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Abstract: Twin studies suggest a considerable genetic contribution to the variability in 25-hydroxyvitamin
D (25(OH)D) concentrations, reporting heritability estimates up to 80% in some studies. While
genome-wide association studies (GWAS) suggest notably lower rates (13–16%), they have identified
many independent variants that associate with serum 25(OH)D concentrations. These discoveries
have provided some novel insight into the metabolic pathway, and in this review we outline findings
from GWAS studies to date with a particular focus on 35 variants which have provided replicating
evidence for an association with 25(OH)D across independent large-scale analyses. Some of the
25(OH)D associating variants are linked directly to the vitamin D metabolic pathway, while others
may reflect differences in storage capacity, lipid metabolism, and pathways reflecting skin properties.
By constructing a genetic score including these 25(OH)D associated variants we show that genetic
differences in 25(OH)D concentrations persist across the seasons, and the odds of having low concen-
trations (<50 nmol/L) are about halved for individuals in the highest 20% of vitamin D genetic score
compared to the lowest quintile, an impact which may have notable influences on retaining adequate
levels. We also discuss recent studies on personalized approaches to vitamin D supplementation
and show how Mendelian randomization studies can help inform public health strategies to reduce
adverse health impacts of vitamin D deficiency.

Keywords: 25-hydroxyvitamin D; vitamin D; genetic risk; heritability; personalized supplementation;
genome-wide association study; Mendelian randomization

1. Introduction

Interest in the genetic architecture of 25-hydroxyvitamin D (25(OH)D) has been active
during the past couple of decades, promoted by heritability estimates from twin studies
which suggest that up to 80% of the variability in 25(OH)D concentrations might be ex-
plained by genetic variation in some populations [1–5]. Also an evolutionary perspective
provides strong cues about the importance of genetic variation for vitamin D metabolism [6],
as differences in skin colour are believed to have evolved at least in part as an adaptation to
ultraviolet B radiation exposure during migration to more northern latitudes, where reduc-
tion in skin pigmentation became critical to vitamin D synthesis. Important insights into
the genetic architecture of 25(OH)D concentrations have been obtained from genome-wide
association studies (GWASs) which have used information across thousands of genomes
to find polymorphisms which are statistically associated with 25(OH)D. For this paper,
we systematically looked through the GWAS literature for genes that influence serum
25(OH)D levels. We describe key variants for which evidence has been provided from
several independent studies and address the public health importance and some of the
uses of this information.

Nutrients 2022, 14, 4408. https://doi.org/10.3390/nu14204408 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14204408
https://doi.org/10.3390/nu14204408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-3670-9399
https://orcid.org/0000-0002-8485-8930
https://doi.org/10.3390/nu14204408
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14204408?type=check_update&version=1


Nutrients 2022, 14, 4408 2 of 14

2. Materials and Methods

For the systematic search of GWASs, we searched the MEDLINE, Embase, Cochrane,
CINAHL and NHGRI-EBI GWAS catalogue [7] databases for original studies and meta-
analyses of studies performed in humans and published in English from inception to Febru-
ary, 2022. The search terms used were (“vitamin D” OR “calcidiol” OR “25-hydroxyvitamin
D” OR “25(OH)D”) AND (“genome-wide association study” OR “genome-wide association
scan” OR “genome-wide association analysis”) along with the expanded MeSH search
terms (in titles, abstracts, or keywords). The search identified 791 publications in total. After
excluding duplicate entries, 522 publications remained, of which 29 were relevant. These
were further scrutinized to identify sample overlap. We also scrutinized references within
the selected articles, and from studies otherwise known to the authors, with evidence on
gene function queried using the gene ontology (GO) resource (http://geneontology.org/,
accessed on 27 September 2022), KEGG (https://www.genome.jp/kegg/, accessed on
27 September 2022), ConsensusPathDB (http://cpdb.molgen.mpg.de/, accessed on 27
September 2022) and other NCBI (https://www.ncbi.nlm.nih.gov/guide/all/, accessed on
27 September 2022) databases.

