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ABSTRACT 

Non-typhoidal Salmonella (NTS) and Campylobacter play a major role in foodborne illness 

caused by the consumption of food contaminated by pathogens worldwide. A comprehensive 

understanding of the genetic factors that increase the survival fitness of these foodborne 

pathogens will effectively help us formulate mitigation strategies without affecting the nutrition 

ecology. The objective of this study was to identify the genetic determinants of Salmonella and 

Campylobacter that are required for fitness under various in vitro conditions. For the purpose, we 

used a high throughput Transposon sequencing (Tn-seq) that utilizes next generation sequencing 

(NGS) to screen hundreds of thousands of mutants simultaneously. In Chapter 1, we reviewed 

the technical aspects of different Tn-seq methods along with their pros and cons and compressive 

summary of recently published studies using Tn-seq methods. In Chapter 2, we exposed complex 

Tn5 library of Salmonella Typhimurium 14028S (S. Typhimurium) to the mimicked host 

stressors in vitro conditions. Such as low acidic pH (pH 3) found in the stomach, osmotic (3% 

NaCl) and short chain fatty acid (SCFAs, 100 mM Propionate) found in intestine, and oxidation 

(1mM H2O2) and starvation (12-day survival in PBS) found in macrophage. There was an 

overlapping set of 339 conditionally essential genes (CEGs) required by S. Typhimurium to 

overcome these host stressors. In Chapter 3, we screened of S. Typhimurium Tn5 library for 

desiccation survival. Salmonella spp. is the most notable and frequent cause of contamination in 

low-water activity foods. We identified 61 genes and 6 intergenic regions required for fitness 

during desiccation stress. In Chapter 4, the essential genome of Campylobacter jejuni (C. jejuni) 

NCTC 11168 and C. jejuni 81-176 was investigated using Tn-seq. We identified 166 essential 

protein-coding genes and 20 essential transfer RNA (tRNA) in C. jejuni NCTC 11168 which 

were intolerant to Tn5 insertions during in vitro growth. The reconstructed library C. jejuni 81-



  

 
 

176 had 384 protein coding genes with zero Tn5 insertions. The genetic determinants Salmonella 

and Campylobacter identified in this study have high potential to be explored as food safety 

intervention, therapeutic and vaccine target to curb the spread of the foodborne pathogens 

making world a safer place.  
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INTRODUCTION 

Foodborne illness is an illness resulting from the consumption of food contaminated with 

harmful microbes or chemical substances. Foodborne illness causes more than 250 diseases 

ranging from diarrhea to cancers where most of illness result from foodborne pathogens like 

bacteria, viruses, and parasites. Many foodborne pathogens are present in healthy animal usually 

in intestine that contaminate food either by direct contact or cross-contamination with intestinal 

contents during any point in the farm-to-table continuum. Raw food of animal origin i.e. raw 

meat and poultry, raw eggs, unpasteurized milk, raw shellfish, raw fruits, and vegetables are the 

most likely to be contaminated with foodborne pathogens. Despite the efforts to subdue the 

foodborne illness, this common and costly but yet preventable disease, continues to pose 

significant threat to human health and economy globally. 

Recently, World Health Organization (WHO) Foodborne Disease Burden Epidemiology 

Reference Group (FERG) estimated 600 million illnesses and 420,000 deaths due to foodborne 

disease worldwide in 2010 where diarrheal foodborne illness, caused by bacteria, virus and 

protozoa were solely responsible more than 50% of deaths (230,000). Campylobacter spp. and 

norovirus were the most prominent cause of diarrheal foodborne illness while non-typhoidal 

Salmonella enterica (NTS) was the major cause of diarrheal death. Globally, 18 million 

Disability Adjusted Life Years (DALYs),  a measure that calculates overall burden of disease 

expressed as the number of years lost because of ill-health, disability or early death, were 

attributed to foodborne pathogens especially NTS and enteropathogenic  Escherichia coli (World 

Health Organization 2015). 
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In the United States (US), foodborne pathogens acquired domestically is estimated to cause 9.4 

million foodborne illness, 55,961 hospitalizations, and 1,351 deaths. Each year 1 in 6 people gets 

sick due to the consumption of contaminated food and water. The most common cause of 

foodborne illness was norovirus (58%) followed by NTS (11%), Clostridium perfringens (10%), 

and Campylobacter spp. (15%) whereas NTS was the leading cause of death (Scallan et al. 

2011). NTS and Campylobacter are among the leading cause of foodborne illnesses resulting in 

hospitalization and death. Furthermore, foodborne illness acquired in the US places over 15.5 

billion economic burden on public annually (Hoffmann 2015). Cost of treatment varies greatly 

per case ranging from the $202 for Cyclospora cayetanensis to $3.3 million for Vibrio vulnificus 

(Hoffmann, Maculloch, and Batz 2015). 

