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Abstract 26 

We present a protein engineering tool that enables site-specific introduction of unique functionalities in 27 

a recombinantly produced eukaryotic protein complex. We demonstrate the versatility of this efficient 28 

and robust protein production platform “MultiBacTAG” i) to fluorescently label target proteins and 29 

biologics using click chemistries, ii) for glycoengineering of antibodies, and iii) for structure–function 30 

studies of novel eukaryotic complexes using single molecule FRET as well as site-specific cross-linking 31 

strategies. 32 

 33 

Main text 34 

The generation of sufficient quantities of eukaryotic protein complexes is frequently the first and 35 

limiting step for the study of molecular mechanisms using numerous biophysical and biochemical assays. 36 

Furthermore, expression of many eukaryotic proteins or protein complexes at scales relevant for 37 

biotechnological or pharmaceutical purposes, such as biologics, is frequently a daunting task. Escherichia 38 
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coli is one of the most popular organisms for recombinant protein production, but many proteins and in 39 

particular eukaryotic protein complexes cannot be expressed in such simple organisms. Over the last 40 

decade, the so-called MultiBac system has established itself among the most widely used systems in 41 

basic and applied research on eukaryotic protein complexes production 1, 2. A particularly attractive 42 

feature of MultiBac is the ability to rapidly shuffle proteins, introduce mutations and generate diverse 43 

complexes in a user-friendly format to achieve high-yielding expression in insect cell lines derived from 44 

Spodoptera frugiperda (Sf) or Trichoplusia Ni 3. The power and versatility of this platform could be 45 

dramatically enhanced by providing the means to site-specifically engineer diverse custom 46 

functionalities into protein complexes. 47 

Genetic code expansion (GCE) is arguably one of the most potent protein engineering technologies, as it 48 

allows noncanonical amino acids (ncAAs) harbouring unique functionalities to be encoded site-49 

specifically into a protein of interest (POI). This method has been furthest developed in E. coli, in which 50 

more than 200 different ncAAs can be introduced anywhere in a polypeptide chain by simply introducing 51 

a rare codon (typically the Amber TAG stop codon) in the coding gene of the POI (for reviews, see ref. 4-52 

6). The POITAG is expressed in an organism that harbours an additional orthogonal tRNA/tRNA-synthetase 53 

pair (tRNA/RS), in which the enzyme active site is commonly modified to recognize only a specific ncAA. 54 

As such, the Amber codon is repurposed as a sense codon only when the ncAA is present in the growth 55 

medium. 56 

We set out to implement the GCE system in MultiBac/insect cells in order to combine advanced protein 57 

engineering techniques with convenient, high-yielding recombinant eukaryotic protein complex 58 

generation. We chose to work with the pyrrolysine tRNAPyl/PylRS from Methanosarcina mazei, as it has 59 

already been transferred to a variety of eukaryotic organisms including animals and because most of the 60 

available ncAAs have meanwhile been encoded by this system 4-6. 61 

MultiBac consists of one acceptor and several donor plasmid modules that access a baculoviral genome 62 

optimized for multigene expression  (Fig. 1)3. The test system consisted of plasmids encoding the wild-63 

type (WT) PylRS from M. mazei, a gene cassette for the cognate Amber suppressor tRNA and a reporter 64 

protein, mCherry-GFP39→TAG. The ratio of GFP signal to mCherry provides a convenient readout of the 65 

efficiency of Amber suppression as detected by flow cytometry (FC). Subsequently, the system can be 66 

tested by transient transfection of Sf21 cells or used to generate a multigene fusion plasmid following 67 

established protocols (Supplementary Fig. 1, Supplementary Note 1)3. We utilized the modularity of the 68 

MultiBac system to test various known tRNA expression cassettes driven by external U6 PolIII promoters 69 

which were used before for successful GCE in other eukaryotes including mammalian cell cultures 7-9 and 70 

D. melanogaster 10, 11. As PolIII promoter were not documented for Sf21, a tRNA cassette using U6 71 

promoter from Bombyx mori 
12

, an insect species closely related to S. frugiperda, was also tested. 72 

Surprisingly, and despite critical external PolIII elements largely considered to be conserved across 73 

species (for a comparison of snRNA U6 genes across species see Supplementary Fig. 2), no reporter POI 74 

expression was detected in any of those cases (Supplementary Fig. 3). 75 

Therefore, to identify a potentially useful promoter, we resorted to sequencing and annotating the 76 

genome of Sf21 cells (Supplementary Note 2, Supplementary Table 1). We identified eight snRNA U6 77 
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genes and a dicistronic tRNA expression cassette with a gene architecture analogous to that previously 78 

used for efficient GCE in S. cerevisiae (Supplementary Fig. 4, 5)13. As identified by FC analysis, only six U6 79 

driven tRNA constructs allowed for efficient Amber suppression (Supplementary Fig. 5, 6).  80 

Choosing U6 promoter 2, we generated a new MultiBac baculoviral genome in which the tRNAPyl/PylRS 81 

pair was directly integrated into the viral backbone at the Cre/loxP site (Fig. 1, Supplementary Fig. 1), 82 

termed MultiBacTAG (superscript WT or AF for two different PylRS mutants enabling incorporation of 83 

different ncAAs shown in Fig. 1)14-16. The resulting Baculovirus maintains the advantageous features of 84 

the MultiBac/insect cell system, including modularity, protease deficiency and delayed insect cell lysis 3 85 

(further details in Supplementary Fig. 1).  86 

Figure 2 summarizes an expression test using different reporters and ncAAs. Gratifyingly, expression of 87 

the bulky ncAA cyclooctyne-lysine (SCO) using MultiBacTAGAF yielded approximately 2 mg of GFP39→SCO 88 