3. Results
3.1. Genome-Wide Association Studies on 25(OH)D

Our literature search identified 29 published GWASs that looked for SNPs associated
with 25(OH)D [8–36], although many of these analyses were conducted using overlapping
samples. Most of the studies only include adult participants of white European ancestry
(n = 6722 to 443,374) [8,10,14,16,19,20,22,24,26,29,30,32–34,36]. There were seven studies
including data from transethnic analyses [15] and studies with small to modest sample
sizes (n = 697 to 9823) which had been conducted using data from African Americans
(n = 697 in the discovery sample) [25], African descent in the UK (n = 9354) [35], Hispanic
(n = 1190) [9] and Asian populations (n = 1387 to 9823) [13,23,28,35]. There were also five
small GWASs on children/toddlers/new-borns [11,12,18,21,27].

Three loci, including DHCR7, CYP2R1, and GC were consistently reported across
European [8,10,14,16,19,20,22,24,26,34] and several non-European GWASs [11,13,15,18,21,
23,25,27,28]. These loci were also confirmed in GWAS conducted in children/toddlers/new-
borns [11,12,18,21,27]. These genes fit with existing evidence of the involvement of their
corresponding proteins in the vitamin D metabolic pathway. The DHCR7 gene encodes the
7-dehydrocholesterol reductase, which is an enzyme that converts dehydrocholesterol to
cholesterol in the skin, and affects the substrate availability for vitamin D3 synthesis, which
is a precursor of 25(OH)D [37] (Figure 1). The CYP2R1 gene encodes the enzyme in the
cytochrome P-450 family 2R1, and is the primary 25-hydroxylase in the liver, converting
vitamin D to 25(OH)D. In the circulation, vitamin D metabolites including 25(OH)D are
mainly found bound to vitamin D binding protein (encoded by GC), which in most of
the GWASs to date, have come up with the strongest signal for 25(OH)D. GWAS on non-
European cohorts have also reported some novel loci (e.g., FOXA2/SSTR4 [13], HSPG2 [25],
TINK [25] and KIF4B [15]) which have not been identified in GWAS studies on white
European ancestry. Independent replication is lacking with respect to most of these novel
loci, and many have no clear link with the vitamin D metabolic pathway. One exception is
CYP2J2, discovered in a multi-ethnic cohort of 942 pregnant women of Malay, Indian and
Chinese ancestry [27]. CYP2J2 encodes an enzyme (Cytochrome P-450 family 2, subfamily J,
polypeptide 2) shown in vitro to act as a vitamin D hydroxylase [38]. There is thus a strong
biological basis for this association. It is notable that variants coding the α1-hydroxylase
(CYP27B1) or the vitamin D receptor (VDR) have not been identified by the GWASs on
25(OH)D conducted to date. Concentrations of active 1,25(OH)2D in the circulation are
~1000 times lower than those of 25(OH)D. Therefore, it is possible that differences arising
from the conversion of 25(OH)D to 1,25(OH)2D, or those reflecting VDR related differences
in the ‘usage’ of 1,25(OH)2D, may simply be too small to detect.

http://geneontology.org/
https://www.genome.jp/kegg/
http://cpdb.molgen.mpg.de/
https://www.ncbi.nlm.nih.gov/guide/all/
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Figure 1. Possible role of selected replicated variants in the vitamin D pathway. * Indicates candidate
genes with a confirmed role in vitamin D metabolism but which were not among the replicating
variants. For the full list of single nucleotide polymorphism relating to each gene, please refer to
Table 1.

