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Abstract
The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine
this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic
lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468
controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg= 0.4, P= 0.0046).
Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM
risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are
enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared
biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological
basis of these B-cell malignancies.

Introduction
Chronic lymphocytic leukaemia (CLL) and multiple

myeloma (MM) are both B-cell malignancies, which arise
from the clonal expansion of progenitor cells at different

stages of B-cell maturity1–3. Evidence for inherited pre-
disposition to CLL and MM comes from the six- and two-
fold increased risk of the respective diseases seen in
relatives of patients4.
Recent genome-wide association studies (GWAS) have

transformed our understanding of genetic susceptibility to
the B-cell malignancies, identifying 45 CLL5–8 and 23 MM
risk loci9–13. Furthermore, statistical modelling of GWAS
data indicates that common genetic variation is likely to
account for 34% of CLL and 15% of MM heritability6,14.
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Epidemiological observations on familial cancer risks
across the different B-cell malignancies suggest an ele-
ment of shared inherited susceptibility, especially between
CLL and MM4.
Linkage disequilibrium (LD) score regression is a

method which exploits the feature of a test statistic for a
given single nucleotide polymorphism (SNP), whereby
that test statistic will incorporate the effects of correlated
SNPs15. Conventional LD score regression regresses trait
χ2 statistics against the LD score for a given SNP, with the
coefficient of the regression line providing an estimate of
trait heritability. This method can be modified by instead
regressing the product of SNP Z-scores from two traits
against the SNP LD score, with the slope providing an
estimate of genetic covariance between the two traits16.
This method can be applied to summary statistics, is not
biased by sample overlap and does not require multiple
traits to be measured for each individual.
By analysis of GWAS data for MM and CLL and

applying cross-trait LD score regression, we have been
able to demonstrate a positive genetic correlation between
CLL and MM. We find evidence of shared genetic sus-
ceptibility at 10 known risk loci and by integrating pro-
moter capture Hi-C (PCHi-C) data, ChIP-seq and
expression data we provide insight into the shared bio-
logical basis of CLL and MM.

Methods
GWAS data sets
The data from six previously reported MM GWAS9–13

are summarized in Supplementary Table 1. All these
studies were based on individuals of European ancestry
and comprised: Oncoarray-GWAS (878 cases 7054 con-
trols) UK-GWAS (2282 cases, 5197 controls), Swedish-
GWAS (1714 cases, 10,391 controls), German-GWAS
(1508 cases, 2107 controls), Netherlands-GWAS (555
cases, 2669 controls) and US-GWAS (780 cases, 1857
controls).
The data from three previously reported CLL GWAS8–

13 are summarized in Supplementary Table 2. All these
studies were based on individuals of European ancestry
and comprised: CLL UK1 (505 cases and 2698 controls),
CLL UK2 (1236 cases and 2501 controls) and CLL US
(2174 cases and 2682 controls).

Ethics
Collection of patient samples and associated clinico-

pathological information was undertaken with written
informed consent and relevant ethical review board
approval at respective study centres in accordance with
the tenets of the Declaration of Helsinki.
Specifically for the Myeloma-IX trial by the Medical

Research Council (MRC) Leukaemia Data Monitoring and
Ethics committee (MREC 02/8/95, ISRCTN68454111), the

Myeloma-XI trial by the Oxfordshire Research Ethics Com-
mittee (MREC 17/09/09, ISRCTN49407852), HOVON65/
GMMG-HD4 (ISRCTN 644552890; METC 13/01/2015),
HOVON87/NMSG18 (EudraCTnr 2007-004007-34, METC
20/11/2008), HOVON95/EMN02 (EudraCTnr 2009-
017903-28, METC 04/11/10), University of Heidelberg
Ethical Commission (229/2003, S-337/2009, AFmu-119/
2010), University of Arkansas for Medical Sciences Institu-
tional Review Board (IRB 202077), Lund University Ethical
Review Board (2013/54), the Norwegian REK 2014/97, and
the Danish Ethical Review Board (no: H-16032570).
Specifically, the centres for UK-CLL1 and UK-CLL2 are:

