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Genetic determinants of daytime napping and
effects on cardiometabolic health
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Daytime napping is a common, heritable behavior, but its genetic basis and causal rela-

tionship with cardiometabolic health remain unclear. Here, we perform a genome-wide

association study of self-reported daytime napping in the UK Biobank (n= 452,633) and

identify 123 loci of which 61 replicate in the 23andMe research cohort (n= 541,333). Findings

include missense variants in established drug targets for sleep disorders (HCRTR1, HCRTR2),

genes with roles in arousal (TRPC6, PNOC), and genes suggesting an obesity-

hypersomnolence pathway (PNOC, PATJ). Association signals are concordant with

accelerometer-measured daytime inactivity duration and 33 loci colocalize with loci for other

sleep phenotypes. Cluster analysis identifies three distinct clusters of nap-promoting

mechanisms with heterogeneous associations with cardiometabolic outcomes. Mendelian

randomization shows potential causal links between more frequent daytime napping and

higher blood pressure and waist circumference.
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N
aps are short daytime sleep episodes that are evolutio-
narily conserved across diverse diurnal species ranging
from flies1 to polyphasic mammals2. In human adults,

daytime napping is highly prevalent in Mediterranean cultures
and is also common in non-Mediterranean countries including
the United States3. In modern society, napping is encouraged in
sleep-deprived populations, such as night shift workers4 and
airline pilots5, to acutely improve performance and alertness.
Although an acute benefit of napping on increased arousal in the
setting of sleep deprivation is well-established6, the long-term
effects of habitual napping on chronic disease risk remain con-
troversial. Indeed, cross-sectional studies have provided con-
flicting evidence on the effects of habitual napping on cognition,
blood pressure, obesity, metabolic traits, and mortality7–13. As
napping behavior may be confounded by inadequate nighttime
sleep or underlying poor health14,15, causal inference from these
observational studies is limited.

Genetic variation constitutes an important contributor to inter-
individual differences in napping preference. A twin study esti-
mated heritability of self-reported napping and objective daytime
sleep duration to be 65% and 61%, respectively, demonstrating
heritability similar or even higher than heritability found for
other sleep traits such as nighttime sleep duration and timing16.
Indeed, up to seven genetic loci for daytime napping have been
discovered in genome-wide association study (GWAS) of self-
reported napping or related accelerometer-derived sleep mea-
sures17–19. Discovery of additional genetic loci may reveal bio-
logical pathways regulating sleep, elucidate genetic links with
other sleep and metabolic traits, and clarify the potential causal
effects of habitual napping on cardiometabolic disease.

In this work, we leverage the full UK Biobank dataset of Eur-
opean ancestry, including related individuals (n= 452,633), and
an independent replication sample from 23andMe research par-
ticipants of European ancestry (n= 541,333), to define the genetic
architecture of daytime napping and to assess links with other
sleep and cardiometabolic traits. We identify 123 loci of which 61
replicate in the 23andMe research cohort, including variants in
established drug targets for sleep disorders (HCRTR1, HCRTR2),
genes with roles in arousal (TRPC6, PNOC), and genes suggesting
an obesity-hypersomnolence pathway (PNOC, PATJ). Cluster
analysis identifies three distinct clusters of nap-promoting
mechanisms and Mendelian randomization shows potential
causal links between more frequent daytime napping and higher
blood pressure and waist circumference.

Results
Among UK Biobank participants of European ancestry (n=
452,633), 38.2% and 5.3% of participants reported sometimes and
always napping, respectively (Supplementary Table 1). Partici-
pants reporting always napping were more likely to be older
males, report longer 24 h sleep duration and more frequent
daytime sleepiness, have higher body-mass index (BMI), waist
circumference, systolic and diastolic blood pressures, have diag-
nosed sleep apnea, have a higher Townsend deprivation index
(i.e., greater degree of socio-economic deprivation), and report
being current smokers, unemployed or retired, and shift workers
(all P < 0.001; Supplementary Table 1).

Discovery, validation, and replication of 123 genetic loci for
daytime napping in UK Biobank and 23andMe. We conducted
GWAS using 13,304,133 high-quality imputed genetic variants
across 452,633 participants. We identified 123 distinct loci, with
(P < 5 × 10−8; Fig. 1A, Supplementary Data 1, Supplementary
Fig. 1a) genome-wide SNP-based heritability estimated at 11.9%
(standard error= 0.1%). The 123 loci explained 1.1% of the

variance in daytime napping. The LD score regression intercept
was 1.04 and therefore did not indicate uncontrolled confound-
ing. Effect estimates were largely consistent in GWAS restricted
to 338,764 participants self-reporting excellent or good overall
health (Supplementary Table 1, Supplementary Data 1). As higher
BMI is associated with more frequent napping20, we conducted a
GWAS adjusting for BMI alone or BMI and BMI × BMI and
found that 110 of the 123 loci retained genome-wide significance
(Supplementary Data 1). Accounting for sleep apnea in GWAS
models excluding participants with diagnosed sleep apnea (n=
5553 excluded) or adjusting by a modified STOP-BANG risk
scale21 did not influence findings (Supplementary Data 1).
Finally, when adjusting for daytime sleepiness, we observed
modest attenuation of effect estimates, with 60 of the 123 loci
retaining genome-wide significance (Supplementary Data 1).

We found no evidence of sexual dimorphism in the autosomal
genetic determinants of daytime napping behavior22 as indicated
by the lack of statistical heterogeneity by sex at any of the lead loci
(all P > 0.005) (Supplementary Data 1) and a genome-wide
genetic correlation (rg) of male and female stratified GWAS of
0.94 (standard error= 0.03). We conducted association analyses
on the X chromosome to further examine whether common
variants on the X chromosome contribute to sex differences in
daytime napping and identified five additional loci for daytime
napping (Supplementary Table 2). Only one of these variants
(rs6621715) had significantly different effect estimates in males
and females (P= 0.006), and no additional GWAS signals were
identified on the X chromosome in sex-stratified analysis.

Five of seven loci for daytime napping reported in earlier
GWAS in a subset of unrelated UK Biobank participants of
European ancestry (n= 386,577)18 retained genome-wide sig-
nificance in our analyses (Supplementary Table 3). However,
none of the suggestive loci reported in GWAS of accelerometer-
derived phenotypes related to napping behavior in the UK
Biobank (n= 85,670)19 and LIFE Adult Study (n= 956)17

showed evidence of association in the current analysis.
We tested for independent replication of lead loci using data from

23andMe, Inc., a personal genetics company, where 541,333 research
participants of European ancestry also provided data on the
frequency of daytime napping (43.0% sometimes and 7.6% always
napping; Supplementary Table 4). We replicated 61 of 109 tested
loci (P < 4.6 × 10−4), of which 18 of the 61 loci were genome-wide
significant (i.e., P < 5.0 × 10−8). All 109 tested loci showed consistent
direction of effect with the effect estimated in the UK Biobank
(Pbinomial= 3.21 × 10−8) (Fig. 1B, Supplementary Data 2). In fixed-
effects inverse-variance weighted meta-analysis of UK Biobank and
23andMe (total n= 993,966), 94 of the 109 lead variants remained
genome-wide significant (Fig. 1C, Supplementary Data 2).

Given inherent limitations of self-reported data, we aimed to
partly validate the specificity of our associations with an objective
measure corresponding to daytime napping behavior. We thus
compared effect estimates of the 123 loci with effect estimates for
accelerometer-derived daytime inactivity duration19 from 7-day
wrist accelerometry obtained in 85,499 participants of European
ancestry in the UK Biobank >2 years after baseline assessment.
Estimates of 90 variants were directionally concordant (Pbinomial=

2.74 × 10−7) and variants at ASCL4 and SNAP91 were strongly
associated with longer duration of daytime inactivity (Padj < 0.05)
(Supplementary Data 3). We further quantified the impact of
daytime napping on daytime inactivity duration using a polygenic
score comprised of lead variants at all 123 loci. A category increase
in frequency of daytime napping was associated with 18.9min (95%
confidence interval= 13.6, 24.2; P= 4.21 × 10−12) longer duration
of daytime inactivity, but had no effect on other accelerometer-
derived sleep duration, timing, or quality phenotypes (Supplemen-
tary Table 5).
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Napping genetic variants share causal variants with other sleep
phenotypes and lie near known genes that regulate arousal.
Several daytime napping-associated variants had pleiotropic
associations with other self-reported sleep traits23–26 and
accelerometer-derived sleep measures19 (Supplementary Data 3,
4). This genetic overlap between daytime napping and other sleep
traits was further supported by cross-trait LD score regression27

where we observed the strongest evidence for a shared genetic
basis with daytime sleepiness (rg= 0.70, P= 7.94 × 10−373) and
long sleep duration (rg= 0.42, P= 1.94 × 10−64), and weaker
correlations with other sleep duration, timing and quality phe-
notypes (Supplementary Table 6). In concordance with the null
polygenic risk score association, daytime napping was not
genetically correlated with accelerometer-defined sleep duration.
Despite the observed genome-wide genetic overlap, lead variants
at 26 of the 123 loci showed no statistical evidence for association
with previously studied sleep traits in the UK Biobank (Padj >
0.05), suggesting that these variants reflect mechanisms specific to
daytime napping (Supplementary Data 4).

