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Abstract: 

 

Alteration of protein abundance and conformation are widely believed to be the hallmark of 

neurodegenerative diseases. Yet relatively little is known about the genetic variation that controls 

protein abundance in the healthy human brain. The genetic control of protein abundance is 

generally thought to parallel that of RNA expression, but there is little direct evidence to support 

this view. Here, we performed a large-scale protein quantitative trait locus (pQTL) analysis using 

single nucleotide variants (SNVs) from whole-genome sequencing and tandem mass 

spectrometry-based proteomic quantification of 12,691 unique proteins (7,901 after quality 

control) from the dorsolateral prefrontal cortex (dPFC) in 144 cognitively normal individuals. 

We identified 28,211 pQTLs that were significantly associated with the abundance of 864 

proteins. These pQTLs were compared to dPFC expression quantitative trait loci (eQTL) in 

cognitive normal individuals (n=169; 81 had protein data) and a meta-analysis of dPFC eQTLs 

(n=1,433). We found that strong pQTLs are generally only weak eQTLs, and that the majority of 

strong eQTLs are not detectable pQTLs. These results suggest that the genetic control of mRNA 

and protein abundance may be substantially distinct and suggests inference concerning protein 

abundance made from mRNA in human brain should be treated with caution. 
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Introduction 

 

Proteins have an important role in neurodegenerative disease. Alzheimer’s disease (AD), 

for instance, is characterized by the abnormal accumulation of amyloid-beta and tau proteins in 

the brain. In addition to these hallmark proteins, hundreds of other proteins have also been 

shown to correlate with neurodegenerative disease phenotypes such as rate of decline of 

cognition and diagnosis of AD (1, 2). This suggests that the dysregulation of numerous proteins 

may contribute to disease. 

While the genetic control of mRNA expression in the brain has been well studied (3-8), 

little is known about how genetics influence protein abundance in the brain. Thousands of 

genetic variants have been reported to associate with variation in mRNA levels, known as 

expression quantitative trait loci (eQTLs). Oftentimes, these identified genetic effects on mRNA 

are used to help prioritize candidate causal genes identified by genome-wide association studies 

(9), and these effects are assumed to translate to protein abundance. However, this relationship 

has yet to be tested with large-scale profiling of brain proteins. A better understanding of the 

genetic control of protein abundance will help us define the relationships between genetics, gene 

expression, and proteins, and lead to a better understanding of the molecular changes that 

underlie neurodegenerative and other brain diseases.  

Here, we perform a large-scale investigation into the genetic control of the human brain 

proteome using high-throughput mass spectrometry-based protein quantification and whole 

genome sequencing from post-mortem brain samples of the dorsolateral prefrontal cortex of 

cognitively normal older adults. To understand the relationship between genetics, gene 

expression, and protein, we also investigate the genetic control of gene expression (i.e. mRNA) 

in the human brain from the same cohort and among the same individuals with brain proteomes. 

Finally, we compare the pQTLs identified with eQTLs from a recent meta-analysis of brain 

expression of over 1,433 brains (10). The results of our analyses are available at 

http://brainqtl.org and serve as a resource for future investigations. 

 

Methods 

 

Our methods are provided in the supplementary materials section at the end of this 

document. 

 

Results 

 

Demographics 

 We analyzed genetic, proteomic, and transcriptomic data from 233 ROS/MAP 

participants, of which 144 have proteomic data, 169 have transcriptomic data, and 81 have both 

proteomic and transcriptomic data. Table S2 gives the demographic characteristics of these 

subjects. Participants had a high degree of education (median of 16 years), were all Caucasian, 

and were 63% women. The age at death ranged from 67 years to 102 years, with a median age at 

death of 86.5 years.  

 

Brain QTL Mapping 

To identify pQTLs, we analyzed proteomes from the dorsolateral prefrontal cortex and 

genotyping from WGS of 144 individuals. The genotypes of a total of 2,599,383 SNVs were 
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tested against the abundance of 7,901 proteins. We found that 10.9% (864 of 7,901) of the 

proteins were associated with a total of 28,211 pQTLs (FDR < 0.05). Of the proteins with a 

pQTL, 77.7% (671 of 864 proteins) had multiple pQTLs, with an average of 33 pQTLs detected 

per protein.  

To identify eQTLs and pQTLs from the same set of genes, we tested genotypes of 

2,082,000 SNVs against the abundance of protein and mRNA from a restricted set of 5,743 

genes found in both studies. We found that 10.7% (617 / 5,743) of genes had a pQTL and 14.7% 

(843 / 5,743) of genes had an eQTL. Fewer pQTLs were identified than eQTLs with a total of 

21,034 and 35,064, respectively. Additionally, genes with a pQTL averaged 34 pQTLs per gene 

compared to 42 eQTLs per gene for genes with an eQTL. Only 199 genes had both a pQTL and 

an eQTL, which represents 32.3% (199 / 617) of genes with a pQTL and 23.6% (199 / 843) of 

genes with an eQTL. A total of 3,364 SNVs were identified as both a pQTL and an eQTL (i.e. 

eQTL/pQTLs) in 95 of the 199 genes with both a pQTL and an eQTL (see Table S3 for the top 

10). Thus, only 16.0% (3,364 / 21,034) of all identified pQTLs are eQTLs and 9.6% (3,364 / 

35,064) of all identified eQTLs are pQTLs (Figure 1A inset). These results were essentially 

unchanged when we: 1) limited the analysis to samples with complete proteomic and 

transcriptomic data (see supplementary materials); 2) used different 𝑅" thresholds for linkage 

disequilibrium (see supplementary materials); 3) varied the window of SNVs around the gene 

(50kb, 100kb, or 500kb; see supplementary materials); 4) used the more stringent Bonferroni 

significance threshold to define pQTLs and eQTLs (see supplementary materials).  

We tested the reproducibility of our analyses by comparing our eQTLs with those 

reported previously by (10) in a larger sample of 1,433 cognitively normal and cognitively 

impaired individuals, and saw a high replication rate of 92.8% (see supplementary material). 

Furthermore, we assessed the relationship between the minor allele frequencies (MAF) of the 

tested variants and our declaration of pQTLs and eQTLs (see supplementary material). We found 

that the percentage of the total pQTLs, eQTLs, and eQTL/pQTLs identified slightly increases 

with variant MAF. The smallest percentage of pQTLs, eQTLs and eQTL/pQTLs identified have 

a variant MAF between 0.05 and 0.1 (5%-8%), while the largest percentage of pQTLs, eQTLs, 

and eQTL/pQTLs have a variant MAF between 0.4 to 0.5 (26%-36%). This suggests a slight, but 

not substantial, dependence of pQTLs and eQTLs on MAF, likely because our power to detect 

QTLs is higher for variants with higher MAF. Finally, we compared our identified brain pQTLs 

to previously published pQTLs of human blood proteins (41-43) and found very few pQTLs 

from human brain to also be pQTLs of human blood proteins (3%, see supplementary materials). 

This suggests that the genetic control of blood and brain proteins are largely distinct.  