(Fig. 2a) from a 1 L culture, which is only five fold lower than the average yield of this simple reporter in 89 

state of the art E. coli GCE systems for the same tRNA/RS and ncAA 14-16 (Supplementary Fig. 7 for mass 90 

spectrometry (MS) validation, Supplementary Fig. 8 for full-size SDS-PAGE and Supplementary Table 2 91 

for an overview and comparison of all expression yields in this study). Complementary, the 92 

corresponding FC analysis of mCherry-GFP39TAG is shown in Figure 2b indicating a ncAA dependent very 93 

high efficiency of the GCE MultiBacTAG system (Supplementary Fig. 8 for complete FC analysis). 94 

MultiBacTAG was further used to engineer Herceptin, a monoclonal antibody and major protein biologic 95 

against breast cancer that selectively associates with cancer cells overexpressing the Her2 tumor marker 96 

(Fig. 2 and Supplementary Fig. 8)17. Amber mutants (A121TAG and A132TAG) were introduced into 97 

known permissive sites of the heavy chain of Herceptin 18, and the light and heavy chain were inserted 98 

into MultiBacTAGWT&AF. Herceptin was produced intracellularly containing different ncAAs that permit 99 

further bioconjugation “click” reactions with diverse substrates ranging from fluorescent dyes to novel 100 

glycosyl groups to underline the potential for glycoengineering (Fig. 2c-f, Supplementary Fig. 8-10, 101 

Supplementary Table 2 for analytics and yields, Supplementary Note 3 for details on glycan used). In 102 

particular trans-cyclooctyne-lysine derivatives (TCO*) can undergo particularly fast strain-promoted 103 

Diels–Alder [3+2] cycloadditions with tetrazines (SPDAC) and thus allow for exceptionally mild labeling 104 

conditions 14-16. Indeed, TAMRA tetrazine labeled Herceptin121TCO*TAMRA showed a characteristic 105 

positive staining pattern of paraffin embedded human patient samples (Fig. 2g, h, Supplementary Fig. 106 

11, Supplementary Table 3 for tumor characteristics and HistoIDs). 107 

Next, we utilized the power of the MultiBacTAG system in insect cells to discover novel, hitherto 108 

unidentified protein complex dynamics. Genetic and biochemical data suggested the existence of a 109 

pentameric transcription factor complex formed between the human TATA-box binding protein (TBP), 110 

cognate DNA containing a TATA-box, the general transcription factor TFIIA, and the histone-fold-111 

containing TBP-associated factors TAF11 and TAF13, which constitute a histone-fold pair 19, 20. We used 112 

MultiBacTAG to modify TAF13 in a co-expression experiment with WT TAF11 by using a dual expression 113 

cassette inserted into MultiBacTAG virus. Single molecule (sm) Förster Resonance Energy Transfer 114 

(FRET) has emerged as a powerful tool to measure distances in proteins between a site-specifically 115 

installed donor and acceptor dye pair 21. We generated a TAF1320SCO mutant and labeled this in a SPDAC 116 
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reaction with a sm suitable tetrazine derivative of the donor dye Alexa488. We also labeled a reactive 117 

cysteine in TAF1320SCO with a maleimide derivative acceptor dye Alexa 594 (detailed in Supplementary 118 

Fig. 12). We then performed smFRET measurements of the TAF11-TAF1320A488, 37A594 complex. As 119 

shown in Figure 3a, we detected a population at EFRET= 0.8, which can provide an important distance 120 

constrain for further structural model building.  121 

To directly probe protein-protein binding, we designed another mutant that we speculated to be located 122 

at binding interfaces. We inserted the ncAA DiAzKs (Fig. 3b, Supplementary Note 4 for synthesis of 123 

DiAzKs), which harbours an efficient diazirine protein cross-linker 7, 22 to generate a TAF11/TAF1334DiAzKs 124 

complex. We then performed a set of photo-cross-linking experiments followed with subsequent SDS-125 

PAGE and Western Blot (WB) analysis, as summarized in Figure 3c (detailed in Supplementary Fig. 13). 126 

While TAF11/TAF1334DiAzKs yielded a single band cross-link product, a double band appeared in a TBP 127 

dependent fashion after UV excitation. SDS PAGE and WB analysis showed that none of the double-128 

bands contained TBP, but had an electrophoretic mobility expected for the TAF11/TAF13 complex. As 129 

this indicates a conformational change induced by TBP, we used cross-linking/MS to reveal the actual 130 

residues involved. As shown in Supplementary Fig. 14 and Supplementary Table 4 we detected five 131 

regions of TAF11 to link with TAF1334DiAzKs. One region, TAF11146-149 showed marked reduction in linkage 132 

in the presence of TBP (Mann Whitney U test, p<0.05 in both biological replica) (Fig. 3d, e). In contrast, 133 

cross-links in region TAF11151-155 shown in Figure 3d, stayed largely unaffected, indicating that TBP 134 

induces specific conformational dynamics  at the interface to the TAF11146-149 region, when a 135 

TAF11/TAF13/TBP complex is formed (a trimeric complex was also confirmed using size exclusion 136 

chromatography Supplementary Fig. 15). Our results hint at different modes of assembly involving 137 

TAF11, TAF13 and TBP in the absence of cognate DNA and TFIIA (Fig. 3f), and set the stage to structure-138 

function determination of the TAF11/TAF13/TBP complex in an integrative approach. Such cross-linking 139 

studies can provide invaluable information about solution state dynamics and be used to map dynamic 140 

regions complementary to data generated by other structural biology approaches. 141 