Controlling of these foodborne bacterial pathogens become more challenging through additional 

aspects of the ecology of the foodborne pathogens, including antibiotic resistance, cross-

protection, and stress adaptation. Antibiotic resistance represents a major public health problem 

and is a threat to management and treatment of bacterial disease of both medical and veterinary 

importance. Historically, the use of antibiotics in animal production system was blamed for the 

proliferation of antibiotic resistant organisms. This led more countries to ban antibiotics as 

growth promoter. However, the end result with regard to emerging foodborne pathogens such as 

Campylobacter jejuni, Salmonella spp. and Verotoxigenic Escherichia coli (VTEC) do not 

represent decrease in antibiotic resistance (Ricke et al. 2015, 107; Koluman and Dikici 2013, 57-

69). This may be expected because the most microorganism can acquire and express antibiotic 

resistance. Moreover, the plasmids carrying antibiotic resistance genes are maintained stably 

because it also carries essential genes such as those responsible for efficient colonization of gut 

(Pendleton et al. 2015, 215).  
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Cross protection is a phenomenon where exposure of bacteria to a stress leads to increased 

fitness in the same or other stresses by altering gene expression (Wesche and Ryser 2013, 422-

437).  Bacteria encounter various stresses throughout their life cycle particularly at various points 

from farm to fork like heat, pressure, or osmotic shock, acids, detergents and bacteriocins. In 

addition, these stresses can alter the virulence properties of pathogens and can contribute to the 

survival of these pathogens during infection process that can aggravate the host condition 

(Begley and Hill 2015, 191-210). Consequently, the ability of foodborne pathogens to mount the 

stress adaptation response add in the morbidity and mortality resulting from the foodborne 

illness. 

Potentially, other phenomenon that can contribute to prevalence of foodborne pathogen illness 

could be predictive adaptation, which provide microbe the ability to anticipate and pre-emptively 

respond to the regular environmental fluctuations (temporally distributed stimuli) that confers a 

considerable fitness advantage for survival of an organism. Predictive adaptation is thought to be 

ubiquitous in all three domains of life (Bacteria, Archaea, and Eukaryotes). Human body is the 

perfect ecological niche where a bacterium can find seamless temporal trends in distribution of 

stresses encountered during the infection process and can increase the severity of foodborne 

illness (Mitchell et al. 2009, 220-224; Tagkopoulos, Liu, and Tavazoie 2008, 1313-1317). 

Thus, identifying the genetic basis of foodborne pathogen in stress conditions encountered 

during infection cycle will help to elucidate the mechanism of antibiotic resistance, cross 

protection / stress adaptation and adaptive prediction. Ultimately, this can pinpoint the Achilles 

heel of foodborne pathogen and can possibly be used for more effective strategy to mitigate the 

foodborne pathogen from food in a manner that will preserve the integrity of ecological food 

systems. 
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In this doctoral dissertation, we have tried to fill the gaps in understanding the genetic 

determinants of Salmonella and Campylobacter, the leading bacterial causes of foodborne 

illness, in vitro stress conditions. A high throughput transposon sequencing (Tn-seq) was applied 

to define the genetic factors of required by Salmonella and Campylobacter during various 

condition. 

The Chapter 1 is a review of transposon sequencing (Tn-seq) methods. This chapter elaborate the 

recent development in Tn-seq methods and its growing applications from fitness profiling in 

vitro or in vivo. Furthermore, it describes the implementation of Tn-seq methods to novel 

experimental design for discovery of bacterial factors involved in more specific biological 

processes. 

In Chapter 2, we have mimicked the host stressors encountered by Salmonella Typhimurium 

during host infection in vitro like low acidic pH in the stomach, osmotic and short chain fatty 

acid (SCFAs) in intestine, and oxidation and starvation in macrophage and applied Tn-seq 

method to unveil the stress resistance genes of bacteria. The research investigates into the genetic 

mechanisms of Salmonella Typhimurium to overcome host stressors. 

Furthermore, in Chapter 3, we performed global screening of Salmonella genes for desiccation 

survival. Salmonella has the ability to survive desiccation in foods and food processing facilities 

for years and is the most notable and frequent cause of contamination in low-water activity 

foods.  

Finally, Chapter 4, investigates into the essential genome of Campylobacter with a view to 

possibly identify some novel genetic factors that can be used as the food safety intervention, 

therapeutic target or vaccine development.  
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Abstract 

A comprehensive understanding of genotype-phenotype links in bacteria is the primary theme of 

bacterial functional genomics. Transposon-sequencing (Tn-seq) or its equivalent methods that 

combine random transposon mutagenesis and next generation sequencing (NGS) represents a 

powerful approach to understand gene functions in bacteria on a genome-wide scale. This 

approach has been utilized in a variety of bacterial species to provide comprehensive information 

on gene functions related to various phenotypes or biological processes of significance. With 

further improvements in the molecular protocol for specific-amplification of transposon-junction 

sequences and increasing capacity of next generation sequencing technologies, the applications 

of Tn-seq have been expanding to tackle questions important, yet difficult to address in the past.  

In this review, we will discuss the technical aspects of different Tn-seq methods along with their 

pros and cons to provide a helpful guidance for those who want to implement or improve Tn-seq 

for their own research projects. In addition, we also provide a comprehensive summary of recent 

published studies based on Tn-seq methods to give an updated perspective on the current and 

emerging applications of Tn-seq.  