UK Multi-Research Ethics Committee (MREC 99/1/082);
GEC: Mayo Clinic Institutional Review Board, Duke
University Institutional Review Board, University of Utah,
University of Texas MD Anderson Cancer Center Insti-
tutional Review Board, National Cancer Institute, ATBC:
NCI Special Studies Institutional Review Board, BCCA:
UBC BC Cancer Agency Research Ethics Board, CPS-II:
American Cancer Society, ENGELA: IRB00003888—
Comite d’ Evaluation Ethique de l’Inserm IRB #1, EPIC:
Imperial College London, EpiLymph: International
Agency for Research on Cancer, HPFS: Harvard School of
Public Health (HSPH) Institutional Review Board, Iowa-
Mayo SPORE: University of Iowa Institutional Review
Board, Italian GxE: Comitato Etico Azienda Ospedaliero
Universitaria di Cagliari, Mayo Clinic Case-Control: Mayo
Clinic Institutional Review Board, MCCS: Cancer Council
Victoria’s Human Research Ethics Committee, MSKCC:
Memorial Sloan-Kettering Cancer Center Institutional
Review Board, NCI-SEER (NCI Special Studies Institu-
tional Review Board), NHS: Partners Human Research
Committee, Brigham and Women’s Hospital, NSW: NSW
Cancer Council Ethics Committee, NYU-WHS: New York
University School of Medicine Institutional Review Board,
PLCO: (NCI Special Studies Institutional Review Board),
SCALE: Scientific Ethics Committee for the Capital
Region of Denmark, SCALE: Regional Ethical Review
Board in Stockholm (Section 4) IRB#5, Utah: University of
Utah Institutional Review Board, UCSF and UCSF2:
University of California San Francisco Committee on
Human Research, Women’s Health Initiative (WHI): Fred
Hutchinson Cancer Research Center and Yale: Human
Investigation Committee, Yale University School of
Medicine. Informed consent was obtained from all
participants.
The diagnosis of MM (ICD-10 C90.0) in all cases was

established in accordance with World Health Organiza-
tion guidelines. All samples from patients for genotyping
were obtained before treatment or at presentation. The
diagnosis of CLL (ICD-10-CM C91.10, ICD-O M9823/3
and 9670/3) was established in accordance with the
International Workshop on Chronic Lymphocytic Leu-
kaemia guidelines.
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Quality control
Standard quality-control measures were applied to the

GWAS17. Specifically, individuals with low SNP call rate
(<95%) as well as individuals evaluated to be of non-
European ancestry (using the HapMap version 2 CEU,
JPT/CHB and YRI populations as a reference) were
excluded. For apparent first-degree relative pairs, we
excluded the control from a case-control pair; otherwise,
we excluded the individual with the lower call rate. SNPs
with a call rate <95% were excluded as were those with a
MAF <0.01 or displaying significant deviation from
Hardy–Weinberg equilibrium (P < 10−5). GWAS data
were imputed to >10 million SNPs using IMPUTE2 v4
(for CLL) and IMPUTE2 v2.3 (for MM) software in
conjunction with a merged reference panel consisting of
data from 1000 Genomes Project18 (phase 1 integrated
release 3 March 2012) and UK10K19. Genotypes were
aligned to the positive strand in both imputation and
genotyping. We imposed predefined thresholds for
imputation quality to retain potential risk variants with
MAF >0.01 for validation. Poorly imputed SNPs with an
information measure <0.80 were excluded. Tests of
association between imputed SNPs and MM were per-
formed under an additive model in SNPTESTv2.520. The
adequacy of the case-control matching and possibility of
differential genotyping of cases and controls was eval-
uated using a Q–Q plot of test statistics. The inflation λ
was based on the 90% least-significant SNPs and assess-
ment of λ1000. Details of SNP QC are provided in Sup-
plementary Table 3 and 4. Four principal components,
generated using common SNPs, were included to limit the
effects of cryptic population stratification in the US-CLL
data set. Eigenvectors for the GWAS data sets were
inferred using smartpca (part of EIGENSOFT) by merging
cases and controls with phase II HapMap samples.

Meta-analysis
Meta-analyses were performed using the fixed-effects

inverse-variance method using META v1.621. Cochran's
Q-statistic to test for heterogeneity and the I2 statistic to
quantify the proportion of the total variation due to het-
erogeneity was calculated.