In summary, we present here a MultiBac-based system for efficient site-specific incorporation of 142 

functionalized amino acids into protein complexes by GCE in Baculovirus/insect cells. MultiBacTAG 143 

combines the advantages of high-level expression of even very large eukaryotic protein assemblies 144 

offered by the MultiBac system, with a means to engineer and analyze these complexes and their 145 

interactions. As the components of the GCE system are inserted into the backbone of MultiBac, the 146 

system can be applied readily by the user without prior experience or training in GCE, which maintains 147 

the user-friendliness of the system, so that existing MultiBac/insect cells users should be able to move 148 

their system to MultiBacTAG without encountering many hurdles. We showed here a selection of 149 

applications for MultiBacTAG, ranging from fluorescence labeling of specific targets, to engineering 150 

therapeutic protein biologics compatible with human tissue studies and glycoengineering. Engineering 151 

of monoclonal antibodies is a contemporary challenge as part of improving pharmaceuticals where high 152 

batch-to-batch reproducibility and site-specific chemical modifications are needed, which is a demand 153 

that MultiBacTAG combined with click-chemistry intrinsically fulfils. In addition, we used MultiBacTAG to 154 

study the formation and conformational dynamics of multicomponent transcription factor complexes 155 

using smFRET and site-specific cross-linking. Despite our yields and levels of Amber suppression 156 
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efficiency already being satisfying, the 99.6% completed genome of Sf21 presented in this work, will 157 

facilitate further genetic engineering of this cell line for protein production using GCE, as e.g. release 158 

factor or tRNA expression tuning 4-6. We anticipate that MultiBacTAG in insect cells will enable a wide 159 

range of possibilities for custom protein design for biotechnology and pharmaceutical applications, and 160 

be highly useful in the dissection of protein complexes and their functional interactions by unlocking 161 

these biological assemblies. This is made possible only by the power of the chemistry that is enabled by 162 

site-specific modification through GCE. 163 

 164 

Experimental Procedures 165 

Methods and any associated references are available in the online version of the paper. 166 
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Figure legends: 243 

Figure 1: Overview of the new MultiBacTAG system  244 

The scheme illustrates an overview of the newly established MultiBacTAG system for the expression of 245 

multidomain protein complexes in insect cells with different ncAAs for diverse applciations. Several POIs 246 

can be combined using tandem recombineering of several donor and one acceptor plasmid (pIDC, pIDK, 247 

pIDS and pACEBac1,2) via Cre/loxP sites (violet sphere, more details given in corresponding 248 

Supplementary Fig. 1) and then be inserted into the Tn7 site in the Bacmid DNA, which contains the 249 

tRNA/PylRS pair. After production of the Baculovirus, insect cells can be transduced and the ncAA of 250 

choice will be added. Structures of ncAAs used in this work are shown, propargyl-lysine (1, PrK), 251 

cyclooctyne-lysine (2, SCO), Boc-lysine (3, BOC), trans-cyclooctene-lysine (4, TCO*), BCN-lysine (5, BCN) 252 

and diaziridine-lysine (6, DiAzKs).  253 

 254 

Figure 2: Characterization of MultiBacTAG, and diverse click labeling of Herceptin, and detection of 255 

human cancer 256 

(a) SDS-PAGE after purification of GFP39TAG expressed in Sf21 cells transfected with MultiBacTAGAF 257 

grown in the presence (+) and absence (-) of 1 mM SCO (Supplementary Fig. 8 for full-size gels and other 258 

ncAAs). The corresponding FC analysis of mCherry-GFP39TAG is shown in (b). Shown experiments reveal 259 

a clear ncAA dependent protein production and are representative of at least three independent 260 

experiments. (c) illustrates different labeling reactions between antibody and dye (green dot) or  glycan. 261 

From top to bottom: i) copper-catalyzed click labeling reaction between a terminal alkyne and an azide. 262 

ii) copper-free strain promoted azide alkyne cycloaddition between BCN and an azide containing glycan 263 

structure (see Supplementary Fig. 10 for experimental data) iii) and iv) different SPDAC reactions. (d-f) 264 

UV scans of different labeling reactions on the left and Coomassie-stained SDS-PAGE gels on the right of 265 

each panel (full size gels in Supplementary Fig. 8). (d) Copper-based click chemistry of Herceptin132PrK 266 

with fluorescein-azide. (e) SPDAC reaction between Herceptin121SCO with TAMRA-tetrazine (Herceptin 267 

WT used as negative control). (f) SPDAC reaction between Herceptin121TCO* and TAMRA-tetrazine. (g–h) 268 

Herceptin121TCO*TAMRA is suitable to detect cancer cells in human patient samples (n=3 for positive and 269 

negative tissue samples shown here and in Supplementary Fig. 11). Human tumour sections included 270 

Her2+ and Her2- (g,h, HistoIDs see Supplementary Table 3) samples. Images shown are maximum 271 

projections of 35 planes spanning 5 µm total. Blue channel: DAPI, red channel: Herceptin121TCO* labeled 272 

with TAMRA-tetrazine.  273 

 274 

Figure 3: Cross-linking of TAF11/TAF13/TBP complex 275 

(a) A cartoon of the TAF11/TAF13 complex is shown with labelling sites indicated by a green and a red 276 

star (donor and acceptor position), as well as FRET efficiency (E) vs stoichiometry (S) plot revealing a 277 

population at  E=0.8 (the population around E=0 is due to dye photophysics or limited labelling 278 
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efficiencies). (b) Cross-linking scheme between two proteins using DiAzKs and UV light. (c) Shows a 279 

Coomassie-stained SDS-PAGE (top) and the corresponding anti-TAF13 WB of the cross-linking 280 

experiment of TAF11/TAF13 complex with increasing TBP (1:1:0 (-), 1:1:0.625 (⊕), 1:1:1.25 (+)). (d) MS 281 

analysis of gel cross-linked products from (c) (analysed bands boxed schematically in black), revealing 282 

two cross-link regions in TAF11 with TAF1334DiAzKs. Sample A and B (both TAF11+TAF1334DiAzKs+TBP) are 283 

biological replica each with their own reference of TAF11+TAF1334DiAzKs without TBP. Relative 284 

abundance of cross-links in presence of TBP were calculated against a reference of TAF11+TAF1334DiAzKs 285 

in absence of TBP. To show the variance in the measurements, also the reference was replicated 286 

