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Abstract. In this paper, we review an emerging engineering discipline to program
cell behaviors by embedding synthetic gene networks that perform computation,
communications, and signal processing. To accomplish this goal, we begin with a
genetic component library and a biocircuit design methodology for assembling these
components into compound circuits. The main challenge in biocircuit design lies in
selecting well-matched genetic components that when coupled, reliably produce the
desired behavior. We use simulation tools to guide circuit design, a process that
consists of selecting the appropriate components and genetically modifying existing
components until the desired behavior is achieved. In addition to such rational de-
sign, we also employ directed evolution to optimize genetic circuit behavior. Building
on Nature’s fundamental principle of evolution, this unique process directs cells to
mutate their own DNA until they find gene network configurations that exhibit the
desired system characteristics. The integration of all the above capabilities in future
synthetic gene networks will enable cells to perform sophisticated digital and analog

computation, both as individual entities and as part of larger cell communities. This
engineering discipline and its associated tools will advance the capabilities of genetic
engineering, and allow us to harness cells for a myriad of applications not previously
achievable.

Keywords: cellular computation, cell-cell communications, directed evolution, ge-
netic signal processing, synthetic gene networks

1. Introduction

Genetic engineering with recombinant DNA is a powerful and widespread
technology that enables biologists to redesign life forms by modifying or
extending their DNA. Advances in this domain allow us to gain insight
into the operating principles that govern living organisms, and can also
be applied to a variety of fields including human therapeutics, synthe-
sis of pharmaceutical products, molecular fabrication of biomaterials,
crops and livestock engineering, and toxin detection with biological
sentinels. While already providing great benefits, existing genetic en-
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gineering applications only hint at the possibilities for harnessing cells
to our benefit.

For the purpose of genetic engineering, it is currently possible to
construct DNA fragments that consist of almost any gene sequence.
While the synthesis process is well developed, the behavior of the re-
sulting genetic constructs is not easy to predict. Consequently, it is
often difficult to design constructs that achieve desired behaviors with
reliability and robustness. For example, we would like to instruct cells
to reliably make logic decisions based on factors such as surrounding
environmental conditions and internal cell state. In this paper, we ex-
plore the nascent field of synthetic gene networks, whose primary goal
is to obtain sophisticated and reliable cell behaviors.

We strive to develop an engineering methodology for creating syn-
thetic gene networks that will allow us to engineer cells with the same
ease and capability with which we currently program computers and
robots. The first step in making programmed cell behavior a practical
and useful engineering discipline is to assemble a component library of
genetic circuit building blocks. These building blocks perform compu-
tation and communications using DNA-binding proteins, small inducer
molecules that interact with these proteins, and segments of DNA that
regulate the expression of these proteins. We describe a component
library of cellular gates that implement several digital logic functions.
These include components for intracellular computation (i.e., not and
nand) and devices for external communication (i.e., implies and and).
The building blocks have already been assembled into several prototype
genetic circuits in Escherichia coli bacterial cells, with up to three logic
gates per cell. These genetic elements can also be configured to process
environmental and internal biochemical analog signals. The integration
of the above capabilities in future synthetic gene networks will enable
cells to perform sophisticated digital and analog computation, both as
individual entities and as part of larger cell communities.

An integral part of genetic circuit design is modeling the behavior
of proposed circuits prior to their synthesis. In silicon chip fabrication,
simulation tools help guide chip design to minimize the time and effort
required for circuit construction. Similarly, genetic circuit development
can also benefit from modeling tools that can predict characteristics
such as the steady state and dynamic behavior of the proposed system.
The simulation tools are used to evaluate various network configura-
tions for achieving particular functions, and to help refine existing and
proposed designs. A unique and powerful capability of biological circuit
engineering, as compared to its silicon chip counterpart, is our ability
to exploit one of Mother Nature’s fundamental operating principles –
the process of evolution. Specifically, through directed evolution, cells
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Figure 1. A simplified view of the two cases for a biochemical inverter. Here, the
concentration of a particular messenger RNA (mRNA) molecule represents a logic
signal. In the first case, the input mRNA is absent and the cell transcribes the gene
for the output mRNA. In the second case, the input mRNA is present and the cell
translates the input mRNA into the input protein. The input protein then binds
specifically to the gene at the promoter site (labeled “P”) and prevents the cell from
synthesizing the output mRNA.

can be engineered to mutate their DNA sequences with the goal of op-
timizing circuit characteristics such as signal sensitivities and switching
thresholds.

In this paper, we describe the genetic circuit building blocks (Sec-
tion 2), existing prototype circuits (Section 3), genetic circuit design
(Section 4), cell-cell communication (Section 5), and signal processing
circuits (Section 6).

2. Genetic Circuit Building Blocks

The first step in programming cells and controlling their behavior is
to establish a library of well-defined components that serve as the
building blocks of more complex systems. This section describes how
certain genetic elements can be configured to implement logic gates and
logic circuits. Here, instead of electrical signals representing streams of
binary ones and zeros, the chemical concentrations of specific DNA-
binding proteins and inducer molecules act as the input and output
signals of the genetic logic gates. Within the cell, these molecules inter-
act with other proteins, bind specific DNA sites, and ultimately regulate
the expression of other proteins. This regulatory activity can be used
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Figure 2. Biochemical inversion uses the transcription and translation cellular pro-
cesses. Ribosomal RNA translates the input mRNA into an amino acid chain, which
then folds into a three-dimensional protein structure. When the protein binds an
operator of the gene’s promoter, it prevents transcription of the gene by RNA
polymerase (RNAp). In the absence of the repressor protein, RNAp transcribes
the gene into the output mRNA.

to implement digital logic functions, as well as analog processing of
signals.

2.1. Biochemical Inverter

The characteristics of natural gene regulation systems can be exploited
to design in vivo logic circuits (Weiss et al., 1999). An example of such
a system, that illustrates the biochemical process of inversion is seen
in Figure 1. Here, the presence or absence of input messenger RNA
(mRNA) determines the two possible output states. A more complete
picture that explains the role of transcription and translation cellular
processes in inversion is seen in Figure 2.

Figure 3 depicts a functional model of the inverter derived from
its biochemical reaction phases. The first phase in inversion is the
translation stage, denoted as L. The input signal to this stage, and thus
the inverter, corresponds to the concentration level of the input mRNA,
φA. Ribosomal RNA (rRNA) translates the input mRNA into the input
repressor protein, ψA, where L represents the steady state mapping
between the mRNA and protein concentrations. The relationship be-
tween the input mRNA and repressor protein is initially linear, with
increases in φA corresponding to increases in ψA, until an asymptotic
boundary is reached. The properties of this boundary are determined
by characteristics of the cell such as amino acid synthesis capabilities,
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Figure 3. Functional composition of the inversion stages: the translation stage maps
input mRNA levels (ψA) to input protein levels (φA), the cooperative binding stage
maps input protein levels to bound operator levels (ρA), and the transcription stage
maps bound operator levels to output mRNA levels (ψZ). The degradation of the
mRNA and protein molecules is represented with the electrical ground symbol. The
degradation of mRNA is part of the translation stage, while the degradation of pro-
teins is part of the cooperative binding stage. The graphs illustrate the steady-state
relationships for each of these stages and the overall inversion function that results
from combining these stages.

the efficiency of the ribosome-binding site, and mRNA stability. Since
cells degrade mRNA as well as protein molecules, constant synthesis
of the input mRNA is needed to maintain a steady level of the input
repressor protein.