For each SNV that was identified as either an eQTL or a pQTL, we compared the effect 

of each variant on mRNA and protein abundance (Figure 1A). To facilitate the comparison, we 

define strong pQTLs as SNVs with a significant association between genotype and protein 

abundance (FDR < 0.05) and an effect estimate greater than five standard deviations from the 

mean effect estimate across all SNV-protein pairs. Similarly, we define strong eQTLs as SNVs 

with a significant association between genotype and mRNA abundance (FDR < 0.05) and an 

effect estimate greater than five standard deviations from the mean effect estimate across all 

SNV-mRNA pairs. Based on these definitions, 12.4% (4,335/ 35,064) of the identified eQTLs 

are strong eQTLs, 12.0% (2,516 / 21,034) of the identified pQTLs are strong pQTLs, and 18.4% 

(620 / 3,364) of the sites that are both an eQTL and a pQTL (eQTL/pQTLs) are both a strong 

eQTL and a strong pQTL. We found that 71.1% (3,083/ 4,335) of strong eQTLs have only weak 

effects on protein abundance, and that 75.4% (1,896 / 2,516) of strong pQTLs have only weak 
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effects on mRNA abundance. Finally, at sites that are both an eQTL and a pQTL, only 6.0% 

(203 / 3,364) are strong eQTLs but not strong pQTLs, and 6.5% (218 / 3,364) are strong pQTLs 

but not strong eQTLs. This means that eQTL/pQTL sites tend to have similar effects on mRNA 

and protein abundance, with 87.5% (2,943/3,364) having matching effects (strong or weak) on 

mRNA and protein abundance. Furthermore, 94% (3,200 / 3,364) of these eQTL/pQTLs have 

effects on mRNA and protein abundance that are in the same direction (Figure 1A).  

To assess generalizability, we compared our pQTL results to eQTL results from a large 

meta-analysis using data from the dPFC of 1,433 samples from four cohorts (10). For each SNV 

that we identified as a pQTL or was identified as an eQTL in the meta-analysis, we compared the 

effect of each variant on mRNA and protein abundance (Figure 1B). Even with the increase in 

sample size and power to detect eQTLs, we still see similar patterns between the effects of 

pQTLs and eQTLs. That is, the majority of strong eQTLs are not strong pQTLs, and vice versa. 

This suggests that most of the large genetic effects on protein abundance have only a small effect 

on mRNA levels, and that most of the large genetic effects on mRNA levels have only a small 

effect on protein abundance. 

 

Functional analysis of pQTLs and eQTLs 

The pQTLs identified were more likely to be located in a genic region (5’ UTR OR: 1.97, 

FDR adjusted p-value: 1.3x10-10, exons OR: 1.56, FDR adjusted p-value: 2.3x10-18, introns OR: 

1.22, FDR adjusted p-value: 3.0x10-44, Figure 1C) and less likely to be located in an intergenic 

region by Fisher’s exact test (OR: 0.77, FDR adjusted p-value: 8.3x10-73). Furthermore, the 

identified pQTLs are more likely to be non-synonymous nucleotide substitutions (OR: 1.53, FDR 

adjusted p-value: 6.8x10-6), and less likely to be synonymous nucleotide substitutions (OR: 0.65, 

FDR adjusted p-value: 6.8x10-6). The identified eQTLs were more likely to be located in exons 

(OR: 1.48, FDR adjusted p-value: 2.9x10-22) , 5’ UTRs (OR: 1.86 FDR adjusted p-value: 1.6x10-

13), 3’ UTRs (OR: 1.44, FDR adjusted p-value: 3.3x10-20), and enhancers (OR: 1.74, FDR 

adjusted p-value: 7.5 x 10-5), and less likely to be located in introns (OR: 0.98, FDR adjusted p-

value: 0.04) and in an intergenic region (OR: 0.96, FDR adjusted p-value: 0.00017, Figure 1D). 

Additionally, identified eQTLs were not found to be significantly more likely to be either non-

synonymous (OR: 1.04, FDR adjusted p-value: 0.60) or synonymous nucleotide substitutions 

(OR: 0.96, FDR adjusted p-value: 0.60). Finally, both pQTLs and eQTLs were found to be 

significantly enriched in GWAS results (pQTL OR: 1.84, FDR adjusted p-value: 2.12 x 10-33; 

eQTL OR: 1,71, FDR adjusted p-value: 1.42 x 10-40). 

 

Correlation between mRNA and protein abundance 

To understand the relationship between mRNA and protein abundance, we examined the 

correlation between mRNA and protein levels for five sets of genes: 1) genes with sites that are 

both an eQTL and a pQTL (i.e. eQTL/pQTLs) (n=95); 2) genes with both pQTLs and eQTLs but 

no eQTL/pQTLs (n=104); 3) genes with pQTLs but no eQTLs (n = 418); 4) genes with eQTLs 

but no pQTLs (n = 644); 5) genes without any pQTLs or eQTLs (n = 4,482). Remarkably, genes 

with sites that are both eQTLs and pQTLs (eQTL/pQTLs) have the highest average correlation 

between mRNA and protein level (0.21), while all other genes have notably lower average 

correlations (0.04 to 0.07) (Figure 1E). Additionally, we found the distributions of correlations 

between mRNA and protein level to be significantly different between the genes with 

eQTL/pQTLs, genes with both pQTLs and eQTLs but no eQTL/pQTLs, genes with pQTLs but 

no eQTLs, genes with eQTLs but no pQTLs, and genes with no eQTLs or pQTLs (Kruskal-
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Wallis test, chi-square = 82.6, p < 2.2x10-16). Specifically, the median correlation between 

mRNA and protein levels was found to be significantly higher for genes with eQTL/pQTLs than 

genes with both pQTLs and eQTLs but not eQTL/pQTLs (0.21 vs. 0.04, Wilcoxon test, p-

value:6.4x10-11), genes with only pQTLs (0.21 vs. 0.07, Wilcoxon test, p-value: 1.3x10-10), genes 

with only eQTLs (0.21 vs. 0.06, Wilcoxon test, p-value: 1.4x10-13), and genes without eQTLs or 

pQTLs (0.21 vs. 0.06, Wilcoxon test, p-value: 3.3x10-16). 

 

Brain QTL Resource 

 Our pQTL and eQTL results are available online at http://brainqtl.org. This website 

visually displays the results of our pQTL and eQTL analyses and provides summary statistics on 

individual variants tested. 

 

Discussion  

 

We performed the first unbiased large-scale investigation into the genetic control of the 

human brain proteome and presented evidence for thousands of pQTLs influencing abundance of 

hundreds of brain proteins. Our most striking result was that the majority of strong pQTLs are 

weak eQTLs, and vice versa. Additionally, only a small minority of protein-coding genes have 

an SNV that is appreciably associated with mRNA and protein abundances and can be defined as 

both a pQTL and an eQTL. This result is consistent with previous work in other tissues that also 

found few sites that are both a pQTL and an eQTL (41, 44, 45).  

We found the small number of genes that have a SNV that is both a pQTL and an eQTL 

(i.e. an eQTL/pQTL) to have higher correlations between mRNA and protein abundance than 

genes with only pQTLs or eQTLs alone. This suggests that protein abundance may be limited by 

transcript availability for genes with eQTL/pQTLs, and controlled by post-transcriptional 

processes such as miRNA, localization (e.g. membrane, intra- or extracellular), translational 

regulation, or post-translational modifications for genes with pQTLs but no eQTLs or only weak 

eQTLs. The depletion and enrichment of pQTLs for non-synonymous and synonymous sites, 

respectively, also suggests translational regulation of protein abundance. Together these results 

suggest that caution is needed when inferring the effect of an eQTL on protein abundance in the 

human brain. 

Both pQTLs and eQTLs were found to be enriched for SNVs with a reported GWAS 

association. Previous studies have reported an enrichment of eQTLs in SNVs associated with 

complex traits (46) as well as an enrichment of disease susceptibility SNVs in brain eQTLs (3).  

