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Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a
public health threat. Development of efficient containment measures requires an understanding of how these
influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission
are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as
a possible cause of transmission between farms. Here we provide statistical evidence that the direction of
spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed
genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree
for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible
wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

Keywords. avian influenza; molecular epidemiology; mathematical modeling.

Avian influenza is endemic in many wild bird species,
which harbor all known subtypes of influenza A
viruses. The virus can be transmitted from wild birds
to poultry, thereby crossing the species boundary. Al-
though most virus strains cause no or few clinical
symptoms in poultry, highly pathogenic (HPAI) vari-
ants can arise through mutation [1–3]. These highly
virulent strains, the most notorious of which is HPAI
H5N1, can cause large outbreaks with high mortality,
posing a major (economic) threat to poultry farming
around the globe. In addition, the virus can cross over

to human hosts, potentially resulting in severe disease
or even death [4]. Therefore, HPAI is considered a
serious public health threat [5, 6].

There have been several large outbreaks of avian in-
fluenza in Western countries, involving clusters of
large commercial poultry farms. Due to the ease with
which the disease seems to spread between farms, the
high mortality rates among poultry, and the public
health threat posed by an outbreak [7], rigorous
control measures must be implemented. These typical-
ly consist of a complete transport ban of poultry and
depopulation of all farms that either have infected
animals or are at risk of infection, resulting in substan-
tial economic losses.

Poultry farms emit large quantities of particulate
matter [8, 9], which could be driven by wind to trans-
port viable virus from an infected farm to an uninfected
farm [10]. However, opinions differ widely on whether
this actually causes new infections during an outbreak;
the mechanism has never been demonstrated conclu-
sively [10–13]. Humans, trucks, or wild birds could also
act as a vector, carrying the virus between farms [14].
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Knowledge of the actual transmission mechanisms and
their relative importance could lead to more efficient and
more effective control strategies. For example, enforcement of
stricter biosecurity procedures could reduce spread by
humans, and adjustment of ventilation systems could combat
wind-mediated spread. Insight into the mechanism of spread
would also lead to more precise estimates of which farms are
at risk of infection. This knowledge is highly valuable during
an outbreak, for example, when planning the order in which
to cull farms [15].

Here, we use detailed genetic and epidemiological data from
an outbreak of HPAI A(H7N7) in the Netherlands in 2003 to
test the hypothesis that wind aided in transmission of the
pathogen. In this outbreak, 241 poultry farms were infected
(confirmed by virus isolation), 30 million birds were culled,
and there was 1 human fatality [16, 17]. Isolated virus RNA
was sequenced for 231 of the infected farms [7, 18]. These
unique genetic data, in combination with time of infection
and time of culling, allowed us to determine which farms in-
fected other farms. To test the role of wind, we compared the
direction of these individual farm-to-farm transmission events
with the wind direction at the date of infection, accounting for
any bias induced by the geography of the farm locations. We
conclude by giving an estimate for the percentage of infections
that can be attributed to wind-mediated transmission.

METHODS

There were 5360 poultry farms in the Netherlands in 2003;
geographical information is available for all of these farms.
Flocks were culled for 1531 farms, and the date of culling is
known for all farms. For 227 of the 241 infected farms the
date of infection has been estimated, based on mortality data
[19]. The remaining 14 farms are hobby farms, defined as
farms with fewer than 300 animals, for which no mortality
data are available. For these farms, we use the infection date as
estimated by Boender et al [20]. The HA, NA, and PB2 genes
of viral samples from 231 farms have previously been se-
quenced [7, 18]. Sequence data can be found in the GISAID
database under accession numbers EPI_ISL_68268–68352,
EPI_ISL_82373–82472, and EPI_ISL_83984–84031. Available
meteorological data include wind speed and direction (with a
10-degree precision) for every hour of every day of the out-
break, measured at 5 weather stations close to the infected
farms (Figure 1). These data are available from the Royal
Dutch Meteorological Institute at www.knmi.nl.