LD score regression
To investigate genetic correlation between MM and

CLL, we implemented cross-trait LD score regression by
Bulik-Sullivan et al.16. Using summary statistics from the
GWAS meta-analysis we implemented filters as recom-
mended by the authors16. Specifically, filtering SNPs to
INFO >0.9, MAF >0.01, and harmonizing to Hap Map3
SNPs with 1000 Genomes EUR MAF >0.05, removing
indels and structural variants, removing strand-
ambiguous SNPs and removing SNPs where alleles did
not match those in 1000 Genomes. This was performed

by running the munge-sumstats.pr script included with
ldsc. We ran ldsc.py, part of the ldsc package, excluding
the HLA region. We report heritability estimates on the
observed scale. There is no distinction between observed
and liability scale genetic correlation for case/control
traits16.

Shared risk loci
To identify pleiotropic risk loci, that is genetic loci that

influence two traits, we identified SNPs previously
reported to be associated with each disease at genome-
wide significance (P < 5 × 10−8), as well as highly corre-
lated variants (r2 > 0.8) at the 45 and 23 known risk loci
for CLL and MM, respectively. Within these correlated
variant sets at each locus, we determined how many of the
CLL susceptibility loci were associated with MM at
region-wide significance after Bonferroni correction for
multiple testing (i.e. Padj < 0.05/45). We then repeated the
process, examining MM susceptibility SNPs in CLL,
applying a significance level of Padj < 0.05/23. A full list of
results is summarized in Supplementary Data File 1 and 2.

Partitioned heritability
A variation of LD score regression, namely stratified LD

score regression, can be used to partition heritability
according to different genomic categories. For both MM
and CLL we applied stratified LD score regression across
the baseline model used in Finucane et al.22. We plotted
the enrichment of functional categories for each disease-
this is defined as proportion heritability divided by the
total heritability. We excluded from our plot additional
flanking regions around each functional category, which
authors designed to allow observation of enrichment of
SNP heritability in intermediary regions. A plot of the
results is found in Supplementary Figure 1.

Variant set enrichment
To examine enrichment in specific histone mark bind-

ing across shared risk loci, we adapted the method of
Cowper-Sal lari et al.23. Briefly, for each risk locus, a
region of strong LD (defined as r2 > 0.8 and D′ > 0.8) was
determined, and these SNPs were considered the asso-
ciated variant set (AVS). Publically available ChIP-seq
data for 6 histone marks from naive B cells was down-
loaded from Blueprint Epigenome Project24. For each
mark, the overlap of the SNPs in the AVS and the binding
sites was assessed to generate a mapping tally. A null
distribution was produced by randomly selecting SNPs
with the same characteristics as the risk-associated SNPs,
and the null mapping tally calculated. This process was
repeated 10,000 times, and P-values calculated as the
proportion of permutations where null mapping tally was
greater or equal to the AVS mapping tally. An enrichment
score was calculated by normalizing the tallies to the
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median of the null distribution. Thus, the enrichment
score is the number of standard deviations of the AVS
mapping tally from the median of the null distribution
tallies. An enrichment plot for naive B cells is shown in
Supplementary Figure 2.

Cell-type-specific analyses
We considered chromatin mark overlap enrichment for

genome-wide significant loci in different cell types using
the methodology of Trynka et al.25. This approach scores
GWAS SNPs based on proximity to chromatin mark and
fold-enrichment of respective chromatin mark, assessing
significance using a tissue-specific permutation method.
We obtained chip-seq data for H3K4me3 from primary
blood cells and CLL samples downloaded from Blueprint
Epigenome project24. In addition, we included in our
analysis 4 MM cell lines- KMS11, JJN3, MM1-S and L363
processed as previously described26. A heat map of results
is shown in Supplementary Figure 3.