Variants with Evidence for Replicated Association with 25(OH)D

In the largest GWAS published to date, identified variants for 25(OH)D concentrations
were enriched in genes in the metabolic vitamin D pathway, lipid and lipoprotein pathways,
and pathways related to skin properties. The liver, the brain and the skin were identified
as the top three locations where 25(OH)D-associated loci may exert their actions [20]. In
Table 1 we present more detailed information for the 35 common autosomal SNPs which
were identified as top hits in the GWAS conducted in the UK Biobank [20], and which were
associated in a consistent direction with serum 25(OH)D concentrations in the SUNLIGHT
consortium meta-analyses [16,20,39]. In addition, there were 70 common variants that could
not be replicated in the SUNLIGHT consortium meta-analyses. These included variants that
are known to be pleiotropic (i.e., affect multiple traits) and/or affect cholesterol metabolism
(e.g., PCSK9, LIPC, ABCA1, CETP, APOE, APOB, APOC1, LIPG and LDLR). It is possible that
some of the differences between the UK Biobank findings and the SUNLIGHT consortium
meta-analysis relates to the body mass index adjustment by the SUNLIGHT, which reduces
the likelihood of adipose tissue related variants (reflecting differences in storage capacity)
being detected. It should be noted, however, that replication does not imply causality, and
the possible connection which we have identified with vitamin D metabolism/function is
only based on literature available to date and may not fully describe the connection with
25(OH)D concentrations.
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Table 1. Genetic variants with replicating evidence for an association with 25-hydroxyvitamin D concentrations.

Gene (SNP) CHR

PEX10 (rs6671730) 1 PEX10 encodes a protein involved in import of peroxisomal matrix proteins. Mutations in PEX10 gene have led to Zellweger syndrome [40] and osteopenia [41], for which vitamin D
supplementation has been the treatment.

PADI1 (rs35408430) 1 PADI1 encodes an enzyme, which catalyses the post-translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions [42].
Deimination by PADIs occurs during epidermal differentiation [43], with possible influence on skin properties [20].

FOXO6 (rs7522116) 1 FOXO6 encodes a protein that has been predicted to enable DNA-binding transcription factor activity, and RNA polymerase related DNA binding activity [44]. FoxO6 expression is
downregulated in the brain of dietary obese mice [45].

CELSR2 (rs7528419) 1 CELSR2 encodes the cadherin EGF LAG seven-pass G-type receptor 2 that is involved in contact-mediated communication, with cadherin domains acting as homophilic binding
regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions [46].

FLG-AS1 (rs1933064) 1 FLG antisense RNA 1 (FLG-AS1) is an RNA Gene that is affiliated with the long non-coding RNA class. Skin pigmentation-related diseases such as Ichthyosis Vulgaris [47] and
Peeling Skin Syndrome 6 [48] have been shown to be associated with FLG-AS1.

DCST2 (rs76798800) 1 DCST2 gene encodes the DC-STAMP domain containing 2 protein that has been shown to be an important regulator of osteoclast cell-fusion in bone homeostasis [49]. DCST2 gene is
associated with early length and adult height [50].

GALNT2 (rs6672758) 1 GALNT2 gene encodes the polypeptide N-acetylgalactosaminyltransferase 2 which is a member of the glycosyltransferase 2 protein family and which has been linked to
post-translational modification of vitamin D-binding protein [51].

LINC01122 (rs727857) 2 LINC01122 gene is an RNA gene that is affiliated with the lncRNA class [52]. LINC01122 was one of the 989 differentially expressed genes which was significantly enriched in vitamin
D3 biosynthesis [53].

CPS1 (rs1047891) 2 CPS1 gene encodes the carbamoyl-phosphate synthase 1 which is a mitochondrial enzyme that catalyses synthesis of carbamoyl phosphate from ammonia and bicarbonate [54].

UGT1A5 * (rs2012736) 2 UGT1A5 gene encodes the UDP glucuronosyltransferase family 1 member A5 which has been shown to transform small lipophilic molecules, into water-soluble, excretable
metabolites [55]. Related isoenzymes have been identified as catalysts for 25(OH)D3 glucuronidation in the human liver [56].

CADM2 (rs6782190) 3 CADM2 gene encodes the cell adhesion molecule 2 which is a member of the synaptic cell adhesion molecule 1 family [57]. In animal studies, CADM2 is associated with metabolic
traits [58], suggesting possible influence on vitamin D concentrations through its effect on obesity and storage capacity of 25(OH)D.

GC (rs705117, rs1352846) 4 GC gene encodes the vitamin D binding protein which binds to vitamin D and its plasma metabolites and transports them to target tissues [59].
CARMIL1/LRRC16A
(rs78151190) 6 CARMIL1 gene encodes the capping protein regulator and myosin 1 linker 1 with a role in actin filament network formation [60]. Approximately 10% of muscle tissue consists of

actin, providing a possible link with 25(OH)D through storage capacity.

