. 2014).

Double index alignment of next-generation sequencing 

data (DIAMOND) (Buchfink et al. 2015) was applied to 

align the amino acid sequences against the VFDB data-

base (Chen et al. 2015). �e annotation of predicted gene 

with the description of the best fit was defined as amino 

acid sequences with alignment length > 90% of its own 

length and over 20% match identity.

Phylogenomic relationships among strains were 

assessed based on nucleotide alignments of the core 

genome gene content, including only the single-copy 

orthologues. An additional filter for paralogues was 

applied to the core genome in order to exclude families 

represented by more than a single member since they do 

not represent robust evolutionary markers (Gutiérrez 

and Maere 2014). Gene alignments were conducted using 

MUSCLE v.3.8.31 (Edgar 2004), followed by construction 

of a phylogenetic tree for each single-copy gene using the 

maximum-likelihood (≤5 samples) in PhyML v3.0 (Guin-

don and Gascuel 2003) and tree concatenation (Bottacini 

et al. 2017).

GenBank accession numbers

�is Whole Genome Shotgun project 19 E. coli iso-

lates investigated in this study has been deposited at 

DDBJ/ENA/GenBank under the following accession 

numbers: E. coli E565, QETO00000000; E. coli E535, 

QETQ00000000; E. coli E533, QETR00000000; E. coli 

E530, QETS00000000; E. coli E497, QETT00000000; E. 

coli E461, QETU00000000; E. coli E433, QETV00000000; 

E. coli E418, QETW00000000; E. coli E393, 

QETX00000000; E. coli E386, QETY00000000; E. coli 

E205, QETZ00000000; E. coli E175, QEUA00000000; E. 

coli E122, QEUB00000000; E. coli E100, QEUC00000000; 

E. coli E80, QEUD00000000; E. coli E34, QEUE00000000; 

E. coli E30, QEUF00000000; and E. coli E2, 

QEUG00000000.

Strain E497 from chicken, one of the multidrug-

resistant E. coli strains investigated in this study, was 

deposited at China General Microbiological Culture 

https://www.genomicepidemiology.org/
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Collection Center (CGMCC) with a deposit number of 

CGMCC-10601.

Results
Phenotypic analysis of antimicrobial resistance of 19 

clinical E. coli strains

All 19 clinical E. coli isolates, except for E433, E535, E80 

and E533, displayed MDR phenotype with resistance to 

2–16 antimicrobials (Table  1). In total, we identified 14 

resistance patterns, and none of the strains was resistant 

to ertapenem. Based on antibiogram results, the 19 clini-

cal E. coli isolates were divided into five groups (Table 1).

Genotypic analysis of antibiotic resistance genes

Four of 19 strains did not harbor any of the antimicrobial 

resistance genes analyzed, while the remaining 15 isolates 

had more than one resistance gene. A total of 44 different 

antimicrobial resistance genes were identified in these 15 

isolates conferring resistance to 11 classes of antimicro-

bials (Fig. 1). One isolate (5.3%) possess mcr-1 gene in a 

full-length copy of a colistin resistance gene that showed 

100% nucleotide similarity to the reference database 

sequence (Table 2).

Prevalence of plasmid replicons

�rough WGS analysis, 22 plasmid replicons were identi-

fied in 15 of the 19 isolates. Fourteen isolates harbored 

multiple plasmid replicons. Eighteen types of Inc with 

different frequencies were found, including IncA/C2, 

IncFIA, IncFIB (AP001918), IncFIB(K), IncFIB(pLF82), 

IncFIC(FII), IncFII, IncFII(pCoo), IncFII(pHN7A8), 

IncHI2, IncHI2A, IncI1, IncI2, IncN,, IncQ1, IncR, IncX1 

and IncY (Table 3).

Virulence genes

At least one virulence gene was detected in all 19 E. coli 

isolates evaluated. Twelve different virulence genes were 

identified while the most frequent ones were gad (gluta-

mate decarboxylase), iss (increased serum survival) and 

lpfA (long polar fimbriae) which were identified in 14, 11 

and 9 isolates, respectively (Table 4).