Our pQTL and eQTL results suggest that pQTLs and eQTLs are more likely to have a role in 

disease susceptibility, but the mechanisms by which pQTLs and eQTLs contribute to disease 

susceptibility likely differs. 

 We identified 1.7 times more eQTLs than pQTLs. This is consistent with work in other 

tissues from both humans and mice that also found fewer pQTLs than eQTLs (41, 42, 44, 45, 

47). The difference in the number of pQTLs and eQTLs may be due to greater tolerance for 

differences in mRNA abundance (48). Furthermore, the protein lifecycle has considerable 

variability and includes numerous contributing processes beyond transcription. In many cases, 

the effect of genetic variants on protein abundance may be lessened by post-transcriptional 

mechanisms (44). This is compatible with both our observation of more genetic variants 

associated with mRNA abundance than protein abundance and our observation of differing effect 

sizes for the genetic control of protein and mRNA abundance.  
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 Our results should be interpreted with respect to the strengths and limitations of this 

study. To our knowledge, the brain proteomic sequencing performed here is among the deepest 

thus far profiled with a total of 12,691 unique proteins (12,415 detected genes). This reflects 

about 79% of all expressed transcripts in the human brain. To achieve throughput and proteomic 

depth of sequencing, we used TMT isobaric labeling coupled with high-pH offline fractionation 

following well-established protocols (26). A limitation of the proteomic data was the use of MS2 

acquisition, which can suffer from the presence of co-isolated and co-fragmented interfering ions 

that can obscure quantification (49). However, high-pH offline fractionation largely mitigates 

this issue (26). Another potential limitation is that the observed differences in the number of 

pQTLs and eQTLs may be in part due to technical differences in the proteomic and 

transcriptomic profiling methods. However, we note that a previous plasma-based pQTL analysis 

made a similar observation in blood and used the SOMAscan technology, which differs from the 

mass spectrometry-based proteomics used here (41). Another potential limitation is that the 

number of pQTLs and eQTLs may be limited by the power to detect them, as suggested by our 

sensitivity analysis (see supplementary materials). However, our study was still sufficiently 

powered to detect thousands of pQTLs and eQTLs, and these potential power issues do not 

appear to influence our main conclusion regarding the control of brain protein and RNA 

expression (see supplementary materials). Another potential limitation of this study is that both 

the gene expression and protein data were generated from bulk tissue that is composed of a 

mixture of cell types. We estimated cell type proportions for both data types, but found the 

inclusion of estimated cell type proportions in our analyses to increase test-statistic inflation (see 

supplementary materials). This suggests that available methods for cell type deconvolution are 

not sufficiently able to remove confounding by cell type for human brain proteomic data. Despite 

these limitations, our study is the first to examine genetic control of human brain proteins and 

reveals key differences in pQTLs versus eQTLs in the human brain and provides a web-based 

resource to enable researchers to explore the genetic control of the human brain proteome. 
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Fig. 1. Protein and RNA Quantitative Locus Results. This figure summarizes the direction of effect 

and genomic annotation for pQTL and eQTL sites. (A) Comparison of eQTL and pQTL estimates. Each 

point represents one SNV tested against the abundance of the mRNA and protein of a single gene. eQTLs 

(defined based on False Discovery Rate (FDR) < 0.05) are shown in green, pQTLs (defined based on 
FDR < 0.05) are shown in blue, and sites that are both an eQTL and a pQTL (i.e. eQTL/pQTLs) are 

shown in orange. (B) Comparison of Sieberts et al. meta-analysis eQTL estimates (N=1,433) and our 

pQTL estimates. Each point represents one SNV tested against the abundance of the mRNA and protein 
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of a single gene. eQTLs (defined based on FDR < 0.05) are shown in green, pQTLs (defined based on 
Bonferroni correction < 0.05) are shown in blue, and sites that are both an eQTL and a pQTL (i.e. 

eQTL/pQTLs) are shown in orange. (C) Results of Fischer’s exact tests for the enrichment of pQTLs. 

Odds ratio (OR) estimates are shown with 95% confidence intervals. (D) Results of Fischer’s exact tests 

for the enrichment of eQTLs. OR estimates are shown with 95% confidence intervals. (E) Mean 
correlation between mRNA and protein abundance for genes without a pQTL or an eQTL, genes with 

eQTL/pQTLs (i.e. sites that are both an eQTL and a pQTL), genes with pQTLs and eQTLs but no 

eQTL/pQTLs, genes with pQTLs and no eQTLs, and genes with eQTLs and no pQTLs. The size of the 
point reflects the relative number of proteins within each gene type. 
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Materials and Methods 

 

Study subjects 

The subjects in this study are participants of the Religious Orders Study (ROS) and the 

Memory and Aging Project (MAP). ROS and MAP are longitudinal cohort studies of 

Alzheimer’s disease and aging maintained by investigators at the Rush Alzheimer’s Disease 

Center in Chicago, IL (11-13). Both studies recruit participants without known dementia at 

baseline and follow them annually using detailed clinical evaluation. ROS recruits individuals 

from catholic religious orders from across the USA, while MAP recruits individuals from 

retirement communities as well as individual home visits in the Chicago, IL area. Participants in 

each study undergo annual medical, neurological, and neuropsychiatric assessments from 

enrollment to death, and neuropathologic evaluations at autopsy. Participants provided informed 

consent, signed an Anatomic Gift Act, and repository consent to allow their data and 

biospecimens to be repurposed. The studies were approved by an Institutional Review Board of 

Rush University Medical Center. 

 

Clinical Diagnoses  

For each ROS/MAP participant, a clinical diagnosis of dementia is rendered annually and 

at the time of death. The diagnosis rendered at death is based on all available clinical data and is 

given by a neurologist who is blinded to all postmortem data using the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 

Disorders Association guidelines (14). Case conferences including two neurologists and a 

neuropsychologist were used for consensus, as necessary, for select cases. Diagnoses of 

dementia status was coded as no cognitive impairment (NCI), mild cognitive impairment (MCI), 

or Alzheimer’s dementia (AD). Here, we restricted the analyses to those with NCI at death to 

investigate the genetic control of the normal human brain proteome and transcriptome. 

ROS/MAP resources can be requested at www.radc.rush.edu. 

 

Genetic data 

Genotype data was generated from whole genome sequencing (WGS) of DNA that was 

extracted from cryopreserved peripheral blood mononuclear cells or frozen dorsolateral 

prefrontal cortex (dPFC) of ROS/MAP subjects. WGS was performed as described in detail by 

De Jager et al. (15) and is available via Synapse (ID: syn10901595). Briefly, libraries were 

constructed using the KAPA Hyper Library Preparation Kit per the manufacturer’s protocol and 

sequenced on an Illumina HiSeq X sequencer (v2.5 chemistry) using 150bp paired-end reads. 

Reads were aligned to the GRCh37 human reference genome using Burrows-Wheeler Aligner 

(BWA-MEM v0.7.8) (16) and processed using the GATK best-practices workflow, which 

includes marking duplicate reads by Picard tools v1.83, local realignment around indels, and 

base quality score recalibration by Genome Analysis Toolkit (GATK v3.4.0) (17, 18). A multi-

sample genomic variant call format (gVCF) was generated by merging results of 

HaplotypeCaller on each sample individually in gVCF mode (GATKv3.4.0) and batches of 

gVCF were merged into gVCFs processed by a joint genotyping step (GATK v3.2.2). 