Estimation of Transmission Events
To determine which farms infected other farms, we used the
genetic and temporal data on the infected farms, following the
method described by Ypma et al [21]. We described the likeli-
hood of a possible transmission tree, given the data, by

arguing that the tree is more likely if the source farms are
more infectious at the putative dates of infection and if the
total number of mutations needed to explain the genetic data
is lower. This is done using a simple substitution model that
differentiates between transitions and transversions [18, 21].
We then sampled from the space of all transmission trees
using a Markov chain Monte Carlo approach and obtained
the probability of a certain transmission event by the propor-
tion of sampled trees that includes this event. We denote
transmissions with a posterior probability of at least 0.9 as ob-
served transmissions; results for different cutoff values are
similar (Supplementary Information, section 4.1).

Correlation of Wind and Transmission Directions
To measure whether observed transmissions were in the same
direction as the wind, we compared the direction of transmis-
sions with the wind direction. We took the vector average
wind direction measured at the station closest to the infecting
farm at the date of infection. To check for a correlation
between the wind direction and direction of transmission, we
calculated the circular correlation coefficient [22]. We then
compared the value of this coefficient with values obtained
under the null hypothesis that wind direction and direction of
transmission are independent and uniformly distributed over
all directions.

A correlation between wind and transmission could arise as
an artifact of the geographical location of poultry farms. For
instance, if the index farm of the outbreak lies west of an area
dense with poultry farms and if there was a prevailing westerly
wind in this region, we could obtain a correlation even in the
absence of any causal relationship. We used simulations to
construct the correct null model for the relation between di-
rection of transmissions and direction of wind when wind
plays no role. We used the coordinates of poultry farms corre-
sponding to the Netherlands in 2003 and infected the farm
corresponding to the index farm in the real outbreak. Every
farm infected during the first 10 days of the simulation was
culled (and thus removed from the simulation) 10 days after
transmission, as were all farms in a 1-km region around the
infected farm 2 days later. Farms infected later than 10 days
into the simulation were culled after 7 days, ring culling again
following 2 days later. The probability of infecting another
farm decreased with distance, as estimated previously [20, 21].
Only simulations that led to a total number of infections
between of 200 and 280 were used for the subsequent analysis.
From each simulated outbreak we randomly sampled as many
transmission links as there were observed transmissions in the
actual data. We used the sampled transmissions from 1000
simulations to calculate correlation with wind direction. In ad-
dition, we compared the simulation results with the actual
data using 2 additional statistics that are relevant for a possible
wind-mediated mechanism of spread. First, we looked at the
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angle between wind and transmission by taking the cumula-
tive distribution function of P(x), the probability that the
angle between transmission and wind direction is x, and per-
formed a one-sided Kolmogorov-Smirnov test to see if this
distribution was significantly larger for the actual dataset.
Next, we compared the average number of hours that wind
coincided with the direction of a transmission, which could be
interpreted as the time window for transmission due to wind.

Quantification of Wind Contribution to Spread
We quantified what proportion of the transmission events
could be attributed to a wind-related mechanism of transmis-
sion, assuming that such a mechanism existed. Here we use
the term “wind-mediated transmission” to denote transmis-
sion events that can be attributed to a wind-related mecha-
nism of transmission if such a mechanism would exist.

An observed transmission was defined to be in the direc-
tion of the wind when the average wind direction was in the
direction of spread, up to 5 degrees, for at least 1 hour on the
date of infection. The proportion of transmissions mediated
by wind could then be estimated by comparing the fraction
of observed transmission events that are in the direction of
wind with the fraction of transmissions expected to be in the
direction of the wind if wind played no role. This expected
fraction can be found from our simulations. The observed

fraction is a combination of transmissions actually due to
wind and some that were in the same direction as wind due
to chance. From this we estimated the percentage of trans-
missions mediated by wind (see Supplementary Information,
section 3.1, for details).

To test the robustness of this simple estimation procedure,
we performed a more detailed analysis that used all available
data but needed additional assumptions. In this approach,
uncertainty in estimated infection dates was accounted for by
using a prior of several days centered on the estimated date.
The probability per day of infecting a farm at a certain dis-
tance can be found by looking at the ratio of the number of
farms at that distance that were infected and that could have
been infected [20]. Here, we took this distance-related proba-
bility to consist of a “wind-related part” W, assuming a
Gaussian plume model for wind-related spread [23], and an
“unknown mechanism part” U. The percentage of transmis-
sions related to wind can then be estimated as the W/
(U +W) (see Supplementary Information, section 3.2, for
details).