Mlst

�e multilocus sequence typing of the isolates is shown 

in Table 5. �ree isolates (E100, E386 and E433) belong 

to Sequencing Type (ST) 155 while two isolates (E461 

and E565) belong to ST 23 and another two isolates (E80 
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and E533) belong to ST 297. �e remaining 12 isolates 

belong to individual MLST types, ST2505, ST746, ST656, 

ST10, ST3345, ST4012, ST6856, ST602, ST2111, ST5019, 

ST548 and ST4753.

VFDB analysis

In this study, WGS of these 19 isolates and the analysis 

identified 111 potential virulence factors. Fifty-three of 

these VFDB-annotated genes were carried by all these 19 

isolates. �e VFDB-annotated genes are responsible to 

adherence, autotransporter, invasion, iron uptake, toxins, 

secretion system and secretion system related effectors. 

Different potential virulence factors with different abun-

dance were observed, and the most abundant virulence 

factors was associated with adherence. In addition, some 

of the isolates contained pathogenic E. coli virulence fac-

tors, such as Chu (isolate E80) present in Enterohemor-

rhagic E. coli (EHEC) and Per (isolates E30, E205, E433, 

E533) present in Enteropathogenic E. coli (EPEC).

Phylogenomic analysis

In this study, a total of 2858 core genes are present as 

single copies in isolates, and the resulting phylogenetic 

tree was computed using the 19 clinical E. coli isolates 

sequenced while E. coli CP009072 serves as an outgroup 

(Fig. 2). �e phylogenetic analysis provided complete res-

olution of relationships among all isolates sampled, with 

maximum support (100) for all nodes. �e E. coli isolates 

are clustered in seven phylogenetic groups, and E543 

was derived firstly from the lineage of the remaining 

members of the subfamily (Fig. 2). �e isolates of E100, 

E386, E433 and E80 appear to be monophyletic and more 

closely related to E418 and E497 than to E2, E461 and 

E565. E. coli comprised this clade plus another in which 

E122, E535 plus E393 and E30 plus E34 (both monophy-

letic) were together adjacent to E175, E533, E205 and 

E530 (Fig. 2).

Discussion
�e genetic characteristics of clinical E. coli isolates can 

provide useful information about the potential for caus-

ing disease and resistance to treatment. In this study, we 

analyzed the WGS of E. coli isolates obtained from chick-

ens, swine, and cows in Jiangsu province, China. �ese 

isolates exhibited a diverse range of genetic profiles.

Table 3 Analysis of plasmids in E. coli strains

Plasmid E80 E433 E497 E535 E530 E533 E565 E34 E122 E175 E386 E393 E418 E30 E2 E461 E205 E543 E100

Col156 + + + +

Col(BS512) +

Col(MG828) +

IncA/C2 +

IncFIA +

IncFIB(AP001918) + + + + + + + + +

IncFIB(K) + + +

IncFIB(pLF82) +

IncFIC(FII) + + + + +

IncFII + + + + + +

IncFII(pCoo) +

IncFII(pHN7A8) +

IncHI2 +

IncHI2A +

IncI1 + + + + + + +

IncI2 +

IncN + + + + +

IncQ1 + + + + +

IncR + +

IncX1 + +

IncY + + + +

p0111 + + + + +

Total number 
of genotypic 
plasmids

0 0 0 0 1 2 2 3 4 4 4 4 4 5 6 6 7 7 8
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�ese isolates have quite comprehensive profiles being 

resistant to beta-lactams, quinolones, aminoglycosides 

and colistin. Most of the strains displayed consistent anti-

biogram and antibiotic resistance gene profiles, but some 

of them showed inconsistency between the phenotype 

and the genotype. For instance, there is not any antibiotic 

resistance gene cluster profile displayed in the isolates 

E497 and E565 which however displayed resistance to a 

panel of antibiotics (Tables 1, 2). �is is likely due to an 

unidentified regulatory mechanism in these isolates. 