VGF (rs75741381) 7 VGF gene encodes a protein that is expressed in neuroendocrine cells and is upregulated by nerve growth factor [61]. VGF has been linked with appetite control [62], and
diet-induced obesity [63], with a possible link through storage capacity.

LINC00536 (rs12056768) 8 LINC00536 gene interacts with Wnt3a/β-Catenin signalling [64]. Wnt/β -Catenin signalling is an important signalling pathway in regulating adipose tissue lipogenesis with a
possible link with 25(O)D through storage capacity.

GRID1 (rs77532868) 10 GRID1 gene encodes the glutamate ionotropic receptor delta type subunit 1 which is a subunit of glutamate receptor channels that mediate the fast excitatory synaptic transmission
in the central nervous system [65].

CYP2R1 (rs12794714) 11 CYP2R1 gene encodes the cytochrome P450 family 2 subfamily R member 1 which acts as 25-hydroxylase of vitamin D [66].
TMEM151A (rs61891388) 11 TMEM151A has been predicted to be an integral component of membrane and CD248 enables extracellular matrix binding activity and regulates endothelial cell apoptotic process.
AP002387.1/ACTE1P
(rs1660839, rs12803256) 11 ACTE1P gene is an RNA gene. ACTE1P [67] and vitamin D [68] are both involved in adolescent idiopathic scoliosis (abnormal curvature of the spine), suggesting a possible role of

ACTE1P in bone health.

S100A11P3 (rs12798050) 11 S100A11P3 gene encodes the S100 calcium binding protein A11 pseudogene 3. It has multiple roles in buffering calcium ion concentration, participating in energy metabolism,
regulating cell proliferation and differentiation [69].
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Table 1. Cont.

Gene (SNP) CHR

DGAT2 (rs72997623) 11 DGAT2 encodes the diacylglycerol O-acyltransferase 2, catalysing the synthesis of triglycerides [70]. Affects adipose tissue formation [71] with possible link to 25(OH)D storage.

GUCY2EP/TSKU (rs1149605) 11 GUCY2EP gene encodes guanylate cyclase 2E that is involved in chemosensation and TSKU gene encodes tsukushi, small leucine rich proteoglycan that has been predicted to act
upstream/within several processes, including negative regulation of Wnt signaling pathway.

HAL (rs10859995) 12 HAL gene is upregulated during the differentiation of keratinocytes [72]. HAL deaminates L-histidine to trans-uronic acid [73], which in the stratum corneum absorbs UVB [74] and
reduce the production 25(OH)D [75].

SEC23A (rs8018720) 14 SEC23A gene encodes the Sec23 homolog A, coat complex II component which plays a role in the ER-Golgi protein trafficking.
ALDH1A2 (rs261291) 15 ALDH1A2 gene encodes aldehyde dehydrogenase 1 family member A2 which catalyses the synthesis of retinoic acid (RA) from retinaldehyde [76].
PDILT (rs77924615) 16 PDILT/PDIA7 gene encodes the protein disulphide isomerase like, testis expressed which catalyses protein folding and thiol-disulphide interchange reactions [77].
SULT2A1 (rs212100) 19 SULT2A1 gene encodes a liver- and intestine-expressed sulpho-conjugating enzyme that is responsible for the inactivation by sulphonation of 25(OH)D [78,79].
KLK10 (rs10426) 19 KLK10 gene encodes the kallikrein related peptidase 10 that has been shown to play a role in dermal integrity [80].

CYP24A1 † 20 CYP24A1 gene encodes cytochrome P450 family 24 subfamily A member 1 which is an important candidate for vitamin D metabolic pathway given that it initiates the degradation of
1,25-dihydroxyvitamin D3 by hydroxylation of the side chain [81]. In addition, this enzyme also plays a role in calcium homeostasis and vitamin D endocrine system [82].

PLA2G3 (rs2074735) 22 PLA2G3 gene encodes the phospholipase A2 group III which functions in lipid metabolism and catalyses the calcium-dependent hydrolysis of the sn-2 acyl bond of phospholipids to
release arachidonic acid and lysophospholipids [83].

* UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10. † rs6123359, rs17216707, rs2585442, rs2762943.
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For many of the variants which have a replicated association with 25(OH)D we found
some evidence that was compatible with a role in the vitamin D pathway (Figure 1, Table 1).
Several of the variants were related to lipid levels, while others had been linked with
skin integrity, suggesting a possible link with substrate availability for conversion to the
circulating 25(OH)D metabolite. Despite body mass index adjustment in the SUNLIGHT
consortium meta-analyses, for several of the replicating variants we observed suggested
links with adiposity or muscle mass, which may be because these tissues serve as storage
sites for 25(OH)D. In addition to confirming the role of 24-hydroxylation in the inactivation
and removal of vitamin D metabolites, GWAS identified variants in UGT1A5 and SULT2A1
as potentially relevant. This suggests that sulphonation and glucuronidation pathways,
which conjugate sulphur and glucuronide with vitamin D metabolites, are relevant for
25(OH)D excretion and/or recycling.

3.2. Heritability and the Genetic Contribution to the Prevalence of Deficiency

25(OH)D is a commonly used indicator of ‘vitamin D status’ with much of the con-
centrations determined based on availability of sunlight induced skin synthesis, with
contributions from supplement intake and diet. According to twin- and family-based stud-
ies, there is great variability in the heritability of 25(OH)D, with overall estimates ranging
from 28% to 80% [1–4]. As ‘heritability’ merely reflects the proportion of total variance
that can be explained by genetic factors, it will be the higher with lower environmental
contributions (total variance = genetic variance + environmental variance). Indeed, the
highest heritability rates are seen in populations measured during winter, when contribu-
tions from sunlight synthesis (and hence, the environmental effects) are at their lowest.
This may explain why a study on 510 middle-aged male twins found heritability estimates
to be ~70% when assessed in winter compared to negligible (~0%) during summer [84].
Also a twin study of Hispanics and African Americans, reported heritabilities of 23%,
28% and 41% for 25(OH)D levels from data taken from California, Texas, and Colorado
(n = 1530 individuals from 130 families), respectively [85]. These differences were broadly
reflective of geographical location, such that the higher the latitude (and the less sunlight
exposure) the higher the estimated heritability. However, seasonal differences in heritability
have not been consistently observed, and for example in the recent 25(OH)D GWAS [20],
heritability was higher in summer than in winter (0.19 vs. 0.10, respectively). Indeed,
another way to estimate heritability is to use information from unrelated individuals using
GWAS data (i.e., SNP heritability) and in the large UK Biobank GWAS on white Europeans,
SNP heritability for serum 25(OH)D concentrations was estimated to be 13–16% [19,20].
Of practical relevance is the extent to which these genetic variants affect the circulating
25(OH)D levels and the prevalence of vitamin D deficiency. In Table 2, we show the distri-
bution of 25(OH)D concentrations based on data from the 35 replicating variants in the UK
Biobank. The odds of low concentrations are about halved for individuals in the highest
20% of vitamin D genetic risk score compared to the lowest quintile. Again, these genetic
associations appear to be slightly stronger during summer compared to winter, possibly
reflecting genetic differences in vitamin D skin synthesis. The overall difference in the
mean 25(OH)D between individuals in the highest vs. lowest quartile of the GRS is about
9 nmol/L [40], which is similar to the association seen with self-reported use of vitamin D
supplementation in the UK Biobank during winter (9.7 nmol/L) [84]. This suggests that
if the supply from sunlight or diet is limited, differences in 25(OH)D concentrations by
higher genetic burden may be of clinical relevance.
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Table 2. Average 25-hydroxyvitamin D level and the odds of low concentrations by quintiles in
vitamin D genetic risk score in the UK Biobank.