Several genetic variants for daytime napping were located in or
near genes with known effects on sleep-wake regulation. Thus, to
gain insights into putative causal variants driving daytime
napping and sleep-wake biology, we integrated results from
functional annotation, fine-mapping, multi-trait, and eQTL
colocalization analyses (for each colocalization analysis we report
a posterior probability for a shared causal variant in the
association signal) (Supplementary Data 5, Supplementary
Tables 7–9). Functional annotation of all variants identified an
enrichment of variants in intronic (46.2%) and intergenic (31.5%)
regions, suggesting that non-coding gene regulatory mechanisms

may underlie napping as they do for many other complex traits
(Supplementary Fig. 1b).

In order to identify association signals with evidence for shared
causal variants with other sleep traits, we performed multi-trait
colocalization analyses28 of daytime napping loci across six self-
reported sleep traits (daytime sleepiness, sleep duration, insom-
nia, snoring, chronotype, and ease of awakening) and identified
33 shared signals (of which 25 corresponded to a genome-wide
significant daytime napping locus) (Supplementary Data 5).
These analyses prioritized putatively causal SNPs genes at several
loci which may form hypotheses for experimental follow-up.

First, missense variants were identified in components of the
wake-promoting orexin/hypocretin neuropeptide signaling path-
way: (i) in a transmembrane helical domain of HCRTR2 [I308V;
rs2653349; A allele frequency= 0.21; associated with more
frequent daytime napping, morning preference and ease of
awakening, posterior probability of colocalization (pp)= 0.98],
(ii) in a cytoplasmic domain of HCRTR1 [I408V; rs2271933, r2=
0.98 with lead rs6663012 variant; A allele frequency= 0.38;
associated with more frequent daytime napping], and (iii) a
cytoplasmic domain of TRPC6 [P15S; rs3802829, r2= 0.98 with
lead rs11224896 variant; G allele frequency= 0.89; associated
with more napping and longer sleep duration; pp=0.80], which
encodes a subunit for transient receptor channels that maintains
hypocretin/orexin neurons in a depolarized state29. Although an
intronic lead variant in HCRTR2 was previously reported in
GWAS of daytime sleepiness24 (rs3122170, P value for association
with daytime napping 4.60 × 10−18; r2= 0.29 with lead napping
variant rs2653349), the traits in the colocalization cluster
excluded the daytime sleepiness phenotype, suggesting that the

Fig. 1 Plots for genome-wide association analysis results for daytime napping in the UK Biobank (n= 452,633) and replication in 23andMe

(n= 541,333). A Manhattan plot of daytime napping genome-wide association study in the UK Biobank (n= 452,633). Plot shows the −log10P values

(y-axis) for all genotyped and imputed single-nucleotide polymorphisms (SNPs) passing quality control (BOLT-LMM mixed-model association test

P values) ordered by chromosome and base position (x-axis). Blue peaks represent genome-wide significant loci. Horizontal red line denotes genome-wide

significance (P= 5 × 10−8). Top 8 loci are annotated with nearest gene. B Daytime napping signals’ effect estimates from UK Biobank (n= 452,633)

plotted against effect estimates from 23andMe (n= 541,333). Error bars represent the 95% confidence intervals for each effect estimate. C Effect

estimates of daytime napping signals from UK Biobank and 23andMe meta-analysis (total n= 993,966) plotted against minor allele frequency.
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observed napping signal is driven by a distinct causal variant in
HCRTR2 (Supplementary Table 7). To further explore the
independence of these signals, we used GCTA COJO to perform
conditional analysis adjusting the regional napping associations
for the lead napping signal in HCRTR2. We found substantial
attenuation in the association with napping for the lead daytime
sleepiness variant in HCRTR2 (rs3122170; P value from 4.60 ×
10−18 to 4.56 × 10−3 after conditioning). This further suggests
that the identified signal for daytime napping is distinct from the
previously reported daytime sleepiness signal in the HCRTR2
region.

Second, colocalization analyses revealed variants in PNOC and
PATJ with effects on napping, daytime sleepiness, and BMI,
suggesting a potential obesity-hypersomnolence pathway. An
intronic candidate causal variant in PNOC [rs351776; C allele
frequency= 0.55] associated with more frequent napping, more
daytime sleepiness, and higher BMI. PNOC encodes a prepropro-
tein that is proteolytically processed to generate the nociceptin
neuropeptide, which opposes the effects of hypocretin to reduce
arousal and spontaneous activity in zebrafish30,31. The colocaliza-
tion of daytime napping with BMI at this locus is consistent with
known pleiotropic effects of PNOC in feeding behavior32 (pp=
0.84; Supplementary Table 8). The known33 missense variant in
PATJ [rs12140153; G1543V; G allele frequency 0.90] has a stronger
association with daytime napping than any previously studied
sleep phenotypes (Supplementary Data 4), and is likely a shared
causal variant with daytime sleepiness, chronotype, and with BMI
(pp= 0.81 and pp= 0.99; Supplementary Tables 7 and 8).

Third, colocalization analyses refined genetic effects previously
described at the KSR2 locus implicated in ERK/EGFR
signaling24,34, a pathway with an established causal role in sleep
regulation in C. elegans, Drosophila, and zebrafish35,36. This
included an intronic variant in KSR2 (rs1846644; T allele
frequency= 0.60; pp= 0.91), that is associated with more frequent
napping, longer sleep duration, and increased daytime sleepiness.

Fourth, several genetic variants were prioritized at or near
genes (a) coding for proteins constituting or interacting
with potassium channels [rs77154532 (KCHN8), rs10875606
(KCTD16)], (b) involved in glutamate transmission [rs60920123
(GRIN2A), rs2284015 (CACNG2)], and (c) previously associated
with periodic leg movements37 and restless legs syndrome38

[rs4236060 (BTBD9)].
Fifth, we found evidence of association for variants in PRRC2C,

one of three orthologs of the Drosophila nocte gene39. Nocte
targets clock neurons to synchronize molecular and behavioral
rhythms to temperature cycles and influences siesta sleep in flies.
We observed no gene-by-season (a proxy for ambient tempera-
ture) statistical interaction at this and any other loci (Supple-
mentary Data 1).

We performed colocalization analyses using gene expression
data from the frontal cortex in the GTEx data release v740 (n=
129), the brain tissue predominantly enriched for daytime napping
signals. Daytime napping variants at FADS1 associated with
increased expression of FADS1 (pp= 0.89) and at ECE2 associated
with increased expression of ECE2 (pp= 0.99) (Fig. 2A, B;
Supplementary Table 9). Another lead variant is near FNDC5
(rs2786547), a gene coding for irisin, a muscle-derived hormone
with putative effects on expression of sleep-regulating neuropep-
tides41. We found strong evidence for colocalization of the daytime
napping signal with gene expression of FNDC5 in skeletal muscle
in the GTEx data release v740 (n= 706, pp= 0.93), with higher
gene expression relating to less frequent napping (Supplementary
Fig. 2). This suggests a role for FNDC5 in a sleep-regulating
mechanism outside of the central nervous system.

Finally, multi-trait clustering suggested the possibility of at
least three distinct pathways influencing daytime napping.

Bayesian nonnegative matrix factorization (bNMF)42 clustering
for 123 variants with 17 self-reported and accelerometer-derived
sleep traits identified 3 clusters (63% of 1000 iterations) and these
same 3 clusters were also present in an additional 34% of
iterations with 4 clusters (Table 1, Supplementary Data 6,
Supplementary Fig. 3a) reflecting (a) sleep propensity (cluster 1; 6
contributing loci with CRHR1, SKOR2, KSR2, ASCL4, RERE, and
ECE2); (b) disrupted sleep (cluster 2; 5 contributing loci with
SHISA4, ADO, NRXN3, FNDC5, and GS1-259H13.13 as lead); and
(c) early sleep timing (cluster 3; 9 contributing loci with HCRTR2,
ALG10, ALG10B, PATJ, BTBD9, MTNR1B, AGAP1, RP11-6N13.1,
and ZBTB5 as lead loci, notably not at known core clock genes). A
fourth possible cluster, obstructive sleep apnea, was observed in
34% of 1000 iterations (Supplementary Fig. 3b). Results were
corroborated with findings from an alternative unsupervised
hierarchical clustering method24 (Supplementary Fig. 3c), with
clusters 1 and 2 partly overlapping with previously observed
clusters for daytime sleepiness24.

Genes at association signals are enriched in brain and
GABAergic neurons, and in neural development and opioid
signaling pathways. In order to identify tissues, neuronal sub-
types and annotated pathways relevant to daytime napping, we
first mapped the genes near association signals and then tested for
their over-representation relative to all genes in experimental
genome-wide datasets. Gene-based associations for 21,761 genes
mapped with Pascal43 are listed in Supplementary Data 7; 324
genes showed association after Bonferroni correction. The iden-
tified signals were enriched for genes predominantly expressed in
brain tissues, including the frontal cortex (P= 1.18 × 10−7) and
nucleus accumbens (P= 1.26 × 10−7) (Fig. 3A, Supplementary
Table 10). Single-cell enrichment analyses in FUMA44 using
human brain datasets (listed in Fig. 3B) showed consistent
enrichment in GABAergic neurons across several brain tissues
including the prefrontal cortex and midbrain. In addition, path-
way enrichment analysis using MAGMA45 and Pascal43 indicated
enrichment of genes involved in regulation of transmission across
chemical synapses, neuronal system, and opioid signaling
(Fig. 3C, Supplementary Data 8, 9).