In the second phase, input protein monomers combine to form poly-
mers that bind the operator, and subsequently repress the transcription
of the output gene. This cooperative binding, which ensures that only
dimerized proteins can bind the DNA, decreases the digital noise. Let us
define the concentration of operator that is bound to the repressor, or
the strength of the repression, as ρA. In addition, denote the cooperative
binding stage that occurs between ψA and ρA as C. In steady state, the
relationship between ψA and ρA is sigmoidal. At low levels of ψA, the
strength of repression does not increase significantly for increases in ρA

because these concentrations are too low for appreciable dimerization.
At higher concentrations of ψA, however, considerable dimerization
occurs, resulting in a nonlinear increase in repression activity. For
values of ψA approaching saturation, the operator is mostly bound,
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Figure 4. Design of a biochemical nand logic gate connected to a downstream
inverter. The two-input nand gate consists of two separate inverters, each with
a different input, but both with the same output protein. The nand gate output is
always high unless both inputs are present. This output can then be connected to
other downstream gates, such as an inverter.

and repressor activity is close to maximal. At this point, increasing the
concentration of ψA does not increase repression, and instead causes
the ψA/ρA curve to move toward an asymptotic boundary. In this way,
the cooperative binding stage performs signal restoration in which the
analog output signal better represents the appropriate digital meaning
than the corresponding analog input signal. Because each stage of the
computation reduces the noise in the system through signal restoration,
multiple inverters can be combined into more complex circuits, while
still maintaining or even increasing the overall reliability of the system.

In the final stage of the inverter, the transcription stage, RNA poly-
merase (RNAp) transcribes the regulated gene and the input signal is
inverted. Let us define Z to be the output signal of the inverter and
φZ to be its corresponding mRNA concentration. The transcription
stage, with input ρA and output φZ , has a steady state relationship in
which increases in ρA correspond to monotonic decreases in φZ . During
periods of minimal repression, transcription progresses at rapid rates
resulting in maximal concentrations of φZ . However, for high levels
of repression, the transcriptional activity declines and the level of φZ

drops.
Overall, the three stages combine to form a system that behaves as

an inverter, negating the input mRNA signal, φA, to yield the output
mRNA signal, φZ . Furthermore, with efficient signal restoration during
the cooperative binding stage of inversion, complex but reliable digital
logic circuits are attainable.
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Figure 5. Design of a biochemical gate for the implies logic function that enables
extra-cellular interaction. With no inducer present, the gate behaves similarly to the
inverter. However, when the inducer is present, it binds the repressor and modifies its
three-dimensional confirmation, thereby preventing the resulting molecular complex
from binding the operator. As a result, transcription proceeds even in the presence
of the repressor.

2.2. nand Gate

Biochemical inverters are used to construct more sophisticated gates
and logic circuits. For example, a nand gate can be designed by ”wiring-
OR” the outputs of two inverters by assigning them same output gene
(Weiss et al., 1999). Figure 4 depicts a circuit in which a nand gate is
connected to an inverter. For simplicity, both mRNA and their cor-
responding protein products are used to denote the signals, or the
circuit wires. Again, the regulation of the promoter and mRNA and
protein decay enable the gate to perform computation. The nand gate
protein output is expressed in the absence of either of the inputs, and
transcription of the output gene is only inhibited when both input
repressor proteins are present.

Because the performance of a nand gate depends only on its con-
stituent inverters, well-designed inverters can be engineered into a va-
riety of reliable combinatorial gates. Furthermore, the nand gate is a
universal logic element that can theoretically be used to wire any finite
intracellular digital circuit.

2.3. implies Gate for External Interaction

Cells use the implies gate to receive control messages sent by humans or
to detect certain environmental conditions (Weiss, 2001). The biochem-
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ical reactions, the logic symbol, and the truth table for an intercellular
construct that implements the implies gate are shown in Figure 5. The
gate has two inputs: a repressor protein and an inducer, that is typically
a small molecule that diffuses through the cell membrane. When the
input mRNA and its corresponding protein are absent, RNAp binds the
promoter and the output mRNA is transcribed, resulting in a logical
high output. If only the input repressor protein is present, it binds the
promoter and prevents the RNAp from initiating transcription, yielding
a logical low output. In order to interact with a cell, one can introduce
the appropriate inducer molecule to its surrounding environment. If the
inducer molecule exists at sufficiently high concentration, it will diffuse
through the cell membrane and affect the output of the implies gate.
When both the inducer and repressor are present, the inducer binds
the repressor, changes the repressor’s three-dimensional conformation,
and renders the resulting molecular complex incapable of binding the
promoter. In this case, transcription occurs and a high output ensues.

The implies gate is comprised of the same three biochemical stages
as the inverter: translation, cooperative binding, and transcription.
The fundamental difference between the two gates lies in the role of
the inducer. The concentration of the inducer acts as an additional
input, along with the input repressor mRNA, to the cooperative bind-
ing phase, C ′. Let the inducer concentration be denoted as υA, the
concentration level of input mRNA as φA, and the concentration level
of output mRNA as φZ . In this construct, the repression strength,
ρA, depends non-linearly on the level of the repressor (as in the case
of the inverter), and also on the level of the inducer. Specifically, C ′

is determined by the binding affinities of the active repressor to the
operator and the affinity of the inducer to the repressor.

Inducers and mRNA/proteins are not interchangeable signals. A
protein is coupled to a promoter that contains an operator region that
specifically binds the protein. This protein/promoter interaction is the
important interaction for characterizing a logic gate. The output of a
logic gate A can be connected to the input of a logic gate B by fusing
the promoter of A with a DNA coding region for input protein B.
If we ignore fan-in and fan-out issues, these protein/promoter gates
can theoretically be configured to implement any arbitrary digital logic
function. In contrast, the implies gate represents a hybrid gate that
has inputs of two different types. The inducer molecule input is always
coupled to the corresponding protein molecule input. When designing
circuits with such hybrid gates, it is important to ensure that there
are no unintended interactions between various inducer molecules and
proteins.
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Figure 6. Detecting Cell-Cell Communications with AND Gate.

2.4. AND gate for Cell-Cell Communications

The and gate is utilized by cells to detect incoming messages sent by
other neighboring cells (Weiss and Knight Jr., 2000). The biochemical
reactions, the logic symbol, and the truth table for an intercellular gate
that implements the AND function are illustrated in Figure 6. In this
construct, RNAp has a low affinity for the promoter and thus, basal
transcription activity is minimal. It follows that in the absence of the
activator and inducer, the logic output of the and gate is low. When
only the activator is present, the output is still low, since the activator
has little affinity for the operator without its corresponding inducer.
The output is high only if both the activator and inducer are present. In
this case, the inducer binds the activator and changes its conformation,
yielding an activator/inducer complex that binds the promoter. This
complex helps recruit RNAp to the promoter and initiate transcription
to yield a high output.

The biochemical reaction stage involved in the and gate include
translation, cooperative binding, and transcription. The translation
stage is very similar to those of the not and implies gates. The coop-
erative binding stage, C ′′, takes the activator protein, ρA, and inducer,
υA, as inputs. However, unlike the not and implies gates that map the
inputs to repression levels, the output of C ′′ is an activation level, ωA.
As in the implies gate, the activation level depends non-linearly on the
levels of the activator and inducer. In addition, the binding affinities
of the inducer to the activator and of the activator/inducer complex to
the operator determine the shape of C ′′. The final transcription stage
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Figure 7. The auto-repressor circuit consists of a PLtetO-1 promoter that regulates
a tetR/EGFP fusion protein. In case (a) with a non-functional mutated version
of tetR, the circuit behaves as a simple inverter because the tetR mutant protein
(tetRY24A) cannot bind the tetO operator site on the promoter. The circuit exhibits
wide fluctuations in gene expression. However, when the wild-type tetR is used in
case (b), the negative feedback causes gene expression to be more uniform among
the cell population.

of the and gate maps the activation level, ωA, to output mRNA, φZ ,
in a direct relation.

As with the implies gate, the two inputs to the and gate are not
interchangeable, since the inducer must be coupled to its corresponding
activator. Here again, it is imperative that the circuit elements are com-
prised of only non-interfering activator/inducer pairs and that there are
no inadvertent interactions between inducer molecules and activators.