Annotation of the multi-sample VCF (n=1,196) was performed using Bystro (19) and 

supplemented by the Broad’s ChromHMM annotation of dPFC tissue (20, 21). A total of 1,133 

samples passed all quality control measures and 63 samples were excluded for one or more of the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/816652doi: bioRxiv preprint 

https://doi.org/10.1101/816652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

following reasons. Samples with greater than five standard deviations for 𝜃, silent:replacement 

sites, and transition:transversion ratio were excluded (n=7), and samples with greater than three 

standard deviations for genotype missingness, heterozygosity, or homozygosity were excluded 

(n=14). Samples that were discordant for sex based on heterozygosity of the X chromosome 

were also excluded (n=7). Cryptically related or duplicate samples were identified by identity-

by-state sharing using PLINK (22) and removed (n=31). Unlinked ancestrally informative 

markers were used to infer eigenvectors for principal-component analysis using EIGENSTRAT 

(23) and over six standard deviation outliers (n=1) were removed. Before analysis, we also 

removed all non-SNVs (i.e. insertions and deletions), SNVs outside of Hady-Weinberg 

equilibrium, SNVs with missing data for over 10% of samples, and SNVs with a minor allele 

frequency less than 0.05. 

 

Protein Abundance by Tandem MS-based Proteomics 

 Protein abundance from cortical microdissections of dPFC (Broadman area 9) of 

ROS/MAP subjects was generated using tandem mass tag (TMT) isobaric labeling mass 

spectrometry methods for protein identification and quantification. Tissue homogenization was 

performed as described by (24), followed by protein digestion. For protein digestion, 100 μg of 

each sample was reduced with 1 mM dithiothreitol (DTT) at room temperature (RT) for 

30 min, followed by 5 mM iodoacetamide (IAA) alkylation in the dark for another 30 min and 

overnight digestion with Lysyl endopeptidase (Wako) at 1:100 (w/w). Subsequently, samples 

were diluted 7-fold with 50 mM ammonium bicarbonate (AmBic) and digested with 1:50 

(w/w) Trypsin (Promega) for another 16 h. The peptide solutions were acidified to a final 

concentration of 1% (vol/vol) formic acid (FA) and 0.1% (vol/vol) triflouroacetic acid (TFA), 

desalted with a 30 mg HLB column (Oasis). An equal amount of protein from each sample 

was aliquoted and digested in parallel to serve as the global pooled internal standard (GIS) in 

each TMT batch.  

Prior to TMT labeling, all samples were randomized into 50 batches (8 samples per 

batch) based on age at death, sex, post-mortem interval, diagnosis, and measured 

neuropathologies. Peptides from each individual sample (n=400) and the GIS (n=100) were 

labeled using the TMT 10-plex kit (ThermoFisher). In each batch, TMT channels 126 and 131 

were used to label GIS standards, while the 8 middle TMT channels were reserved for 

individual samples following randomization. The TMT labeling was performed as described 

by (24, 25), followed by high-pH fractionation performed as described by (26) with slight 

modification. Dried samples were re-suspended in high pH loading buffer (0.07% vol/vol 

NH4OH; 0.045% vol/vol formic acid, 2% vol/vol acetonitrile) and loaded onto an Agilent 

ZORBAX 300Extend-C18 column (2.1mm x 150 mm with 3.5 µm beads). An Agilent 1100 

HPLC system was used to carry out the fractionation. A total of 96 individual fractions were 

collected across the gradient and pooled into 24 fractions and dried. 

All fractions were resuspended in equal volume of loading buffer (0.1% formic acid, 

0.03% trifluoroacetic acid, 1% acetonitrile) and analyzed by liquid chromatography coupled to 

mass spectrometry as described by (27) with slight modifications. Peptide eluents were separated 

on a self-packed C18 (1.9 um Dr. Maisch, Germany) fused silica column (25 cm × 75 μM 

internal diameter (ID); New Objective, Woburn, MA) by a Dionex UltiMate 3000 RSLCnano 

liquid chromatography system (ThermoFisher Scientific) and monitored on an Orbitrap Fusion 

mass spectrometer (ThermoFisher Scientific). Sample elution was performed over a 180-min 

gradient with flow rate at 225 nL/min. The gradient goes from 3% to 7% buffer B in 5 mins, 
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from 7% to 30% over 140 mins, from 30% to 60% in 5 mins, 60% to 99% in 2 mins, kept at 99% 

for 8 min and back to 1% for additional 20 min to equilibrate the column. The mass spectrometer 

was set to acquire in data dependent mode using the top speed workflow with a cycle time of 

three seconds. Each cycle consisted of one full scan followed by as many MS/MS (MS2) scans 

that could fit within the time window. The full scan (MS1) was performed with an m/z range of 

350-1500 at 120,000 resolution (at 200 m/z) with AGC (automatic gain control) set at 4x105 and 

maximum injection time of 50 msec. The most intense ions were selected for higher energy 

collision-induced dissociation (HCD) at 38% collision energy with an isolation of 0.7 m/z, a 

resolution of 30,000 and AGC setting of 5x104 and a maximum injection time of 100 msec. Five 

of the 50 TMT batches were run on the Orbitrap Fusion mass spectrometer using the SPS-MS3 

method as previously described by (24). 

All raw files were analyzed using the Proteome Discoverer suite (version 2.3 

ThermoFisher Scientific). MS2 spectra were searched against the canonical UniProtKB Human 

proteome database (downloaded February 2019 with 20,338 total sequences). The Sequest HT 

search engine was used and parameters were specified with the following: fully tryptic 

specificity, maximum of two missed cleavages, minimum peptide length of six, fixed 

modifications for TMT tags on lysine residues and peptide N-termini (+229.162932 Da) and 

carbamidomethylation of cysteine residues (+57.02146 Da), variable modifications for oxidation 

of methionine residues (+15.99492 Da) and deamidation of asparagine and glutamine 

(+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment mass tolerance of 0.05 Da for 

MS2 spectra collected in the Orbitrap (0.5 Da for the MS2 from the SPS-MS3 batches). 

Percolator was used to filter peptide spectral matches (PSM) and peptides to a false discovery 

rate (FDR) of less than 1%. Following spectral assignment, peptides were assembled into 

proteins and were further filtered based on the combined probabilities of their constituent 

peptides to a final FDR of 1%. In cases of redundancy, shared peptides were assigned to the 

protein sequence in adherence with the principles of parsimony. Reporter ions were quantified 

from MS2 or MS3 scans using an integration tolerance of 20 ppm with the most confident 

centroid setting. 

The GIS channels 126 and 131 in each batch served as technical replicates. We compared 

the measured abundance of each protein from the two GIS, and found the measured proteome 

between the two GIS to be over 99% correlated for all batches (Figure S1). As a quality control 

measure, we removed protein abundance measurements with low correlations between the two 

GIS (outside the 95% confidence interval) in each batch before further analysis. 

For this study, we included only cognitively normal subjects based on the clinical 

diagnosis of cognitive status rendered at death. To ensure the analysis of high-quality data we: 1) 

excluded proteins with missing data for over 50% of samples; 2) scaled each abundance value by 

a sample-specific total protein abundance measure to remove the effects of loading differences; 

3) transformed the data to the log2 scale. Outlier samples were then identified and removed 

through iterative principal component analysis. In each iteration we removed samples more than 

four standard deviations from the mean of the first or second principal component and then re-

calculated all the principal components. Following outlier removal, we again removed proteins 

with missing data for over 50% of the samples. Finally, the abundance of each protein was 

residualized using a linear regression model to remove the effects of sex, age at death, post-

mortem interval, study, batch, and MS2 versus MS3 reporter quantitation mode. 