The genetic contributors to daytime napping are shared with
cardiometabolic diseases. To gain insights into shared herit-
ability of daytime napping with other disease and behavior traits,
we performed cross-trait LD score regression27 using publicly
available GWAS data for 257 traits. Modest positive correlations
were observed between daytime napping and several anthropo-
metric and cardiometabolic diseases and traits including BMI,
triglycerides, and type 2 diabetes (Fig. 4A, Supplementary
Data 10), of which correlations with triglycerides remained sig-
nificant in the GWAS model adjusting for BMI. To further
characterize shared genetic links between daytime napping and
diseases in a disease-enriched and independent health system-
based clinical cohort, we conducted a phenome-wide association
study (PheWAS) in the Mass General Brigham Biobank (n=
23,561 participants of European ancestry with genetic data)46,47.
We generated a daytime napping genome-wide polygenic score
(GPS) and tested associations with 951 ICD-code based disease
categories. PheWAS showed 3 Bonferroni-significant associations
(18 FDR-significant), including positive associations with essen-
tial hypertension (GPS q10 vs q1 odds ratio [95% confidence
interval]: 1.30 [1.13, 1.51]), obesity (GPS q10 vs q1: 1.38 [1.18,
1.62]), and chronic nonalcoholic liver disease (GPS q10 vs q1:
1.51 [1.18, 1.92]), which encompasses diagnosis codes for chronic
non-specific or nonalcoholic liver disease (Fig. 4B, C, Supple-
mentary Data 11). We also observed associations of a polygenic
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score of the 123 napping variants, and polygenic sub-scores for
each of the 3 clusters with cardiometabolic traits from large-scale
public GWAS (Table 1, Supplementary Table 11). Cluster-specific
polygenic score associations varied across outcomes, and included
associations of cluster 1 with higher blood pressure, and clusters 2
and 3 with adiposity traits (Table 1).

Mendelian randomization suggests a causal effect of more
frequent daytime napping on increased blood pressure and
waist circumference. To explore whether daytime napping may
causally increase cardiometabolic disease risk, we performed two-
sample Mendelian randomization (MR) analyses using the 123
loci as genetic proxies for daytime napping (Supplementary
Table 11). We observed a potentially causal effect of more fre-
quent daytime napping on higher diastolic blood pressure (DBP;
0.25 standard deviation (SD) unit increase per category increase
in daytime napping, 95% CI [0.15, 0.34], P= 2.99 × 10−7), sys-
tolic blood pressure (SBP; 0.18 SD units, [0.09, 0.27], P= 5.15 ×
10−5), and waist circumference (0.28 SD units, [0.11, 0.45], P=
1.3 × 10−3), all of which surpassed multiple testing correction
(Fig. 5A, B). In sensitivity analysis, we found a consistent effect,
although attenuated in magnitude for the outcome of DBP, of
genetically proxied more frequent daytime napping on higher
blood pressure when using variant association statistics from
23andMe as the exposure, and blood pressure in the ICB-UKB
meta-analysis48 as the outcome (DBP: 0.08 SD units, [0.003, 1.18],

P= 0.04; SBP: 0.21 SD units, [−0.02, 0.43], P= 0.07). As the MR
effects may be explained by pleiotropic effects of the napping
variants on pathways independent of napping, we performed five
sensitivity analyses and found consistent evidence of effect
(Supplementary Data 12, Supplementary Table 12; Supplemen-
tary Fig. 4). Given prior evidence for a causal effect of higher BMI
on daytime sleepiness24, we tested the hypothesis that adiposity
traits (waist circumference, waist-to-hip ratio adjusted for BMI
(WHRadjBMI), and BMI) influenced daytime napping frequency.
Genetically proxied WHRadjBMI was nominally associated
with a modest increase in daytime napping frequency (inverse-
variance weighted: 0.03 category increase in daytime napping per
SD increase in WHRadjBMI, [0.01, 0.05], P= 0.01) (Fig. 5B,
Supplementary Data 12).

Leveraging HCRTR1 and HCRTR2 genetic associations to
predict the cardiovascular safety profile of dual orexin
antagonists. Given our observation that the hypocretin pathway
contributed to variation in daytime napping behavior (variants in
HCRTR1 and HCRTR2), and recent reports suggesting that
mammalian orexin signaling has cardioprotective effects49, we
examined whether these variants may serve as instruments to
predict the cardiovascular safety of orexin receptors as drug tar-
gets. This has clinical relevance, as dual orexin receptor antago-
nists (DORAs) are currently used as sleep medications, and
orexin receptor agonists are currently in development for

Fig. 2 Colocalization analysis reveals a shared causal variant reducing FADS1 gene expression in the frontal cortex and increasing napping liability,

and a shared causal missense variant in HCRTR2 influencing daytime napping, chronotype, and ease of awakening. A Regional association plots for

daytime napping and FADS1 gene expression in the frontal cortex at rs174561 and variants within 400 kb on chromosome 11. The y-axis shows the −log10

P value for each variant in the region, and the x-axis shows the genomic position. Each variant is represented by a filled circle, with the rs174561 variant

colored purple, and nearby variants colored according to degree of linkage disequilibrium (r2) with rs174561. The lower panel shows genes located in the

displayed region and the blue line corresponds to the recombination rate. B Forest plot of associations between the C allele of genetic variant rs174561 in

FADS1 with daytime napping and gene expression of FADS1 in the frontal cortex. Units of daytime napping reflect an increase on the ordinal scale of the

trait, and gene expression is in standard deviation units. P values are two-sided and were obtained using linear regression. Black box indicates the effect

estimate and lines represent 95% confidence intervals. C Regional association plot for colocalized sleep phenotypes at rs2653349 and variants within

400 kb on chromosome 6. D Crystal structure of HCRTR2 (PDB ID 6TPJ) showing localization of rs2653349 that changes Isoleucine to Phenylalanine or to

valine at the transmembrane domain of HCRTR2. Protein sequence was visualized using iCn3D (https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html).

The variant rs2653349 was aligned with the sequence (arrows to Human Missense variant in Figure) and the previously published canine HCRTR2

mutations105, which disrupt transmembrane and signaling domains or truncate the HCRTR2 protein are highlighted in cyan. E Forest plot of associations

between the A allele of genetic variant rs2653349 in HCRTR2 and the colocalized sleep phenotypes. P values are two-sided and were obtained using linear

regression. Black boxes show effect estimates, and surrounding lines display 95% confidence intervals.
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narcolepsy. To test for such potential on-target cardiovascular
side effects, we used missense variants in HCRTR1 (A allele of
rs2271933) and HCRTR2 (A allele of rs2653349), both associated
with more frequent daytime napping and daytime sleepiness24, as
proxies for pharmacologic inhibition of these proteins, and tested
for associations with cardiovascular phenotypes in large GWAS
(Supplementary Table 13). This analysis revealed no associations
of the variants with cardiovascular outcomes, but showed
opposing effects on systolic blood pressure at HCRTR1 (−0.10
mmHg, 95% CI [−0.17, −0.04], P= 1.00 × 10−4) and HCRTR2
(0.14 mmHg, 95% CI [0.07, 0.21], P= 1.00 × 10−04; Fig. 6). We
further performed a hypothesis-free scan across 1402 ICD-code
defined phenotypes in the UK Biobank50 and found no variant-
disease associations (Supplementary Fig. 5; Supplementary
Data 13). The present human genetic evidence therefore does not
support a net excess adverse cardiovascular risk from on-target
inhibition of HCRTR1 and HCRTR2, but suggests potential
opposing effects on blood pressure regulation by the two
receptors.

Discussion
We comprehensively investigated the genomic influences of
daytime napping using the largest discovery and replication
sample sizes to date. We identified 123 independent loci in the
UK Biobank with strong evidence of replication in 23andMe, an

independent study with different demographic characteristics.
Variant effects were largely independent of BMI and sleep apnea,
and the associations retained significance when GWAS was
restricted to healthier participants, a strong determinant of 5-year
mortality in the UK Biobank51, suggesting that signals were not
driven by poor health. In addition, despite higher prevalence of
daytime napping among men compared to women52, we identi-
fied only one sex-specific signal on the X chromosome, suggesting
sex differences may be attributed to environmental factors or
possibly rare genetic variants. Our results advance the under-
standing of the biology of daytime napping, refine the under-
standing of pleiotropy and causality in the relationship of
napping with sleep and cardiometabolic traits, and inform
pharmacologic investigations of orexin antagonism.