3. Implementation of Prototype Circuits

This section describes the implementation of three prototype circuits
using the inverter and implies gate genetic circuit building blocks of
Section 2. These experimental circuits consist of one, two, or three
gates, and exhibit various behaviors such as the reduced noise of gene
expression when compared to a simple inverter (Section 3.1), bistability
(Section 3.2), and oscillation (Section 3.3).

3.1. Auto Repressor

All biochemical processes in cells such as transcription, translation, and
the protein decay are inherently stochastic. Thus, a population of cells
with an identical genetic makeup grown under the same environmen-
tal conditions can still show significant cell-cell variation in behavior.

weiss-natural-computing-2003.tex; 19/12/2002; 6:50; p.10
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Figure 8. The toggle switch gene network consists of two proteins, R1 and R2, that
repress the expression of each other from promoters P1 and P2. To set the the toggle
switch to either one of its bistable states, P1 and P2 expression is induced externally
using I1 and I2. This network is represented as a logic circuit with two interconnected
implies gates. The behavior of six different choices of genetic elements is shown in the
time-series response of the circuits to external inducers. Five out of six configurations
exhibit bi-stability.

The extent of gene expression fluctuations in a single inverter can be
reduced by introducing a negative feedback loop, as illustrated by the
auto-repressor circuit (Becskei and Serrano, 2000). In Figure 7, a tetR-
EGFP (tetracycline repressor fused with Enhanced Green Fluorescent
Protein) coding sequence and EGFP (Enhanced Green Fluorescent
Protein) is placed downstream of PLtetO-1.

In case (a), tetRY24A is a one amino-acid mutant protein that does
not bind the tet operator of PLtetO-1, and therefore the circuit be-
haves as a simple inverter. The corresponding histogram, which relates
measured fluorescence intensity to cell count, shows wide variations in
output gene expression. In case (b) where the functional wild-type tetR
is used, the circuit contains negative feedback that serves to reduce
the noise of gene expression. Since the TetR that occupies the tetO
operator inhibits RNAp from binding the PLtetO-1 promoter, the TetR
protein repressor restricts the production of itself (and the EGFP fusion
protein). This negative feedback reduces variations in gene expression
from PLtetO-1 as can be seen by the histogram in Figure 7(b).

3.2. Toggle Switch

The toggle switch is a synthetic gene network that retains bistable
states (Gardner et al., 2000). Chemical or thermal induction allows the
switch to move between the stable states. The genetic circuit comprises
two repressors, R1 and R2, their promoters P1 and P2, and inducers I1

weiss-natural-computing-2003.tex; 19/12/2002; 6:50; p.11
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and I2 that deactivate the repressors (Figure 8). The logic circuit rep-
resentation consists of two interconnected implies gates. Two types of
this gene network, with a total of six different versions, were synthesized
and checked for bistability.

The first type includes four versions of the network that contain
lacI and a temperature sensitive λ repressor (cIts) downstream of the
λ PLs1con and Ptrc-2 promoters, respectively. LacI represses Ptrc-2,
whereas cIts represses the λ PLs1con promoter. The four different con-
figurations differ in their RBS sequences located upstream of LacI. A
green fluorescent protein (GFPmut3) downstream of cIts reports the
state of the network. When the system is exposed to iptg for approxi-
mately six hours, the four LacI/cIts versions of the circuit switch from
the low to high state. This is because iptg bound to LacI can no
longer repress the Ptrc-2 promoter. If the cells are diluted into fresh
media with no inducers, they still retain the high state after five ad-
ditional hours of growth, as illustrated in the top graph of Figure 8.
After incubation @42◦C for an additional seven hours, all four systems
switch back to the low state.

The other type of the toggle switch network includes two new ver-
sions where TetR replaces cIts and PLtetO-1 replaces λ PLs1con. Again,
two different RBS sequences were placed upstream of lacI. Of these,
only one configuration demonstrated bistability (lower graph in Fig-
ure 8). In the non-functional version, it is likely that even in the re-
pressed state, LacI expression was stronger than the repression effi-
ciency of TetR, and eventually LacI concentration increased back to
the original high levels.

3.3. Ring Oscillator

The repressilator is an oscillatory gene network constructed with three
repressors that are not part of a natural biological clock network (Elowitz
and Leibler, 2000). The oscillation frequency of the genetic network is
less than the cell division frequency, and as a result, the oscillations
are propagated through the generations. The network comprises three
fast-decaying versions of the repressors CI, LacI, and TetR, and their
corresponding promoters. CI represses the expression of LacI, which in
turn represses the transcription of tetR. The correspondng TetR protein
subsequently inhibits the expression of CI (Figure 9). When the kinetic
characteristics are matched between the different gene components un-
der the appropriate delay conditions, this system will oscillate with
regular periodicity and amplitude.

In order to optimize the dynamic behavior of the system, the repres-
sor proteins were fused with amino-acid tails that encode decay tags.
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Figure 9. The repressilator circuit consists of three proteins and their three corre-
sponding promoters, arranged such that each protein Px represses the expression of
a different protein Py which does not repress Px. These proteins include a synthetic
tag, signified by the suffix “lite”, that targets the proteins for fast decay in the
cell. The gene network configuration corresponds to a ring oscillator logic circuit.
A green fluorescent protein placed downstream of a PLtetO-1 promoter reports the
approximate concentration of cI in any particular cell. The graph shows the time
evolution of fluorescence intensity in a particular cell that exhibits oscillation, with
the small bars depicting cell division events. Oscillatory behavior of other cells varied
considerably.

These tags reduce protein stability and increase in-vivo decay rates. A
gfp placed downstream of an additional PLtetO-1 promoter (not shown)
reports the approximate level of CI. The graph in Figure 9 shows the
oscillation of a single cell as measured by GFP fluorescence over time.
Oscillatory behavior was observed by approximately half of the indi-
vidual cells. However, the period and amplitude of oscillations varied
dramatically from cell to cell, even though they contained an identical
genetic construct. This variability is likely attributed to the stochastic
nature of the biochemical reactions that govern the cellular machinery
of gene expression. Various research projects are currently attempting
to implement synthetic gene networks that exhibit improved oscillatory
behavior. One approach involves synchronizing gene expression among
a cell population using cell-cell communications (McMillen et al., 2002).

4. Circuit Design

We have already demonstrated that prototype circuits can be used
to construct small scale synthetic gene networks with interesting be-
havior. However, even at this scale, we lack the ability to design a
DNA sequence that reliably implements a desired cellular function with
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quantitative precision. This issue will become more and more important
as the size of target synthetic gene network grows.

In this section we explore two seemingly divergent approaches for
genetic circuit design. The first methodology employs “rational design”
in which an attempt is made to gain accurate knowledge of the be-
havior of the genetic components and their compositions. It includes
both modeling of gene networks and making modifications of genetic
elements based on simulation results until the components achieve the
desired characteristics. The second approach, directed evolution, uses
large scale genetic mutations and combinatorial synthesis, combined
with high throughput assays, to screen for genetic network variations
that yield the desired behavior. Ultimately, the most productive ap-
proach for genetic circuit design will likely integrate rational design
with directed evolution and combinatorial synthesis.

4.1. Rational Design

4.1.1. Modeling
Computational models are necessary for systematic circuit design and
analysis. Biological circuit models are similar to electrical circuit models
in that the simulated behavior of the system depends on the character-
istics of the components. However, fundamental differences between the
different substrates require modeling techniques that optimize different
facets of the simulations. For example, in electrical circuits, components
are spatially separated and the connectivity is determined by a fixed
conducting pathway or wire. Biological simulations, on the other hand,
must consider the sharing of physical space by multiple components
and their widely varying kinetic characteristics. An electrical circuit
is typically modeled as a deterministic network. Specifically, the cir-
cuit state at a given time and the the regulatory interactions between
components are sufficient for determining the next state. In contrast,
biological circuit models often need to take into account the stochastic
nature of chemical reactions in cells. Experimental data has revealed
that genetic networks tend to exhibit significant noise even for the sim-
plest configurations (Elowitz et al., 2002). While these findings suggest
that stochastic models may be better suited for analysis of genetic
circuits, other forms of modeling are widely used. Depending on the
configuration of the genetic network, deterministic modeling tools may
shed insight into important characteristics of the networks (De Jong,
2002).