 

Gene Expression by RNA Sequencing 
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Gene expression was measured from the dPFC (Broadman area 46) by De Jager et al. 

(15). Briefly, RNA was extracted from cortically dissected sections of dPFC grey matter and 

samples with RNA integrity numbers (RIN) over 5 were used to prepare RNA-Seq libraries 

using strand-specific dUTP method with poly-A selection (28, 29) using the Illumina HiSeq with 

101-bp paired-end reads to a target coverage of 50 million reads per library. Raw RNA-Seq reads 

were aligned to a GRCh38 reference genome and gene counts were computed using STAR (30) 

as described in reference (31). We obtained RNA-Seq data from synapse (ID: syn17010685) and 

performed the following quality control measures in a subset of individuals with normal 

cognition defined by a clinical diagnosis of no cognitive impairment rendered at death. We 

excluded these items: 1) non-Caucasian samples; 2) outlier samples via the GTex expression 

outlier test (D-statistic below 0.9) (3, 32); 3) genes with < 1 cpm in over 50% of samples. 

Subsequently, the filtered data was normalized using the varianceStabilizingTransformation 

function from the DESeq2 R package, which log2 transforms counts, normalizes for library size, 

and transforms counts to be approximately homoscedastic (33). Lastly, the residual expression 

for each gene was estimated using linear regression to remove the effects of sex, sequencing 

batch, age at death, post-mortem interval, RIN, and study.  

Estimation of confounders  

 To reduce confounding due to population structure, the first ten principal components 

derived from principal component analysis of the WGS data were added as model covariates in 

all relevant analyses. All ten of these principal components had significant Tracey-Widom 

statistics (p-value < 0.05). 

Statistical Analyses 

To identify genetic variants associated with protein abundance in the brain, we used 

linear regression to model protein abundance as a function of genotype. We reduced our 

computational and testing burden by investigating only the proximal genetic effects of common 

SNV variants by testing only SNVs within 100 Kb of each protein coding gene with a minor 

allele frequency (MAF) over 5%. The location of each protein coding gene was defined by the 

knownGene table (GRCh37/hg19 assembly) from the University of California, Santa Cruz 

(UCSC) table browser (34). For each SNV-protein pair, we regressed genotype against protein 

abundance, assuming additive genetic effects and including the first ten genetic principal 

components as covariates. We also performed analyses that included cell type proportions and 

additional unmeasured confounders estimated using the PEER software package in R (35, 36) as 

covariates, but we found their inclusion as covariates to increase 𝜆 (37), an estimate of test 

statistic inflation (see supplementary materials and table S1). For these analyses, the proportion 

of neurons, astrocytes, microglia, and oligodendrocytes were estimated for each sample using a 

modified CIBERSORT (38) pipeline with proteomic profiles from isolated mouse brain cell 

types as the reference (39). SNVs where genotype was significantly associated with protein 

abundance after False Discovery Rate (FDR) correction for multiple comparisons were declared 

protein quantitative trait loci (pQTLs; FDR < 0.05).  

 For each protein-coding gene, we also identified genetic variants associated with gene 

expression in the brain (i.e. mRNA expression). We used the same methods that were used to 
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identify genetic variants associated with protein abundance. That is, we used linear regression to 

model mRNA abundance as a function of genotype for common SNVs (MAF > 0.05) within 100 

kb of each protein-coding gene. To be able to compare SNVs associated with mRNA expression 

to those associated with protein abundance, we restricted our expression analyses to mRNA 

transcripts of genes that code for proteins present in our pQTL analyses. The location of each 

gene was defined by the Ensembl stable gene (EnsGene) table (GRCh37/hg19 assembly) from 

the University of California, Santa Cruz (UCSC) table browser. This table allowed us to match 

each EnsGene in our GRCh38-aligned RNAseq dataset with its GRCh37 location. For each 

SNV-mRNA pair, we regressed genotype against mRNA abundance, assuming additive genetic 

effects and including the first ten genetic principal components. We also performed analyses that 

included cell type proportions and additional unmeasured confounders estimated using the PEER 

software package in R (35, 36) as covariates, but found their inclusion as covariates to increase 𝜆 

(37) (see supplementary materials and table S1). For these analyses, the proportion of neurons, 

astrocytes, microglia, and oligodendrocytes were estimated for each sample using the 

CIBERSORT (38) pipeline with single-cell RNA-sequencing expression profiles from isolated 

human brain cell types (40). SNVs where genotype is significantly associated with gene 

expression after FDR correction for multiple comparisons were declared expression quantitative 

trait loci (eQTLs; FDR < 0.05). 

We assessed whether the identified pQTLs and eQTLs are more likely than other sites to 

be a published GWAS result, a synonymous or nonsynonymous nucleotide substitution, or in a 

particular genic location (i.e. exons, introns, 5’ UTRs, 3’UTRs, intergenic regions, enhancers) by 

testing the overlap between the sets of pQTL and eQTLs sites and the sets of sites reported in 

NHGRI-EBI Catalog of Published genome-wide association studies (Downloaded July 2019), 

and we annotated to each substitution type and genic location using Fisher’s exact tests. 

 

Supplementary Text 

 

Estimation and analysis of confounders 

To avoid potential confounding due to differences in the cellular composition of the 

tissue samples, we estimated the cellular composition of each sample for both the transcriptomic 

and proteomic data and included these estimates as covariates in all relevant analyses. For the 

transcriptomic data, the proportion of neurons, astrocytes, microglia, and oligodendrocytes were 

estimated for each sample using the CIBERSORT (38) pipeline with single-cell RNA-

sequencing expression profiles from isolated human brain cell types (40). For each individual 

proteome, the proportion of neurons, astrocytes, microglia, and oligodendrocytes were estimated 

using a modified CIBERSORT (38) pipeline with proteomic profiles from isolated mouse brain 

cell types as the reference (39). For the proteomic data, the CIBERSORT pipeline was modified 

to allow for a negative relationship between cell type and the protein levels. This change 

produced estimates of cell type heterogeneity similar to those estimated with the unmodified 

CIBERSORT pipeline and RNAseq data. 
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 Unknown confounders in the proteomic and transcriptomic data were estimated using the 

PEER software package in R (35, 36). This software uses factor analysis to identify confounders 

in the data that were not measured in the study. We estimated ten unknown confounders while 

protecting the first ten genetic principal components and the estimated cell type proportions. We 

included the first five estimated unknown confounders as covariates in relevant analyses. 

 To select the covariates to include in our regression models, we assessed the ability of 

genetic principal components, estimated cell type proportions, and estimated unknown 

confounders to reduce inflation in our pQTL and eQTL analyses. To do this we ran the pQTL 

and eQTL analyses on chromosome 1 with different combinations of covariates, and assessed 

inflation with the inflation factor 𝜆, which estimates the amount of inflation by comparing the 

distribution of the observed test statistics to that expected under the null hypothesis of no effect 

(Table S1) (37). We found 𝜆 to increase or remain unchanged when estimated cell type 

proportions and hidden factors were included as covariates in the models. For this reason, we 

chose to only include the first ten gene principal components as covariates in all our pQTL and 

eQTL analyses. 

