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ABSTRACT

We investigated the genetic and statistical properties of the nested association mapping (NAM) design
currently being implemented in maize (26 diverse founders and 5000 distinct immortal genotypes) to
dissect the genetic basis of complex quantitative traits. The NAM design simultaneously exploits the ad-
vantages of both linkage analysis and association mapping. We demonstrated the power of NAM for high-
power cost-effective genome scans through computer simulations based on empirical marker data and
simulated traits with different complexities. With common-parent-specific (CPS) markers genotyped for
the founders and the progenies, the inheritance of chromosome segments nested within two adjacent CPS
markers was inferred through linkage. Genotyping the founders with additional high-density markers
enabled the projection of genetic information, capturing linkage disequilibrium information, from
founders to progenies. With 5000 genotypes, 30–79% of the simulated quantitative trait loci (QTL) were
precisely identified. By integrating genetic design, natural diversity, and genomics technologies, this new
complex trait dissection strategy should greatly facilitate endeavors to link molecular variation with phe-
notypic variation for various complex traits.

LINKAGE analysis and association mapping are two
commonly used approaches to dissect the genetic

architecture of complex traits (Lander and Schork
1994; Risch and Merikangas 1996; Mackay 2001;
Doerge 2002; Darvasi and Shifman 2005). As comple-
mentary approaches, linkage analysis often identifies
broad chromosome regions of interest with relatively
low marker coverage, while association mapping offers
high resolution with either prior information on can-
didate genes or a genome scan with very high marker
coverage (Thornsberry et al. 2001; Hirschhorn and
Daly 2005). An integrated mapping strategy would
combine the advantages of the two approaches to im-
prove mapping resolution without requiring excessively
dense marker maps. The possibility of developing such
an integrated mapping strategy exists for the model
species maize (Zea mays L.), because of the availability
of a highly diverse collection of germplasm and the
feasibility of creating segregating progenies and immor-
tal genotypes through self-fertilization (Sprague and
Dudley 1988; Liu et al. 2003; Flint-Garcia et al. 2005).

The Maize Diversity Group (http://www.panzea.org)
has recently developed the largest set of public mapping
populations to systematically dissect complex traits in
maize. Here, we first introduce nested association map-
ping (NAM) as a genomewide complex trait dissection
strategy that integrates the advantages of linkage anal-
ysis and association mapping in a single, unified
mapping population. We then discuss population and
quantitative genetics aspects of the design. Finally, we
examine the statistical power of NAM to dissect complex
traits with different genetic architectures through com-
puter simulations.

THEORY AND PRACTICE OF NAM IN MAIZE

Nested association mapping: The NAM strategy ad-
dresses complex trait dissection at a fundamental level
through generating a common mapping resource that
enables researchers to efficiently exploit genetic, geno-
mic, and systems biology tools. The proposed proce-
dure in NAM involves the following steps: (1) selecting
diverse founders and developing a large set of related
mapping progenies ½preferably recombinant inbred
lines (RILs) for robust phenotypic trait collection�, (2)
either sequencing completely or densely genotyping the
founders, (3) genotyping a smaller number of tagging
markers on both the founders and the progenies to
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define the inheritance of chromosome segments and to
project the high-density marker information from the
founders to the progenies, (4) phenotyping progenies
for various complex traits, and (5) conducting genome-
wide association analysis relating phenotypic traits with
projected high-density markers of the progenies.

Building on the genetic principles in previous geno-
mic mapping strategies and methods (Meuwissen et al.
2002;MottandFlint2002;Darvasi andShifman2005),
NAM has the advantages of lower sensitivity to genetic
heterogeneity and higher power as well as higher effi-
ciency in using the genome sequence or dense markers
while stillmaintaining high allele richness due to diverse
founders (Table 1). While previous joint linkage and
linkage disequilibrium (LD) studies focused on mining
existing mapping population in pedigrees or heteroge-
neous stocks (Meuwissen et al. 2002; Mott and Flint
2002; Blott et al. 2003), NAM aims to create an inte-
grated mapping population specifically designed for a
full genome scan with high power for quantitative trait
loci (QTL) with effects of different sizes.

Using maize recombinant inbred lines (RILs) and a
reference design as an example (Figure 1), we show that
individual progeny represent a mosaic of chromosome
segments derived from either one of the diverse found-
ers or the commonparent.With common-parent-specific
(CPS) markers (i.e., markers for which B73 has a rare
allele) scored for both founders and RILs, the marker
or sequence information nested between two flanking
CPS markers can be predicted for RILs on the basis of
marker or genome sequence available for the founders

(Figure 2). By choosing diverse founders, linkage dis-
equilibrium within these chromosome segments result-
ing from historical/evolutionary recombination was
mostly preserved in RILs due to the small probability
of recombination within the short genetic distances
between flanking CPS markers. The potentially con-
founding effects of genes outside of a specific segment
being tested were minimized across the whole RIL pop-
ulations via the reshuffling of the parental genomes by
the recent recombinations during RIL development.