(sample A0). Center values are the median, error bars show standard deviations based on multiple cross-287 

linked peptides and “n” indicates the number of quantified cross-linked peptides (Supplementary Fig. 288 

14, Supplementary Table 4 for additional details). (e) Annotated high-resolution fragmentation mass 289 

spectrum of cross-linked peptide RSAFPK - FLSKDiAzELR, revealing a cross-link of TAF11153 to TAF1334. A 290 

fragment ion annotated with “+P” is a fragment ion that contains the cross-linked partner peptide. 291 

“P+P” refers to the intact precursor ion. f) TAF13 (blue) and TAF11 (yellow) form a tight complex (top) 292 

yielding two cross-links (red). Binding to TBP (shown in grey) results in a trimeric complex (bottom) 293 

displaying an altered cross-linking pattern (grey dashed arrow). The complex and cross-links are shown 294 

in a cartoon representation, with labeled N- and C-termini. 295 

 296 

  297 
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Online methods 298 

Reagents 299 

If not further noticed chemicals were purchased from Sigma. Noncanonical amino acids were prepared 300 

in-house, in the case of DiAzKs, otherwise received from Sirius Fine Chemicals (SiChem, Bremen), in case 301 

of PrK, SCO, TCO* and BCN (note, now DiAzKs can also be purchased from SiChem). BOC was purchased 302 

from IRIS Biotech (Marktredwitz).  303 

 304 

Sequencing and analysis of the Sf21 genome 305 

The Sf21 genome was sequenced by Illumina sequencing technology using 3 types of libraries. Two 306 

short-insert paired-end libraries (2x104 bp of ~288 bp insert size and 2x36 bp of ~590 bp insert size), two 307 

long-insert mate-pair libraries (2x94 bp and 2x101 bp of ~4500 bp insert size) and one TruSeq Synthetic 308 

Long-Read library were generated and sequenced. The data obtained with the last library was 309 

assembled into long synthetic reads using the TruSeq Long-Read Assembly app v1.1 available on 310 

BaseSpace (Illumina Inc.). At first the paired-end reads were corrected and filtered with SGA (version 311 

0.9.43)23. The resulting ~87.2e6 read pairs were used as input to perform contig assembly, scaffolding 312 

and gap closing using SOAPdenovo2  (version 2.4) 24. Second, mate-pair reads were processed with 313 

FLASH 25 (version 1.2.6) and all overlapping read pairs were discarded. The resulting ~32.4e6 pairs were 314 

employed with SOAPdenovo2 for scaffolding and then gap closing of the previous assembly. Third, the 315 

18.3e4 long synthetic reads were used to scaffold the assembly obtained with paired-end and mate-pair 316 

sequencing data. All data types were then finally utilized for a final gap closing step (SOAPdenovo2).  317 

Eight U6 snRNA gene could be found (U6-1 – U6-8), using Bombyx mori snRNA U6 isoform E gene as 318 

query sequence (RefSeq: AY649381.1), with at least 400 bp upstream (promoter region) and 100 bp 319 

downstream sequences (termination signal) (Supplementary Fig. 4). We decided to work with U6 320 

promoter and the 3’termination signal out of the second scaffold (17011_2962_3036_+), which was 321 

found, and called this U6 promoter, U6(Sf21)-2.  322 

 323 

Mulitbac Baculovirus system for transduction of insect cells 324 

Construction of amber suppressor genomes (MultiBacTAG
WT

, MultiBacTAG
AF

): 325 

We generated a baculoviral genome which contains the genes encoding for both the synthetase and the 326 

tRNA for amber suppression by using Cre recombinase mediated insertion into the LoxP present on the 327 

MultiBac viral backbone (Fig. 1). Thus, the attachment site for Tn7 transposition (mini-attn7) remains 328 

fully accessible to accept multigene constructs of target proteins and their complexes. We inserted the 329 

expression cassette U6(Sf21)-2-tRNAPyl-3’term into the pUCDM Donor plasmid module by using ClaI and 330 

XbaI restriction enzymes. Next, we added by means of NsiI and XhoI digestion and ligation the MM PylRS 331 

or MM PylRS AF into the p10 driven expression cassette, giving rise to MultiBacTAGWT and 332 
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MultiBacTAGAF viral genomes, respectively. For all cloning steps of the pUCDM plasmid, BW23474 cells 333 

were used to provide the Pir+ background required by the conditional origin present on the Donor 3. The 334 

resulting dual expression plasmid pUCDM-U6(Sf21)-2-tRNAPyl-3’term-PylRS was transformed into 335 

electro-competent DH10MultiBacCre cells, following established protocols 3,26. Tetracyclin antibiotic 336 

challenge was applied during all transformation steps to ensure maintenance of the pHelper plasmid 337 

which encodes for the Tn7 transposase and is required for inserting multigene constructs encoding for 338 

target proteins. Cell stocks were validated by preparing composite baculoviral genomes from eight blue 339 

colonies each and transfection of Sf21 cells. V0-virus was harvested after 60 hours of incubation and the 340 

V1-generation was started. Cells were harvested 60 hours after proliferation arrest 3. Cell pellets were 341 

resuspended in 4 x PBS (phosphate-buffered saline) (pH 8), resulting in 1 Mio. cells/ml. Glycerol stocks of 342 

cells containing MultiBacTAGWT and MultiBacTAGAF were prepared respectively and from those 343 

electrocompetent cells were prepared following standard protocols, and stored at -80 oC.    344 