eQTL
eQTL analyses were performed using publicly available

whole-blood data downloaded from GTeX27. The rela-
tionship between SNP genotype and gene expression we
carried out using Summary-data-based Mendelian Ran-
domization (SMR) analysis as per Zhu et al.28. Briefly, if
bxy is the effect size of x (gene expression) on y (slope of y
regressed on the genetic value of x), bzx is the effect of z on
x, and bzy be the effect of z on y, bxy (bzy/bzx) is the effect of
x on y. To distinguish pleiotropy from linkage where the
top associated cis-eQTL is in LD with two causal variants,
one affecting gene expression the other affecting trait we
tested for heterogeneity in dependent instruments
(HEIDI), using multiple SNPs in each cis-eQTL region.
Under the hypothesis of pleiotropy bxy values for SNPs in
LD with the causal variant should be identical. For each
probe that passed significance threshold for the SMR test,
we tested the heterogeneity in the bxy values estimated for
multiple SNPs in the cis-eQTL region using HEIDI.
GWAS summary statistics files were generated from the

meta-analysis. For the disease discovery GWAS, we set a
threshold for the SMR test of PSMR < 2.5 × 10−5 corre-
sponding to a Bonferroni correction for the number of
probes which demonstrated an association in the SMR
test. For all genes passing this threshold we generated
plots of the eQTL and GWAS associations at the locus, as
well as plots of GWAS and eQTL effect sizes (i.e. input for
the HEIDI heterogeneity test). HEIDI test P-values <0.05
were considered as reflective of heterogeneity. This
threshold is, however, conservative for gene discovery
because it retains fewer genes than when correcting for
multiple testing. SMR plots for significant eQTLs are
shown in Supplementary Figures 4, 5 and a summary of
results are shown in Supplementary Table 5.

Results
Genetic correlation and heritability
We performed cross-trait LD-score regression using

summary statistics from two recent GWAS meta-analyses
based on 7717 MM cases and 21,587 controls and 4017
CLL cases and 7881 controls (Fig. 1, Supplementary Table
1-4). While these data sets have been previously subject to
quality control (QC)5–7,9–12 for the current analysis we
implemented additional filtering steps as per Bulik-
Sullivan et al.16, resulting in 1,055,728 harmonized SNPs
between the two data sets. Heritability estimates from
cross-trait LD score regression of 9.2 (±1.8%) and 22
(±5.9%) were comparable with previous estimates for
MM14 and CLL6. LD-score regression revealed a
significant-positive genetic correlation between MM and
CLL with an Rg value of 0.44 (P= 4.6 × 10−3).

Identification of pleiotropic risk loci
We identified SNPs previously reported to be associated

with each disease at genome-wide significance (P < 5 ×
10−8), as well as highly correlated variants (r2 > 0.8) at the
45 and 23 known risk loci for CLL and MM, respectively.
To identify pleiotropic risk loci, that is genetic loci that
influence two traits, we determined how many of the CLL
susceptibility loci were associated with MM at region-
wide significance after Bonferroni correction for multiple
testing (i.e. Padj < 0.05/45). We then repeated the process,
examining MM susceptibility SNPs in CLL, applying a
significance level of Padj < 0.05/23. Of the 45 CLL risk loci,
four were associated with MM (Padj < 0.0011) while, of 23
MM risk loci, five were significantly associated in CLL
(Padj < 0.0022) (Table 1, Fig. 2). Correlated SNPs (r2 > 0.8)

Fig. 1 Schematic outlining the processing of data sets used in the
genetic correlation
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at 3q26.2 are associated with both CLL and MM at
genome-wide significance (Fig. 2), bringing the total
number of pleiotropic loci to 10.

Biological inference
Trynka et al. have recently shown that chromatin marks

highlighting active regulatory regions overlap with
phenotype-associated variants in a cell-type-specific
manner25. As H3K4me3 was shown to be the most phe-
notypically cell-type-specific chromatin mark, we exam-
ined cell-type specificity of the 10 pleiotropic risk loci by
analysing H3K4me3 chromatin marks in normal haema-
topoietic cells and CLL patient samples from Blueprint,
and de novo data on KMS11, MM1S, JJN3 and L363 MM
cell lines. Cell types showing the strongest enrichment of
risk SNPs at H3K4me3 marks included naive B cells and
CD38-B cells. Notably, variants at 2q31.1, 6p25.3, 8q24.21,
16q23.1 and 22q13.33 were enriched for H3K4me3 in
naive B cells (Supplementary Figure 3).