The identified variants highlight a central role for arousal-
regulating neuropeptide signaling pathways in daytime napping
propensity. Most prominent among these pathways was the well-
established hypocretin arousal pathway53 (including missense
variants in HCRTR1, HCRTR2, and TRPC6). It is thus possible
that orexin receptor agonism, a therapeutic strategy currently
under investigation for narcolepsy, may have roles in the treat-
ment of patients with more mild deficits in the arousal/wake drive
system54. Additional pathways with known roles in sleep-wake
biology in model organisms55 include neuronal excitability driven
by variation in the function of potassium channels and glutamate
signaling, EGFR signaling pathway, and opioid signaling.

Table 1 Cluster-specific daytime napping polygenic scores associations with self-reported and accelerometer-derived sleep traits

and other cardiometabolic traits.

Trait, units (sleep trait is a defining feature of cluster #) Cluster 1: Sleep propensity
N loci= 6

Cluster 2: Disrupted sleep
N loci= 5

Cluster 3: Early morning
awakening N loci= 9

Beta SE P Value Beta SE P Value Beta SE P Value

Self-reported sleep traits
Sleep duration, minutes (1) 0.72 0.07 1.8 × 10−23 −0.60 0.11 1.05 × 10−07 0.14 0.08 6.77 × 10−02

Short sleep duration, log-odds (1) −0.12 0.03 1.6 × 10−04 0.34 0.05 1.54 × 10−12 0.07 0.03 1.98 × 10−02

Long sleep duration, log-odds (1) 0.19 0.02 9.0 × 10−17 0.06 0.04 9.05 × 10−02 0.12 0.02 6.03 × 10−07

Ease of awakening, more ease (3) −0.18 0.05 3.3 × 10−04 −0.60 0.08 3.08 × 10−14 0.51 0.05 4.82 × 10−23

Snoring, log-odds −0.02 0.03 5.4 × 10−01 0.14 0.05 5.14 × 10−03 0.16 0.03 1.03 × 10−06

Daytime sleepiness, more sleepiness (1, 2) 0.47 0.03 6.3 × 10−47 0.48 0.05 1.76 × 10−20 0.43 0.03 1.53 × 10−35

Insomnia, log-odds (2) −0.01 0.04 7.7 × 10−01 0.45 0.07 4.89 × 10−11 0.11 0.05 1.27 × 10−02

Chronotype, more morningness (3) −0.23 0.09 6.1 × 10−03 −0.91 0.13 8.48 × 10−12 1.53 0.09 8.44 × 10−66

Obstructive sleep apnea, log-odds (3) −0.04 0.10 6.9 × 10−01 0.53 0.15 4.19 × 10−04 0.53 0.10 1.00 × 10−07

Accelerometer-derived sleep traits
Daytime inactivity duration, minutes (1, 2) 0.85 0.15 1.4 × 10−08 1.04 0.23 7.40 × 10−06 0.54 0.15 4.52 × 10−04

L5 timing (midpoint of the least-active 5 h of the day), minutes (2, 3) 0.24 0.15 1.1 × 10−01 1.69 0.24 1.53 × 10−12 −1.33 0.16 2.36 × 10−17

M10 timing (midpoint of the most-active 10 h of the day), minutes (2, 3) 0.16 0.15 3.1 × 10−01 1.21 0.24 3.03 × 10−07 −1.12 0.16 8.32 × 10−13

Number of sleep bouts, n (1, 2) −0.95 0.15 2.0 × 10−10 0.45 0.23 4.93 × 10−02 0.35 0.15 2.19 × 10−02

Sleep midpoint, minutes (2, 3) 0.05 0.15 7.4 × 10−01 0.88 0.24 2.65 × 10−04 −0.97 0.16 9.72 × 10−10

Sleep duration, minutes (1, 2) 0.99 0.15 5.04 × 10−11 −0.99 0.23 2.49 × 10−05 0.11 0.16 4.97 × 10−01

Sleep efficiency, % (1, 2) 0.49 0.15 1.11 × 10−03 −1.41 0.23 1.59 × 10−09 0.15 0.15 3.26 × 10−01

Sleep duration standard deviation, minutes 0.23 0.15 1.42 × 10−01 1.06 0.24 1.02 × 10−05 0.06 0.16 7.25 × 10−01

Cardiometabolic traits
BMI, SD kg/m2 0.12 0.12 3.36 × 10−01 1.32 0.22 1.76 × 10−09 0.37 0.17 2.76 × 10−02

Waist circumference, SD cm 0.09 0.14 5.43 × 10−01 1.04 0.25 2.50 × 10−05 0.54 0.19 3.92 × 10−03

Waist-hip-ratio adjusted for BMI, SD −0.10 0.14 4.81 × 10−01 0.14 0.23 5.36 × 10−01 0.23 0.19 2.24 × 10−01

LDL cholesterol, SD mg/dL 0.11 0.23 6.20 × 10−01 −0.11 0.42 7.99 × 10−01 −0.45 0.27 9.13 × 10−02

HDL cholesterol, SD mg/dL −0.08 0.21 7.10 × 10−01 −0.61 0.38 1.05 × 10−01 −0.14 0.24 5.75 × 10−01

Triglycerides, SD mg/dL 0.06 0.21 7.89 × 10−01 0.30 0.37 4.26 × 10−01 −0.16 0.24 5.09 × 10−01

Fasting glucose, mmol/L 0.09 0.10 3.58 × 10−01 0.15 0.18 4.23 × 10−01 0.30 0.14 3.64 × 10−02

Fasting insulin, log pmol/L −0.01 0.11 9.58 × 10−01 −0.02 0.19 9.16 × 10−01 0.18 0.14 1.96 × 10−01

HOMAB, log-HOMA −0.06 0.11 5.96 × 10−01 0.22 0.18 2.15 × 10−01 0.14 0.15 3.61 × 10−01

HOMA-IR, log-HOMA −0.09 0.13 4.82 × 10−01 0.30 0.22 1.69 × 10−01 0.37 0.18 4.53 × 10−02

HbA1c, % 0.05 0.11 6.69 × 10−01 −0.28 0.18 1.33 × 10−01 0.04 0.16 8.02 × 10−01

Diastolic blood pressure, mmHg 5.54 0.99 2.37 × 10−08 −3.86 1.55 1.26 × 10−02 −0.47 1.03 6.46 × 10−01

Systolic blood pressure, mmHg 10.67 1.48 4.72 × 10−13 0.90 2.30 6.95 × 10−01 3.61 1.54 1.87 × 10−02

Coronary artery disease, log-odds −0.10 0.32 7.47 × 10−01 2.02 0.45 9.26 × 10−06 0.52 0.37 1.64 × 10−01

Type 2 diabetes, log-odds 0.52 0.61 3.92 × 10−01 1.52 1.06 1.51 × 10−01 0.17 0.72 8.17 × 10−01

Cluster 1: CRHR1, SKOR2, KSR2, ASCL4, RERE, and ECE2.

Cluster 2: SHISA4, ADO, NRXN3, FNDC5, and GS1-259H13.13.

Cluster 3: HCRTR2, ALG10, ALG10B, PATJ, BTBD9, MTNR1B, AGAP1, RP11-6N13.1, and ZBTB5.

Cluster-specific polygenic scores were calculated by summing the products of the daytime napping-increasing effect allele SNP multiplied by the scaled effect from the discovery GWAS using the GTX

package in R.

Effect estimates (beta) are reported per additional daytime napping increasing effect allele.

Summary statistics for outcome traits were obtained from the Sleep Disorder Knowledge Portal (http://sleepdisordergenetics.org/) for sleep traits or publicly available data for cardiometabolic traits.

Study characteristics for cardiometabolic traits are indicated in Supplementary Table 11.

Bolded P values indicate cardiometabolic traits with cluster-specific polygenic score associations P < 0.05.
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Expression of genes under association peaks was most enriched in
the frontal cortex, similar to observations for daytime inactivity
duration19, and other brain regions prominently implicated in
sleep duration, timing, and quality traits23,25,26. Cross-trait clus-
tering of the identified loci suggest at least three underlying
physiologic mechanisms, including (1) propensity for longer
sleep, (2) consequence of poor and disrupted sleep, and (3)
napping concomitant with early sleep timing, potentially reflect-
ing loss of function in arousal pathways. Notably, genetic links
between daytime napping and sleep disorders, e.g., sleep apnea or
restless legs syndrome, may be partially undetected by our study
because of incomplete ascertainment of these disorders in the UK
Biobank and the lack of available summary statistics in public
repositories and databases. We found that the genetic architecture
of daytime napping is shared with cardiometabolic diseases and
traits, consistent with previous epidemiologic associations of
more frequent daytime napping with increased cardiometabolic
risk7–13,56. At the locus level, we observed colocalization of the
daytime napping loci with daytime sleepiness, snoring, chron-
otype, and BMI loci at PNOC and PATJ, suggesting an obesity-
hypersomnolence pathway57. Furthermore, colocalization of
FADS1 gene expression in the frontal cortex with the daytime
napping signal suggests uncharacterized pleiotropic effects of
lipid metabolism on sleep. Positive genome-wide genetic corre-
lations were observed with multiple anthropometric, glycemic,
and cardiometabolic traits, of which several correlations were
attenuated after accounting for BMI. In a large health system-
based clinical cohort, phenome-wide association analyses using a

daytime napping genome-wide polygenic score further supported
associations with obesity and hypertension, in addition to other
cardiometabolic diseases. Although daytime napping shares bio-
logical determinants with other sleep traits, most prominently
daytime sleepiness24, there were several genetic findings unique to
daytime napping. There were 26/123 loci unique to daytime
napping, with several other loci exhibiting stronger relationships
with daytime napping relative to other traits (e.g., KSR2 locus).
The SNP-based heritability of daytime napping (11.9%) was
almost double that previously reported for daytime sleepiness
(6.9%)24, and daytime napping variants were modestly attenuated
in GWAS models accounting for daytime sleepiness. Although
prior analyses related higher BMI to more frequent daytime
sleepiness24, we observed no such relationship with frequency of
daytime napping. Taken together, these data suggest that daytime
napping and daytime sleepiness should be considered related, but
distinct features of the impaired arousal continuum.