Key Words: transposon sequencing (Tn-seq), functional genomics, bacteria, gene functions, 

next generation sequencing  
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Introduction 

One of the major goals in bacterial genetics is to understand the genetic mechanisms underlying 

the phenotypes of interest. Among various approaches to reveal the underlying genetic 

mechanism(s) of a phenotype, the most common initial step is to identify the genetic factors 

involved in or responsible for expression of the phenotype. Traditionally the gene discovery 

process has been a rate-limiting step that slows down the entire process of understanding the 

mechanism. Transposon mutagenesis has been one of the major tools that has contributed 

significantly to gene discovery in bacteria mainly through loss-of-function screening. However, 

the necessity to assess the phenotype of each mutant individually required considerable amount 

of labor and time, thus limiting the total number of mutants that could be screened. As interest in 

high-throughput applications has increased, the methods that allow comprehensive screening of a 

large number of mutants have been developed and progressed significantly over the past two 

decades to accelerate the screening process, including signature-tagged mutagenesis 

(STM)(Mazurkiewicz et al. 2006), followed by microarray-based footprinting of transposon 

mutants (Sassetti and Rubin 2002) and more recently transposon sequencing (Tn-seq)(Barquist et 

al. 2013a; van Opijnen and Camilli 2013). The Tn-seq method is the most recent addition to the 

transposon tool box, aided mainly by the development of high-throughput NGS technologies. 

Since the first reports on the development of Tn-seq in 2009 (Gawronski et al. 2009; Goodman et 

al. 2009; Langridge et al. 2009; van Opijnen et al. 2009), various modifications have been made 

and applied to facilitate gene discovery in diverse bacterial species. With this more 

comprehensive approach, high-resolution functional screening of the whole genome can be 

performed routinely in a small laboratory for various bacterial species, providing remarkably rich 

information on gene functions for almost every single gene, including both protein-coding gene 
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and noncoding genes, involved in a wide range of biological processes. In this review, we will 

discuss the recent development in Tn-seq methods and its expanding applications from a rather 

straightforward fitness profiling in vitro or in vivo to implementation of novel experimental 

designs for discovery of bacterial factors involved in more specific biological processes.  

Transposon mutagenesis 

Transposons are genetic elements that can move from one genomic location to another. This 

“mobile nature” of transposons has been harnessed by microbial geneticists for convenient use of 

transposons as powerful tools for random mutagenesis in bacteria (Hayes 2003). For Tn-seq 

analysis, Tn5 and mariner transposons have been used most frequently among others, due to 

their simple procedures, broad-host range, and well-characterized near random nature of those 

particular transposons (Barquist et al. 2013a). There are various ways to deliver the transposon of 

choice into the cells for transposon mutagenesis (Maloy 2007). These include the methods based 

on phage delivery systems (Santiago et al. 2015; Sassetti et al. 2001), plasmid delivery systems 

(de Lorenzo and Timmis 1994; Martínez-García et al. 2011), in vivo mutagenesis by 

electroporation of transposon-transposase complex (Goryshin et al. 2000), and in vitro 

mutagenesis using a purified transposase enzyme followed by natural transformation 

(Hendrixson et al. 2001; Reid et al. 2008). For more details, readers are encouraged to retrieve 

the corresponding references.  

Development of Tn-seq methods 

The basic and critical step common to all Tn-seq methods and its variations is to amplify 

transposon-junction sequences in an insertion mutant pool specifically but comprehensively 

without bias as much as possible (Barquist et al. 2013a; van Opijnen and Camilli 2013). Once 



  

10 
 

transposon-junction sequences are amplified, they are sequenced in depth by NGS to obtain a 

quantitative profile of all transposon insertions in the library. From the collected DNA sequence 

data, the DNA sequence of each read is used to precisely locate each transposon insertion in the 

genome and accordingly, the number of DNA sequence reads originating from the same insertion 

serve as a measure of relative abundance of the corresponding transposon mutant in the mutant 

pool. When Tn-seq profiles of a library are quantitatively compared with an appropriate 

normalization and statistical method between before and after a selection, the genetic factors that 

are required for optimal growth or survival under the selection process can easily be identified on 

a genomic scale.   

Since the first versions of Tn-seq methods were reported (Gawronski et al. 2009; Goodman et al. 

2009; Langridge et al. 2009; van Opijnen et al. 2009), several variations on the method have 

been described (Christen et al. 2011; Dawoud et al. 2014; Gallagher et al. 2011; Khatiwara et al. 

2012; Klein et al. 2012). These variations differ mainly in the manner in which specific 

amplification of the transposon-junction sequences is accomplished. More specifically, these 

methods employ different strategies to attach the common primer binding sites to transposon-

flanking regions allowing PCR-amplification to occur between the binding sites for the 

transposon-specific primer and the common primer binding sites on the transposon-flanking 

regions. The common strategies for amplification of transposon-junction sequences used in 

different Tn-seq methods termed in various names, including INSeq (Goodman et al. 2009), Tn-

seq (van Opijnen et al. 2009), TraDIS (Langridge et al. 2009), Tn-seq circle (Gallagher et al. 