Most GWAS signals map to non-coding regions of the
genome29,30 and influence gene expression through
chromatin looping interactions31,32. Application of parti-
tioned heritability analysis, stratifying across 53 genomic
categories demonstrated enrichment of CLL and MM
heritability in functional elements of the genome, in
particular FANTOM5 enhancers (CLL and MM) tran-
scription start sites (CLL) and 5′ untranslated region and
coding regions (MM) (Supplementary Figure 1). Fur-
thermore, we found significant enrichment of SNPs in the
shared loci within regions of active chromatin, as indi-
cated by the presence of H3K27ac and H3K4Me3 marks
in naive B cells, supporting the principle that SNPs in
shared loci influence risk through regulatory effects
(Supplementary Figure 2). To identify target genes we
analysed PCHi-C data on naive B cells from Blueprint24.
We also sought to gain insight into the possible biological
mechanisms for associations by performing an expression
quantitative trait locus (eQTL) analysis using mRNA

Table 1 Risk loci demonstrating association of alleles at respective loci in both chronic lymphocytic leukaemia (CLL) and
multiple myeloma (MM)

Locus Discovery GWAS Sentinel variant Correlated variant Position (hg19) Risk allele Odds

Ratio

P-value

CLL MM CLL MM CLL MM

2q31.1 MM rs4325816 174,808,899 T T 1.11 1.12 2.0 × 10−3 6.4 × 10−7

rs72919402 174,750,200 T - 1.13 - 4.6 × 10−4 -

3q26.2 MM & CLL rs1317082 169,497,585 A A 1.20 1.19 7.1 × 10−8 2.2 × 10−16

rs3821383 169,489,946 A A 1.20 1.18 4.2 × 10−8 4.5 × 10−15

6p25.3 CLL rs872071 411,064 G G 1.37 1.10 2.8 × 10−27 7.5 × 10−7

rs1050976 408,079 T T 1.37 1.10 1.9 × 10−27 3.7 × 10−7

6p22.3 MM rs34229995 15,244,018 G G 1.37 1.36 8.5 × 10−3 5.6 × 10−8

rs13197919 15,282,334 T T 1.35 1.32 1.3 × 10−3 3.42 × 10−7

7q31.33 MM rs58618031 124,583,896 T T 1.15 1.11 3.2 × 10−5 1.7 × 10−7

rs59294613 124,554,267 C - 1.16 - 4.4 × 10−6 -

8q24.21 MM rs1948915 128,222,421 C C 1.17 1.15 7.6 × 10−7 2.5 × 10−12

- - - - - - - -

10q23.31 CLL rs6586163 90,752,018 A A 1.28 1.06 1.1 × 10−16 1.8 × 10−3

rs7082101 90,741,615 - C - 1.06 - 8.2 × 10−4

11q23.2 CLL rs11601504 113,526,853 C C 1.20 1.09 2.3 × 10−5 8.5 × 10−4

- - - - - - - -

16q23.1 MM rs7193541 74,664,743 T T 1.12 1.12 1.0 × 10−4 3.7 × 10−10

CLL - - - - - - - -

22q13.33 rs140522 50,971,266 T T 1.17 1.08 3.7 × 10−7 1.2 × 10−4

- - - - - - - -

- indicates SNP not present in filtered data
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expression data on blood from GTEx. Applying Summary
data-based Mendelian Randomization (SMR) methodol-
ogy, we tested for pleiotropy between GWAS signal and
cis-eQTL for genes to identify a causal relationship.
Broadly, our analysis of the shared loci groups them into
those which act on a B-cell regulation and differentiation
and those which underpin the distinctive biology of can-
cer; specifically, loci relating to genome instability,
angiogenesis and dysregulated apoptosis (Supplementary
Table 6).
Of the shared loci, three were related to B-cell regula-

tion. This included composite evidence at 10q23.31, from
looping interactions in naive B cells and correlation in
GWAS effect size and expression, which provide evidence
for two candidate genes ACTA2, encoding smooth muscle
(α)-2 actin, a protein involved in cell movement and
contraction of muscles33 and FAS, a member of the TNF-
receptor superfamily. FAS, has a central role in regulating
the immune response through apoptosis of B cells34,35. At
2q31.1, looping interactions implicated transcription fac-
tor SP3, which has been shown to influence expression of
germinal centre genes,36,37. Variants at 6p25.3 reside in
the 3′-UTR of IRF4, which has an established role in B-
cell regulation38,39 and MM oncogenesis40,41.
Three of the 10 loci contain genes with roles in main-