RESULTS

For all farms infected during the avian influenza A(H7N7)
outbreak, we identified the most probable infecting farm using

Figure 1. Observed transmission events of avian influenza A(H7N7) between farms in the Netherlands, 2003. Transmissions that coincide with wind
direction (measured at the closest meteorological station) are in blue. Observed transmissions are defined as transmissions estimated at a posterior
probability of at least 0.9. (A ) Transmission events on a map of the region. Dots denote infected poultry farms; triangles denote the 5 closest meteoro-
logical measuring stations. (B ) Density plot of wind direction (measured at station IV) against time, with red regions indicating wind is predominantly in
1 direction. Dots denote estimated time and direction of transmissions. Wind direction and direction of transmissions appear to be correlated. For
example, at the start of the outbreak, around 1 March, wind direction was predominantly southeast (red region); during this time period, most transmis-
sion events were also in this direction (dots).
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infection date, culling date, and viral RNA sequence data of
the HA, NA, and PB2 genes. We identified a single infector
farm with a probability of at least 0.9 for 83 farms; we call
these 83 pairs of infected and infector farms the “observed
transmissions.” Figure 1A shows the location of the farms, the
distance over which the observed transmissions occurred, and
the direction of observed transmissions on a map of the
region. Most transmissions occurred over short distances in a
central high-density farm area. Figure 1B shows the wind di-
rection over the course of the outbreak together with the di-
rection of the observed transmissions.

The circular correlation coefficient between direction of
observed transmissions and wind direction was 0.051, signifi-
cantly higher than expected when directions were uniform
and independent (P = .01) (Supplementary Figure 1). The
circular correlation coefficient was also significantly higher
than expected based on geography of farm locations; we
found the 0.975 quantile for the circular correlation coeffi-
cient under the simulations to be 0.043. We further found
that the angles between the direction of observed transmis-
sions and the vector average wind direction at the date of
infection were significantly smaller than the angles between
the direction of simulated transmissions and wind direction
(1-sided Kolmogorov-Smirnov test, P < .01) (Figure 2). Like-
wise, the average number of hours for which wind was in the
same direction as the observed transmission at the date of

infection was significantly higher for the actual dataset than
for the simulations. We therefore conclude that the correla-
tion between direction of transmission and direction of wind
is higher than can be explained by chance and location of
farms.

The strong positive correlation between wind direction and
direction of influenza transmission suggests that a substantial
proportion of the transmission events are mediated by wind.
To estimate this proportion of transmissions mediated by
wind, we compared the percentage of observed transmissions
in the direction of the wind with the percentage expected by
chance. In our analysis of the actual data, 34% of the posterior
probability was on transmissions in the direction of the wind.
We assumed this 34% to be made up of transmissions that
were and transmission that were not mediated by wind. The
first would all be observed to be in the direction of the wind,
while of the latter, only a percentage would be observed to be
in the direction of the wind by chance. From our simulations
we know that, on average, 24% of transmissions not related to
wind will be in the direction of the wind by chance. Using
these numbers and maximizing a likelihood equation (see
Supplementary Information, section 2), we estimated the per-
centage of transmissions caused by wind to be 18% (95% con-
fidence interval (CI), 6.3, 30). To test for robustness, we also
performed a more detailed analysis, which assumes a Gaussian
plume model for wind spread, puts a priority on the infection

Figure 2. Comparison of observed transmissions with simulations in which transmission was unrelated to wind. (A ) The cumulative percentage of
transmissions having an angle with the vector average wind direction of a certain degree, for observed transmission events (red) and 1000 simulations
(grey). The distribution for the dataset lies significantly outside the range generated by the null hypothesis given by the simulations (1-sided Kolmogo-
rov-Smirnov test, P < .01). (B ) The average number of hours for which wind direction was equal to direction of spread at the date of infection. Because
there are 24 hours in a day and hourly average wind directions are available with 10-degree precision, we expect the mean number of hours when wind
plays no role to be 24/(360/10) = 2/3. The histogram gives the values for the simulations; the red line gives the value for the observed transmission
events. Both graphs show that the correlation between wind direction and direction of spread cannot be explained by chance or farm geography alone.
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dates, and takes uninfected farms into account. From this
model we obtained an estimate of the percentage of transmis-
sions of 20% (95% CI, 9.8, 29), which is consistent with the
first analysis (Figure 3).