2011), and HITS (Gawronski et al. 2009) are summarized in  (Febrer et al. 2011)(See Figure 2 in 

Febrer (2011) for comparative graphical illustration of the different strategies).  
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Approaches based on C-tailing are the recent technical additions to current Tn-seq methods. The 

C-tailing procedure uses terminal transferase activity to add poly C tails to 3’ end to either single 

stranded or double stranded DNA. When this reaction is performed in the presence of the 

mixture of dCTP and dideoxy CTP (ddCTP) at a certain ratio, the average lengths of the C-tail 

can be efficiently controlled (Lazinski and Camilli 2013). This approach was adopted to attach 

C-tails to the 3’ ends of randomly sheared gDNA of a transposon insertion library. The C-tails 

served subsequently as a binding site for poly G primer to amplify transposon-junction 

sequences in conjunction with a transposon-specific primer (Klein et al. 2012). Additional 

research based on the same Tn-seq method further established the robustness of the method 

(Carter et al. 2014; Kamp et al. 2013; McDonough et al. 2014; Shan et al. 2015; Valentino et al. 

2014). Recently, our lab developed a convenient protocol based on single primer extension of 

transposon-junction sequences using a transposon-specific primer. The single stranded DNA 

fragments thus synthesized are subsequently C-tailed using a terminal transferase. The resulting 

C-tailed transposon-junction fragments can thus be easily amplified with transposon-specific 

primer and poly G primer (Dawoud et al. 2014).   

A more recently developed Tn-seq strategy, termed random barcode transposon-site sequencing 

(RB-TnSeq), is based on incorporating random DNA barcodes into the transposon and utilizing 

them for fitness profiling in place of transposon-junction sequences (Wetmore et al. 2015). This 

RB-TnSeq method simplifies the steps to prepare the PCR library because the random DNA 

barcodes located internally inside the transposon can be easily PCR-amplified with two universal 

primers flanking the barcode region. Consequently, this simplified PCR step increases the 

throughput of mutant fitness profiling significantly. However, it requires additional steps of 
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random barcode tagging of transposon before construction of a mutant library and initially 

establishing a database for insertion-barcode pairs (Wetmore et al. 2015).  

One issue associated with a transposon mutant library generated using a suicide delivery plasmid 

is that a significant portion of the mutants could be pseudo-transposon mutants that result from 

integration of the transposon-delivery plasmid into the chromosome. When this type of library is 

used for Tn-seq analysis, a large number of sequence reads are from transposon-junctions of 

delivery vector rather than the true transposon insertions in chromosome or plasmid of the host 

cell, resulting in a waste of valuable sequence reads. Santiago et al. (2015) recently described a 

simple strategy to address this issue by incorporating two recognition sites for a rare-cutting 

restriction endonuclease (e.g. NotI) on both sides of one inverted repeat (IR) from which the 

transposon-junction sequences are obtained (Santiago et al. 2015). The genomic DNA from the 

library are  digested with the rare-cutting restriction enzyme, and the resulting small fragments 

can be efficiently removed by size-fractionation before the next step for preparation of the Tn-

seq amplicon library.  

In Table 1 different Tn-seq methods are grouped according to the strategies used to accomplish 

amplification of transposon-junction sequences accompanied by description of their 

characteristics.  

Comparison of Tn-seq methods 

All of the Tn-seq methods that have been described until now have been used successfully to 

identify genes important for the various biological processes of interest, supporting their utility 

as a functional genomics tool. However, the sensitivity of the gene discovery can be greatly 

influenced by the comprehensiveness and quantitative accuracy of the resulting Tn-seq profiles. 
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It is expected that any bias occurring during the preparation of Tn-seq library would negatively 

influence the accuracy of the resulting Tn-seq profile, leading to false positive or false negative 

results. There are four theoretical or practical considerations for an ideal Tn-seq method as 

discussed in detail in the following sections. The potential pros and cons of the currently existing 

Tn-seq methods based on these criteria are listed in Table 1.   

Potential bias in Tn-seq library preparation. The most critical requirement for Tn-seq is 

minimum bias during Tn-seq library preparation. Theoretically, this type of bias can occur 

during the preparation of the PCR template or PCR amplification. In the “Tn-seq circle” method, 

the physically sheared genomic DNA fragments are ligated to an adaptor, digested by restriction 

enzyme, denatured, and circularized through oligonucleotide-mediated ligation (Gallagher et al. 

2011). Therefore, the variable lengths of the fragments can cause bias in the ligation reaction and 

the efficiency of ligation itself would be critical in preparing a template library well 

representative of the transposon mutant pool. However, Gallagher et al. (2015) recently 

compared Tn-seq cirle method (Gallagher et al. 2011) with the Tn-seq method based on C-tailing 

(Klein et al. 2012) by analyzing the same genomic DNA from a complex transposon library of 

Acinetobacter baumannii with the two Tn-seq methods (Gallagher et al. 2015). These two 

methods provided remarkably similar lists of essential genes, suggesting both methods are robust 

and the potential bias, if existed, was insignificant. Bias in the final Tn-seq library could also 

happen during the PCR amplification step due to variable lengths of the PCR products being 

amplified. In this aspect, only the methods based on the use of the Type IIS restriction enzymes 

(restriction enzymes that cleave outside of their recognition sequence to one side) and RB-TnSeq 

(Goodman et al. 2009; Khatiwara et al. 2012; van Opijnen et al. 2009; Wetmore et al. 2015) can 

avoid this issue, since all other methods produce PCR products of variable lengths. The Tn-seq 
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method based on nested arbitrary PCR raises concerns for additional bias in PCR amplification 

due to the nature of primer binding occurring at lower annealing temperatures (Christen et al. 