Many types of models and simulations, with varying degrees of speci-
ficity and difficulty, have been used to describe biological circuits. One
simple approach, boolean networks, can be used to sort large amounts
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Table I. Biochemical reactions that model an inverter. mRNAA is the input and
mRNAZ the output.

mRNAA + rRNA
kxlate

−−−−−−−−→
translate mRNAA + rRNA +A (1)

mRNAA

kdec(mrna)
−−−−−−−−−→

decay (2)

A+A
kdim(a)

−−−−−−−−−−→
dimerization A2 (3)

A2

ksngl(a)
−−−−−−−→

single A+A (4)

A
kdec(a)

−−−−−−−→
decay (5)

A2

kdec(a2)
−−−−−−−→

decay (6)

PZ +A2

krprs(a2)
−−−−−−−−−→

repress 1 PZA2 (7)

PZA2

kdis(a2)
−−−−−−−−−−→
dissociation PZ +A2 (8)

PZA2

kdec(ga2)
−−−−−−−→

decay PZ (9)

PZA4

kdec(ga4)
−−−−−−−→

decay PZA2 (10)

PZA2 +A2

krprs(a4)
−−−−−−−−−→

repress 2 PZA4 (11)

PZA4

kdis(a4)
−−−−−−−−−→
dissociation PZA2 +A2 (12)

PZ + RNAp
kxscribe

−−−−−−−−→
transcribe PZ + RNAp + mRNAZ (13)

mRNAZ

kdec(mrna)
−−−−−−−→

decay (14)

of biological data, such as from microarrays, in order to gain theoretical
understanding of the systems (Kauffman, 1969). The boolean models
assume that gene expression is discrete, i.e on or off, and that state
transitions are deterministic and synchronous. In practice, biological
transitions are rarely simultaneous, and assuming otherwise can pre-
vent the accurate prediction of many concentration-sensitive behaviors.
Boolean networks are resource-efficient but come at the expense of pos-
sibly over-simplifying the structure and dynamics of biological networks
(De Jong, 2002).

A prevalent method for modeling dynamic systems, such as bio-
logical circuits, is to employ nonlinear ordinary differential equations
(ODE). The concentrations of RNA, proteins, and other molecules are
represented by time-dependent variables. Rate equations describe the
biochemical reactions as a function of the concentrations of the various
species in the circuit and are of the form

dxi

dt
= fi(x), 1 < i < n
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where the vector x = [x1, ..., xn]′ ≥ 0 includes the concentrations of
proteins, mRNAs, and other molecules, and fi : Rn → R is usually a
nonlinear function (De Jong, 2002).

Table I lists the chemical reactions that model the inverter in Fig-
ure 2. The mechanisms modeled here include translation of the input
protein from the input mRNA (reactions 1–2), input protein dimeriza-
tion and decay (reactions 3–6), cooperative binding of the input protein
(reactions 7–12), transcription (reaction 13), and degradation of the
output mRNA (reaction 14). From the fourteen reactions, seven ordi-
nary differential equations are derived, one for each molecular species
in the system (Weiss et al., 1999). Each differential equation describes
the time-domain behavior of a particular molecular species based on
all the equations in the biochemical model that include that particular
molecule. For example, the ordinary differential equation for simulating
the time-dependent molecular concentration of the input protein A is:

d(A) = 2 · ksngl(a) ·A2 − kdec(a) ·A+ kxlate · rRNA · mRNAA

−2 · kdim(a) · A
2

while the equation for simulating promoter PZ bound by protein dimer
A2 is:

d(PZA2) = krprs(a2) · PZ ·A2 − kdis(a2) · PZA2 − krprs(a4) · PZA2 ·A2

+kdec(ga4) · PZA4 − kdec(ga2) · PZA2 + kdis(a4) · PZA4

Figure 10 shows an ODE simulation of the dynamic behavior of
the inverter circuit with the above chemical reactions in response to
an external stimulus. The kinetic constants used in this simulation
were obtained from the literature describing the phage λ promoter PR

and repressor (CI) mechanism (Hendrix, 1983; Ptashne, 1986). The top
graph represents the input mRNAA, followed by graphs for the input
protein repressor and its dimeric form, free and occupied forms of the
promoter, and finally the output mRNAZ .

The reactions proceed as follows: at first, input mRNA and input
protein repressor are absent. As a result, PZ is active and RNAp tran-
scribes output mRNAZ . The level of mRNAZ increases until it stabi-
lizes when the gene expression and decay reactions reach a steady-state.
At this point, the input signal is low while the output signal is high.

Then, an externally-imposed drive increases the input mRNAA, which
is further translated into the input repressor protein A. This protein
begins to form dimers, which bind the promoter’s free operators. The
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Figure 10. The dynamic behavior of the inverter. The graphs show a time-series
of the molecular concentrations involved in inversion, in response to a stimulus of
input mRNA.

system quickly reaches a state where each promoter is essentially com-
pletely bound by two dimers. The almost complete inactivation of
the promoters occurs at a fairly low concentration of the dimer A2,
and indicates the strong repression efficiency of the CI repressor that
is used for this simulation. As a result of the promoter inactivation,
transcription stops and the output mRNAZ decays to zero. At the end
of this stage, the input signal is high while the output signal is low.

Finally, mRNAA synthesis is halted and the lack of this external
drive results in the decay of existing mRNAA, A, and A2. Slowly, the
repressor dimers dissociate from the PZ operators, and the level of the
active promoter PZ increases to the original level. This allows RNAp to
resume transcription of PZ , and the level of the output mRNAZ rises
again. At this stage, the input signal reverts to low, while the output
signal becomes high.

A significant problem with using differential reaction-rate equations
lies in the model’s assumption that biochemical systems are both con-
tinuous and deterministic. While these assumptions are convenient for
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simulating systems with a large number of molecules for any given
species, they often lead to significant inaccuracies in modeling biochem-
ical systems such as cells that often consist of only a few molecules for
a given species. Molecular reactions change the population dynamics
discretely, thereby invalidating the former assumption of time continu-
ity. The latter assumption can be refuted with the following argument.
Without knowing the exact positions and velocities of every molecule
in a system, a prediction of the precise molecular population levels is
impossible (Gillespie, 1977). For cases when only the average behavior
of a genetic circuit needs to be modeled, deterministic models suffice.
This is because the number of each type of molecule is large compared
to thermal fluctuations and the number of each type of reaction per unit
time in each observation interval is also large (McAdams and Arkin,
1998). If, however, the model needs to describe population heterogene-
ity for a small number of reacting molecules, stochastic fluctuations due
to random noise need to be taken into account (Rao and Arkin, 2001).
The main limitations to stochastic modeling include the large compu-
tational resource requirements and the lack of accurate quantitative
information about noise in the system.

For networks of modest complexity and small size, it may be worth-
while exercise to model the system both deterministically and stochas-
tically to compare the results, particularly if any experimental data
is available to validate one model. The repressillator described in Sec-
tion 3.3 was simulated using both methods and the results were com-
pared to experimental data (Elowitz and Leibler, 2000). The determin-
istic model predicted regular oscillation with consistent amplitudes,
and the stochastic model showed damped oscillation. The experimen-
tal data for one particular cell exhibited periodic oscillations with a
baseline drift (Figure 9), but overall cells in a microcolony exhibited
large variations in the period and amplitude of oscillations. The noisy
experimental data is the result of unaccounted endogenous interactions.
In theory, this system will oscillate indefinitely but there will likely
be an imbalance in the network that will be amplified by the circuit
feedback. Deterministic models average out slight imbalances in the
system, predicting less erratic behavior than what naturally occurs. A
stochastic model, however, may not necessarily be more accurate be-
cause the regulatory mechanisms may not have been modeled correctly.
As a guideline, networks with feedback, such as the ring oscillator,
will have a greater accumulation of random reactions as compared to
combinatorial networks such as a cascade of inverters.