Maize as a model for dissecting complex traits: Many
attributes of maize makes it an excellent system for
studying a wide range of biological phenomena. Maize
has more genetic diversity than any othermodel genetic
system; in fact, two maize lines are as different from one
another as humans and chimps are from one another
(Buckler et al. 2006). It is an outbred species with allelic
variation that dates back up to 2 million years, so many
of its alleles have experienced climatic variation since
the Pleistocene Epoch. This diversity can be used to
address issues ranging from crop improvement to the
unraveling of the mechanisms in plant development,
biochemistry, and physiology to the understanding of
the genetic architectures of complex traits. Maize also
has tremendous phenotypic diversity and plasticity with
varieties that grow only 1 m tall and produce numerous
tillers and varieties that tower near 5m and that range in
adaptation from hot desert locations to the high Andes,
to the humid tropics, and to the very short growing sea-
son of the Gaspe Peninsula, Canada. This range of adap-
tation also allows a detailed understanding of how a

TABLE 1

Schematic comparison of the main characteristics of different mapping strategies (following DARVASI and SHIFMAN 2005)

Linkage
analysis

Admixture
mapping

Joint linkage and
LD mapping (and

inbred-by-outbred cross)

Nested
association
mapping

Association
mapping

Allele richness Low Low Intermediate High High
Inference from markers in
identity-by-state to quantitative
trait nucleotides in IBD

Low Low to
intermediate

Intermediate High High

No. of SNPs required for
whole-genome scan

Low Low Intermediate to high Low (only high
for founders)

High

Efficiency in using sequence
information

Low Low Intermediate High Intermediate

Mapping resolution Poor Intermediate Intermediate Good Good
Designed mapping population Yes or no Yes or No Mostly no Yes No
Sensitivity to genetic
heterogeneity

Low Moderate High Low High

Repeated phenotyping Possible Possible Possible Yes Possible
Statistical power Low to

intermediatea

Highb Intermediate High High

a With designed mapping populations such as F2, BC, or RIL, the power of linkage analysis is generally higher in plants than in
humans.

b Power diminishes to zero with equal allele frequencies in the ancestral population (Darvasi and Shifman 2005).

540 J. Yu et al.



plant’s genetic architecture interacts with its environment.
Additionally, since maize’s genetic architecture evolved in
an outbred system, it is an excellent model for the less
tractable outbred vertebrates and tree species.

Although there is a sizeable maize research commu-
nity, there has been little consistent use of common
genetic resources. Furthermore, the vast majority of
maize genetic trait dissection has been focused on elite
maize germplasm from the United States and Europe.

Additionally, all the public immortal mapping popula-
tions have ,400 lines, limiting their mapping power
and coverage of allelic diversity. The maize intermated
B73-by-Mo17 cross (IBM) population has been the
nexus of the community mapping resource (Coe et al.
2002; Lee et al. 2002; Fu et al. 2006), but it captures only a
small fraction of the available maize diversity (Flint-
Garcia et al. 2005). Because of genetic heterogeneity,
QTL mapped in a single two-parent population often

Figure 2.—Diagram of poly-
morphisms within a pair of CPS
markers leading to fine mapping
of NAM. (a) Genotyping of both
founders and RILs with CPS
markers to track the inheritance
of chromosome segments that re-
sulted from recent recombina-
tion during RIL development;
(b) genotyping of founders with
high-density SNPs, projecting se-
quence polymorphism informa-
tion (biallelic) from founders to
RILs, and mapping in high reso-
lution through exploiting both
recent and ancient recombina-
tion. Black/gray squares, alleles of
CPS markers; blue/white squares,
same as or different from B73 al-
leles at random SNPs; color seg-
ments, haplotype information from
each parent; 3, crossing. Sites en-
closed by the vertical bar repre-
sent the functional polymorphism.

Figure 1.—Diagram of ge-
nome reshuffling between 25 di-
verse founders and the common
parent and the resulting 5000 im-
mortal genotypes. Due to dimin-
ishing chances of recombination
over short genetic distance and
a given number of generations,
the genomes of these recombi-
nant inbred lines (RILs) are es-
sentially mosaics of the founder
genomes. 3, crossing; 5, selfing;
SSD, single-seed descent.
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have little relevance to QTL segregating in other
populations, limiting the scope of inference of QTL
studies and the application of marker-based selection in
crops (Holland 2007). A maize association panel has
also been developed (Flint-Garcia et al. 2005), which
has been of use to multiple investigators, but lacks some
of the favorable properties of traditional mapping
populations (Table 1). Critically, the future of biology
will involve systems biology, which requires integration
across multiple scales of biology from biochemistry to
whole-plant physiology to ecosystems. A large set of
maize RILs would allow a wide range of researchers to
integrate their research together in community efforts
and community databases (e.g., PANZEA, MAIZEGDB,
and GRAMENE).

In a large-genome species like maize, where LD
decays within 2000 bp in gene regions, it will require
several million markers to have a full coverage of all
functional polymorphisms. Accordingly, a genomewide
association study will require genome sequencing or
high-density markers from a large set of diverse germ-
plasm, the cost of which can be prohibitive. Moreover,
while maize has low Fst values among subgroups, there is
still substantial phenotypic differentiation by geographic
subpopulations and breeding programs (Flint-Garcia
et al. 2005). This differentiation is probably the product
of a relatively modest number of key adaptive genes.
Structured association mapping on diverse material will
suffer a loss in statistical power in mapping genes whose
effects are underlying the structure of the population.
Our hypothesis is that these adaptive complexes will be
best dissected when diverse inbred lines are crossed to
create multiple segregating populations in which the
adaptive complexes are broken.

Population design of maize NAM: The aims of the
experimental design in maize NAM were to (1) capture
maize genetic diversity, (2) exploit ancestral recombi-
nation, (3) efficiently take advantage of next generation
sequencing technologies through genetic design, (4)
generate mapping materials that can be evaluated for
agronomic traits at field locations of temperate regions,
(5) develop a mapping population that has sufficient
power to detect numerous QTL and resolve them to a
level of individual genes, and (6) provide a community
resource.