A key clinical question is whether habitual daytime napping
has causal effects on cardiometabolic health. Findings from our
Mendelian randomization analyses suggest potentially deleterious
effects of daytime napping frequency on cardiometabolic health,
with effects on increased blood pressure and waist circumference.
A causal effect of more frequent napping with higher blood
pressure is consistent with earlier epidemiologic findings between
self-reported and actigraphy-measured daytime napping and
hypertension58–60. Mechanisms driving this relationship are
unknown but may include detrimental effects of napping on
nighttime sleep quality, or chronic effects related to transient

Fig. 3 Tissue expression, single-cell, and pathway-based enrichment analyses for daytime napping. A MAGMA tissue expression analysis using gene

expression per tissue based on GTEx RNA-seq data for 53 specific tissue types. Significant tissues (P < 9.43 × 10−4) are shown in red. B Significant single-

cell types from single-cell enrichment analyses using human brain datasets in FUMA. C Top pathways determined from analysis using MAGMA gene sets

and Pascal (gene-set enrichment analysis using 1077 pathways from KEGG, REACTOME, BIOCARTA). Significant pathways are shown in red (Padj < 0.05).

All pathway and tissue expression analyses in this figure can be found in tabular form in Supplementary Table 10, Supplementary Data 8, 9.
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evening blood pressure surges following daytime napping61,62.
Similarly, mechanisms underlying the link between daytime
napping and body fat distribution are poorly understood63.
Although results from the MR Egger sensitivity analysis of waist
circumference on daytime napping were inconsistent with find-
ings from our primary MR analysis, the genetic overlap we
demonstrated with BMI indicates that the Egger analysis may be
biased by violation of the “instrument strength independent of
direct effect (INSIDE)” assumption64. Polygenic scores of each
napping subtype showed heterogeneous associations with cardi-
ometabolic outcomes across clusters, including associations with
higher blood pressure for cluster 1, and other adiposity traits for
clusters 2 and 3. Exploring causal relationships with biologically
distinct subtypes of daytime napping will be important to
understand the beneficial or detrimental role of different aspects
of napping biology with disease outcomes.

We leveraged coding variation in HCRTR1 and HCRTR2 to
predict the cardiovascular consequences of long-term pharma-
cologic modulation of orexin receptors. We found no net effect of
these genetic proxies on cardiovascular outcomes, nor on any
ICD-code defined disease outcomes in a PheWAS. These results
predict that pharmacologic agonism or antagonism of orexin
receptors therapies is unlikely to increase the risk of

cardiovascular disease. An association of HCRTR1 and HCRTR2
with blood pressure was observed, however, the direction of effect
differed for the two variants. This suggests a neutral net blood
pressure effect of dual orexin receptor antagonism, and more
broadly suggests pleiotropic effects of these proteins on blood
pressure regulation. However, it is possible that these genetic
variants do not proxy peripheral effects of HCRTR1 and
HCRTR2 inhibition (e.g., bone marrow)49. The application of
PheWAS to study on-target side effects of sleep medications sets
the stage for future use of these genetic proxies to understand the
health consequences of orexin receptor modulation.

Our analyses are limited by the crude assessment of daytime
napping frequency via questionnaire with no information on
duration or timing. Our effort to partly validate the specificity of
our discovered loci from self-report with an objectively deter-
mined daytime napping behavior from accelerometer was likely
limited as a result of phenotypic differences between self-report
and accelerometer (self-report was based on daytime napping
frequency whereas accelerometer measures were based on day-
time inactivity duration in the absence of sleep diaries; Pearson
correlation r2= 0.17), relatively smaller sample size in the
accelerometer subsample (n= 85,670), or lapsed time between
measurements as the accelerometer was worn between 2.8 and

Fig. 4 Genome-wide genetic architecture of daytime napping correlations and associations with diseases and traits. A Shared genetic architecture

between daytime napping and cardiometabolic diseases and traits. Linkage disequilibrium (LD) score regression estimates of genetic correlation (rg) were

obtained by comparing genome-wide association estimates for daytime napping (without and with BMI adjustment) with summary statistics estimates

from 257 publicly available genome-wide association studies. Blue indicates positive genetic correlation and red indicates negative genetic correlation; rg

values are displayed for significant correlations. Larger colored squares correspond to more significant P values. Asterisk denotes significant false discovery

rate (FDR) corrected P values. Full genetic correlations for all 257 traits can be found in Supplementary Data 10. B Manhattan plot of phenome-wide

association findings for daytime napping genome-wide polygenic score in Mass General Brigham Biobank (n= 23,561). The x-axis is color-coded phecodes

organized by broad disease categories and the y-axis is P value of association (−log10 P). The horizontal red line depicts phenome-wide significance using

Bonferroni correction for all tested diseases (951 diseases), and the horizontal blue line depicts phenome-wide significance using FDR correction. Upward

arrows denote positive associations (OR > 1), and downward arrows denote inverse associations (OR < 1). Full results for all 951 diseases can be found in

Supplementary Data 11. C Cross-sectional association between quartile 10 and quartile 1 (reference group) of daytime napping genome-wide polygenic

score and essential hypertension, obesity, and chronic nonalcoholic liver disease in the Mass General Brigham Biobank (n= 23,561). Error bars represent

the 95% confidence intervals for association.
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Fig. 5 Mendelian randomization supports a causal effect of daytime napping on higher blood pressure and waist circumference. The MR estimates

were calculated using the random-effects inverse-variance weighted method and represent the effect of a one-unit increase in napping category (never,

sometimes, usually). Sample sizes reflect either the total sample size (for continuous outcomes) or number of cases and controls (for binary outcomes).

A IVW effect estimates for more frequent daytime napping on cardiometabolic outcomes and risk factors. A unit increase in the adiposity and blood

pressure measurement represents a standard deviation increase in the corresponding trait. Black boxes show effect estimates, and surrounding lines

display 95% confidence intervals. All P values are two-sided. B IVW effect estimates for the effect of adiposity traits on daytime napping frequency. Black

boxes show effect estimates, and surrounding lines display 95% confidence intervals. All P values are two-sided. * significant at Bonferroni-corrected alpha

threshold and robust in sensitivity analyses. BMI body-mass index, CAD coronary artery disease, CI confidence interval, DBP diastolic blood pressure,

HOMA homeostatic model assessment of insulin resistance, HOMAB homeostasis model assessment of β-cell function, LDL low-density lipoprotein, HDL

high-density lipoprotein, OR odds ratio, SBP systolic blood pressure, SNP single-nucleotide polymorphism, T2DM type 2 diabetes mellitus, WC waist

circumference, WHRadjBMI waist-to-hip ratio adjusted for BMI.
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Fig. 6 Cardiovascular risk factor and disease associations of missense variants in HCRTR1 (rs2271933) and HCRTR2 (rs2653349), which encode

targets of Suvorexant, an FDA-approved sleep medication with an unknown cardiovascular safety profile. Sample size either reflects the total number

of subjects (for continuous traits), or the number of cases and controls (for binary traits) that were included in each of the genome-wide association

studies. All associations are oriented to the napping-increasing allele of the variants. Additional details regarding the included studies are provided in

Supplementary Table 13 and Supplementary Data 13. Black boxes show Mendelian randaomization effect estimates and surrounding lines display 95%

confidence intervals. BMI body-mass index, CI confidence interval, CVD cardiovascular disease, HDL high-density lipoprotein cholesterol, LDL low-density

lipoprotein cholesterol, OR odds ratio, WMH white matter hyperintensities, WHR waist-to-hip ratio.
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9.7 years after study baseline. Replication of most loci and the
specific association with daytime activity duration, but not other
accelerometer measures, however, support our findings. The low
participation rate of the UK Biobank at 5.5% may have intro-
duced selection bias. However, consistency of the genetic signals
between the UK Biobank and 23andMe, an independent study
with different demographic, and various findings with the Mass
General Brigham Biobank, an independent clinical cohort, sup-
ports the generalizability of our findings. In addition, the iden-
tification of variants in pathways with known relevance to sleep
(e.g., HCRTR1 and HCRTR2) suggests that the GWAS is cap-
turing true biological signal. Nonetheless, continued evaluation in
other demographics, including age-groups and ancestries, is
necessary. It remains possible that rare and structural variation
have an important contribution to the genetic architecture of
daytime napping, however, these data were not tested in the
present analysis. In addition, our analysis was limited in scope to
cardiometabolic health, and future studies should evaluate the
impact of daytime napping on other health outcomes including
mental health. Finally, despite consistency in Mendelian rando-
mization estimates, these analyses require strong, unverifiable
assumptions for the determination of causality and therefore
require confirmation in randomized controlled trials of sleep
interventions. Further dissection of the heterogeneity of daytime
napping is necessary to determine which types of daytime nap-
ping behavior are most detrimental to cardiometabolic health. In
addition, future analyses investigating sex heterogeneity in day-
time napping frequency is warranted. In summary, our genetic
analyses contribute important insight into the biology and car-
diometabolic consequence of habitual daytime napping in adults.