 345 

Plasmids: 346 

Reporter plasmids: 347 

First a reporter plasmid was constructed. GFP(Y39TAG)-6His and mCherry-GFP(Y39TAG)-6His were 348 

separately cloned into Acceptor pACEBacDual plasmid under the polh (Polyhedrin) promoter, using 349 

BamHI and PstI restriction enzymes. The resulting pACEBac-Dual-GFP(Y39TAG)-6His and pACEBac-Dual-350 

mCherry-GFP(Y39TAG)-6His acceptors were transformed into cell containing MultiBacTAGWT and 351 

MultiBacTAGAF, respectively, for integration into the Tn7 attachment site.  352 

Herceptin: 353 

Synthetic genes encoding for the variable and constant regions of the heavy and light chain of the 354 

Herceptin were codon optimized for insect cell expression and inserted into pACEBacDual Acceptor into 355 

the polh and p10 driven expression cassettes, respectively. A C-terminal six-histidine tag was fused to 356 

the Herceptin heavy chain. Two individual amber mutations were inserted at positions A121 and A132 of 357 

the heavy chain.  358 

TAF11/TAF13/TBP complex: 359 

pFastBac-Dual-6HisTAF11/TAF13 was constituted from pFastBac-Dual by inserting the genes encoding 360 

for human TBP associated factors 11 (TAF11) and 13 (TAF13) into the polh and p10 driven expression 361 

cassettes. TAF11 contains an N-terminal hexa-histidine tag followed by a tobacco etch virus (TEV)-NIa 362 

protease site. Two Amber stop codons were introduced separately into the TAF13 gene at positions A20 363 

and K34. Human TATA-Box binding protein (TBP) core (residues 155-333) was cloned into pET28aHis 364 

plasmid, resulting in a six-histidine tag at the N-terminal domain of TBP (courtesy of T.J. Richmond, ETH 365 

Zurich).  366 

 367 
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Cell culture 368 

Sf21 369 

Following standard protocols 27, Sf21 cells  were cultured in Erlenmeyer flask at 27 °C shaking at 180 370 

rpm, using Sf-900™ III SFM medium at the Protein Expression and Purification core facility (PEPcore) at 371 

EMBL, Heidelberg. Cells were split every day to 0.6*106 cells/ml or every third day to 0.3*106 cells/ml. 372 

For Bacmid transfection, 3 ml per well of 0.3*106 cells/ml were seeded in a 6-well multidish (Nunclon 373 

Delta Surface, Thermo scientific). Bacmid-DNA was prepared and Sf21 cell transfected using FuGENE HD 374 

Transfection Reagent (Promega). V0-virus was harvested after 70 hours post transfection and the V1-375 

generation started. For small scale test expression, 100 ml of Sf21 cells at 0.6*106 cells/ml were 376 

transfected with 0.1 ml of V1-virus and 1 mM of the respective ncAA was added. As negative control, a 377 

100 ml culture was set up the same way, but without ncAA. After cell proliferation stopped, the cultures 378 

were kept another 48-60 hours at 27 °C shaking at 180 rpm. The cells were harvested at 500 rpm for 10 379 

minutes and the pellets were stored at -20 °C.  380 

 381 

Flow cytometry analyses 382 

Flow cytometry analyses were done on a BD LSRFORTESSA (BD Biosciences). Therefore Sf21 cells were 383 

transduced with the corresponding virus in a 6-well multidish. After three days of incubation time, the 384 

cells were harvested at 500 rpm for 10 minutes at 4°C and resuspended in 500 µl sterile 1 x PBS. The 385 

suspension was filtered through a cell strainer (Falcon, 70 µm, Fisher scientific) and kept on ice until 386 

measurements. Data of 500,000 cells for each sample was acquired and analyzed with FlowJo X software 387 

(FlowJo Enterprise).  388 

 389 

Protein expression and purification 390 

GFP(Y39TAG) & mCherry-GFP(Y39TAG): 391 

The plasmids pACEBacDual-GFP(Y39TAG)-6His and pACEBac-Dual-mCherry-GFP(Y39TAG)-6His were 392 

transformed into cells containing MultiBacTAG (WT and AF variants), and plated on agar plates 393 

containing X-Gal and IPTG (for blue/white selection), as well as Ampicillin (100 µg/ml), Kanamycin (30 394 

µg/ml), Tetracycline (10 µg/ml) and Gentamycin (10 µg/ml). Four white colonies each were picked and 395 

composite baculoviral DNA prepared. After transfecting Sf21 cells the four V0-Vvirus preparations were 396 

harvested after 60 hours. V1-virus was produced using all four V0-viruses in parallel and for each 0.1ml of 397 

Virus was added to 100 ml of fresh Sf21 cells. Five cultures were set up in the same way, one for each of 398 

the four V1-viruses, in which ncAA at a final concentration of 1 mM was added and 1 culture without 399 

ncAA, as a negative control. After cell propagation stopped, the cells were harvested after additional 48-400 

60 hours.  401 
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For purification, cell pellets were resuspended in 4 x PBS (5 mM imidazol, 0.2 mM TCEP, 1mM PMSF) 402 

and centrifuged at 40000 rpm at 4 °C using a Beckman ultracentrifuge (SW Ti60 rotor) after sonication. 403 

The cleared lysate was incubated on Ni beads for 1-2 hours at 4 °C. The Immobilized metal ion affinity 404 

chromatography (IMAC) was carried out by washing with 10 mM imidazol in 4 x PBS (0.2 mM TCEP and 1 405 

mM PMSF), followed by an elution step using 500 mM imidazol in the same buffer. Finally the elution 406 

fraction was analyzed by SDS-PAGE and stored at -20 °C.  407 

Herceptin: 408 

For the expression of Herceptin the plasmid pACEBacDual-Herceptin-6His was transformed in both, 409 