In this study, one of the most important antimicrobial 

resistance genes identified was mcr-1, mediating resist-

ance against colistin (Liu et al. 2016; Yassin et al. 2017a, 

2017b). �e plasmid-borne colistin resistance gene mcr-1 

Table 4 Analysis of virulence genes in di�erent E. coli strains

Virulence gene E2 E30 E34 E80 E100 E122 E175 E205 E386 E393 E418 E433 E461 E497 E530 E533 E535 E543 E565

astA + +

capU +

celb +

cma + +

gad + + + + + + + + + + + + + +

ireA + +

iroN + + + + + +

iss + + + + + + + + + + +

lpfA + + + + + + + + +

mchF + + + +

stb +

tsh + + + +

Total number 
of virulence 
genes

7 3 1 2 2 1 4 2 4 1 4 1 5 2 2 2 1 6 6

Table 5 MLST pro�les of the E. coli isolates

Sample ST Allele

adk fumC gyrB icd mdh purA recA

E2 2505 6 41 12 1 20 13 7

E30 746 10 7 4 8 12 8 2

E34 656 10 7 4 8 8 8 2

E80 297 6 65 32 26 9 8 2

E100 155 6 4 14 16 24 8 14

E122 10 10 11 4 8 8 8 2

E175 3345 64 7 1 369 8 8 6

E205 4012 8 517 1 8 8 8 6

E386 155 6 4 14 16 24 8 14

E393 6856 6 11 4 732 8 8 2

E418 602 6 19 33 26 11 8 6

E433 155 6 4 14 16 24 8 14

E461 23 6 4 12 1 20 13 7

E497 2111 6 4 32 88 7 7 6

E530 5019 6 518 4 10 7 8 6

E533 297 6 65 32 26 9 8 2

E535 548 10 11 4 8 81 8 2

E543 4753 6 612 5 28 1 1 2

E565 23 6 4 12 1 20 13 7



Page 9 of 11Chen et al. AMB Expr  (2018) 8:117 

was found in bacterial strains of both humans and ani-

mals (Liu et al. 2016). �is is of a great public health con-

cern as these colistin is considered as “last-resort” drugs 

for human infections caused by multi-drug resistant 

Enterobacteriaceae (Shaheen et  al. 2013). �e identified 

mcr-1 gene by WGS in this study was verified by PCR 

and the mcr-1-positive E. coli was verified to be resistant 

to colistin (Yassin et al. 2017a, 2017b).

Plasmids as diverse and self-replicating extrachromo-

somal elements encode a variety of traits which include 

antimicrobial resistance, virulence, and environmental 

adaptability. Plasmids also plays a major role in bacterial 

adaptation to environmental (Smets and Barkay 2005). 

Inc plasmids target the replicons of the major plasmid 

families occurring in Enterobacteriaceae (HI2, HI1, I1-ã, 

X, L/M, N, FIA, FIB, FIC, W, Y, P, A/C, T, K, B/O) (Car-

attoli 2009). Currently, there are 27 known Inc groups 

occurring among the Enterobacteriaceae family (Frost 

et al. 2005; Carattoli 2009). Classification of plasmids into 

Inc groups is desirable because specific plasmid types 

have been associated with virulence and/or antimicrobial 

resistance (Gilmour et al., 2004; Hopkins et al. 2006; Car-

attoli et al. 2014). In this study, 18 types of Inc plasmids 

were detected. IncI 1 plasmid has been shown to contrib-

ute to adhesion and invasion of shiga-toxigenic E. coli 

due to presence of a cluster encoding IV pili (Kim and 

Komano 1997). While plasmids mediating antimicrobial 

resistance in Enterobacteriaceae is highly variable, some 

plasmid families are largely prevalent and also prevalently 

associated with specific resistance genes (Carattoli 2009).

As shown in Table  5, 19 clinical E. coli isolates pos-

sess 15 different ST types based on the MLST analysis. 

ST10 is one of the important multilocus sequence types 

possessed by one isolate (E122) in our findings, which 

confers resistant to colistin and is often reported as anti-

biotics against ESBL-producing E. coli (Chen et al. 2016). 

�is ST type is also commonly found in chickens, other 

animals and humans (Chen et al. 2016) and this is con-

sistent with our findings that this strain was isolated from 

chicken.

Among 12 different virulence genes possessed by all 

isolates, the highest frequencies appeared was gad, iss 

and lpfA which were frequently reported in pathogenic E. 

coli isolates (Bergholz et al. 2007; Solà-Ginés et al. 2015; 

Malik et  al. 2017). �irteen isolates which carried these 

gene harbored multiple antimicrobial resistance genes, 

and 9 of them carried genes for lpfA virulence and that 

has been described to be a potential virulence marker 

for pathogenic E. coli (Petty et  al. 2014). However, the 

presence of a single or multiple virulence genes in an E. 

coli strain does not warrant that a strain is pathogenic 

unless that strain has the appropriate combination of the 

virulence genes to cause infections in the hosts (Boer-

lin et al. 1999). Pathogenic E. coli uses a complex multi-

step mechanism of pathogenesis involving a number of 

virulence factors which consists of attachment, host cell 

surface modification, invasion, a variety of toxins and 

secretion systems, eventually leading to death of the tar-

get host cells (Kaper et  al. 2004). �us, virulence genes 

are ideal targets for determining the pathogenic potential 

of a given E. coli isolate (Kuhnert et al. 2000).