Certain studies have shown robust deterministic systems that can
accurately model network response to variations in initial conditions
and parameter values over orders of magnitude. Examples include mod-
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Figure 11. Genetic circuit diagram to measure the device physics of an R3/P3

inverter: digital logic circuit and the genetic regulatory network implementation
(Px: promoters, Rx: repressors, CFP/YFP: reporters)

els of bacterial chemotaxis (Barkai and Leibler, 1997) and a simulation
of the segment polarity network in Drosophila (von Dassow et al., 2000).
These findings suggest that a simulated system may be stable as a
result of the network structure and not because of particular parameter
values (De Jong, 2002). In spite of this, the lack of quantitative kinetic
parameters for the rate equations and incomplete knowledge of the
biochemical reaction mechanisms are significant hindrances to achiev-
ing accurate deterministic and stochastic simulations. But as shared
databases become more prevalent, mathematical network identification
techniques will be used to estimate more parameter values and improve
the breadth of our knowledge. Synthetic gene regulatory networks are
also playing an important role in achieving precise biological circuit
models. Parameters can be measured directly and systematically using
methods such as the ones described in the next section.

4.1.2. Engineering the Device Physics of Gates
One of the main issues encountered in designing genetic circuits is the
ability to match the components into combinations that result in the
correct behavior. In practice, this task is harder than what one might
expect. Naturally occurring components have widely varying kinetic
characteristics and coupling these elements together will most likely
not result in desirable behavior. As a result, there is a need for genetic
process engineering, in which genetic elements are modified until they
are tuned to respond in a desirable fashion.

To study the device physics of these circuits, we start our inves-
tigation with a simple inverter circuit where the output is inversely
proportional to the input: a high concentration of the input signal
results in a low concentration at the output and vice versa. In order
to observe the response we need to construct the circuit so that the
input can be externally controlled to achieve desirable levels. This can
be achieved by coupling the inverter to an implies gate. Figure 11
depicts the construct of this inverter circuit.
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Figure 12. Transfer curve gain and noise margins for the lacI/p(lac) circuit.

In the first part of the circuit, promoter P1 regulates the expression
of gene R2. Since the cell does not have a repressor for P1 (low input),
R2 is expressed constitutively and the gate’s output is always high. R2

serves as the input signal to the next stage of the circuit and it also acts
as a repressor for promoter P2. This promoter regulates gene R3. Using
external interaction, an inducer molecule I2 can bind R2 and prevent
it from binding the operator site of P2, hence allowing the expression
of R3. This part of the circuit thus acts as a buffer such that when I2

is present, the output is R3 and when I2 is absent, the expression of
R3 is repressed. A reporter cyan fluorescent protein (CFP) is placed
downstream of R3 to probe for the signal at this stage. R3 is the input
to the next stage of the circuit and it acts to repress the transcription
of YFP. In terms of the overall response of this system, the presence
of I2 (high input) corresponds to the repression of the YFP (low

output) and the absence of I2 (low input) allows the production of
the fluorescent protein (high output).

This circuit can be configured using different repressor/promoter
pairs. Figure 13 shows the experimental results of the system where
P1, P2 and P3 are λP (R−O12), PLtetO-1, and p(lac), respectively. In-
ducer I2 is anhydrotetracycline (aTc), R2 is the TetR protein, and R3

is the LacI protein. Figure 12(a) shows Fluorescence-Activated Cell
Sorting (FACS) (Shapiro, 1995) cell population data of EYFP in two
separate experiments where the cells were exposed to high and low

concentrations of the inducer input (aTc). For a low aTc level of 3 ng
ml

the cells are highly fluorescent (high output). For a high aTc input
level of 30 ng

ml
, the output is low. Figure 12(b) illustrates the transfer
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curve of the circuit with respect to different aTc input levels. The error
bars denote the range that includes 95% of the fluorescent intensities
of individual cells measured for corresponding aTc levels. The signal to
noise ratio and the sharp transition between the two states demonstrate
the potential of such circuits for digital logic computation.

While the lacI/p(lac) inverter exhibits the correct behavior for a
digital inverter, other combinations of repressor/promoter can also be
used to construct additional components for the cellular gate library.
For the purpose of assembling a component library, we built another
version of this circuit with p(lacIq), p(lac), and λP (R) as the promoters
P1, P2, and P3, and LacI and CI as the repressors R2 and R3. The
input to this circuit is iptg.

It is worth mentioning that the CI repressor binds cooperatively to λ
promoter’s two operator sites, OR1 and OR2 very efficiently, resulting
in a high gain for such a system. The dimeric form of CI has a high
affinity for the OR1 region of the operator and it is to this site, to
which it first binds. In addition, the binding of CI to OR1 increases the
affinity of a second dimer for the OR2 site, due to the interaction with
the bound dimer. Therefore dimers bind OR1 and OR2 almost simul-
taneously. This cooperative binding is highly desirable in the design
of logic circuits as it provides a high gain and quick change in output
response over a small change in input concentrations.

This circuit is expected to exhibit an inverse correlation between
input iptg levels and output EYFP. However the initial experimental
results showed no response in this case and the system seemed to
be insensitive to variations in the levels of input iptg. This lack of
response stems from the mismatch between the kinetics characteristics
of LacI/p(lac) gate versus the CI/λP (R) inverter. Even in the absence
of iptg and a maximum repression of the p(lac) promoter, a low basal
level of CI is expressed. Because CI is a very efficient repressor, it fully
represses the λP (R) promoter even at low concentrations and prevents
the expression of the output fluorescent protein.

This kinetic mistmatch highlights the importance of understanding
the device physics of the cellular logic gates. It also necessitates the
construction of a mechanism to measure and fine tune these kinetic
parameters in order to be able to construct complex logic circuits from
theses simple components.

In order to overcome the mismatch problem one can mutate genetic
elements that have a significant effect on the system dynamics until
the desirable response is obtained. Two elements that were modified
in the genetic inverter were the RBS for cI and the λ promoter’s OR1
operator site. The RBS plays an important role in determining the
response of the system because it controls the rate of translation of the
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Figure 13. Simulations and experimental results demonstrating the effect of modi-
fying RBS efficiencies on circuit performance.

input mRNA. RBS sequence aligns the ribosome onto the mRNA in
the correct reading frame in order to initiate the translation of the first
codon. For a given input mRNA, a reduction in translation efficiency
results in a lower protein synthesis rate and corresponding change in
the system response. Simulation using BioSPICE (Weiss et al., 1999),
our internally developed genetic network modeling tool, revealed the
effect of modifying the RBS efficiencies, as illustrated in Figure 13(a).

Experimental work in which the RBS was mutated confirmed the
effect of reducing RBS strength for improving the circuit response
(Weiss and Basu, 2002), as shown in Figure 13(b). Here three different
RBS sequences with weaker translation efficiencies than the original
RBS were synthesized and tested in our laboratory. The graph shows
that all weaker ribosome binding sites exhibit improved response to the
iptg levels. These results demonstrate that the mechanism of genetic
process engineering can convert a non-functional circuit with a flat
response into a functional one.