MultiBacTAGWT and DH10MultiBacTAGAF containing cells. Expression and purification was carried out 410 

following the same steps as described above for GFP(Y39TAG). 411 

TAF11/TAF13 complex: 412 

For producing TAF11/TAF13 complex, MultiBacTAGAF was used, for both wild-type TAF11/TAF13 413 

complex, as well as for the amber mutants (see above). Again, the same protocol was followed as 414 

described above for GFP(Y39TAG). 415 

The cell pellet was resuspended in 150 ml Tris buffer (25 mM Tris, 150 mM NaCl, 5 mM imidazol, 1 mM 416 

PMSF, pH 8) per 1 liter expression culture. After sonication, the insoluble fraction was spin down at 417 

40000 rpm at 4 °C (Beckman SWTi60 rotor). The supernatant was incubated on Nickel beads for 1-2 418 

hours and the protein was eluted after several washing steps with increasing imidazol concentrations. 419 

To finalize the IMAC purification procedure, the protein was further purified by size exclusion 420 

chromatography (SEC) using a Superdex column, equilibrated before hand with Superdex running buffer 421 

(25 mM Tris, 300 mM NaCl, 1 mM EDTA, 1mM DTT, pH 8) and analyzed by SDS-PAGE. 422 

TATA-Box binding protein (TBP), residues 155-333: 423 

pET28aHis-TBP was transformed into BL21(DE3) Rosetta cells and expressed in LB medium at 18°C over 424 

night. Cells were harvested by centrifugation (4500 rpm, 20 min., 4 °C) and stored at -20°C. 425 

The cells of 1 liter expression culture were lysed in 20 ml TBP lysis buffer (25 mM Tris, 1 M NaCl, 10 mM 426 

imidazol, 1 mM PMSF, pH 8) using a sonicator. After spinning down the insoluble fraction, the cleared 427 

supernatant was purified by IMAC. Washing was done with increasing concentration of imidazol and the 428 

protein was finally eluted. After loading the protein on a Superdex column, which was equilibrated with 429 

Superdex running buffer, the purity was checked by SDS-PAGE analysis.  430 

 431 

Single Molecule FRET experiments 432 

Dual labelled TAF11/TAF1320A488, 37A594 complex were diluted to ~ 100 pM and subject to 433 

multiparameter single molecule FRET (smFRET) spectroscopy on a custom built confocal detection setup 434 

as detailed previously 28. In brief, the sample was excited through a 1.2NA 63x Olympus objective with 435 



14 
 

alternating LASER pulses from a 485 LDH diode Laser and an 570 nm filtered while light LASER (Koheras). 436 

Emission signal was split into green and orange color channels, and detected on photon counting diodes 437 

(MPD and APD), directed to Hydraharp (Picoquant) counting electronics and analyzed further using 438 

IgorPro (Wavemetrics) as detailed previously.28 The signals intensities were analyzed according to the 439 

following equations, with  and  being the recorded photon counts during donor Laser excitation, and 440 

 the intensity of the acceptor during acceptor LASER excitation. The plot shown in main Figure 4a 441 

shows a 2D  vs S plot. At E=0 and S=1 sits the so called “Zero”-Peak which arises from inactive 442 

acceptor, and is not of relevance in this analysis. From the known   (a correction factor for the apparent 443 

brightness of our dye pair) and the known  for our dye pair 29, we can estimate that the measured 444 

FRET intensity corresponds to an approximate distance (r) of around 30Å. 445 

= + = 	 11 + ( ) ; = ++ + 	 
  446 

Cross-linking experiments 447 

Western Blot analysis of cross-linked samples 448 

The cross-linking reactions contained 40 µM of TAF11/TAF13 complex. TBP was added in two different 449 

molar ratios to the reaction. The first ratio was 1:1:0.625, TAF11:TAF13:TBP correspondingly. For this 450 

ratio, we used 12.5 µM of TBP. The second ratio was 1:1:1.25, which results in 25 µM of TBP per 451 

reaction. For each cross-linking experiment, we set up 20 µl reactions containing the respective proteins 452 

in Superdex running buffer and incubated the reactions on ice for 2 hours. These reactions were then 453 

splitted into 2 x 10 µl, and one of the 10 µl reactions was exposed to UV light. UV irradiation was 454 

performed for 15 minutes on ice using a 345 nm filter with an approximately 40 cm distance to the 1000 455 

W lamp. The cross-linking experiments were performed with a TAF1334DiAzKs mutant. 456 

For preparing the samples for SDS-PAGE, 5 µl of each reaction was mixed with 35 µl Superdex running 457 

buffer and 10 µl 5 x SDS loading dye, then the samples were heated up for 1 minute at 95 °C. 15 µl of 458 

these samples were loaded in a well of a 10-well SDS-PAGE (NuPAGE 4-12% Bis-Tris, Thermofisher). 459 

After running the gels using MES buffer, they were plotted using the Trans-Blot® Turbo™ Transfer 460 

system (Bio-Rad). With the Trans-Blot® Turbo™ Mini Nitrocellulose Transfer Packs (Bio-Rad) the transfer 461 

was done in 7 minutes and the membranes were blocked for 1 hour at room temperature with 5% Milk 462 

in 1 x PBS. The primary antibodies (anti-TAF13 (Abcam), anti-TBP (kind gift from Laszlo Tora) and anti-463 

Flag (Monoclonal Antibodies Core Facility, EMBL)) was diluted 1:1,000 (for anti-TAF13) and 1:2,000 (for 464 

anti-TBP and anti-Flag) in 5% Milk, 1 x PBS and the membrane was incubated over night at 4 °C. After a 465 

few washes with 1 x PBS, 0.2% Tween 20, the secondary antibody was incubated for 1 hour at room 466 

temperature. For the anti-TAF13 an anti-rabbit secondary antibody (Peroxidase AffiniPure Goat Anti-467 