To this end, we have recently developed a large-scale
maize mapping population, composed of 5000 RILs
derived from the crosses of a common parent (B73) with
each of 25 diverse founders (Figure 1). The 26 founder
inbreds were B73, B97, CML52, CML69, CML103,
CML228, CML247, CML277, CML322, CML333, Hp301,
Il14H, Ki3, Ki11, Ky21, M37W, M162W, Mo18W, MS71,
NC350, NC358, Oh43, Oh7B, P39, Tx303, and Tzi8
(Maize Molecular and Functional Diversity Project,
http://www.panzea.org). The common parent, B73,
was crossed to the other 25 founders, followed by self-
ing, to generate 25 segregating F2 populations. Out of

each F2 population, 200 RILs were derived through
single-seed descent with selfing to the F6 generation
(Figure 1). In theory, these diverse founders should be
selected to maximally capture the genetic diversity in
maize (Liu et al. 2003; Flint-Garcia et al. 2005). In
practice, we applied two restrictions during founder
selection: the two most important public U.S. inbred
lines (B73 and Oh43) besides Mo17 must be included
and the inbred lines must produce seeds in the U.S.
summer. Although this last restriction prevented us
from sampling genetic diversity from all available germ-
plasm, it reduced overall allelic richness only by 1–2%
but made the creation of the material substantially
easier. Consequently, the selected founders represented
a good balance between theory and practicality.

The choice of a reference design with B73 as a com-
mon parent, though not most efficient in terms of
generating genetic information, was primarily due to
agronomic and physiological considerations. Essen-
tially, crossing the diverse founders to this well-adapted
line makes both the development and the trait evalua-
tion of this large population practical to conduct in
temperate environments (Hallauer et al. 1988). More-
over, the maize inbred line B73 is one of the most
important and widely deployed inbred lines in the
history of maize breeding and has also been the subject
of extensive genetic, molecular, and genomic studies
(Stuber et al. 1992; Morgante et al. 2005). Recently,
B73 was chosen as the reference genotype for the maize
genome sequencing project. It is also a common prac-
tice in plant genetics that diverse materials are crossed
to a limited number of elite lines as the first step to
introgress useful genes from unimproved germplasm to
elite breeding materials. We believe the same principle
can be extended to various other genetic designs (Rebai
and Goffinet 1993, 2000; Verhoeven et al. 2006).
However, caution must be taken because other designs
such as the diallel or round robin are likely to result in a
series of progenies that have a tremendous variation in
flowering time. This masking effect of maturity makes
comparison of virtually all other traits difficult.

COMPUTER SIMULATIONS

SNP data: The SNP haplotype data from the maize
founders were used to initiate the computer simula-
tions. The SNP data included 653 random (i.e., not from
candidate genes) SNPs scored on the founders and
another 678 CPS SNPs simulated to be B73 specific. For
the random SNPs, a diverse set of 14 maize inbreds and
16 teosinte (Z. mays ssp. parviglumis) inbreds was used
for SNP discovery (Wright et al. 2005). These SNPs
were chosen fromrandomly selected genes of the�10,000
maize ESTs in the MMP–DuPont set (Gardiner et al.
2004). The development and scoring of SNP assays were
conducted by Genaissance Pharmaceuticals using the
Sequenom MassARRAY System ( Jurinke et al. 2002).

542 J. Yu et al.



Replicated assays estimated the genotyping error rate to
be �0.3%. The map locations of these SNPs were based
on the corresponding genetic map positions of the
unigenes on the integrated genetic and physical map
(iMap) (Maize Mapping Project, http://www.maizemap.
org), scaled back to the expected map length of an F2
population. For the simulation study, the genetic map
positions were randomly assigned to the CPS SNPs
across the genome.

Simulation schemes: Two general scenarios were
investigated. In the first scenario, denoted as complete
marker information, we assumed all SNP markers (i.e.,
both random SNP and CPS SNP sets) were genotyped
for all 5000 RILs. In the second scenario, denoted as
CPS marker only, we assumed that all the SNPs were
genotyped for the 26 founders but only CPS markers
were scored in the RILs. Therefore, the genotypes of
RILs at random SNPs were not known. For a single RIL
population, the genotypes at random SNPs were pre-
dicted for each individual RIL on the basis of the flank-
ing CPS markers and the random SNP genotype of the
parents. Assuming no double recombination, if two
adjacent CPSmarkers were inherited from the same par-
ent, the random SNPs between these two CPS markers
were assigned to the RIL according to that particular
parent. If two adjacent CPSmarkers were inherited from
different parents, a recombination event was simulated
within the region on the basis of its genetic distance, and
allelic assignment was performed accordingly. Prelimi-
nary simulation experiments showed that the inaccur-
acy introduced by this projection process decreased the
mapping power only slightly when the genome coverage
of CPS markers was .2.5 cM.

A subset (q ¼ 20 or 50) of 653 random SNP markers
was assigned asQTL. The additive genetic effect of these
QTL followed a geometric series: the effect of the lth
QTL was a function of al, where a¼ 0.90 for q¼ 20 QTL,
and a ¼ 0.96 for q ¼ 50 QTL (Lande and Thompson
1990). The genotypic value of each RIL was defined as
the sum of genotypic values across all loci (i.e.,

P

al).
On the basis of previous empirical studies of numerous
quantitative traits in maize (Hallauer and Miranda

Filho 1988; Flint-Garcia et al. 2005), the heritability
on an entry mean basis (h2) was set to either 0.4 or 0.7.
The phenotypic value of a RIL was obtained by adding a
residual error (e), accounting for 60% (i.e., h2 ¼ 0.4) or
30% (i.e., h2¼ 0.7) of the total variation, to the genotypic
value of that RIL (i.e.,

P

al 1 e). In addition to the sam-
ple sizes of 5000 RILs, we also conducted the simulation
on the basis of 625, 1250, or 2500 RILs, corresponding
to 25, 50, or 100 RILs from each of the 25 crosses.
Another corresponding sampling scheme was to sample
fewer crosses but each with a constant 200 RILs. To
compare these two sampling schemes under an approx-
imately equal total sample size, we chose 3, 6, or 12
crosses, which resulted in 600, 1200, or 2400 RILs,
respectively.