Virulence factors are important for microbial patho-

genesis. A mutation of a virulence factor from a viru-

lent pathogen will attenuate the pathogen strain (Volk 

et al. 1995). However, virulence factors may also exist in 

attenuated and even avirulent strains (Chen et al. 2015).

Our study attempted to characterize the clinical iso-

lates for the presence of virulence associated genes by 

comparison against a database collection of virulence 

factors, VFDB. In our study, we observed that 53 of the 

CP009072  
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E386  

E433  

E80  

E418  
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E2  

E461  

E565  

E122  
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E30  

E34  

E175  

E533  

E205  

E530  

E543  

Divergence, substitutions/site  

0  0.001  0.002  0.003  0.004  0.005  
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Fig. 2 Phylogenomic analysis of E. coli isolates. Phylogenetic 

Supertree computed on concatenated single-copy core genes 

and using the Neighbor-Joining method showing the existing 

relationship between 19 E. coli species. CP009072 was used as the 

outgroup. Evolutionary analyses were conducted in TreeBest. The 

numbers on the branch indicate branch credibility. The branch length 

shows the size of the evolutionary distance which calculates in the 

units of the number of base substitutions per site
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VFDB-annotated genes were shared within 19 clinical 

E. coli isolates. �e most abundant adherence found 

in our isolates maybe related to the IncI 1 plasmids, 

which can encode the type IV pili. �ese virulence fac-

tors, along with their epidemic ability and resistance 

determinants, may have favored the dissemination of 

plasmids belonging to IncI 1 plasmid family (Carattoli 

2009).

Based on nucleotide alignments of the core genome of 

individual strains, phylogenomic investigation allowed 

us to deduce the evolutionary relationships between 

strains while 16S rRNA sequence-based phylogeny does 

not provide sufficient resolution at the intra-species level 

(Ventura et  al. 2006). �e phylogenetic analysis of the 

19 clinical E. coli isolates in our study showed no group 

correlations between the isolates from the same species 

or numbers of antibiotic resistance genes possessed by 

them. MLST analysis showed that strains E100, E386, 

E433 and strains E461, E565 belonged to ST155 and 

ST23, respectively, which are phylogenetically similar. 

Unlike comparative genomics-derived clustering which 

is based on the presence-absence of genes, phylogenomic 

analysis is based on sequence alignment of core genes 

and for this reason it is more suitable for an in depth 

investigation of phylogenetic relationships between 

closely related taxa (Bottacini et al. 2017).

�is study confirmed that multiple drug resistance of 

most of the clinical E. coli isolates were probably due to 

the presence of different plasmids. Virulence genes car-

ried by these isolates can increase potential risks on the 

health of human and animals. Virulence factors associ-

ated with adherence have the most abundance in Viru-

lence Factors of Pathogenic Bacteria analysis. With the 

rapidly falling cost and turnaround time as well as avail-

ability of more user-friendly software, WGS promises to 

be transformative for rapid surveillance and genotypic 

antimicrobial susceptibility testing for microbes that 

are difficult to grow, and has great benefits in combina-

tion with phenotypic methods. �e findings from com-

parative genomic analyses of the 19 diverse E. coli isolates 

provided insights into molecular basis of the rising multi-

drug resistance in E. coli.

�e WGS-based characterization of multidrug-resist-

ant E. coli from extraintestinal infections in three animal 

species in this study revealed a diverse range of E. coli 

STs, and demonstrated the emergence and persistence 

of particular multidrug-resistant strains, which may 

have a competitive advantage in fitness under antimicro-

bial selection pressure compared with previous strains. 

Surveillance of the emergence and spread of dominant 

multidrug-resistant isolates with unique plasmids, resist-

ance genes, virulence genes and STs may assist veterinar-

ians in developing improved strategies for treatment and 

prevention of infections for which the choice of antimi-

crobials is limited.
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