2011). With nested arbitrary PCR, the amplification efficiency could largely be dependent on the 

nucleotide sequences of the transposon-flanking regions. It is expected that a certain portion of 

insertions may not allow amplification of transposon-junction sequences at all. However, in this 

particular research a highly saturating Tn5 library of Caulobacter crescentus was used, focusing 

only on essential gene discovery (Christen et al. 2011). Since gene essentiality can be assessed 

only with the information on insertion sites without relying on quantitative information on each 

insertion mutant in the library (Hutchison et al. 1999), potential bias in Tn-seq library 

preparation may not have been a major obstacle in essential gene discovery (Christen et al. 

2011).  

Quantities of genomic DNA. Many Tn-seq methods involve physical shearing during the 

preparing the Tn-seq amplicon library. Physical shearing of genomic or metagenomics DNA is a 

step commonly used to prepare a DNA fragment library for NGS analysis (Knierim et al. 2011). 

The random nature of physical shearing makes it an attractive choice because it helps to generate 

a bias-free fragment library. Although effective, it often requires an optimization step, a 

relatively large quantity of starting DNA materials, and equipment (e.g. sonicator) to perform 

this step. For the Tn-seq methods that involve physical shearing, the amount of starting DNA 

(per sample) ranged from 3 to 6 g (Gallagher et al. 2011; Langridge et al. 2009; Wong et al. 

2011). On the contrary, the methods that begin with the PCR to amplify or extend transposon-

junctions directly from the template DNA require much less amount of starting DNA. In the 

method based on nested arbitrary PCR (Christen et al. 2011), 1 μl of a bacterial culture (OD 0.1) 

was directly used as a template, and our lab routinely use 50-100 ng of genomic DNA as a 
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template for the Tn-seq method based on linear PCR followed by C-tailing and PCR (Dawoud et 

al. 2014; unpublished).   

For most Tn-seq applications, collecting a large quantity of bacterial cells representing the entire 

mutant population is not an issue. However, in certain circumstances where the surviving 

mutants are recovered from infected host tissues to form a recovered mutant pool, the number of 

bacterial cell survivors (thus their genomic DNA) can be a limiting factor for performing a 

physical shearing step, especially when the procedure should be repeated for optimization or due 

to a mistake. The recovered library can be amplified by bacterial cultivation, but this step may 

introduce artifacts resulting from differences in mutant in vitro growth rates. 

Applicability to any transposon elements. Most Tn-seq methods are universally applicable to a 

mutant library constructed by any type of transposon elements. However, the Tn-seq methods 

that utilize Type IIS restriction enzymes (MmeI or BsmFI) require the presence of the restriction 

sites at the end(s) of the transposon (Goodman et al. 2009; Khatiwara et al. 2012; van Opijnen et 

al. 2009). This requirement limits this type of Tn-seq methods only to certain transposons. For 

example, a MmeI site could only be created in the mariner transposon that happened to carry 

sequence in the inverted repeat region that closely matched the MmeI site except for one 

nucleotide (Goodman et al. 2009; van Opijnen et al. 2009). Therefore, these methods cannot be 

applied to any other transposon elements and thus is not applicable to an existing transposon 

library that is constructed based on wild type mariner transposon or other transposon elements. 

In the case of RB-TnSeq, the use of barcode regions located within the transposon instead of 

transposon-junction sequences for quantitative profiling of transposon mutants provides multiple 

advantages (Wetmore et al. 2015). However, it also requires the use of a modified transposon 

carrying random barcodes within the transposon for a library construction.        
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Precise genome mapping. The length of transposon-junction sequence reads should be 

sufficiently long to allow precise genome mapping of the reads and thus precise determination of 

the insertion sites. For most Tn-seq methods, the length of transposon-junction reads can be 

adjusted by choosing and purifying an appropriate range of PCR products. The lengths of the Tn-

seq amplicons are uniformly fixed to a relatively short length only for the methods based on the 

use of Type IIS restriction enzymes (Goodman et al. 2009; Khatiwara et al. 2012; van Opijnen et 

al. 2009). The question then becomes how long should the transposon-junction sequences be to 

serve this purpose? This can be estimated. For example, based on computer simulation analysis, 

minimum lengths of 16 bp would be required for unambiguous genome mapping for 98% of the 

reads when the genome of Bacteroides thetaiotaomicron was used for the test (Goodman et al. 

2009). This fact suggests that the majority of the reads from Tn-seq method based on MmeI, 

which produces 16 bp sequence reads, would be sufficient for precise genome mapping 

(Goodman et al. 2009; van Opijnen et al. 2009).  However, Tn-seq method based on the use of 

BsmFI restriction enzyme suffers from short reads of 11 to 12 bp, for which approximately 50% 

of the reads would have to be discarded due to the inability to achieve unambiguous genome 

mapping (Khatiwara et al. 2012). 