 

QTLs among individuals with paired transcriptomic and proteomic data 

The sample sizes and missingness structure differ between the pQTL (n=144) and eQTL 

(n=169) analyses. The missingness structure differs between the proteomic and transcriptomic 

data due to the batch-specific measurement of proteins in TMT proteomic experiments, which 

measure proteins for either all or none of the samples in a batch. Therefore, the number of 

samples with data differs for each protein, and ranges from 69 samples to 144 samples (Figure 

S2). The transcriptomic data, on the other hand, has data for same number of samples (N=169) 

for each gene. As a result of these technical and sample size differences between the proteomic 

and transcriptomic data, there are slight differences in power between our proteomic and 

transcriptomic analyses. To investigate whether differences in our pQTL and eQTL results are 

due to differences in sample size or population, we performed pQTL and eQTL analyses using 

the subset of 81 samples that have both proteomic and transcriptomic data. Furthermore, we 

subset the tested proteins and corresponding protein-coding genes to those with 81 samples for 

both proteomic and transcriptomic data. In this analysis, we tested the genotypes of 1,495,066 

SNPs against the abundance of 3,579 proteins and 3,583 mRNAs of the corresponding protein-

coding genes. We found 6,149 pQTLs for 230 different proteins (FDR < 0.05) and 3,023 eQTLs 

for 96 different mRNAs of protein-coding genes (FDR < 0.05). Additionally, only 397 SNVs in 

14 protein coding genes are both an eQTL and a pQTL (eQTL/pQTLs).  

We compared the effect of each variant on mRNA and protein abundance (Figure S3), 

and found that 52% (3,210 /6,149) of the identified pQTLs are strong pQTLs, 6% (190 / 3,023) 

of the identified eQTLs are strong eQTLs, and none of the sites that are both an eQTL and a 

pQTL (eQTL/pQTLs) are both a strong eQTL and strong pQTL. The sets of strong eQTLs and 

pQTLs are completely distinct. That is, all of the strong eQTLs are weak pQTLs, and all of the 

strong pQTLs are weak eQTLs.  

The small number of eQTL/pQTLs identified in this analysis matches that seen in all our 

analyses with larger sample sizes. Furthermore, in all analyses we see that strong pQTLs are 

usually weak eQTLs, and vice versa. This indicates that the differences we observe in the genetic 

variants controlling the proteome and transcriptome are not entirely due to differences in the 

numbers of samples with proteomic and transcriptomic data.  
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The relationship between the number of eQTLs and pQTLs identified in this analysis (i.e. 

more pQTLs than eQTLs) is opposite that seen in our main analyses. This may indicate that the 

observed differences between the numbers of pQTLs and eQTLs could be due to differences in 

sample size and power, and suggest that many more pQTLs exist than have been identified. This 

result could also be due to larger pQTL effect sizes in the subset of proteins measured in all 

samples than in the complete proteome. Proteins that are easily measured with TMT mass 

spectrometry methods may be of a certain class of protein that have pQTLs of larger effect than 

is seen across the proteome. Larger samples sizes are necessary to be able to disentangle this 

observation. 
 

Linkage Disequilibrium Threshold Influence on QTLs 

Many of the pQTLs we detected are in linkage disequilibrium (LD), which increased our 

testing burden and lowered our p-value threshold for significance; however, pruning sites based 

on LD may lead us to obscuring functional genomic relationships. To understand how LD affects 

our ability to detect proteins with pQTLs, we preformed FDR correction for multiple 

comparisons based on the number of tests performed after removing SNPs in complete LD (r2 

=1). We tested the genotypes of 1,114,116 SNPs against the abundance of 7,901 proteins. We 

found 8,323 pQTLs for 755 different proteins (FDR < 0.05). Since the percentage of proteins 

with a pQTL decreased from 10.9% to 9.6%, we elected to not prune SNVs that are in LD in any 

of our analyses. 
 

Influence of Window Size on QTLs 

 To understand how our results are influenced by our choice of window size, we 

investigated eQTLs and pQTLs within 50 kb, 100 kb, and 500 kb of the TSS of each protein-

coding gene. The number of sites and tests substantially increased with each increasing window 

size. We tested 1,567,675 SNPs in the 50kb window, 2,082,000 SNPs in the 100 kb window, and 

3,978,062 SNPs in the 500kb window. After correcting for the number of tests performed for 

each window size, we found 18,503 pQTLs (FDR < 0.05) and 28,065 eQTLs (FDR < 0.05) in 

the 50kb window, 21,033 pQTLs (FDR < 0.05) and 35,064 eQTLs (FDR < 0.05) in the 100kb 

window, and 17,887 pQTLs (FDR < 0.05) and 30,804 eQTLs (FDR < 0.05) in the 500 kb 

window. In the 500kb window results, 61% of the pQTLs and 56% of the eQTLs are located 

within 50 kb of the TSS of the associated protein-coding gene, and 76% of the pQTLs and 76% 

of the eQTLs are located within 100 kb of the TSS of the associated protein-coding gene. By 

using the 100 kb window we can reduce the number of tests performed and still capture the 

majority of pQTLs and eQTLs. 
 

QTL mapping using Bonferroni significance thresholds 

 To assess the robustness of our results, we preformed all QTL mapping analyses using 

the more stringent Bonferroni significance threshold to define pQTLs and eQTLs. As expected 

using a more stringent significance threshold resulted in fewer sites and genes identified; 

however, it did not change the relationship between the identified pQTLs and eQTLs or overall 

nature of the sites identified compared to the results from the FDR adjusted analysis presented in 

the main text. 

A total of 2,082,000 SNVs were tested against the abundance of protein and mRNA from 

5,739 genes. We found that 1.3% (76 / 5,739) of genes had a pQTL and 1.9% (112 / 5,739) of 
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genes had an eQTL at Bonferroni significance threshold. Fewer pQTLs were identified than 

eQTLs with a total of 1,981 and 7,355, respectively. Additionally, genes with a pQTL averaged 

26 pQTLs per gene compared to 65 eQTLs per gene for genes with an eQTL. Only 15 genes had 

both a pQTL and an eQTL, which represents 19.7% (15 / 76) of genes with a pQTL and 13.4% 

(15 / 112) of genes with an eQTL. A total of 332 SNVs were identified as both pQTLs and 

eQTLs in 12 of the 15 genes with both a pQTL and an eQTL (Table S4). Thus, only 16.8% (332 

/ 1981) of all identified pQTLs are eQTLs and 4.5% (332 / 7355) of all identified eQTLs are 

pQTLs (Figure S4A inset). The relationships between the numbers of eQTLs, pQTLs, and 

eQTL/pQTLs identified in this analysis mirror the relationships seen in our previous analyses 

using less conservative FDR significance thresholds to define pQTLs and eQTLs. In all analyses 

we see a greater number of eQTLs than pQTLs, and that the majority of eQTLs are not pQTLs, 

and vice versa.  

For each SNV that was identified as either an eQTL or a pQTL using a Bonferroni 

significance threshold, we compared the effect of each variant on mRNA and protein abundance 

(Figure S4 A). This revealed similar results to the analysis using FDR adjusted p-values 

presented in the main text. Using the definition of a strong QTL as a site associated with 

changing expression or protein abundance greater than two standard deviations from the mean, 

we found that most eQTLs are not strong pQTLs and vice versa. For the sites that are associated 

with both mRNA and protein abundance (i.e. eQTL/pQTLs), the majority of the effects on 

mRNA and protein abundance are in the same direction (94%, 313/332). To help understand if 

these results are generalizable, we compared the pQTLs identified at Bonferroni adjusted 

threshold to the results of eQTL meta-analysis of brain using the dPFC of 1,433 samples from 

four cohorts (10). For each SNV that we identified as a pQTL (defined by Bonferroni adjusted p-

value threshold) or was identified as an eQTL in the meta-analysis, we compared the effect of 

each variant on mRNA and protein abundance (Figure S4 B). Similar to what was found using 

FDR threshold to define pQTLs, we found the majority of strong eQTLs are not pQTLs, and that 

strong pQTLs are usually weak eQTLs. 