In addition to RBS sequences, the operator sites of promoters can
be mutated to optimize system response. BioSPICE simulations shows
how a reduction in the affinity of the repressor CI to the operating site
of the promoter λP (R) influences the inverter’s response (Figure 14(a)).
We constructed additional circuits where the OR1 site was modified
using site-directed mutagenesis in order to verify these predictions
and to continue assembly of the cellular gate library. In order to get
the optimum response, these modifications were combined with the
weakest RBS from above, as shown in Figure 14(b). OpMut4, a single
base mutation to OR1, resulted in the best system performance, while
additional base pair mutations to OR1 resulted in responses where the
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Figure 14. Simulations and experimental results demonstrating the effect of modi-
fying repressor/operator binding affinities on circuit performance.

Figure 15. Experimental results demonstrating the ability to optimize system re-
sponse using directed evolution. Curves are best fit to data points using a standard
Hill equations, and error bars represent the results of triplicate experiments.

circuits were unable to fully repress the output. These results reveal
that the RBS-3/OpMut4 combination yields a highly optimized circuit
suitable for digital logic computation.

4.1.3. Directed Evolution
Constructing a genetic circuit with desirable behavior is a challeng-
ing task because the response of the system depends on many kinetic
parameters within the cell that are unknown and difficult to control.
The process of optimizing circuit performance can be quite labor in-
tensive, as described in the previous section. Yet biological systems
offer a powerful design feature: the ability to evolve and be optimized
under the pressure of natural and artificial selection. This process of
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directed evolution can be used as a tool to construct well-behaved logic
elements and circuits. In the previous section, it was shown that a
logic inverter can be tuned through rational design and modification
of RBS sequences and operator sites. Here we describe an evolutionary
method to achieve the same goal. Directed evolution is performed by
placing random mutations in the DNA sequences of a genetic network.
By restricting mutations to only a specific region, one can rapidly test
how the modified component of the circuit contributes to the overall
response of the system.

In order to investigate directed evolution, we mutated the non-
functional version of the CI/λ circuit discussed in the previous section
(Yokobayashi et al., 2002). Specifically, random mutations were incor-
porated into the cI gene and its RBS to determine whether a functional
system could result from mutations in this gene and its RBS. About
50% of the colonies of the mutated strain exhibited fluorescence in the
absence of iptg, which is the desired behavior for this input condition.
This behavior can be explained by a mutation that possibly inactivates
the cI gene, thus rendering it incapable of repressing the λ promoter. We
would like to distinguish between mutations that completely inactivate
cI versus those that partially reduce its repression efficiency, where the
latter is the desired response. To ensure correct response of the system
for all input conditions, we further investigated the fluorescent colonies
by transferring them to a new plate and exposing them to a high level
of iptg. About 5 − 10% of the colonies were not fluorescent, which
implies that the mutations did not fully disrupt CI’s ability to repress
the λ promoter.

DNA sequencing of the colonies with the evolved ability to switch
state from high to low revealed a variety of mutations in the system.
One of the most abundant mutations was the introduction of a stop
codon into the cI gene. The resulting partial CI protein is expected to
have reduced dimerization and decreased repressor/operator affinity.
These reductions in repression efficiency enable the output to switch
states as desired. Other colonies evolved a different set of mutations in
the cI start codon that reduced the translation efficiency. This latter
effect is similar to the one explored by rational design (Figure 13).

Of the colonies that exhibited the correct behavior, two were chosen
for further optimization in a second generation of evolution. Sequencing
selected second-round clones with the correct fluorescence response
revealed that amino acids substitutions in cI. Figure 15 depicts the
transfer curve for two of the clones that were tested in this experiment
(dotted and solid lines) and compared to the response of the circuit
with the weak RBS. As depicted in the graph, the system response is
sharper with the introduction of mutations.
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Figure 16. Thirteen network topologies generated by combinatorial synthesis and
experimental results showing the response of the different topologies to variations in
iptg and aTc. The gray level of a box represents fluorescence intensity of a colony
observed on a plate. Figure adapted from (Guet et al., 2002).

These results allow us to conclude that evolved mutants can adjust
the kinetic characteristics of the genetic network to result in correct
behavior. While rational design proved to be effective, as demonstrated
by the effect of modifying operator sites and RBS sequences, our experi-
ence also reveals the power of directed evolution due to the discovery of
effective amino acid substitutions that would have been hard to develop
rationally. Ultimately, the most efficient approach for genetic circuit
design will likely integrate rational design and directed evolution.

4.1.4. Combinatorial Circuit Synthesis
In a recent project, a genetic combinatorial library was constructed
to study how gene network connectivities determine function (Guet
et al., 2002). The combinatorial library consisted of small set of reg-
ulatory genes and their promoters with varying connectivity. Three
well characterized regulatory genes (lacI, tetR, and cI) were randomly
inserted downstream of three promoters picked randomly from a set of
five promoters that regulate these genes. The network was constructed
with following structure: Pi-lacI-Pj -cI-Pk-tetR, where Pi, Pj and Pk are
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chosen from the five promoters. Diverse connectivities resulted from
the fact that the three genes activated and repressed one another. The
behavior of these circuits was monitored with a GFP reporter, while the
levels of the aTc and iptg inducer molecules served as the inputs. The
plasmid library was transformed into two E. coli wild types strains,
and each clone was grown under four separate conditions: with or
without iptg and aTc. GFP fluorescence was monitored to determine
the behavior of each clone. One of the goals of this work was to search
the combinatorial circuit library for versions that behave as logic gates
in which the output is a binary logic function of both inducers.

To determine network phenotypes, 30 clones with different char-
acteristics were transformed and examined. Figure 16 shows all the
combinations that were generated and their corresponding GFP ex-
pression under the four different input conditions. Sequencing results
determined thirteen different network topologies that were generated
depending on the connectivities of the elements. As expected, the va-
riety in network connectivity appears to be a source of phenotype
differences within the library. Single changes in network connectivity,
such as replacing a promoter with another one, altered the system
response. However, the behavior of the circuits also depended on the
particular strain used for the phenotype experiment. Specifically, cer-
tain network arrangements behaved differently when incorporated into
the two different strains (Guet et al., 2002). This implies that the op-
erational context of synthetic gene networks, i.e. the genetic makeup of
the host, plays an important role in determining behavior. Typically,
however, such information is not used in gene network simulations,
largely due to the fact that we still cannot encode such information.

The discussion thus far has focused on issues in engineering synthetic
gene networks to control the behavior of individual cells. While many
challenges still exist in this realm, it is important to also consider the
issues of how large ensembles of individual cells can be engineered to
work in harmony towards a common goal. Programming cell aggregates
will allow us to achieve tasks that are simply not feasible with individual
cells. Next, we turn to engineering cell-cell communication systems.

5. Cell-Cell Communication

While clearly an integral part of eukaryotic multi-cellular systems,
cell-cell communication was also discovered in bacteria about three
decades ago (Hastings and Nealson, 1977). The ability to engineer
both prokaryotic and eukaryotic communication systems with new cell-
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Figure 17. Cell-cell communication schematics: (1) The sender cell produces small
signal molecules using certain metabolic pathways. (2) The small molecules diffuse
outside the membrane and into the environment. (3) The signals then diffuse into
neighboring cells (4) and interact with proteins in the receiver cells, and thereby
change signal values.

cell interaction capabilities will be central to the future engineering of
multicellular structures. In this section, we report the successful bio-
logical implementation of a controlled cell-cell communication system
in E. coli. The system allows us to control the extent of a chemical
message that a sender cell transmits to a receiver cell, which subse-
quently activates a remote transcriptional response (Figure 17). Thus
far, we have isolated and engineered components from the naturally
existing photobacterium Vibrio fischeri for the construction of cell-cell
signaling systems and their integration with synthetic gene networks
in other bacterial species. In the remainder of this section, we describe
the quorum sensing mechanisms for cell-cell signaling in Vibrio fischeri
and discuss our experimental circuits that send and receive messages
and are also able to respond to multiple signals.