A series of experiments were performed to address
different scenarios related to the NAM genetic struc-
ture. First, we compared two general situations, com-
plete marker information and CPS marker only. For
each experiment (i.e., 1 of 32 simulation schemes ¼ 2
marker availability regimes 3 2 QTL numbers 3 2 her-
itability levels3 4 sample sizes), 50 runs were conducted
with different locations of QTL and different sets of
RILs. Second, we confirmed our choice of number of
CPS markers based on preliminary experiments by per-
forming extra experiments with 339 CPSmarkers under
the schemes of CPS marker only. Third, we performed
experiments for a 678-CPS-markers-only scheme to assess
the effect of significance threshold in model selection
(a¼ 10�5, 10�7, and 10�9). Four additional experiments,
each with 50 runs, were carried out to examine the
consequences of creating the 5000 RILs derived from
crossing 8, rather than 25, diverse maize founders, with
B73 (i.e., 5000 RILs ¼ 8 populations 3 625 RILs/pop-
ulation). These 8 founders were chosen randomly from
the 25 maize founders for each run. We assumed CPS
marker information only for 5000 RILs for these four
experiments (i.e., 2 QTLnumbers3 2 heritability levels).
Data from each run were analyzed individually and
results of the 50 runs were then summarized for each
experiment.
Statistical analysis: The stepwise model selection and

effect estimation were based on the equation

y ¼ b0 1
X

k

i¼1

xibi 1 e; ð1Þ

where y is the vector of phenotypic values, b0 is the
intercept, bi is the effect of the ith detected locus in the
final model with a P-value smaller than the threshold
value, k is the number of significant loci in the final
model, xi is the incidence vector that relates each bi to y,
and e is the vector of residual variance. The inclusion
and retention of a SNP in the model were based on
whether it significantly improved model fit by the
likelihood-ratio test,

LR ¼ �2 ln
lðy j b90; b9j 6¼iÞ

lðy j b90; b9j 6¼i ; b9jÞ

� �

; ð2Þ

where b9j is the locus under testing and b9j 6¼i are other loci
in the model. Given the structure within these NAM
populations, we also tested an alternative model that
accounts for such structure by including themean value
of each population in the model,

y ¼ b0 1af uf 1

X

k

i¼1

xibi 1 e; ð3Þ

where uf is the effect of the cross of the founder f with
the common parent; af is the incidence matrix relating
each uf to y. The corresponding likelihood-ratio test is
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LR ¼ �2 ln
lðy j b0;uf ; bj 6¼iÞ

lðy j b0;uf ; bj 6¼i ; bjÞ

� �

: ð4Þ

The inclusion or exclusion of a locus in themodel was
based on these likelihood-ratio tests, which follow a x2-
distribution with 1 d.f. (Lynch and Walsh 1998).
Thresholds for a SNP to both enter and remain in the
model were set to a ¼ 10�7 to minimize false positives
that can occur when testing many loci (Lander and
Kruglyak 1995). To examine the effect of thresholds
on model selection, experiments were also performed
with alternative thresholds of a ¼ 10�5 and 10�9 for the
CPS marker-only situation.

The model selection process started by including the
single most significant locus in the model and then
rescanning the genome to detect the next most signif-
icant locus among the remaining loci. Each time a new
locus was added to the model, all loci in the new model
were retested and any nonsignificant loci were then
excluded from the model before the next round of
selection. The model selection terminated when no
more loci were significant, all loci already in the model
were significant, or the locus entering the model was
excluded in the immediate previous run. Because of the
stringent significance threshold value and the small
number of parameters relative to the sample size, other
model selection criteria were not studied.

We assumed that themarker or sequence information
for the 26 founders was known and that the true QTL
were a subset of the random SNPs tested. Therefore,
model selection was performed on theQTL and the rest
of the SNP markers simultaneously. We chose a strin-
gent criterion for the definition of true positives. A true
positive was counted only when a QTL itself was iden-
tified as significant in the final model; all other cases
were counted as false positives even when a significant
marker was immediately adjacent to a QTL. The power
to detect a QTL was calculated as the number of runs in
which a particular QTL was detected out of the 50 runs.
The average power was calculated for each run as the
proportion of QTL correctly identified out of the total
number of QTL simulated and then averaged over 50
runs for each simulation scheme. The false-discovery
rate (FDR) was calculated as the number of false posi-
tives divided by the total number of significant loci
detected in the final model for each run and averaged
over 50 runs for each simulation scheme.

The R2 value was calculated as the proportion of the
total sum of squares explained by the final model and
averaged for each simulation scheme. To examine the
relationship between the size of the QTL effect and
power to detect QTL, the average power was also cal-
culated for the first and last quartile QTL (i.e., the
largest 5 QTL and the smallest 5 QTL when q ¼ 20 and
the largest 12 QTL and the smallest 12 QTL when q ¼
50). The trend lines were plotted for power vs. QTL
effect as percentage of phenotypic variance explained.

Linkage analysis without projection: Additional ex-
periments were conducted to compare the NAM and
the traditional approach to analyze the data without
projection of founder SNP information between CPS
markers (Xu 1998). In this linkage analysis of multiple
line crosses, a unique allele was specified for each
founder at the locus under investigation. A true positive
was counted when any loci located within the intervals
that contain a QTL were retained in the final model.
This was a very relaxed definition of true positives
compared with NAM, for which a more strict definition
of true positives was used. Four experiments (2 QTL
numbers3 2 heritability levels), each with 20 runs, were
studied with 5000 RILs for NAM analysis and traditional
linkage analysis.