The location of sites defined by either Bonferroni or FDR significance thresholds were, 

essentially, the same. The Bonferroni-defined pQTLs were more likely to be located in a genic 

region (5’ UTR OR: 3.2 adjusted p-value: 4.6x10-5, exons OR: 2.8, adjusted p-value: 1.2x10-13, 

introns OR: 1.3, adjusted p-value: 2.0x10-8, Figure S4 C) and less likely to be located in an 

intergenic region by Fisher’s exact test (OR: 0.6, FDR adjusted p-value: 2.9x10-18, Figure S4 C). 

Furthermore, they were more likely to be non-synonymous nucleotide substitutions (OR: 1.8, 

adjusted p-value: 0.02), and less likely to be synonymous nucleotide substitutions (OR: 0.6, 

adjusted p-value: 0.02). The identified eQTLs were more likely to be located in exons (OR: 1.8, 

adjusted p-value: 2.2x10-12), 5’UTRs (OR: 2.5 adjusted p-value: 4.2x10-8), 3’ UTRs (OR: 1.5, 

adjusted p-value: 1.6x10-6), and enhancers (OR: 1.8, adjusted p-value: 0.019), and less likely to 

be located in introns (OR: 0.9, adjusted p-value: 6.2x10-10) (Figure S4 D). Additionally, 

identified eQTLs are not significantly more likely to be either non-synonymous (OR: 1.1, 

adjusted p-value: 0.58) or synonymous nucleotide substitutions (OR: 0.9, adjusted p-value: 0.60).  

 The relationship between mRNA and protein abundance for genes with Bonferroni and 

FDR significant QTLs was, essentially, the same. Genes were defined in the same manner as the 

main text except using Bonferroni significance to define QTLs and are: 1) genes with both 

pQTLs and eQTLs (n=15); including 2) the subset of genes with sites that are both an eQTL and 
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a pQTL (i.e. eQTL/pQTLs) (n=12); 3) genes with pQTLs but no eQTLs (n = 61); 4) genes with 

eQTLs but no pQTLs (n = 97); and, 5) all tested genes (n=5,739). Again, as we found in our 

main FDR analyses, genes with both eQTLs and pQTLs have a significantly higher correlation 

between mRNA and protein abundance than genes with eQTLs or pQTLs alone (Figure S4 E-F).  

eQTL replication  

We assessed the reproducibility of our eQTL results by comparing them with a previous 

eQTL meta-analysis of dorsolateral prefrontal cortex (dPFC) data from four cohorts by Sieberts 

et al. (10). We found a high degree of overlap between our eQTL results and the previously 

published results, which indicates that our methods for eQTL and pQTL identification are valid. 

Sieberts et al. performed a meta-analysis using data from the dPFC of 1,433 cognitively 

normal and impaired individuals from the ROSMAP study, Mayo Brain Bank, Human Brain 

Collection Core, and the Common Mind Consortium. This study investigated proximal eQTLs 

within 1MB of an expressed gene, and declared eQTLs based on a False Discovery Rate (FDR) 

correction. Of the 35,064 eQTLs we identified, Sieberts et al. tested 31,340. Of these 31,340 

sites, Sieberts et al. found 29,087 (92.8%) to also be eQTLs. Furthermore, for each SNV that 

either we or Sieberts et al. defined as an eQTL, we compared the sign and the magnitude of the 

test statistics. We found 81.9% (451,426 / 551,041) of the eQTL test statistics to have matching 

signs, and all eQTL test statistics to have a correlation of 0.77 between studies. 

Relationship between Minor Allele Frequency and QTL identification 

 We examined the relationship between minor allele frequency (MAF) and our identified 

pQTLs and eQTLs by calculating the number and percentage of identified pQTLs (FDR < 0.05), 

eQTLs (FDR < 0.05), and eQTL/pQTLs that fall into the following MAF bins: 0.05 to 0.1, 0.1 to 

0.2, 0.2 to 0.3, 0.3 to 0.4, and 0.4 to 0.5 (Table S5). We found that the percentage of the total 

pQTLs, eQTLs, and eQTL/pQTLs identified slightly increases with variant MAF. The smallest 

percentage of pQTLs, eQTLs and eQTL/pQTLs identified have a variant MAF between 0.05 and 

0.1 (5%-8%), while the largest percentage of pQTLs, eQTLs, and eQTL/pQTLs have a variant 

MAF between 0.4 to 0.5 (26%-36%). We also examined the relationship between the MAF at 

each site in transcriptomic data (eQTL analysis) and the proteomic data (pQTL analysis), as 

these analyses had slightly different samples sizes (Figure S5). The correlation between the MAF 

of tall the sites in the pQTL and eQTL analyses is 0.98. Additionally, the correlation between the 

MAF in the pQTL and eQTL analyses at the sites identified as pQTLs, eQTLs, and 

pQTL/eQTLs, is 0.98, 0.98, and 0.97, respectively. These results suggest a slight, but not 

substantial, dependence of pQTLs and eQTLs on MAF. 

Comparison of identified brain pQTLs with prior work in blood 

 We compared pQTLs in blood and brain by assessing the overlap between our pQTLs 

and pQTLs previously identified in blood by Emilsson et al. (41), Sun et al. (42) and Suhre et al. 

(43). The results of these three studies are available in the NHGRI-EBI Catalog of Published 

genome-wide association studies. Emilsson et al. used data from ~5,000 Icelanders over the age 

of 65, Sun et al. used data from 3,301 healthy blood donors from the INTERVAL study, and 

Suhre et al. used data from 1000 individuals from the KORA F4 study. All three studies used the 

SOMAscan platform to assay the plasma proteome. 
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The overlap between brain pQTLs and blood pQTLs was assessed by comparing our 

results to the results of Emilsson et al. (41), Sun et al. (42) and Suhre et al. (43). Together, these 

three studies report 3,014 unique blood pQTLs, of which 1,139 were available for testing in our 

brain (dorsolateral prefrontal cortex) data. This small overlap between the blood pQTLs and the 

sites that were tested in the brain indicates that the sets of proteins in brain and blood may be 

largely distinct. Of the 1,139 blood pQTLs also in our brain data, only 38 were found to be brain 

pQTLs (3%). These 38 blood and brain pQTLs are in 28 different genes. 
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Fig. S1. Distribution of the batch-specific correlation of GIS channels. Each TMT proteomic 

experiment, or batch, contains two GIS channels (126 and 131). Here we show the distribution of 

correlations of proteomic measurements between the batch-specific GIS channels. 
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Fig. S2. Distribution of the sample sizes used in the pQTL analyses. Due to the highly batch-

specific nature of protein measurement in TMT proteomic experiments, each measured protein 

has a different sample size. This histogram shows the distribution of sample sizes across all 

regressions run to test the association between genotype and protein abundance for each SNV-

protein pair. 
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Fig. S3. Comparison of eQTL and pQTL estimates for samples with paired transcriptomic 

and proteomic data. Each point represents one SNV tested against the abundance of the mRNA 

and protein of a single gene. eQTLs (defined based on FDR < 0.05) are shown in green, pQTLs 

(defined based on FDR < 0.05) are shown in blue, and sites that are both an eQTL and a pQTL 

(i.e. eQTL/pQTLs) are shown in orange. 
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Fig. S4. Protein and RNA Quantitative Locus Results Using a Bonferroni Significance 

Threshold. This figure summarizes the direction of effect and genomic annotation for pQTL and 

eQTL sites using QTLs defined based on Bonferroni significance threshold. (A) Comparison of 

eQTL and pQTL estimates. Each point represents one SNV tested against the abundance of the 

mRNA and protein of a single gene. eQTLs (defined based on Bonferroni correction < 0.05) are 

shown in green, pQTLs (defined based on Bonferroni correction < 0.05) are shown in blue, and 

sites that are both an eQTL and a pQTL (i.e. eQTL/pQTLs) are shown in orange. (B) 

Comparison of Sieberts et al. meta-analysis eQTL estimates (N=1433) and our pQTL estimates. 