Quorum sensing is a bacterial communication system that allows
cells to sense their own population density through the diffusion of a
chemical signal encoded by their genes (Bassler, 1999). The quorum
sensing system of certain marine prokaryotes (e.g. Vibrio fischeri) is
responsible for light organ symbiosis with other animals. The bacteria
bioluminesce in a cell density dependent fashion that relies on au-
toinduction (Engebrecht et al., 1983). They produce a species specific
chemical signal molecule, an autoinducer, that diffuses into the sur-
rounding media as it is produced (Kaplan and Greenberg, 1985). The
autoinducer permeates the cells, and as the cells grow, its concentration
increases within the media as well as within the cells.

Vibrio fischeri contains a 9-kb construct comprised of two diver-
gently transcribed operons that contain the genes responsible for bio-
luminescence (Greenberg, 1997). The left operon, controlled by a con-
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Figure 18. The lux Operon and quorum sensing: density dependent bioluminescence.

stitutive luxPL promoter is responsible for the production of LuxR
protein. The right operon is comprised of a luxPR promoter followed
by the luciferase and luxI genes. The luxPR contains a lux box, a 20-bp
inverted palindromic motif, that plays a key role in the transcriptional
activation of the operon. Luciferase genes are responsible for light pro-
duction. They consist of luxA and luxB genes that encode the α and
β subunits of luciferase, as well as the luxC, luxD, and luxE genes,
which maintain the aldehyde substrate necessary for light production
(Hanzelka and Greenberg, 1996). The structure of autoinducer in Vibrio
fischeri is N-(β-ketocaproyl)homoserine lactone (3OC6HSL) and com-
bines homoserine lactone, an intermediate in amino acid metabolism,
with β-ketocaproic acid, a molecule similar to intermediates in fatty
acid metabolism.

When the concentration of 3OC6HSL reaches a threshold level of
1 − 10 µg

ml
, the molecules bind the N-terminal domain of a LuxR pro-

tein that consequently unmasks its highly conserved C-terminal DNA
binding domain (helix-turn-helix motif). The LuxR/3OC6HSL com-
plex then binds the lux box within the luxPR promoter to activate
transcription of the luciferase and luxI genes. The activity of luciferase
results in light production and the increased production of LuxI results
in greater concentrations of 3OC6HSL. Thus, at low cell densities,
only low 3OC6HSL concentrations exist, whereas at high culture den-
sities, for example within a light organ, 3OC6HSL builds up, ulti-
mately resulting in a density dependent induction of bioluminescence
(Figure 18).

weiss-natural-computing-2003.tex; 19/12/2002; 6:50; p.28



Genetic Circuit Building Blocks 29

Receiver cell

aTc

luxI
�

VAI
VAI

luxR
GFP

tetR

aTc

0

0

VAI VAI

Sender cell

tetRPtet

luxIPLtetO1

aTc

GFP(LVA)Lux PRluxR Lux PL

+

Sender cell Receiver cell

Figure 19. Genetic and corresponding logic circuits for cell-cell communications.

5.1. Genetic Circuits for Engineered Communications

We have isolated, sequenced, and transfered the quorum sensing ge-
netic constructs from Vibrio fischeri into E. coli in order to engineer
communication between bacterial cells (Weiss and Knight Jr., 2000).
We constructed genetic circuits that direct one set of cells (the “sender”
cells) to synthesize the autoinducer and other circuits that direct an-
other set of cells (the “receiver” cells) to express a GFP in response
to the incoming message (Figure 19). The sender cells contain a luxI
gene regulated by an aTc-induced PLtetO-1 promoter. The receiver
cells contain a luxR gene expressed constitutively by the luxPL pro-
moter and a GFP located downstream of the luxPR promoter. The
LuxR-3OC6HSL binding complex activates luxPR.

Figure 20 illustrates the response of the receiver’s genetic circuit
to increasing levels of 3OC6HSL. Receiver cell cultures with different
levels of purified 3OC6HSL were incubated @37◦C for five hours, and
the median fluorescence data for each culture sample was measured.
As expected, increasing levels of autoinducer resulted in corresponding
increases in GFP until saturation is reached at approximately 3 µg

ml
.

5.2. Visual Observation of Communication

We observed the interactions between sender and receiver cells using a
fluorescence microscope in order to verify that communication was tak-
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Figure 20. Response of receiver cells to 3OC6HSL.

40 minutes 5:00 hours 7:30 hours

Figure 21. Time-series fluorescence images illustrating the response of micro colonies
of receivers to communication from nearby senders on a plate.

ing place and to understand the diffusion characteristics of 3OC6HSL.
A small droplet of sender cells was placed in the vicinity of receiver
colonies and a brightfield image was captured to mark the location
of the various colonies. The communication that followed between the
sender and receiver cells was captured by a series of time-lapsed green
fluorescence snapshots. The three sample green fluorescence images
in Figure 21 illustrate the communication gradient as the 3OC6HSL

diffuses from the sender to the different receiver colonies. The position
of the sender cells is denoted by an artificial marker. Based on the
fluorescence response, it appears that the autoinducer diffused at a
rate of approximately 1 cm

hour through the agar plate.
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Figure 22. Circuit to decode two incoming signals, showing the genetic network and
corresponding logic circuit and truth table.

5.3. Multi-signal Communication

Multicellular systems use numerous signals to coordinate the behavior
of an organism. Even though we have successfully engineered simple
communication between bacterial cells, we are still far from developing
complex multicellular systems. In order to increase the capabilities of
the engineered systems, we constructed genetic circuits that respond
to two input signals simultaneously. Specifically, the genetic network
responds to both iptg and 3OC6HSL as shown in Figure 22.
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Figure 23. Processing two incoming signals: Median fluorescence values for the
multi-signal processing circuit incubated with varying concentrations of iptg and
3OC6HSL.

To design a circuit that responds to multiple signals, we extended
the genetic circuit from Figure 19. LacI was inserted downstream of
a constitutive promoter p(lacIq) and cI was placed under the control
of the lacI regulated p(lac) promoter. We also constructed a synthetic
promoter where the cI operator site OR1 was inserted at the luxPR +1
transcription site. As in the genetic circuit of Figure 19, increases in
3OC6HSL result in the LuxR-3OC6HSL complex binding the lux box
of luxPR, typically resulting in activation. However, when iptg induces
p(lac) expression, CI binds OR1 and OR2 downstream of luxPR and
represses transcription. This circuit can therefore process two incoming
signals such that GFP is expressed only when 3OC6HSL is present
and iptg is absent. Figure 23 shows median fluorescence values of cells
cultures induced with different iptg and 3OC6HSL concentrations.
The graphs indicate that the maximum intensity occurs only for low
iptg and high 3OC6HSL concentrations, demonstrating the ability of
the circuit to process multiple signals.

6. Signal Processing: Band Detect

The ability of cells to detect and subsequently react to environmen-
tal and internal signals is a principal component of many biological
phenomena. Examples include the movement of bacteria toward higher
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Figure 24. Detecting chemical gradients can be accomplished using a genetic circuit
that expresses GFP only when a particular analyte (e.g. HSL) falls within a partic-
ular range. If multiple circuits detect different chemical concentration ranges with
unique fluorescent colors, they will form separate rings centered around the source.

concentrations of nutrients through the process of chemotaxis, detec-
tion of photons by the rhodopsin in retinal cells and their conversion
to electrical nerve signals, release of fuel molecules in response to hor-
mones that signal hunger, coordinated secretion of virulence factors and
degradative enzymes by bacterial cells using quorum sensing molecules,
and cell differentiation based on cell gradients. This section describes
an example of how cells can be artificially programmed to respond to
specific internal and environmental information with the incorporation
of synthetic gene networks.

Previous work has demonstrated that bacterial cells can be engi-
neered to detect traces of trinitrotoluene (TNT) in landmines (Burlage
et al., 2000). When the bacterial strain Pseudomonas putida encounters
TNT, it activates genes for the proteins that digest TNT. Researchers
inserted a GFP reporter downstream of the promoter regulated by
TNT. When the engineered cells come in contact with TNT, they
express GFP and emit bright fluorescence when excited by ultraviolet
light.