Applications of Tn-seq methods 

With continuously increasing read numbers for Illumina sequencing (which currently provides 

approximately 3.0 x 108 reads per lane on HiSeq2500), Tn-seq analysis provides extraordinary 

opportunities for gene discovery at an accelerated rate to address various biological questions 

that were impossible to answer in the past before the development of Tn-seq methods. We have 

highlighted some of the interesting trends in Tn-seq applications in the following sections.    
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Essential genes. One of the first applications of global transposon mapping data was to discover 

essential genes of the bacterium Mycoplasma genitalium (Hutchison et al. 1999). An essential 

gene is defined as the gene that is essential for growth or survival under the optimal growth 

condition. Therefore an essential gene set would be expected to change depending on how the 

optimal condition was initially defined. Conventionally, however, essential genes refer to the 

genes required for growth or survival of a bacterium in the standard rich media commonly used 

for routine culture of the bacterial species. When global transposon mapping data became 

available, essential genes could be identified conceptually by the genomic regions that contain no 

or very few transposons. By the subtractive nature of the approach for essential gene discovery, 

the accuracy of prediction would be further enhanced by higher level of genome saturation via 

transposon insertions. With the Tn-seq method, much higher levels of genome saturation can be 

accomplished, and therefore Tn-seq data obtained from various bacterial species under standard 

growth media have provided high quality data for essential gene discovery. The complete set of 

essential genes, termed “essential genome” has been defined by Tn-seq data for numerous 

bacterial species, including Burkholderia pseudomallei (Moule et al. 2014), Campylobacter 

jejuni (Gao et al. 2014), Pseudomonas aeruginosa (Lee et al. 2015), and Streptococcus pyogenes 

(Le Breton et al. 2015), and one archaeal species, Methanococcus maripaludis (Sarmiento et al. 

2013).  

In most studies on essential gene discovery using Tn-seq, viable transposon mutants are usually 

recovered from a single nutrient-rich condition and the resulting Tn-seq data is used to identify 

essential genes. However, in a more recent study, Lee et al. (2015) studied the essential genes in 

Pseudomonas aeruginosa in six different media, and identified 352 general and 199 condition-

specific essential genes. This approach allows discernment of “essential genes” specific to 
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different growth conditions from truly essential genes, and to define core essential genes that are 

required for viability under multiple growth conditions.  

Conditionally essential genes (in vitro conditions). Conditionally essential genes should be 

considered as an extension of the essential genes in the sense that conditionally essential genes 

are required for growth or survival only under the condition of the interest other than the 

standard media. Of special interest, for example, would be defining a bacterial gene set 

conditionally required for growth or survival during specific environmental niches related to the 

life cycle of the species. For a bacterial pathogen, it would be particularly important to 

understand which genes are essential to overcome the stressors or immune defenses in the host. 

By comparing the genetic requirements for growth under different in vitro conditions with the 

genes required for in vivo growth or survival in the host, the unknown selective pressures that 

bacterial pathogens encounter in specific host niches can be identified (Khatiwara et al. 2012; 

Merrell and Camilli 2002; van Opijnen and Camilli 2012). More recently, the potential link 

between the metabolic capacity of a pathogen and its virulence has been suggested as a critical 

factor for expression of pathogenic phenotypes (Rohmer et al. 2011). Metabolic genes that 

enable a pathogen to utilize a nutrient uniquely present in a host niche would play an important 

role during infection in the host tissues. For example, Griffin et al. (2011) used Tn-seq to define 

a set of genes in Mycobacterium tuberculosis that are required for in vitro utilization of 

cholesterol as a sole carbon source. Comparison of the result of this study with previously 

identified genes in M. tuberculosis required for in vivo survival during mouse infections (Sassetti 

and Rubin 2003) demonstrated that 10% of the genes specifically required for bacterial growth in 

vivo are also required for the utilization of cholesterol in vitro. Until recently, a large portion of 

the Tn-seq studies for gene discovery have focused on screening and characterizing conditionally 
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essential genes under in vitro conditions, largely due to the simplicity of the experimental design, 

the lack of problems associated with bottlenecks that would occur in animal infection studies, 

and the resulting in-depth insights that can be gained from the comprehensive sets of genes 

identified. An extensive list of Tn-seq studies on conditionally essential genes is shown in Table 

2.  

Genes required for in vivo fitness in the host. Genome-wide identification of bacterial virulence 

genes required for in vivo fitness during host infection using Tn-seq is an extremely valuable 

approach in understanding complex mechanisms of virulence. Such applications of Tn-seq for 

virulence gene discovery using various pathogen-host infection models has been steadily 

increasing over the years, leading to identification of numerous previously known as well as 

unknown virulence factors (Table 2). In some animal infection models, however, this approach 

involving a complex library is not feasible due to the bottlenecks that cause stochastic removal of 

bacterial cells during establishment of infection (van Opijnen and Camilli 2013). In such cases, 

multiple transposon libraries of smaller sizes can be used to identify in vivo fitness factors 

(Chaudhuri et al. 2013). One emerging research area of interest is the comparative analysis of in 

vivo fitness factors in multiple hosts. Chaudhuri et al. (2013) screened the same collection of 