RESULTS

NAM founders: The selection of the 26 diverse
founders was primarily based on genotype data of 94
microsatellite markers to maximally capture the genetic
diversity of maize from a worldwide collection (Liu et al.
2003; Flint-Garcia et al. 2005). The random SNP set
was drawn from genotype data on the founders with
knownmap positions. The CPS SNP set was simulated to
be randomly located across the genome. The 678 CPS
SNPs provided average marker coverage of a SNP each
2.5 cM of the maize genome. Among the 25 popula-
tions, the proportions of the random SNPs segregating
in 21–25, 16–20, 11–15, 6–10, and 1–5 populations were
10, 11, 18, 26, and 35% on average, respectively.
Consistent with previous studies that showed the high
diversity of the founders (Liu et al. 2003; Flint-Garcia
et al. 2005), genomewide analysis of these 653 random
SNPs among 26 founders indicated a low level of LD
(average pairwise r 2 ¼ 0.04 for all markers on a same
chromosome).

Model comparison: We chose the model selection
approach with a maximum-likelihood framework for
mapping multiple QTL because marker density is high
and issues ofmissing values, residual heterozygosity, and
model dimensionality could be conveniently handled in
empirical data analyses (Broman and Speed 2002;
Sillanpaa and Corander 2002; Yi et al. 2005). Given
the genetic structure and experimental design of the
NAMpopulation, we tested twomodels, one accounting
for the family structure and one reducedmodel without
accounting for such structure. Because many (20 or 50)
QTL were simulated, it was expected that the mean
value of a specific cross effect may be a result of the
aggregation of effects of minor QTL. Including the
family structure of 5000 RILs in the model led to a
slightly reduced statistical power as well as a smaller R 2

explained by the final selected significant markers. The
loss of power resulted from the fact that trait differences
between the founders and their derived populations were
due to multiple QTL differentiating these founders.
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Presumably, accounting for the natural groupings of
RILs in the model absorbed part of the effect of some
QTL that collectively differentiate the founders, de-
creasing the chance to detect these segregating loci.
Moreover, ignoring the structure did not increase the
risk of false positives due to the diversity of the founders
and genome reshuffling during the RIL development.
Accordingly, further analyses were conducted on the
reduced model without the structure. However, we sug-
gest that all approaches should ultimately be tested
with empirical data given that the detection of epistasis
(which was ignored in this study) may require proper
modeling of the genetic background effects.

Complete marker information: In this first simula-
tion scheme, we assumed all SNP markers (i.e., both
random SNP and CPS SNP sets) were genotyped for all
5000 RILs. This would be the ideal situation in terms of
power but may be prohibitively expensive in terms of
cost. It approximates the maximum power of this pop-
ulation when millions of SNPs can be scored across this
large panel. The genetic architecture of a complex trait
was modeled with different trait heritabilities (h2 ¼ 0.4
or 0.7), different numbers of causal polymorphisms (q¼
20 or 50 QTL), and different additive genetic effects
(Lande and Thompson 1990; Mackay 2001). With a
stringent significance level (a ¼ 10�7) (Lander and
Kruglyak 1995) to control for the genomewide error
rate, the average R2 explained by the final multiple-QTL
model using complete marker information for 5000
RILs was 0.33 for a trait with a heritability of 0.4 (h2 ¼
0.4) and 0.65 with h2 ¼ 0.7. Note that the heritability
imposes an approximate upper limit to the R2 of a QTL
model; thus a QTL model with R2 of 0.65 for a trait with
h2 ¼ 0.7 has explained �93% of the genetic variation.
The average power to detect QTL (i.e., identify the exact
SNP simulated to be the causal polymorphism) was 0.47
with h2 ¼ 0.4 and 0.73 with h2 ¼ 0.7 (Table 2). The
corresponding FDR (Benjamini and Yekutieli 2005)
was 0.16 with h2 ¼ 0.4 and 0.10 with h2 ¼ 0.7, indicating
that 84 or 90% of loci declared significant are located
exactly at the position where a QTL was simulated.

With varying sizes of genetic effects simultaneously
underlying a complex trait, we were able to examine the
relationship between QTL effect and detection power.
As expected, the average power to detect the first-
quartile QTL, which explained a combined 64% of
the total genetic variance, was much higher (0.76–0.96)
than that of the last-quartile QTL (0.02–0.63), which
explained only a combined 3% of the total genetic
variance (Table 2). With q ¼ 20, the power was �0.80 to
detect a QTL explaining$0.8% of the total phenotypic
variance when h2 ¼ 0.7, while the same power was
achieved for a QTL explaining 1.6% of the phenotypic
variance when h2 ¼ 0.4 (Figure 3).
CPS markers only: In the second scenario, we as-

sumed that all SNPs were genotyped for the 26 founders
but only CPS markers were scored for the RILs. There-
fore, the genotypes of RILs at random SNP loci were not
known. In each single RIL population, genotypes at the
random SNPs were predicted for each individual RIL on
the basis of the flanking CPS markers and the random
SNP genotype of the parents. Through this projection,
we achieved genomewide high-resolution mapping in a
cost-effective way. The average R2 explained by the final
multiple-QTLmodel was 0.30 with h2¼ 0.4 and 0.59 with
h2 ¼ 0.7. The average power to detect QTL was 0.44 with
h2 ¼ 0.4 and 0.66 with h2 ¼ 0.7 (Table 2). The corre-
sponding FDRs were 0.20 with h2¼ 0.4 and 0.16 with h2¼
0.7, indicating that 80–84% of the declared significant
loci were located exactly at the position where a QTL
was simulated.
We further examined the power of NAM with a

smaller number of founders but a greater number of
RILs per cross. With the same total number of 5000
maize RILs, choosing a smaller set of eight founders
with 625 RILs per cross is less optimal than the current
scheme in terms of both power and FDR (supplemental
Figure 1 at http://www.genetics.org/supplemental/).
Complete marker vs. CPS markers only: By carrying

out simulations under two different genotyping scenar-
ios, we directly compared the potential power and the
power retained by scoring RILs with CPS markers only.