We have designed a new genetic signal processing circuit that can
be configured to not only detect the presence of a ligand molecule, but
also to distinguish between various chemical concentration ranges of the
molecule (Basu et al., 2002). For example, consider an analyte source
whose location in the environment is unknown. The analyte will be
secreted and form a chemical gradient centered around the source. One
way to determine the location of the source is to spread the suspected
environment with engineered cells that can detect prespecified chemical
concentrations. For a prespecified concentration range, these cells will
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Figure 25. Gene Network for a chemical concentration band detector.

Figure 26. Simulation of the steady state behavior of the band detect circuit
components.

fluoresce in a ring pattern around the source. When detecting multiple
ranges, each ring represents a different analyte concentration forming
a bullseye pattern (Figure 24).

A proposed circuit reports GFP only when the amount of an an-
alyte 3OC6HSL signal falls within a specified concentration range
(Figure 25). The circuit consists of four components: analyte detection,
low threshold component, high threshold component, and a negating
component. Specifically, 3OC6HSL molecules bind LuxR protein and
activate the multicistronic gene transcription of mRNAXY . Protein
X binds the operator site of P(X) and represses the transcription of
mRNAZa. This subcircuit acts as the low threshold component since
transcription of mRNAZa from P(X) is inversely proportional to the
3OC6HSL concentration. Simultaneously, Protein Y binds the operator
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Figure 27. Simulation of the band detect circuit with a sender cell in the center, 35
receiver cells, and diffusion of 3OC6HSL.

site of P(Y) and represses the transcription of mRNAW , as illustrated in
Figure 26(a). The regulation of W on mRNAZb from P(W) determines
the high threshold component, which exhibits a sigmoidal response to
the input 3OC6HSL concentration. The synthesis of Protein Z from
the low and high threshold components determines the band reject
component. Protein Z represses the P(Z) promoter and thereby regu-
lates GFP expression, which results in the final band detect response.
Hence, GFP expression will be high only when 3OC6HSL is within the
specified detection range (Figure 26(b)).

We simulated the dynamic behavior of cells with the band detection
circuit in order to predict the diffusion of 3OC6HSL secreted by a
sender cell into the media and to characterize the response of the
engineered cells to this analyte. The simulations consist of a single
sender cell located in the center of a grid and 35 neighboring detector
cells. Ordinary differential equations are used to model the intracellular
genetic circuit and the intercellular 3OC6HSL diffusion. Figure 27
illustrates the simulated response of the detector cells over time. At
t = 0, the detector cells are not fluorescing and their positions are shown
with light gray squares. At t = 1, 3OC6HSL starts to diffuse from the
sender cell (shown in dark gray). At t = 2, the detector cells closest to
the sender start to fluoresce in response to the 3OC6HSL, as indicated
by the black squares. In the last time frame, the distant detector cells
fluoresce, while the nearest neighbors to the sender cell have stopped
fluorescing. This occurs because the 3OC6HSL concentration in the
cells nearest the sender has exceeded the high threshold of detection.

In order to detect a variety of chemical concentration ranges, one
can tune the parameters of the genetic components using the same
circuit design mechanisms discussed in Section 4 (Weiss and Basu, 2002;
Yokobayashi et al., 2002). Figures 13 and 14 reveal how a digital logic
inverter can be tuned to exhibit different responses by varying ribosome
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Figure 28. Different low thresholds for band detection, where the less sensitive curve
will serve to determine the high threshold.

binding sites and repressor binding affinities. The sigmoidal shape of
the response can also serve as the low threshold detection component.

For an experimental prototype that we are working on, we chose CI
to be protein X and LacI to be Protein Y. In the first construct, a strong
RBS regulates the translation of CI(LVA), a fast decaying version of
CI. When 3OC6HSL binds LuxR and the resulting complex activates
P(lux) transcription, CI is expressed. In this construct, gfp(lva) is in-
serted downstream of the λP (R) promoter, which is regulated by CI. In
the second construct, luxPR regulates LacI that subsequently inhibits
GFP(LVA) expression by repressing the p(lac) promoter. In both con-
structs, GFP expression is inversely proportional to the concentration
of 3OC6HSL (Figure 28). In these experiments, the two different con-
structs were integrated into different cells and analyzed independently.
As seen in the figure, the expression of GFP(LVA) is inhibited in the
CI(LVA) system at a much lower 3OC6HSL threshold than in the
LacI system. The separation between these responses will be used to
determine the final detection range of the complete circuit.

We visually inspected the response of the CI low threshold compo-
nent to 3OC6HSL secreted by the sender cells. For the experiment,
detector cells were plated on a petri dish and incubated until mi-
crocolonies were seen under the microscope. A tiny droplet of sender
cells that also constitutively expressed a red fluorescent protein was
then placed on the plates. A time-lapsed movie of brightfield and flu-
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(a) brightfield image (b) fluorescence image

Figure 29. Microscope images of low threshold detection.

orescence images was taken to monitor the interaction between the
sender and receiver cells. Figure 29(a) shows the brightfield image of
the sender cells colony (large semi-circle on the lefthand side) and neigh-
boring receiver cell colonies after a 24 hour incubation. Figure 29(b)
is a fluorescence image of the same field of view, superimposing the
observed yellow fluorescence of the receiver cells and the red fluo-
rescence of the sender cells. Initially, all receiver cell colonies were
fluorescing yellow (not shown). Based on the fluorescence response, it
appears that the receiver colonies nearest the sender cells acquired suf-
ficiently high 3OC6HSL concentrations to repress YFP transcription.
Colonies farther away from the sender cell maintained their fluores-
cence because their 3OC6HSL concentration never reached high levels.
The differences in receiver fluorescence based on their distance from
sender colonies demonstrate the desired behavior of the low threshold
component.

7. Conclusions

We have embarked on a path to develop an engineering discipline
for creating synthetic gene networks for modifying and extending the
behavior of living organisms. Progress to date includes the characteriza-
tion and assembly of a genetic circuit component library. These building
blocks have been used to implement several prototype circuits that
provide the foundation for creating more sophisticated networks. Var-
ious design strategies, such as rational design and directed evolution,
have been defined and explored. It is likely that the best approach
will be a hybrid of several methodologies bringing together expertise
from a variety of fields. We will harness our abilities to systematically
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engineer other types of complex systems such as computers and robots,
while exploiting the unique features provided by biological substrates
(e.g. evolution). We have also begun to engineer multi-cellular systems
using cell-cell communication. In the future, we will program cells to
implement digital and analog computation, both as individual entities
and as part of larger cell communities.

While the field holds great promise, we still face a number of chal-
lenges. One of the major obstacles is our current inability to devise
models and perform simulations that can accurately predict the quan-
titative behavior of genetic networks. Thus, the difficulty of inferring
function from DNA sequence limits our circuit design efficiency. In ad-
dition, we must delineate the limits of the new information processing
capabilities that can be embedded into cells. Beyond the engineering of
individual cells, new programming paradigms are needed to achieve the
coordinated behavior of cell aggregates. Biological substrates are con-
strained by factors such as unreliable computing elements, significant
noise, and imperfect communication with limited range. Therefore, our
designs must strive to achieve sufficient reliability and reproducibility.
Such a myriad of challenges leave much opportunity for future work.

The genetic regulatory structures that are currently being developed
will have significant impact once they are integrated with other cell
capabilities, including bio-secretion, sensing, and the development of
multi-cellular structures for tissue engineering. Much promise also lies
in shifting to new cell platforms (i.e. prokaryotic to eukaryotic) that
will expand the available arsenal of biological machinery. In addition,
improved understanding of the operating principles of naturally occur-
ring systems will guide and inspire our own designs. As the field of
synthetic gene networks develops, we will surely witness its impact on
various future applications.
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