Vitamin D Winter (n = 176,577) Vitamin D Summer (n = 130,855)

25(OH)D
Mean (SD)

<25 nmol/L
OR (95% CI)

<50 nmol/L
OR (95% CI)

25(OH)D
Mean (SD)

<25 nmol/L
OR (95% CI)

<50 nmol/L
OR (95% CI)

Quintile 1
(Lowest 20%) 39.16 (17.41) Reference Reference 52.13 (17.37) Reference Reference

Quintile 2 41.84 (18.47) 0.79 (0.76–0.82) 0.75 (0.73–0.78) 56.16 (18.51) 0.72 (0.66–0.79) 0.68 (0.66–0.71)

Quintile 3 43.73 (19.36) 0.68 (0.66–0.71) 0.64 (0.61–0.66) 58.50 (19.20) 0.63 (0.57–0.69) 0.56 (0.54–0.58)

Quintile 4 45.40 (20.14) 0.60 (0.58–0.62) 0.54 (0.53–0.56) 60.65 (20.05) 0.53 (0.48–0.58) 0.49 (0.47–0.51)

Quintile 5 47.51 (21.25) 0.52 (0.50–0.54) 0.47 (0.45–0.48) 64.05 (21.17) 0.42 (0.38–0.47) 0.39 (0.37–0.40)

Genetic risk score calculated using 35 variants with replicated association with 25(OH)D concentrations. Adjusted
for age, sex, month in which blood sample was taken, fasting time before blood sample was taken, sample aliquots
for measurement, assessment centres, SNP array, and top 40 genetic principal components. Vitamin D winter
classified as November to May and vitamin D summer as June to October, based on distribution of 25(OH)D
concentrations in the UK biobank [86].

3.3. Genetic Differences in Response to Supplementation and the Need for Personalized Approaches

There were 25 independent loci which were suggestive of gene–environment (GxE)
interaction in the recent GWAS [20], suggesting that the size of the genetic association
with 25(OH)D can vary by environmental factors influencing serum 25(OH)D concentra-
tions. For five loci, including CYP2R1 and SEC23A there was a genome-wide significant
interaction with season [19,20], where the carriers of 25(OH)D-lowering alleles appeared
to be less responsive to season compared to non-carriers. This could suggest that some
individuals may be more prone to low serum 25(OH)D levels regardless of the season of
measurement [19]. In an earlier genome-wide GxE analysis, carriers of 25(OH)D-lowering
allele at the CYP2R1 locus were less responsive to dietary vitamin D intake [16]. A similar
interaction with vitamin D lowering alleles has also been observed in the context of the
GC locus and vitamin D supplementation [87], of vitamin D3-fortified bread and milk
consumption [86,87] and UVB treatment [88,89].

There has been recent interest in genetic risk scores (GRS) that combine variants
according to their vitamin D lowering alleles, and which look into whether individuals
with genetically low 25(OH)D are less or more responsive to treatments for correcting
low vitamin D status [87–89]. One study used a GRS combining variants in the CYP2R1
and GC loci, and reported a somewhat more modest (~23%) increase in serum 25(OH)D
concentrations in response to UVB treatment for individuals carrying four risk alleles
compared to the 54% increase for those carrying no risk alleles [88]. They also found that
individuals with four risk alleles benefitted the least from the consumption of vitamin
D3–fortified bread and milk during this 6-month study [88]. GRS for 25(OH)D has been
suggested to be useful for guiding the screening and treatment for vitamin D deficiency.
This was tested in a recent study [26], where participants with serum 25(OH)D < 50 nmol/L
were recommended to take vitamin D supplements, adjusting the dosage according to their
genetic risk. Again, this study used a simple GRS (two SNPs only, taken from GC and
CYP2R1), and the individuals with three or four 25(OH)D-lowering alleles were instructed
to take 50 µg (2000IU) per day, those with one to two risk alleles to take 20–30 µg/day and
those with no risk alleles, 10–20 µg per day. In their study, recommendation to take 50 µg
(2000IU) per day over 4 months was enough to reduce the gap between individuals carrying
three or four risk alleles and those with no risk alleles both with respect to serum 25(OH)D
concentration and the prevalence of 25(OH)D < 50 nmol/L. However, the prevalence of
25(OH)D < 50 nmol/L remained elevated for those with two risk alleles compared to no
risk alleles. While these results are very interesting and even promising, they are tentative,
as the higher vitamin D intakes were achieved by recommendations, and not by testing in a
placebo controlled, and randomized context. This was also a relatively small study (n = 10 to
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n = 36 per treatment group), so further trials with appropriate controls and a larger sample
are required to examine possible benefits and effective approaches for personalized vitamin
D supplementation. Given more profound genetic adaptations to differences in vitamin D
intakes (‘vitamin D scarcity’) are possible, more research is also needed to establish target
levels reflecting ‘optimal’ 25(OH)D concentrations and supplementation approaches for
specific population groups, including indigenous Arctic and Tropical peoples [90].