tenance of genomic stability. Specifically, evidence from
expression and PCHi-C data implicated RFWD3 at
16q23.1. This gene encodes an E3 ubiquitin-protein ligase,
which has been shown to promote progression to late
stage homologous recombination through ubiquitination
and timely removal of RAD51 and RPA at sites of DNA
damage42 and is necessary for replication fork restart43.
Variants in this locus demonstrated enrichment of

H3K4me3 marks in two samples of naive B cells, which
represents a plausible cell of disease origin. rs58618031
(7q31.33) maps 5′ of POT1, the protection of telomeres 1
gene, which is part of the shelterin complex and functions
to maintain chromosomal stability44,45. Variant rs1317082
at 3q26.2 is located proximal to TERC, a gene which has
been shown to influence telomere length46. Additionally,
we observed looping interactions to a number of genes at
3q26.2 including SEC62, which has been proposed as a
cancer biomarker47–50. Intriguingly, variants at 3q26.2 this
locus have been implicated in colorectal51, thyroid52 and
bladder53 cancer.
Several genes were implicated at 22q13.33 by looping

interactions for SCO2, LMF2, ODF3B, TYMP/ECGF1,
NCAPH2, SYCE3 and ARSA, with TYMP/ECGF1 and
SCO2 demonstrating evidence of correlation in GWAS
and eQTL effect size, albeit not significant after multiple
testing (PSMR= 2.38 × 10−4 and 3.19 × 10−4). Variants
within this locus were enriched in H3K4me3 chromatin
marks in both CD38- B cells and inflammatory macro-
phages. TYMP (alias ECGF1) encodes thymidine phos-
phorylase, which is often overexpressed in tumours and
has been linked to angiogenesis54,55. A detailed study on
this gene has implicated TYMP in the development of
lytic bone lesions in MM, via a mechanism involving
activation of PI3K/Akt signalling and increased DNMT3A
expression resulting in hypermethylation of RUNX2,
osterix, and IRF856. Furthermore, SCO2 (synthesis of
cytochrome c oxidase), also mapping to this locus, has
been implicated in the development of breast57,58, gas-
tric59 and leukaemia60, through glucose metabolism
reprogramming61, a hallmark of cancer62. Tumour sup-
pressor, p53, regulates metabolic pathways, p53-
transactivated TP53-induced glycolysis (TIGAR), and
regulation of apoptosis in part through SCO258,59,61.
Finally, whereas these data were indifferent to decipher

8q24.21, this locus has also been shown to harbour risk
SNPs for other cancers, which localize within distinct LD
blocks and likely reflect tissue-specific effects on cancer
risk through regulation of MYC30.

Discussion
Our analysis provides evidence of a genetic correlation

between MM and CLL. Furthermore, we have identified
shared genetic susceptibility at 10 known risk loci. While
requiring biological validation, integration of data from
PCHi-C, chromatin mark enrichment and eQTL at shared
loci has provided insight into how these loci may confer
susceptibility to both CLL and MM. Applying a working
hypothesis that the loci may act in pleiotropic fashion, we
selected relevant cells representing a common tissue of
disease origin; namely naive B cells.
A significant genetic correlation between MM and CLL,

as well as the discovery of risk loci shared between them,

Fig. 2 Overlap of loci in multiple myeloma and chronic
lymphocytic leukaemia. *correlated variants at 3q26.2 had been
previously published as genome wide significant in each data set prior
to this analysis
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supports epidemiological data demonstrating elevated
familial risks between these B-cell malignancies4. Fur-
thermore, the shared loci we identified could be broadly
grouped into those containing genes related to B-cell
regulation and differentiation and those containing genes
involved in angiogenesis, genome stability and apoptosis,
supporting the tenet that these alleles can influence
aetiology of either disease. With the expansion of GWAS
of the B-cell malignancies, more detailed characterisation
of common underlying risk alleles and affected pathways
can inform the biology of B-cell oncogenesis.

Data availability
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