TABLE 2

The average power of NAM under different genotyping and trait complexity schemes with 5000 RILs

Complete marker information for RILs CPS markers only for RILs

h2 ¼ 0.4 h2 ¼ 0.7 h2 ¼ 0.4 h2 ¼ 0.7

q ¼ 20 q ¼ 50 q ¼ 20 q ¼ 50 q ¼ 20 (%) q ¼ 50 (%) q ¼ 20 (%) q ¼ 50 (%)

Average power 0.60 0.33 0.85 0.60 0.57 (95) 0.30 (91) 0.79 (93) 0.54 (90)
FDR 0.14 0.17 0.09 0.11 0.17 (125) 0.23 (135) 0.15 (167) 0.17 (155)
R2 0.35 0.31 0.66 0.64 0.31 (89) 0.29 (94) 0.60 (91) 0.58 (91)
First-quartile QTL 0.94 0.76 0.96 0.92 0.90 (96) 0.70 (92) 0.92 (96) 0.89 (97)
Fourth-quartile QTL 0.15 0.02 0.63 0.16 0.09 (60) 0.02 (100) 0.50 (79) 0.12 (75)

Heritability (h2) of the trait was either 0.4 or 0.7, the number of QTL (q) controlling the trait was either 20 or 50, and the effects
of QTL followed a geometric series. The values in parentheses correspond to the percentage of parameter values observed using
only CPS markers relative to complete marker information.
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For the CPS marker-only scheme, the genetic structure
of the NAM population was exploited to greatly reduce
the genotyping burden while maintaining sufficient
power. With 5000 RILs, the average power achieved by
scoring CPSmarkers only for RILs was 94%of that of the
complete marker scheme when q ¼ 20 and 90% when
q ¼ 50 (Table 2).

Phenotyping proportions: We further examined the
power retained if only a portion of the NAM population
was evaluated for the trait of interest. When complete
markers were scored for 2500 RILs, the average power to

detectQTLwas 63–83%of that for 5000RILs (Figure 4).
The increase in sample size from 2500 to 5000 RILs had
a more prominent effect on the last-quartile QTL than
the first quartile with q ¼ 20. The gain in accuracy by
increasing sample size, as observed as smaller FDR and
increased power to detect the last-quartile QTL, was
greatest with h2¼ 0.7 and q¼ 20. In general, the patterns
of the changes for both the power and the FDR when
only CPSmarkers were scored (Figure 5) were similar to
that when complete markers were available for 5000
RILs (Figure 4).

Figure 3.—Statistical power of NAM
to detect QTL with different genetic ef-
fects with 5000 phenotyped RILs. Com-
plete information available for both
CPS markers and random markers: (a)
q ¼ 20 QTL and (b) q ¼ 50 QTL. Only
CPS markers available: (c) q ¼ 20 QTL
and (d) q ¼ 50 QTL.

Figure 4.—Average power and FDR
of NAM with different numbers of phe-
notyped RILs when complete markers
are genotyped for RILs. (a) q ¼ 20
QTL and h2 ¼ 0.4; (b) q ¼ 50 QTL and
h2 ¼ 0.4; (c) q ¼ 20 QTL and h2 ¼ 0.7;
(d) q ¼ 50 QTL and h2 ¼ 0.7.
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With sample sizes of 625, 1250, 2500, and 5000, the
relative power achieved by scoring RILs for CPSmarkers
only, compared to both CPS and random markers, was
77, 83, 88, and 91%, respectively. The corresponding
ratios of FDR (i.e., CPSmarker only vs. completemarker
information) were 1.25, 1.32, 1.31, and 1.46. Sampling
across all populations resulted in higher power than sam-
pling fewer populations each with a constant number of
individuals (supplemental Figure 2 at http://www.genetics.
org/supplemental/), whichagreedwith aprevious linkage-
mapping study (Xu 1998).

CPS marker density and significance threshold:
Besides experiments conducted on the basis of 678
CPS markers and a significant threshold of a ¼ 10�7,
additional experiments were performed to examine the
effects of CPS marker density and significance thresh-
old. With the same significance threshold of a ¼ 10�7, a
less dense CPS marker coverage leads to a lower power
and a higher FDR (supplemental Figure 3 at http://
www.genetics.org/supplemental/). This reduction in
power and an increase in FDR were consistent with
different sample sizes. Presumably, a more stringent
significance threshold in model selection affects the
discovery of true positives as well as false positives. These
changes in turn affect the statistical power and FDR.
With 678 CPS markers, the threshold of a ¼ 10�7 gave a
better balance for both power and FDR than either a
more liberal threshold of a ¼ 10�5 or a more conserva-
tive threshold of a ¼ 10�9 (supplemental Figure 4 at
http://www.genetics.org/supplemental/). Again, the ef-
fects of significance level on power and FDR were gen-
erally consistent across different sample sizes.

Mapping without projection: We have also examined
the power of a traditional mapping strategy, in which no

founder SNP information between two adjacent CPS
markers was projected. For all cases examined, even with
a more strict definition in true positives, the NAM geno-
typing and analysis strategy resulted in much higher
power and comparable FDR than the traditional linkage
analysis without projection of founder information
(Figure 6).