3.4. Mendelian Randomization to Establish Evidence for Causal Effects of 25(OH)D

With the identification of genetic variants associated with serum 25(OH)D concentra-
tions, it has become possible to use Mendelian randomization (MR) to examine evidence
for the causal effect of vitamin D on other traits. This method is sometimes called the
“natures controlled trial”, as assuming random allocation of genetic variants during the
gamete formation, individuals are randomized on different exposure groups based on the
genetic variants they carry. Reliable causal inference based on MR studies is conditional
to some key method assumptions, and where these hold, this method can help avoid bias
due to confounding and reverse causation which more strongly affect other types of ob-
servational studies [91]. MR analyses on 25(OH)D have used several strategies, and many
of the studies have restricted the variants used to those in the actual vitamin D pathway
(including DHCR7, CYP2R1, GC and CYP24A1). With additional loci being discovered for
serum 25(OH)D [19,20], MR studies now commonly incorporate these new loci into the
analyses. While the inclusion of additional loci can improve statistical power, it is also
important to keep in mind the potential for pleiotropic effects that these variants could
bring into the models and which could bias the MR analysis [92].

MR studies on 25(OH)D have been conducted across a wide range of outcomes, with
evidence supportive of a causal effect seen for multiple sclerosis [93], type 2 diabetes [94]
and hypertension [95]. However, many of the newly discovered variants do not have clear
or known function with respect to vitamin D metabolism, and some appear pleiotropic, with
associations with other traits, such as BMI, and lipid measures. One approach to alleviate
concerns relating to pleiotropy and residual genetic confounding affecting variant selection,
is to restrict the analyses to variants which have consistent replicating association with
25(OH)D concentrations [39], as would be the case if we use the 35 SNPs described above.
However, even there, pleiotropy is likely to remain a concern, and sensitivity analyses
using different sets of variants and different analytical approaches will be required to help
to assess the robustness of the findings. A multivariable MR approach, which directly
accounts for pleiotropic effects by modelling the genetic effects on 25(OH)D simultaneously
with pleiotropy related indicators, may also be helpful. However, to allow for the use of
this approach, the relevant pleiotropic pathways will need to be hypothesized and relevant
information must be available for the analyses. In the context of threshold effects, rigorously
conducted MR studies that take into account non-linearity can increase the value of the
genetic approach for vitamin D research, as evidence for an effect may only be seen at very
low or high levels [96,97]. Recruiting people with vitamin D deficiency to supplementation
trials is an important challenge, and often studies test the effects of supplementation in
individuals who already have adequate concentrations, and who are typically allowed to
take over-the-counter supplements [96,97]. Evidence for benefits with rectifying vitamin D
deficiency with respect to outcomes such as mortality [98,99], cardiovascular disease [39]
and dementia [100] has been obtained from recent studies using non-linear or stratified
MR approaches. For dementia, evidence for a causal effect of vitamin D had already been
provided by linear MR studies [101–103], while effects on mortality had been supported
by RCT meta-analyses [104], but the non-linear studies in both contexts suggest that the
benefits of increasing levels may be largely confined to the correction of clinical deficiency.
These findings provide important insight into strategies that are likely to provide the
greatest benefits, suggesting that large-dose supplementation is unlikely to be required,
but population level strategies such as food fortification, which can ensure at least minimal
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intakes and eradicate severe deficiency across the range of population groups, is likely to
work.

4. Conclusions

Vitamin D status is in part determined by genetic variation and GWAS studies have
identified a large number of variants that are associated with circulating 25(OH)D concen-
trations. Some of them are linked to the actual vitamin D metabolic pathway, and others
to lipid metabolism and skin properties. In terms of methodology, they may provide MR
studies with the means to measure the various determinants of serum 25(OH)D concentra-
tions. Further research is needed to understand how such genetic information may be used
to personalize vitamin D supplementation and prevent vitamin D deficiency.
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