Salmonella enterica Typhimurium Tn5 mutants for mutants with reduced gut colonization in 3 

different hosts, chickens, pigs, and calves, and identified a core set of virulence genes as well as 

host-specific virulence factors. More recently, Weerdenburg et al. (2015) used a similar 

comparative analysis to identify the factors of a broad-host-range pathogen Mycobacterium 

marinum that are important for survival in phagocytic cells of five different host species. Finally, 

Tn-seq method has also been applied to understand the genetic mechanisms associated with 

Vibrio fischeri symbiotic colonization of the light organ of squid (Brooks et al. 2014). 
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Small RNA genes. Initially the focus of Tn-seq application was to identify protein-coding genes 

important for fitness. Although some sRNA (e.g. GlmZ in Escherichia coli) was identified by a 

phenotypic screening of transposon mutants (Kalamorz et al. 2007), the general applicability of 

Tn-seq for the comprehensive discovery of sRNA genes remained uncertain. However, several 

Tn-seq studies have demonstrated that Tn-seq can actually be very effective in identifying 

conditionally essential sRNA genes (Barquist et al. 2013b; Christen et al. 2011; Mann et al. 

2012; Zhang et al. 2012). The challenge in analyzing sRNA genes lies simply in the fact that 

sRNA genes are much smaller than protein-coding genes, thereby reducing the chance to be hit 

by a transposon, and sRNA knockout mutants usually do not exhibit strong phenotypes (Sharma 

and Vogel 2009). The utility of Tn-seq in identification of sRNA genes is very significant for 

high-throughput analysis of sRNA genes in bacteria. Previously, the main approach for sRNA 

discovery was through detection of sRNA transcripts either by transcriptome analysis 

(microarray or RNA-seq) or cloning of reverse transcribed RNA transcripts (RNomics)(Sharma 

and Vogel 2009). Alternatively, RNA chaperone Hfq protein was used as a bait to capture sRNA 

transcripts associated Hfq protein (Sharma and Vogel 2009). However, these approaches seldom 

reveal any information regarding biological functions of the sRNAs. To understand sRNA 

functions, it requires a time-consuming downstream analysis for individual sRNAs (Sharma and 

Vogel 2009). However, Tn-seq analysis provides the means to identify sRNAs genes 

comprehensively and also valuable insights on the sRNA functions. Two studies using Tn-seq 

have identified sRNA genes required for growth in rich media for Caulobacter crescentus 

(Christen et al. 2011) and Mycobacterium tuberculosis (Zhang et al. 2012). More interestingly, 

Tn-seq analysis has been used in mouse models of colonization to reveal the contribution of the 

sRNAs in Streptococcus pneumoniae to fitness in vivo (Mann et al. 2012). Collectively, these 



  

21 
 

studies demonstrate the general utility of Tn-seq for global discovery of essential as well as 

conditionally essential sRNA genes.     

Additional genetic elements and features: promoters, operons, and domains. For most Tn-seq 

analysis, the focus of the research is usually on identification of essential genes or conditionally 

essential genes, whether it is protein-coding genes or noncoding sRNA genes. Usually, no 

additional attempts have been made to find more information beyond genetic requirements of the 

genes. However, Christen et al. (2011) demonstrated that a small change in the design of the 

transposon itself can provide additional in-depth information beyond genetic requirements. In 

their study, a Tn5 transposon containing a strong xylose-inducible promoter facing outward was 

used to construct a genome-saturation library of Caulobacter crescentus. When the mutants were 

recovered in the presence of the inducer and analyzed for insertions by Tn-seq, the comparative 

analysis of the insertion groups in two different orientations allowed identification of the 

promoter regions of essential genes, the operons with essential functions, and domains 

accountable for essentiality of the corresponding genes (Christen et al. 2011).  

Genetic interaction mapping. One powerful approach to tackle functional organization of the 

genes related to a certain phenotype is to examine genetic interactions among multiple gene 

products (Dixon et al. 2009). In general, when a double mutant that shows a significant deviation 

in fitness compared with the expected multiplicative effect of combining two single mutants, it is 

considered a genetic interaction. Negative genetic interactions refer to a more severe defect in 

fitness than expected. In extreme cases where the cell is not viable due to mutations in two non-

essential genes, it is regarded as a synthetic lethality. Positive interactions refer to double 

mutants with a less severe fitness defect than expected. Genetic interaction networks can reveal 

unexpected functional dependencies between genetic loci (i.e. epistasis, wherein the phenotypic 
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effects of mutation in one gene are modified by one or more other genes). For example, negative 

genetic interactions often result from loss-of-function mutations in pairs of genes in parallel or 

compensatory pathways that impinge on a common essential process. Conversely, positive 

interactions can occur between genes in the same pathway if the loss of one gene alone 

inactivates the pathway such that loss of a second gene confers no additional defect. Genetic 

interaction networks can be explored by performing Tn-seq analysis in a wild type strain and its 

mutant strain counterpart with deletion in a gene of interest (query gene), and comparing the 

resulting profiles (van Opijnen et al. 2009). This approach was applied to determine genetic 

interactions in Streptococcus pneumoniae (van Opijnen et al. 2009; van Opijnen and Camilli 

2012). Similar genetic interaction mapping based on the use of a microarray-based transposon 

tracking method was employed previously to uncover genetic interactions important for in vivo 

fitness of Mycobacterium tuberculosis during infection in mice (Joshi et al. 2006) and for 

motility of E. coli (Girgis et al. 2007) with a focus on a selected set of query genes.  