DISCUSSION

Complex trait dissection in many species has largely
relied on two main approaches, linkage analysis and
association mapping (Andersson and Georges 2004;
Flint et al. 2005; Hirschhorn and Daly 2005). While
methods for linkage analysis using designed mapping
populations have long been employed (Doerge 2002),
methods for association mapping with population-based
samples were more recently developed to overcome
the hidden population structure or cryptic relatedness
within collected samples (Falush et al. 2003; Yu et al.
2006). Statistical methods for joint linkage and linkage-
disequilibrium mapping strategy have been studied for
natural populations (Wu and Zeng 2001;Wu et al. 2002)
and crossing an inbred to a heterogeneous stock has
also been examined (Mott and Flint 2002). For a gen-
eral complex pedigree, fine mapping via combining
linkage and linkage-disequilibrium information at pre-
viously mapped QTL regions has identified candidate
gene polymorphisms (Meuwissen et al. 2002; Blott
et al. 2003). Previous studies of genetic designs with
multiple line crosses have shown an improved power
andmapping resolution over a single population (Rebai
and Goffinet 1993; Xu 1998; Rebai and Goffinet

2000; Yi and Xu 2002; Jansen et al. 2003; Li et al. 2005;

Figure 5.—Average power and FDR
of NAM with different numbers of phe-
notyped RILs when only CPS markers
are genotyped for RILs. (a) q ¼ 20
QTL and h2 ¼ 0.4; (b) q ¼ 50 QTL and
h2 ¼ 0.4; (c) q ¼ 20 QTL and h2 ¼ 0.7;
(d) q ¼ 50 QTL and h2 ¼ 0.7.
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Verhoeven et al. 2006). These studies, however, ex-
ploited mainly the linkage information of multiple line
crosses. Genetic mapping using sequence information
of a single chromosome from four mouse inbred strains
has been studied recently (Shifman and Darvasi
2005). Various studies have been conducted on using
flanking markers to infer the identity-by-descent (IBD)
information of QTL (Lander and Green 1987; Jiang
and Zeng 1997; Meuwissen and Goddard 2001). In
NAM, the nucleotide polymorphisms within tagging
SNPs can be tested more directly because high-density
SNPs on founders can be obtained and this information
can be projected onto the progeny through flanking
CPS SNPs. Rather than inferringmultiple alleles at each
testing locus as in previous methods, NAM reduced
the testing to exact biallelic contrasts across the whole
population. Nevertheless, these various methods of IBD
estimation are useful in cases where the founder in-
formation is not available or complicated pedigree or
population design makes the projection of information
unreliable.

In NAM, the advantages of designed mapping pop-
ulations from linkage analysis and of high resolution
from association mapping were integrated through the
development of a large number of RILs from diverse
founders. While the CPS markers allowed the predic-
tion of transmission of chromosome segments in RILs,
the short range of LD within these segments across the
diverse founders enabled improved mapping resolu-
tion. The genetic background effect of these parental
founders on mapping individual QTL, which can be a
hurdle for association mapping, is systematically mini-
mized by reshuffling the genomes of the two parents of
each cross during RIL development as well as by the
combined analysis of all RILs across all 25 crosses. In
general, the strategy of projecting sequence informa-

tion, nested within informative markers, from the most
connected individuals to the remaining individuals is
applicable to a wide range of species, including humans,
mice, Arabidopsis, and rice. A recent study has verified
the strategy of genotype inference for related individ-
uals within human pedigrees (Burdick et al. 2006).
However, a balanced design with well-chosen diverse
founders in NAM, if possible for a particular species,
would provide higher power and finer resolution than
exploiting an existing pedigree.

As in general association mapping, the mapping reso-
lution offered by NAM largely depends on the linkage
disequilibrium among the founder individuals. Empir-
ical studies with maize candidate genes sequenced
across diverse lines have shown a rapid decay of LD
over 2000 bp (Wilson et al. 2004). Recent genomewide
analysis in diverse accessions of Arabidopsis (Nord-

borg et al. 2005) and breeds of dog (Canis familiaris)
(Lindblad-Toh et al. 2005) agreed with this pattern: LD
decays rapidly across genetically diverse germplasm.
With the NAM strategy, this advantage in resolution is
fully utilized without the coupled drawback—the need
for good candidate genes or a large number of
markers—by projecting the genomic information from
the founders to the RILs. An explicit study in mapping
resolution should be carried out once high-density
markers are available for founders. To address this issue
on the basis of available information, we defined the
true positives strictly as identifying the exact functional
SNPs rather than surrounding markers in the current
study. Accordingly, our result on power analysis is a
combination of the traditional power (i.e., detecting the
signal) with resolution (i.e., precision of the signal).
Nevertheless, given the diversity of thesemaize founders
and the rapid LD decay within 2000 bp, mapping reso-
lution for NAM is expected to be high.

Figure 6.—Comparison of average power and
FDR for NAM analysis and traditional linkage
analysis of multiple line crosses. Significance
threshold was set at a ¼ 10�7. (a) q ¼ 20 QTL
and h2 ¼ 0.4; (b) q ¼ 50 QTL and h2 ¼ 0.4; (c)
q ¼ 20 QTL and h2 ¼ 0.7; (d) q ¼ 50 QTL and
h2 ¼ 0.7. For NAM analysis, SNP information be-
tween CPS markers was projected from founders
to 5000 RILs and a true positive was counted only
if the QTL locus was retained in the final model;
for linkage analysis, no projection was done and a
unique allele was assumed for each founder and a
true positive was counted as long as the locus re-
tained in the final model was located within the
region containing a QTL.
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As in previous studies, a higher heritability always gave
higher power to detect QTL, particularly for those QTL
with moderate to small effect. Even though heritability
varies for different physiological, biochemical, and agro-
nomic traits (Hallauer and Miranda Filho 1988;
Flint-Garcia et al. 2005), improved experimental de-
sign and manageable repetition can often be imple-
mented to increase heritability (Lynch and Walsh

1998; Holland et al. 2003). For a given trait, our results
underscore the importance of accurate phenotyping
procedures in complex trait dissection (Flint-Garcia
et al. 2005; Yu et al. 2005). Although improving the
heritability by repeated measurement of the immortal
genotypes is not a simple issue given the varying levels of
residual variance and genotype-by-environment inter-
action (Bernardo 2002;Holland et al. 2003), a 3.5-fold
increase in the number of testing environments will
increase the heritability from 0.4 to 0.7, assuming a
constant genotype-by-environment interaction.