Methods
UK Biobank. The UK Biobank is a large population-based study established to
facilitate detailed investigations of the genetic and lifestyle determinants of a wide
range of phenotypes65. Data from >500,000 participants living in the United
Kingdom who were aged 40–69 and living <25 miles from a study center parti-
cipated in the study between 2006 and 2010. Extensive phenotypic data were self-
reported upon baseline assessment by participants using touchscreen tests and
questionnaires and at nurse-led interviews. The UK Biobank study was approved
by the National Health Service National Research Ethics Service (ref. 11/NW/0382),
and all participants provided written informed consent to participate. The current
study was conducted under UK Biobank application 6818.

Daytime napping, covariates, and other self-reported and objectively mea-

sured sleep traits. At baseline assessment, all study participants reported their
daytime napping frequency (n= 501,646). Participants were asked Do you have a
nap during the day?, with responses Never/rarely, Sometimes, Usually, Prefer not
to answer. Responses were treated as a continuous variable in the GWAS. Prefer
not to answer responses were set to missing. Participants further self-reported age,
gender, sleep duration, chronotype, insomnia symptoms, sleep apnea, smoking,
and overall health. Weight, height, and waist circumference were measured and
body-mass index (BMI) was calculated as weight (kg)/height2 (m2). Systolic and
diastolic blood pressure were measured at baseline and the average of two auto-
mated readings was used. Socio-economic status was represented by the Townsend
deprivation index based on national census data immediately preceding partici-
pation in the UK Biobank. Assessment season was determined from baseline
assessment visit date and categorized as 1 for winter [January–March], 2 for spring
[April–June], 3 for summer [July–September], and 4 for fall [October–December],
as previously conducted66. Participants rated their overall health in response to the
question, In general how would you rate your overall health?, with responses
excellent, good, fair, poor, do not know, and prefer not to answer. Cases of sleep
apnea were determined from self-report during nurse-led interviews or health
records using International Classification of Diseases (ICD)-10 codes for sleep
apnea (G47.3). For each participant, a modified STOP-BANG risk scale21 we have
previously developed for sleep apnea in the UK Biobank to account for undiag-
nosed sleep apnea, was calculated67. The modified STOP-BANG risk scale for sleep
apnea is missing the question, Has anyone observed you stop breathing during
sleep? and replacing neck circumference with waist circumference dichotomized to
the threshold for metabolic syndrome. Insomnia symptoms were ascertained from
self-report to the question, Do you have trouble falling asleep at night or do you
wake up in the middle of the night? with responses never/rarely, sometimes,
usually, prefer not to answer. Participants who responded usually were set as
insomnia cases, and remaining participants were set as controls. Smoking status

(never, former, current) was further self-reported. Missing covariates were imputed
by using sex-specific median values for continuous variables (i.e., BMI and
Townsend index).

A subset of 103,711 participants from the UK Biobank wore actigraphy devices
(Axivity AX3) for up to 7 days, ~2.8–9.7 years after their study baseline visits.
Details on quality control and data processing have been described previously19,68.
The following sleep measures were derived by processing raw accelerometer data:
daytime inactivity duration, sleep duration, sleep efficiency, number of sleep bouts
within the sleep period time window, sleep midpoint, midpoint of the least-active 5
h of the day (L5 timing), and midpoint of the most-active 10 h of the day (M10
timing). Specifically, daytime inactivity duration was estimated by the total daily
duration of estimated bouts of inactivity that fell outside of the sleep period time
window. These inactivity bouts are any inactivity lasting ≥30 min. Inactivity bouts
that are <60 min apart are combined to form inactivity blocks. This measure
captures very inactive states such as napping and wakeful rest but not inactivity
such as sitting and reading or watching television, which are associated with a low
but detectable level of movement19.

Genome-wide association study for daytime napping in UK Biobank. Geno-
typing was performed by the UK Biobank, and genotyping, quality control, and
imputation procedures are described in detail previously69. In brief, blood, saliva,
and urine were collected from participants, and DNA was extracted from the buffy
coat samples. Participant DNA was genotyped on two arrays, UK BiLEVE and UK
Biobank Axiom with >95% common content and genotypes for ~800,000 auto-
somal SNPs were imputed to two reference panels. Genotypes were called using
Affymetrix Power Tools software. Sample and SNPs for quality control were
selected from a set of 489,212 samples across 812,428 unique markers. Sample
quality control (QC) was conducted using 605,876 high-quality autosomal markers.
Samples were removed for high missingness or heterozygosity (968 samples) and
sex chromosome abnormalities (652 samples). Genotypes for 488,377 samples
passed sample QC (~99.9% of total samples). Marker-based QC measures were
tested in the European ancestry subset (n= 463,844), which was identified based
on principal components of ancestry. SNPs were tested for batch effects (197 SNPs/
batch), plate effects (284 SNPs/batch), Hardy–Weinberg equilibrium (572 SNPs/
batch), sex effects (45 SNPs/batch), array effects (5417 SNPs), and discordance
across control replicates (622 on UK BiLEVE Axiom array and 632 UK Biobank
Axiom array; P value <10−12 or <95% for all tests). For each batch (106 batches
total) markers that failed at least one test were set to missing. Before imputation,
805,426 SNPs pass QC in at least one batch (>99% of the array content).

Population structure was captured by principal component analysis on the
samples using a subset of high-quality (missingness < 1.5%), high-frequency SNPs
(>2.5%) (~100,000 SNPs) and identified the subsample of white British descent. In
addition to the calculated population structure by the UK Biobank, we locally
further clustered subjects into four ancestry clusters using K-means clustering on
the principal components, identifying 453,964 subjects of European ancestry. For
the current analysis, individuals of non-white ethnicity were excluded to limit
confounding effects. The UK Biobank centrally imputed autosomal SNPs to
UK10K haplotype, 1000 Genomes Phase 3, and Haplotype Reference Consortium
(HRC). Autosomal SNPs were pre-phased using SHAPEIT3 and imputed using
IMPUTE4. In total ~96 million SNPs were imputed. Related individuals were
identified by estimating kinship coefficients for all pairs of samples, using only
markers weakly informative of ancestral background.

Genetic association analysis for daytime napping (never/rarely, sometimes, and
always) was performed in related subjects of European ancestry with self-reported
daytime napping data (n= 452,633) using BOLT-LMM70 linear mixed models and
an additive genetic model adjusted for age, sex, 10 principal components of
ancestry, genotyping array and genetic correlation matrix with a maximum per
SNP missingness of 10% and per sample missingness of 40%. We used a SNP
imputation quality threshold of 0.80 and a MAF threshold of 0.001. X chromosome
data were imputed and analyzed separately using the same analytical approach in
BOLT-LMM as was done for analysis of autosomes. A rare signal at IGSF1 on the X
chromosome driven by one rare variant (rs189568347; MAF= 0.006) was
identified, potentially attributed to genotyping artifact or false-positive association
and therefore was excluded.

Trait heritability was calculated as the proportion of trait variance due to
additive genetic factors measured in this study using BOLT-REML70, to leverage
the power of raw genotype data together with low-frequency variants (MAF ≥
0.001). Lambda inflation (λ) values were calculated using GenABEL in R, and
estimated values were consistent with those estimated for other highly polygenic
complex traits. Furthermore, follow-up GWAS for daytime napping were
conducted using BOLT-LMM70 and included sensitivity analyses restricted to
participants self-reporting excellent or good overall health51 (n= 338,764), GWAS
adjusting for BMI in addition to baseline adjustments, GWAS adjusting for BMI
and BMI × BMI in addition to baseline adjustments, to account for sleep apnea,
GWAS excluding participants with diagnosed sleep apnea (n= 5553 excluded) and
GWAS adjusting for a modified STOP-BANG risk scale21,67 in addition to baseline
adjustments, GWAS adjusting for self-reported daytime sleepiness, and sex-
stratified GWAS (male n= 207,108; female n= 245,525).

Distinct genomic risk loci were defined using FUMA v1.3.3 on the basis of
genome-wide significance (P < 5 × 10−8) and pairwise independence (r2 < 0.6)
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within a 1Mb window. Annotation of the lead variants, including predicted
sequence consequence, was obtained from the FUMA output. We determined the
PICS probability for each lead variant being the causal variant at the locus71.