Each point represents one SNV tested against the abundance of the mRNA and protein of a 

single gene. eQTLs (defined based on False Discovery Rate correction < 0.05) are shown in 

green, pQTLs (defined based on Bonferroni correction < 0.05) are shown in blue, and sites that 

are both an eQTL and a pQTL (i.e. eQTL/pQTLs) are shown in orange. (C) Results of Fischer’s 

exact tests assessing the overlap of pQTLs and genic locations. OR estimates are shown with 

95% confidence intervals. (D) Results of Fischer’s exact tests assessing the overlap of eQTLs 

and genic locations. OR estimates are shown with 95% confidence intervals. (E) Mean 

correlation between mRNA and protein abundance for all genes, genes with eQTL/pQTLs (i.e. 

sites that are both an eQTL and a pQTL), genes with pQTLs and eQTLs, genes with pQTLs and 

no eQTLs, and genes with eQTLs and no pQTLs. The size of the point reflects the relative 

number of proteins within each gene type. (F) Comparison of genes with pQTLs and eQTLs, 

genes with pQTLs and no eQTLs, and genes with eQTLs and no pQTLs. P-values from the 

significant pairwise comparisons are shown. 
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Fig. S5. Comparison of the variant minor allele frequency for the eQTL and pQTL 

analyses. Each point represents one SNV tested against the abundance of the mRNA and protein 

of a single gene. eQTLs (defined based on FDR < 0.05) are shown in green, pQTLs (defined 

based on FDR < 0.05) are shown in blue, and sites that are both an eQTL and a pQTL (i.e. 

eQTL/pQTLs) are shown in orange. SNVs that are not a pQTL or eQTL are in black. 
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Table S1. Inflation in QTL analyses. We performed both pQTL and eQTL analyses on chromosome 1 

with different combinations of covariates to assess their ability to reduce 𝝀, which estimates the amount 

of test statistic inflation. The covariates we assessed include: the first ten genetic principal components, 

the estimated cellular composition of each sample (i.e. the proportion of neurons, astrocytes, microglia, 

and oligodendrocytes), and the first five unknown confounders estimated using factor analysis. 

 

pQTL analysis: chromosome 1 

Covariates 𝜆 

Genetic principal components (1 to 10) 1.17 

Cellular composition (proportion of neurons, astrocytes, microglia, 

and oligodendrocytes) 

1.22 

Genetic principal components (1 to 10), cellular composition 

(proportion of neurons, astrocytes, microglia, and oligodendrocytes) 

1.17 

Genetic principal components (1 to 10), unknown confounders (5) 1.17 

Genetic principal components (1 to 10), unknown confounders (5), 

cellular composition (proportion of neurons, astrocytes, microglia, 

and oligodendrocytes) 

1.18 

eQTL analysis: chromosome 1 

Covariates 𝜆 

Genetic principal components (1 to 10) 1.33 

Cellular composition (proportion of neurons, astrocytes, microglia, 

and oligodendrocytes) 
1.50 

Genetic principal components (1 to 10), cellular composition 

(proportion of neurons, astrocytes, microglia, and oligodendrocytes) 

1.49 

Genetic principal components (1 to 10), unknown confounders (5) 1.70 

Genetic principal components (1 to 10), unknown confounders (5), 
cellular composition (proportion of neurons, astrocytes, microglia, 

and oligodendrocytes) 

1.78 
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Table S2. Demographics of analyzed ROS/MAP samples. All analyzed samples had a clinical 

diagnosis of no cognitive impairment at the time of death. 

 

Characteristic ALL 

Samples with 

protein data 

Samples with 

mRNA data 

Samples with 

protein & mRNA 

data 

Sample Size 233 144 169 81 

Female sex (%) 63.1% 68.8% 62.1% 71.2% 

Age at death [years] 

(median, range) 

86.5 [67.4 – 102.7] 87.9 [71.3 – 102.6] 85.8 [67.4 – 102.7]  86.3 [71.3 – 101.2] 

Years of education 

(median, range) 

16.0 [8.0 – 27.0] 15.0 [8.0 – 27.0] 16.0 [10.0 – 27.0] 15.5 [11.0 – 27.0] 
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Table S3. Genes with sites that are both a pQTL and an eQTL (i.e. eQTL/pQTL). Both 

pQTLs and eQTLs were defined using a Bonferroni significance threshold of 0.05.  
 

Gene Chr # pQTLs # eQTLs #eQTL/pQTLs 

KYAT3 
1 

108 72 72 

GSTM5 1 23 52 22 

FAS 10 36 25 25 

SNX32 11 27 4 4 

THEM4 1 80 140 80 

GSTM3 1 10 32 10 

GALM 2 63 27 27 

PPIL3 2 48 56 48 

GSTT2B 22 5 149 5 

TRPV2 17 2 30 2 

CAMLG 5 19 19 19 

GPNMB 7 18 18 18 
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Table S4. Top ten genes with the highest number of sites that are both an eQTL and a 

pQTL (i.e. eQTL/pQTLs). All the eQTLs and pQTLs were defined using a False Discovery 

Rate threshold of 0.05. 
 

Gene Chr # pQTLs # eQTLs #eQTL/pQTLs 

ERAP2 5 242 320 242 

GUF1 4 350 305 223 

NDUFAF1 15 159 172 153 

THEM4 1 139 161 139 

GPNMB 7 136 139 136 

CSDC2 22 135 141 135 

GSTT2B 22 134 212 133 

KYAT3 1 108 110 108 

GSTP1 11 141 113 105 

LARS2 3 108 166 105 
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Table S5. Relationship between minor allele frequency (MAF) and the number of pQTLs 

and eQTLs identified.  All pQTLs and eQTLs were defined based on a False Discovery Rate 

threshold of 0.05.  

 

MAF bin # pQTLs (%) | subset also eQTLs # eQTLs (%) | subset also pQTLs 

0.05 to 0.5 21,034 | 3,364 35,064 | 3,364 

0.05 to 0.1 1,685 (8%) | 163 (5%) 2,640 (8%) | 136 (5%) 

0.1 to 0.2 4,270 (20%) | 568 (17%) 6,845 (20%) | 605 (18%) 

0.2 to 0.3 4,578 (22%) | 549 (15%) 7,528 (21%) | 521 (15%) 

0.3 to 0.4 4,903 (23%) | 778 (23%) 8,542 (24%) | 916 (27%) 

0.4 to 0.5 5,458 (26%) | 1,213 (36%) 9,381 (27%) | 1,167 (35%) 
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