Rabbit IgG (H+L), Jackson ImmunoResearch) was used in a 1:5,000 dilution in 1 x PBS, 0.2% Tween 20 468 

and for the anti-TBP and anti-Flag antibodies an anti-mouse secondary antibody was diluted 1:10,000 in 469 

1 x PBS, 0.2% Tween 20 (Amersham ECL HRP Conjugated Antibodies, GE Healthcare).  After three more 470 
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washes with 1 x PBS, 0.2% Tween 20, a chemiluminescence Kit (ECL Western Blot reagent, GE 471 

Healthcare) in combination with a Chemidoc Touch system (Biorad) was used to visualize the Western 472 

Blot signal. 473 

Sample preparation for mass spectrometric analysis 474 

For mass spectrometric analysis, the cross-linking reaction was set up in the ratio 1:1:1.25, 475 

TAF11:TAF13:TBP correspondingly. The TAF1334DiAzKs cross-linked samples were prepared in replicates 476 

as given in the text (Fig. 3). For each reaction 40 µM of TAF11/TAF13 complex were mixed with 25 µM of 477 

TBP in a 30 µl reaction volume, incubated on ice, cross-linked by UV light (15 min, 345 nm filter, 1000 W 478 

lamp) and loaded on a SDS-PAGE. 1.5 µl of each reaction were loaded on the same gel in a separate well, 479 

which was used to identify the cross-linked species by Western Blot. The gel bands of cross-linked 480 

TAF11/TAF13 complexes were excised, in-gel reduced and alkylated, then digested using trypsin 481 

following a standard protocol30. The peptide mixture was then desalted using C18-Stage-Tips31 for mass 482 

spectrometric analysis.  483 

 484 

 485 

Mass spectrometric analysis 486 

 487 

LC-MS/MS analysis was performed using an Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer 488 

(Thermo Scientific) applying a “high-high” acquisition strategy. Peptides were separated on a 75 µm x 50 489 

cm PepMap EASY-Spray column (Thermo Scientific) fitted into an EASY-Spray source (Thermo Scientific), 490 

operated at 50 °C column temperature. Mobile phase A consisted of water and 0.1% v/v formic acid. 491 

Mobile phase B consisted of 80% v/v acetonitrile and 0.1% v/v formic acid. Peptides were loaded at a 492 

flow-rate of 0.3 μl/min and eluted at 0.2 μl/min using a linear gradient going from 2% mobile phase B to 493 

4% mobile phase B over 139 minutes, followed by a linear increase from 45% to 95% mobile phase B in 494 

eleven minutes. The eluted peptides were directly introduced into the mass spectrometer. MS data 495 

were acquired in the data-dependent mode with the top-speed option. For each three-second 496 

acquisition cycle, the survey level spectrum was recorded in the Orbitrap with a resolution of 120,000. 497 

The ions with a precursor charge state between 3+ and 8+ were isolated and fragmented using high-498 

energy collision dissociation (HCD). Precursor priority for fragmentation was set to “highest charge 499 

state” then “most intense”. The fragmentation spectra were recorded in the Orbitrap with a resolution 500 

of 15,000. Dynamic exclusion was enabled with single repeat count and 60-second exclusion duration.  501 

 502 

Identification of cross-linked peptides 503 

The raw mass spectrometric data files were processed into peak lists using MaxQuant version 1.5.3.3032 504 

with default parameters, except for “FTMS top peaks per 100 Da” was set to 100 and “FTMS de-505 

isotoping” was disabled. The peak lists were searched against the sequences as well as the reversed 506 

sequences (decoy) of TAF11 and TAF1334DiAzKs using Xi software (ERI, Edinburgh) for identification of 507 

cross-linked peptides and non-cross-linked linear peptides. In the protein sequences, DiAzKs was 508 
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represented as “Xd”. Search parameters were as follows: MS accuracy, 6 ppm; MS2 accuracy, 20 ppm; 509 

enzyme, trypsin; specificity, fully tryptic; allowed number of missed cleavages, four; fixed modifications, 510 

carbamidomethylation on cysteine; variable modifications, oxidation on methionine. The cross-linking 511 

reactivity of DiAzKs is towards any other amino acid residues. All fragmentation spectra of all identified 512 

cross-linked residue pairs were validated manually. In addition, we identified linear peptides from 513 

TAF11, and TAF13. Linear peptides with Xi score above 7 were used for quantitation to estimate the 514 

relative protein abundance in each sample. 515 

 516 

Quantitation of cross-link data using Pinpoint software 517 

Identified cross-linked peptides and selected linear peptides were quantified based on their MS1 signals. 518 

The quantitative proteomics software tool Pinpoint (Thermo Fisher Scientific) was used to retrieve 519 

intensities for each cross-linked and linear peptide33. To construct the input library of Pinpoint, the 520 

sequence of every cross-linked peptide was converted into a linear version with identical mass34. The 521 

five most abundant signals in the isotope envelope were used for quantitation. The error tolerance for 522 

precursor m/z was set to 6 ppm. Signals are only accepted within a window of retention time (defined in 523 

the spectral library) ±10 minutes. Manual inspection was carried out to ensure the correct isolation of 524 

elution peaks. “Match between runs”35 was carried out for all cross-linked peptides in Pinpoint interface 525 

manually, based on high mass accuracy and reproducible LC retention time.  526 

The signal intensities of cross-linked peptides were normalized against abundance of TAF13, which was 527 

calculated as summed signal intensities of seven linear peptides. The relative abundance of cross-links in 528 

samples with and without TBP was compared.  529 

 530 

Statistsics 531 

QCLMS analysis was repeated in two separated experiments. In experiment I, three samples were 532 