For the 123 lead variants, we tested for gene-by-season interaction in PLINK72

among unrelated participants of white British ancestry (n= 337,409) using linear
regression and an additive genetic model. Interaction analyses were adjusted for
age, sex, 10 principal components of ancestry, genotyping array, and season to
determine SNP interaction with season on daytime napping. In addition, for each
lead variant, corresponding summary statistics for other self-reported and
accelerometer-derived sleep measures were obtained from the Sleep Disorder
Knowledge Portal (http://sleepdisordergenetics.org/). As earlier UK Biobank
GWASs were restricted to the HRC-imputed variants, if the lead signal was
unavailable, a proxy SNP (r2 > 0.8) was used instead.

23andMe, Inc. replication. 23andMe, Inc. is a personal genetics company. DNA
extraction and genotyping were performed on saliva samples by National Genetics
Institute, a CLIA licensed clinical laboratory and a subsidiary of Laboratory Cor-
poration of America. Samples were genotyped on one of five genotyping platforms.
Samples that failed to reach 98.5% call rate were re-analyzed. A single unified
imputation reference panel was created by combining the May 2015 release of the
1000 Genomes Phase 3 haplotypes73 with the UK10K imputation reference panel74.
For each chromosome, Minimac375 was used to impute the reference panels
against each other, reporting the best-guess genotype at each site. Ancestry was
determined through an analysis of local ancestry76. A principal component analysis
was performed independently for each ancestry, using ~65,000 high-quality gen-
otyped variants present in all five genotyping platforms. In addition, a maximal set
of unrelated individuals was chosen for each analysis using a segmental identity-by-
descent estimation algorithm. All individuals included in the analyses provided
informed consent and answered surveys online according to human subject pro-
tocol, which was reviewed and approved by Ethical & Independent Review Services,
a private institutional review board (http://www.eandireview.com).

For the present daytime napping replication, we restricted analyses to 541,333
participants of European ancestry with survey responses to a question on frequency
of daytime napping. Participants were asked, How many days per week do you take
naps during the day? (15 min or more) with a response on a continuous scale.
Responses in days per week were scaled to never/rarely if 0 or 1 (n= 267,271),
sometimes if 2 to 5 (n= 232,868), and usually if 6 or 7 (n= 41,194) to more closely
resemble the UK Biobank categories. Replication for the 123 daytime napping loci
or proxy for lead SNP (r2 > 0.80) were generated through linear regression (using
an additive model) of the phenotype against the genotype, adjusting for age, sex,
the first four principal components, and a categorical variable representing
genotyping platform. Furthermore, meta-analysis of UK Biobank and 23andMe
associations for the daytime napping loci was performed using METAL77 by
weighting effect-size estimates using the inverse of the corresponding squared
standard errors (version released 25 March 2011).

Colocalization. To identify genomic regions which harbor causal variants that
influence multiple sleep traits, we performed multi-trait colocalization using the
Hypothesis Prioritization Colocalization (HyPrColoc) package28. This package
performs multi-trait colocalization using a computationally efficient algorithm that
facilitates colocalization of large numbers of traits. To identify clusters of coloca-
lized traits, we implemented the branch and bound divisive clustering algorithm
using GWAS summary statistics for the following sleep traits in the UK Biobank:
sleep duration (n= 446,118)26, insomnia symptoms (n= 129,270 cases/108,357
controls)25, chronotype (n= 449,734)23, snoring (n= 421,466), ease of awakening
(n= 451,872), and daytime sleepiness (n= 452,071). Although these GWAS were
conducted in the UK Biobank, the algorithm is robust to inclusion of studies with
overlapping participants28. Colocalization analysis was performed in pre-defined,
approximately independent LD blocks across the genome (1.6 Mb on average)78.
We used the default variant-level prior probability of a SNP associated with a trait
of p1= 1 × 10−4 (prior probability of a SNP being associated with one trait) and y
= 0.98 (1− prior probability of a SNP being associated with an additional trait
given that the SNP is associated with at least 1 other trait). With these settings, 1 in
200,000 variants are expected to be causal for two traits. Consistent with prior
work28, we conservatively set both the regional and alignment probabilities to
0.80 so that a cluster of colocalized traits would only be identified if PRPA > 0.64.
The outputs from the algorithm include: (i) colocalized traits, (ii) the posterior
probability of colocalization, (iii) the regional association probability (a measure of
degree of shared association, analogous to a phenome-wide association study), (iv)
the candidate causal variant, and (v) the proportion of the posterior probability of
colocalization explained by the genetic variant (interpreted as a multi-trait fine-
mapping probability). We report loci with posterior probability (pp) for colocali-
zation >0.7, as this cutoff corresponds to a false discovery rate of <5%28.

We performed two additional colocalization analyses. Using summary statistics
from a meta-analysis (n ~ 700,000) of UK Biobank and the GIANT consortium79,
we performed genome-wide colocalization of naps with BMI. To link gene
expression to the naps associations, we performed colocalization for all genes
located within 1 MB of the top signals identified in the naps GWAS. We used
summary statistics for expression quantitative trait loci (eQTL) associations
identified in the Genotype-Tissue Expression project v780. We prioritized gene

expression in the frontal cortex, which was identified by FUMA analysis of GTEX
v7 to be the most highly enriched tissue for the naps signals.

Conditional analysis. To determine independence of the daytime sleepiness and
napping association signals at the HCRTR2 locus, we applied the GCTA COJO
algorithm to perform conditional analyses81. We used the UK Biobank sample as
the LD reference panel and considered a 1Mb window surrounding the lead
HCRTR2 SNP in the napping GWAS (position 6:55142337). We conditioned on
rs2653349 using the --cojo-cond function.

Bayesian nonnegative matrix factorization (bNMF) clustering and associa-

tion. We applied the bNMF clustering algorithm42,82,83 with the aim of collapsing
identified naps loci into subgroups of variants based on patterns of association with
other sleep traits. The inputs for the bNMF algorithm were the set of the 122 naps
GWAS signals (rs10639111 was not included due to missing proxy SNP in asso-
ciation analyses for other sleep traits) oriented to naps-increasing alleles and
corresponding association statistics for 17 self-reported and accelerometer-derived
sleep traits from the UK Biobank. We generated standardized effect sizes for
variant-trait associations from GWAS by dividing the estimated regression coef-
ficient by the standard error, using the UK Biobank summary statistic results
(variant-trait association matrix [122 by 17]). To enable an inference for latent
overlapping modules or clusters embedded in variant-trait associations, we mod-
ified the existing bNMF algorithm to explicitly account for both positive and
negative associations as was done previously42,83.

The defining features of each cluster were determined by the most highly
associated traits, which is a natural output of the bNMF approach. bNMF
algorithm was performed in R for 1000 iterations with different initial conditions,
and the maximum posterior solution at the most probable number of clusters was
selected for downstream analysis (i.e., k= 3 for 63% of 1000 iterations in this
analysis, with those same 3 clusters present in an additional 34% of iterations with
k= 4). The results of the bNMF algorithm provide cluster-specific weights for each
variant and trait. Variants and traits defining each cluster were based on a cutoff of
weighting of 1.09, which was determined by the optimal threshold to define the
beginning of the long-tail of the distribution of cluster’s weights across all clusters
(top 5% were considered to be significant).

We compared our clusters from the bNMF algorithm using hierarchical cluster
analysis, as was previously conducted for daytime sleepiness24. Briefly, the analysis
uses the pairwise Euclidean distance between the 122 loci z-scores with the 17 self-
reported and accelerometer-derived sleep traits.

Functional annotations of SNPs and pathway and tissue-enrichment analyses.
Functional annotation was carried out using ANNOVAR in FUMA84. Missense
variants of interest were further mapped to protein domains using UniProt85.
Pathway analysis was conducted using MAGMA45gene-set analysis in FUMA44,
which uses the full distribution of SNP P values and is performed for curated gene
sets and GO terms obtained from MsigDB (total of 15,481 pathways). A significance
threshold was set after Bonferroni correction accounting for all pathways tested
(P < 0.05/15,481). Gene-based analysis was also performed using Pascal43. Pascal
gene-set enrichment analysis uses 1077 pathways from KEGG, REACTOME,
BIOCARTA databases, and a significance threshold was set after Bonferroni cor-
rection accounting for 1077 pathways tested (P < 0.05/1077). We performed single-
cell enrichment analysis (Cell Type function) in FUMA44 using our MAGMA gene
analysis result and multiple human-specific single-cell expression datasets86.

Genetic correlations with publicly available traits and other sleep traits.
Genome-wide genetic correlation analysis were calculated using the implementation
of cross-trait LD Score Regression (LDSC)87–89 in LDHub88. This was conducted
using all SNPs from the UK Biobank discovery GWAS found in HapMap3 and
included publicly available data from 257 published genome-wide association stu-
dies. LDSC estimates genetic correlation between two traits from summary statistics
(ranging from −1 to 1) using the fact that the GWAS effect-size estimate for each
SNP incorporates effects of all SNPs in LD with that SNP, SNPs with high LD have
higher statistics than SNPs with low LD, and a similar relationship is observed when
single study test statistics are replaced with the product of z-scores from two studies
of traits with some correlation. Significance was considered at the Bonferroni cor-
rection for all tests performed (P < 0.05/257 tests). In addition to publicly available
summary statistics from LDHub, we also used publicly available summary statistics
from earlier UK Biobank GWASs for self-reported and accelerometer-derived sleep
traits from the Sleep Disorder Knowledge Portal (http://sleepdisordergenetics.org/)
and computed genome-wide genetic correlations using LDSC87–89. Finally, we
calculated genetic correlations between the sex-specific napping GWAS to deter-
mine the similarity in male and female genetic architecture.