The features of the genetic structure of RILs have
been recently studied for two-, four-, and eight-way
crosses following either selfing or sib mating (Broman
2005). Interestingly, the 95th percentile of the length of
the smallest chromosome segments was 2.2 cM for RILs
derived from a two-way cross with selfing (Broman
2005). Given the similar genetic map sizes between
maize and mouse, Broman’s findings would partly ex-
plain the feasibility of predicting marker information
on the basis of CPS markers and parental genomic
information. We speculate that the NAM strategy may
also be applicable to the eight-way RILs in the mouse.
However, there are several interesting contrasts between
the NAM population and the mouse eight-way cross. In
maize, which has very low LD and tremendous genetic
diversity, the focus of RIL generation was to capture a
wide array of alleles by using many founders, rapid
production of RILs, and minimized physiological vari-
ation by crossing to a reference line. In contrast, the
mouse has low diversity (Ferris et al. 1982; Beck et al.
2000) and high LD but the eight-way cross produces
more recombinations per line, which helps compensate
for the high LD, and the mixing ensures that a fuller
range of epistatic interactions are produced (Churchill
et al. 2004). The 5000 maize RIL population captures
�200,000 independent recombinationbreakpoints, com-
pared to 135,000 breakpoints in the 1000 mouse RILs
from an eight-way cross (Churchill et al. 2004).

Given known genome sequences of the founders,
the number of polymorphic loci to be tested can be
on the order of millions (Lander and Kruglyak 1995).
In the current simulation, we used 653 SNP loci that are
available on these founders with their identified map
positions and additionally simulated a set of 678 CPS
SNPs. We acknowledge that it would be more desirable
if a much larger set of empirical SNPs with known map
positions were used. The same principle underlying
NAM, however, should also apply given the features of

the genetic structure of RILs (Broman 2005). The fre-
quencies of the causative SNPs affect the power of
detection (Pritchard and Cox 2002; W. Y. Wang et al.
2005). Because we have focused on the average power of
quantitative traits controlled by many QTL, this issue
was not explicitly studied. Nevertheless, we expect these
random SNPs to cover the whole spectrum of frequency
distribution and to be relatively free of ascertainment
bias since the sampling of alleles for SNP discovery
included both domesticated maize and its wild relatives
(Wright et al. 2005).
In the ongoing Maize Molecular and Functional

Diversity Project (http://www.panzea.org), we have se-
lected 1536 B73-rare SNP loci (resulting in an average
intermarker interval of �1.1 cM) to genotype both the
founders and the 5000 RILs. This would yield at least the
same information content as the CPSmarkers simulated
in this study, as we set the selection criterion for these
B73-rare SNPs to be segregating in .17 populations. A
funded sequencing project is now being carried out to
discover and genotype over 1 million SNPs on the 26
diverse founders. In this study, we adopted a stringent a-
level of 10�7 (Lander and Kruglyak 1995) to address
the issue of multiple testing and balance the power of
QTL detection and FDR (Yu et al. 2005). We also dem-
onstrated the effect on power and FDR with additional
thresholds of 10�5 and 10�9. In practice, procedures of
FDR control based on empirical P-values for a specific
experiment have been developed (Benjamini and
Hochberg 1995; Benjamini and Yekutieli 2005) and
compared (Qian and Huang 2005). The ultimate
power of NAMmay decrease due to the bias introduced
by the model selection process with a larger numbers
of markers (Bogdan and Doerge 2005). While the
forward selection with backward elimination procedure
was investigated in the current study, future investiga-
tion of other model selection methods (Broman and
Speed 2002) should be carried out. This problem, how-
ever, can be alleviated with Bayesian methods in which
many possiblemodels are summarized with posterior dis-
tributions rather than selecting a single ‘‘final’’ model
(Xu 2003; Sillanpaa and Bhattacharjee 2005; H.
Wang et al. 2005; Yi et al. 2005; Zhang et al. 2005).
In this study, we have focused on detecting QTL with

additive effects. Nonadditive effects, undoubtedly, con-
tribute to variation in complex traits but have been very
elusive (Carlborg and Haley 2004). Most empirical
studies have demonstrated the relative importance of
additive effects (Hallauer and Miranda Filho 1988;
Yu and Bernardo 2003; Laurie et al. 2004), and the-
oretical studies with complex gene networks have always
identified a significant portion of variation attributable
to additive effects (Cooper et al. 2005). Nevertheless, we
are currently investigating, through computer simula-
tions, the potential of this large-scale RIL population for
identifying epistatic effects and will conduct further
analysis with empirical data. As for detecting QTL with
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small effects, the total genetic variance explained by the
last-quartile QTL combined was only 3%, which made
them very difficult to detect by default.

In light of recent advances in high-throughput geno-
typing technology, we examined the potential of ge-
nomewide finemapping of QTLwith a large population
size. While the ultimate power of NAM awaits the col-
lection, analysis, and verification of the empirical data,
we demonstrated in this study the general strategy of
NAM and the power it affords through computer sim-
ulations. NAM would have the cost-effective benefit of
allowing us to conduct genomewide fine mapping by
sequencing only the 26 founders of NAM and genotyp-
ing the 5000 RILs with finite marker sets with 192-fold
less cost compared to sequencing all 5000 RILs or some
other association-mapping population with 5000 indi-
viduals. The same strategy canbe easily extended toother
species with partial or complete genome sequence, such
as Arabidoposis, rice, sorghum, soybean, or mice, if com-
munity efforts are joined to create a similar mapping
population (Churchill et al. 2004). Given the rapid
advancement in sequencing and genotyping technology
(Shendure et al. 2004, 2005) as well as statistical meth-
odology (Sillanpaa and Corander 2002), the NAM
strategy and the large complex trait dissection platforms
should greatly facilitate gene identification for various
complex traits.
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