analyzed: two TAF1334DiAzKs+TAF11 samples (reference and A0) and one TAF1334DiAzKs+TAF11+TBP 533 

sample (A). In experiment II, two samples were analyzed: one TAF1334DiAzKs+TAF11 sample (reference) 534 

and one TAF1334DiAzKs +TAF11+TBP sample (B). 535 

The TAF11 residues that were cross-linked to DiAzKs fall into five regions. For each sample, the relative 536 

intensity of cross-links to each region was calculated as the median of all their supporting cross-linked 537 

peptides. The numbers of supporting cross-linked peptides (n) for cross-linkages to each TAF11 region 538 

were listed in Figure 3d and Supplemental Figure 14. 539 

 540 

Click reactions 541 

Copper-catalyzed alkyne-azide cycloaddition (CuAAC): 542 

Purified protein, which contains an ncAA (Propargyllysine, PrK) with an alkyne group incorporated at the 543 

amber stop codon side, was exchanged to 1 x PBS buffer pH 7.5 (0.2 mM TCEP) and 5 nmol were used 544 
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for the click reaction, following the protocol as described in ref. 36. Cycloaddition reactions were 545 

followed up by SDS-PAGE. 546 

Strain-promoted alkyne-azide cycloaddition (SPAAC): 547 

Protein, expressed in the presence of 1 mM of BCN (Sichem), was purified and exchanged into 1 x PBS 548 

buffer (pH 8).  For the labeling reaction 2 nmol of protein mixed with 100 nmol of glycan-azide (PSZ170) 549 

were incubated over night at RT 17. Labeling reactions were loaded on a Superdex column and analyzed 550 

by SDS-PAGE. 551 

Strain-promoted Diels-Alder cycloaddition (SPDAC): 552 

Protein, expressed in the presence of 1 mM of SCO (Sichem) or TCO* (Sichem), was purified and 553 

exchanged into 1 x PBS buffer (pH 8).  For the labeling reaction 1 nmol of protein mixed containing SCO 554 

with 5 nmol of TAMRA-Tetrazine (Jena Bioscience) were incubated for 1 hour at RT 16. In the case of 555 

protein harboring TCO*, 5 nmol of protein were used in a reaction with 50 nmol of Tetrazine-5-TAMRA. 556 

Labeling reactions were loaded on a Superdex column and analyzed by SDS-PAGE. 557 

 558 

Immunofluorescence analysis 559 

Tissue sections were processed for immunofluorescence staining and incubated with Herceptin121TCO*  560 

TAMRA labeled antibody (diluted 1:100) overnight, 4 oC, washed in PBS and mounted in ProLong Gold 561 

antifade with DAPI (Invitrogen). Images were obtained on a Leica TCS SP5, LAS AF Version 2.7.3.9723 562 

(Leica Microsystems CMS GmbH). Objective: HCX PL APO lambda blue 63.0 x/1.40 OIL UV. 563 

 564 

Human Tissue Samples 565 

The European Institute of Oncology (IEO) Division of Biostatistics selected from its institutional database 566 

consecutive breast cancer (BC) patients fulfilling the following criteria: i) histologically proven invasive 567 

BC treated by neoadjuvant therapy; ii) any age (pre- or postmenopausal status allowed); iii) any intrinsic 568 

subtype (Luminal A/B-like, Her-2 positive, Triple Negative subtypes allowed); All the patients 569 

prospectively entered the IEO BC database and were discussed at the weekly multidisciplinary meeting. 570 

Data on patients’ medical history, concurrent diseases, surgery, pathological evaluation, radiotherapy, 571 

neoadjuvant systemic treatments, and clinico-pathological results of pre- and post-neoadjuvant 572 

treatment staging procedures were retrieved. All the biopsies were fixed in 4% buffered formalin for less 573 

than 24 hours immediately after the core biopsy procedure. All the surgical samples were fresh sampled 574 

in accordance to the criteria issued by Provenzano et al. (2015) 37 and fixed in 4% buffered formalin for 575 

less than 24 hours. All the biopsies and surgical samples were routinely processed and embedded in 576 

paraffin. Detailed information regarding tumor type and grade, ER/PgR and Her-2 status, and Ki-67 577 

labeling index were available in all the cases. ER/PgR and HER2 immunoreactivity was assessed in line 578 

with the clinical practice procedures applicable at diagnosis. Her-2 immunoreactivity was assessed using 579 
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the monoclonal antibody CB11 (Novocastra, 1:800) from 1995 till 2005, and the HercepTest (Dako) 580 

thereafter. Cases classified as Her-2 2+ by immunohistochemistry were tested by FISH analysis with 581 

Vysis probes, in accordance with the ASCO/CAP guidelines 38. Ki-67 labeling index was assessed by the 582 

Mib-1 monoclonal antibody (Dako, 1:200), by counting at least 500 invasive tumor cells, independent of 583 

their staining intensity and without focusing on hot-spots 39. Tumors were classified as Luminal A-like (ER 584 

and PgR positive, absence of Her-2 overexpression and Ki-67 <20%), Luminal B-like (ER positive, Her-2 585 

negative and at least one of Ki-67 ≥20% and PgR <20%), Luminal B-like/Her-2 positive (ER and Her-2 586 

positive, any PgR and Ki-67), Her-2 positive (Her-2 3+ and/or amplified by FISH, ER/PgR negative) and 587 

Triple Negative (ER, PgR and Her-2 negative) in accordance with St. Gallen recommendations 40. For 588 

tumor specific information please refer to Supplementary Table 3. All the patients included gave an 589 

informed consent for using their clinico-pathological data and samples for research purposes at the time 590 

of admission to the hospital, and the study was approved by the IEO Review Board. 591 

  592 
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