DISCUSSION

We have shown that for the outbreak of HPAI A(H7N7) in
the Netherlands in 2003, inter-farm transmissions are more
often in the direction of the wind than can be explained by
chance and coordinates of poultry farms. Based on the pro-
portion of estimated transmissions for which wind direction
was observed to be in the same direction of spread, we esti-
mated the percentage of transmission related to wind to be
18%.

Wind-related spread of avian influenza has direct conse-
quences for containment efforts. Farms emit vast quantities of
particulate matter [8], which could carry viable virus [13].
Several techniques, such as air scrubbers, water or oil sprin-
kling, changes in ventilation rate, and ionization systems, have
been shown to reduce dust concentrations [8, 24] and could be
an efficient way to stop infectious particles from getting in or
out of a farm. Alternative wind-related mechanisms cannot be
excluded on the basis of our analysis. Wild birds or insects
acting as vectors for the disease [25], flying preferentially in
the direction of the wind [26, 27], would explain our observa-
tions as well, but call for different control strategies. Further-
more, culling strategies may take into account the role of
wind. First, care should be taken to ensure contaminated ma-
terial does not get into the environment during culling activi-
ty. Second, wind direction should be taken into account when

estimating the risk of infection for farms; the most efficient
culling order will first target those farms that are at higher risk
of infection and, when infected, will pose higher risks to other
farms [15]. Thus, increased knowledge of which farms are at
risk, provided by current and forecasted wind direction, allows
for a more efficient culling strategy.

There are several sources of error in our estimation of the
transmission tree. The assumed constant infectiousness of
farms over the course of infection, the substitution model, and
the assumption of independence between mutations and time
are simplifications. Furthermore, there is uncertainty in the es-
timation of the infection dates, and there may be errors in the
geographical and genetic data. These limitations will lead to
errors in the inference of transmission events. Counterintui-
tively, these limitations only strengthen our conclusion. If
wind-mediated transmission played only a minor role, there is
a negligible probability that the cumulated small errors in the
data and in the inferential procedures could have produced
the observed strong positive correlation between wind direc-
tion and direction of transmission. The main reason for this is
that the transmission tree was reconstructed without using the
meteorological data; only afterward were transmissions com-
pared to wind directions. It is much more likely that the cu-
mulated errors would reduce any existing strong positive
correlation. Therefore, our conclusion of wind-mediated
spread holds in the presence of small errors, and the value of
18% should serve as a lower bound for the actual percentage
of transmissions related to wind.

The type of analysis presented here may have potential to
identify and quantify transmission mechanisms for other farm
animal diseases. However, the resolution we obtained here,
tracking individual transmissions, could only be achieved
through the high percentage of farms sampled and the high
genetic diversity found. This resolution was necessary; an
analysis looking solely at prevailing wind direction and farm
coordinates would not have shown any significant effects. We
therefore believe that efforts should be made to gather genetic
data for outbreaks of other infectious diseases as well. We do,
however, note that usefulness of such data will depend on the
genetic diversity that accumulates over the course of the out-
break, which might be lower for other pathogens and depend
on the methods used.

Identifying the mechanisms responsible for the transmis-
sion of livestock disease between farms is challenging for the
following reasons: first, because data have to be collected
during the outbreak, when the first priority is control rather
than research, and second, because there are probably several
different mechanisms at play, making their identification trou-
blesome. The key to identifying transmission mechanisms is
the reconstruction of detailed transmission networks, made
possible by the joint analysis of detailed genetic and epidemio-
logical data.

Figure 3. Estimation of the percentage of transmissions mediated by
wind. A comparison of the fraction of observed transmissions in the di-
rection of wind with the fraction expected when wind plays no role
yields an estimate of 18% (dashed line). Using a mechanistic model,
which assumes a Gaussian plume model for wind-related spread, yields
an estimate of 20%. The full posterior distribution is given by the bars.
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data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary
data are the sole responsibility of the authors. Questions or messages
regarding errors should be addressed to the author.
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