Phenome-wide association study in the Mass General Brigham Biobank. The
Mass General Brigham Biobank (formerly Partners Biobank) is a hospital-based
cohort study from the Mass General Brigham healthcare network in Boston, MA
with electronic health record (EHR) and genetic data. Recruitment for the Mass
General Brigham Biobank launched in 2010 and is active at participating clinics at
Brigham and Women’s Hospital, Massachusetts General Hospital, Spaulding
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Rehabilitation Hospital, Faulkner Hospital, McLean Hospital, Newton-Wellesley
Hospital, and North Short Medical Center. All patients provided consent upon
enrollment and the study protocol was approved by Mass General Brigham Insti-
tutional Review Board. To date (07/2019), a total of 104,965 subjects were consented.

Genomic data for 30,683 participants were generated with the Illumina Multi-
Ethnic Genotyping Array. The genotyping data were harmonized, and quality
controlled with a three-step protocol, including two stages of genetic variant
removal and an intermediate stage of sample exclusion. The exclusion criteria for
variants were: (1) missing call rate ≥0.05, (2) MAF < 0.001, and (3) deviation from
Hardy–Weinberg equilibrium (P < 10−6). The exclusion criteria for samples were:
(1) sex discordances between the reported and genetically predicted sex, (2)
missing call rates per sample ≥0.02, (3) subject relatedness (pairs with estimated
identity-by-descent ≥0.125, from which we removed the individual with the highest
proportion of missingness), and (4) population structure showing more than four
standard deviations within the distribution of the study population, according to
the first four principal components. Phasing was performed with SHAPEIT290 and
then imputations were performed with the Haplotype Reference Consortium
Panel91 using the Michigan Imputation Server75. Written consent was provided by
all study participants. Approval for analysis of Biobank data was obtained by Mass
General Brigham IRB, protocol #2018P002276.

Participant ancestry was determined using TRACE92 and the Human Genome
Diversity Project (HGDP)93 as a reference panel. Principal component analysis
outliers were determined by using a principal component analysis projection of the
study samples onto the HGDP reference samples, and subsequently excluded from
analysis. To correct for population stratification, we computed principal
components using TRACE92 in the subset with genetically European ancestry.
Furthermore, sample relatedness was determined using PLINK72, and subsequently
one sample from each related pair was excluded.

In aggregate, participants had a total of 7,422,726 ICD-9 and ICD-10 diagnostic
codes corresponding to 784,878 instances of phecodes with at least 2 distinct
diagnostic codes. The most prevalent codes were 401.1 (essential hypertension: n=
11,397 cases) and 745 (pain in joint: n= 10,333 cases). A total of 951 distinct
phecodes had at least 100 cases in the biobank.

We generated a genome-wide polygenic score (GPS) for each individual by
summing naps-increasing risk alleles across the genome, each weighted by the beta
estimate for that allele from the discovery GWAS, using PRSice94. Of the
13,304,132 SNPs, 18,310 duplicated variants and 1,856,569 ambiguous variants
were excluded, and a total of 11,429,253 SNPs remained. At each site, clumped
SNPs based on association P value (the variant with the smallest P value within a
250 kb range) were retained and all those in linkage disequilibrium, r2 > 0.1, were
removed. Following LD clumping, the GPS included 995,188 SNPs.

A total of 20,054,591 physician diagnoses were obtained for genotyped
participants (n= 30,683) as determined from EHR. Same-day duplicated diagnoses
(n= 8,265,731), non-ICD-9/10 codes (n= 466,866), codes from participants of
non-European ancestry (n= 2,968,741) were removed, and a total of 8,353,253
ICD-9/10 diagnoses were kept in the analysis. Similar ICD-9 and ICD-10 were
consolidated and then further collapsed to 1857 phecodes based on clinical
similarity95. A total of 88.9% of the 8,353,253 ICD-9/10 codes mapped to a
phecode. Participants with at least 2 codes for a specific phecode were considered
cases for that respective category, whereas participants with no relevant code for
that category were considered controls. Codes with at least 100 prevalent cases were
kept in the analysis. The association between the daytime napping GPS and each of
951 disease code was tested using logistic regression with adjustments for age, sex,
genotyping array, and 5 principal components, using the PheWAS R package96.
Phenome-wide significance was considered at the Bonferroni threshold for 951
tested diseases outcomes and a less stringent FDR correction.

Daytime napping and cluster-specific polygenic score associations with car-

diometabolic and sleep traits. We tested associations between daytime napping
polygenic scores comprised of all variants (123 loci) and sub-scores restricted to
cluster-specific variants (3 clusters) with a range of cardiometabolic traits using
publicly available data (listed in Supplementary Table 11) and other sleep traits (for
cluster-specific polygenic scores only) using data from the Sleep Disorder
Knowledge Portal. We generated weighted polygenic scores calculated by summing
the products of the daytime napping-increasing allele SNP multiplied by the scaled
effect from the discovery GWAS using the GTX package in R97. Results are effect
estimates per additional effect allele for more daytime napping.

Mendelian randomization. Mendelian randomization (MR) can be conceptualized
as a naturally randomized experiment whereby individuals are randomized to more
or less liability for an exposure on the basis of their inherited genetic variation. This
approach rests on the random assortment of alleles at gametogenesis, which sub-
stantially reduces the effect of confounding on causal estimates, and eliminates the
potential for reverse causal effects of outcomes on the exposure. We created a
genetic instrument from the lead daytime napping variants. These variants were
further clumped at a between-SNPr2 < 0.01. To facilitate analyses, we utilized the
TwoSampleMR package98 to extract and harmonize data from outcome GWAS on
a range of cardiometabolic traits of interest. For all cardiometabolic traits, we
utilized two-sample MR, where the outcome GWAS did not overlap with the naps
GWAS. When variants were not in the outcome dataset, we identified variants in

linkage disequilibrium with the top variant at r2 > 0.80 using the 1000 G European
reference data integrated into MRBase. Datasets were harmonized to match effect
and reference alleles, and we attempted to match strand ambiguous alleles by allele
identity and frequency when possible (MAF < 0.42). An analogous approach was
taken for reverse MR of adiposity measures (waist circumference, WHRadjBMI,
and BMI) on daytime napping.

In the case of systolic blood pressure (SBP) and diastolic blood pressure (DBP),
for which independent, non-overlapping summary statistics are not readily
available, we undertook a split-sample MR approach99 whereby we randomly split
the UK Biobank sample of unrelated participants of White British ancestry into
two subsets. We then re-estimated genetic associations of napping with the top
variants identified in the discovery GWAS within each subset, as well as the
association of those variants with SBP and DBP within each subset. In order to
reduce regression dilution bias, SBP and DBP were averaged over two
measurements and adjusted for self-reported antihypertensive use as done in prior
GWAS100. We then performed MR utilizing exposure and outcome associations
measured in different strata (e.g., napping associations in stratum 1 on diastolic
blood pressure in stratum 2). MR effect estimates of daytime napping on blood
pressure were combined across the two estimates using fixed-effects meta-analysis,
and standardized using the sample standard deviations for SBP (11.25 mmHg) and
DBP (20.65 mmHg) in the UK Biobank. As a sensitivity analysis, we used daytime
napping variant association statistics from the 23andMe replication sample as the
exposure, and a meta-analysis including UK Biobank and the International
Consortium for Blood Pressure (n ~ 750,000) as the outcome48.

After data harmonization, we used the random-effects inverse-variance
weighted (IVW) method as the main analytic approach. To account for multiple
comparisons, we used a conservative Bonferonni-adjusted alpha threshold (0.05/19=
0.0026). As the IVW approach assumes no unbalanced horizontal pleiotropy, we
utilized a range of sensitivity analyses robust to violations of this assumption: MR
Egger101, the simple and weighted median102, MR-PRESSO103, and multivariable
Mendelian randomization. MR Egger models a pleiotropy parameter by fitting an
intercept term and adjusts the causal estimates accordingly. Estimation of this
additional parameter greatly reduces power in the Egger regression. The median
estimators yield valid causal effects provided that <50% of the information comes
from invalid instrumental variables. Regression-based multivariable MR analyses
were performed to adjust the napping proxies for their associations with insomnia
and sleep duration25,26,104. We considered consistent effects across multiple
methods to strengthen causal evidence.

Phenome-wide association study of HCRTR1 and HCRTR2. To assess whether
missense variants in HCRTR1 and HCRTR2 (rs2271933 and rs2653349) associated
with cardiovascular outcomes and risk factors, we extracted variant associations
from the largest available GWAS for these phenotypes (Supplementary Table 13).
As a broader investigation, we used data from a phenome-wide association study of
1402 ICD-code based phenotypes in UK Biobank50, accessed through the following
web browser: http://pheweb.sph.umich.edu/SAIGE-UKB/ (Supplementary Data 13).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary GWAS statistics are publicly available at The Sleep Disorder Knowledge Portal
webpage: http://sleepdisordergenetics.org/.
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