In a more recent study to understand how trans-translation by tmRNA encoded by ssrA is 

dispensable in Caulobacter crescentus, Feaga et al. (2014) used Tn-seq method to identify 

gene(s) that are synthetically lethal with ssrA gene deletion by performing Tn-seq with himar1 

transposon libraries in wild type and ∆ssrA backgrounds, and found that ArfB is a functional 

homolog of tmRNA that can also release nonstop ribosomes. Genetic interaction mapping can 

also be performed using an inhibitor that blocks a specific pathway. In a study by Santa Maria et 

al. (2014) a natural product tunicamycin was used to selectively inhibit TarO, the first enzyme in 

the wall teichoic acid (WTA) pathway of Staphylococcus aureus. They selected a mariner 

transposon library in the presence and absence of tunicamycin, and the resulting Tn-seq profiles 

were compared to identify genes that affect survival in the presence of tunicamycin, thus 
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implicating their products in WTA-related activities (Santa Maria et al. 2014). These studies 

illustrate that Tn-seq has general applicability in mapping genetic interactions for diverse 

bacterial species (Table 2).  

Novel genetic factors involved in specific biological processes. One interesting aspect for Tn-

seq application is the development of novel screening strategies that allow genome-wide 

identification of genetic factors involved in specific biological processes of significance for the 

bacterial species. These applications require fairly sophisticated experimental designs and 

optimized experimental conditions to identify the target genes precisely. Some of the examples 

include identification of genetic factors responsible for (1) Vi capsule expression in Salmonella 

enterica Typhi (Pickard et al. 2013), (2) immunity against killing by Type VI protein secretion 

system (T6SS) in Vibrio cholerae (Dong et al. 2013), and (3) in vivo-specific induction of xds 

gene encoding a secreted exonuclease in Vibrio cholerae (McDonough et al. 2014). For some 

bacterial pathogens, the genetic factors required to proceed through specific stages in host-

pathogen interactions, such as adhesion (de Vries et al. 2013) or invasion to host cells (Gao et al. 

2014) have been identified using Tn-seq. More examples of these types of studies are shown in 

Table 2.   

Discovery of adaptive mutations. Before the development of Tn-seq methods, microarray-based 

footprinting methods were developed to quantitatively track mutants in a complex transposon 

library (Sassetti and Rubin 2002). One of the unique applications of the microarray-based 

method was to identify adaptive mutations that contribute to selectable phenotypic variations 

(Goodarzi et al. 2009). With current NGS technologies, genome sequencing of the wild type and 

evolved strains can be easily used to reveal genetic differences (e.g. mutations) between two 

strains. However, distinguishing adaptive mutations from neutral mutations is a challenging and 
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labor-intensive process. Goodarzi et al. (2009) described a method, termed ADAM for Array-

based discovery of adaptive mutations, that employs parallel, genome-wide linkage analysis to 

simultaneously identify all mutated loci with direct contributions to fitness. Although it has not 

been realized yet, it is quite conceivable that the Tn-seq method could be used in place of a 

microarray-based transposon mapping approach to advance strategies currently used in ADAM 

to identify adaptive mutations at a higher resolution.  

Conclusions and Perspectives  

With the comprehensiveness and sensitivity of Tn-seq, it has emerged as a method of choice to 

explore genotype-phenotype relationships of a bacterial genome on a genomic scale. Since initial 

developments of the method in 2009, several variations on Tn-seq have been described with ever 

increasing applications in numerous bacterial and archaeal species where an efficient random 

transposon mutagenesis system can be established. The major driving force behind the 

development of Tn-seq was NGS technologies, more specifically Illumina sequencing. The 

ability to sequence hundreds of millions fragments in parallel is the crucial component that 

provides the comprehensiveness and sensitivity characteristic of Tn-seq methods. With 

continuous improvements on current NGS platforms (especially increasing read numbers of 

Illumina sequencing technology), it is expected that the ability to sequence more reads at a 

reduced cost will occur in the near future (Watson 2014). This will be an advantage in further 

enhancing the capacity of Tn-seq methods by increasing (1) the number of samples to be 

analyzed, (2) read depth, or (3) the saturation levels of an insertion library.   

Although over 70 research articles based on Tn-seq methods have been published within the past 

six years, there are still immense chemical or stress conditions encountered by microorganisms 
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that remain to be explored using straightforward applications of Tn-seq under the corresponding 

in vitro conditions. For example, the 1,144 chemical genomic assays have been performed with 

the collection of yeast deletion mutants (Hillenmeyer et al. 2008). There has been an increasing 

number of Tn-seq studies using animal infection models to identify in vivo survival genes. Once 

such a study is done for a given pathogen using a standard animal infection model under 

“standard” conditions, the next logical step would be to use Tn-seq to understand bacterial genes 

required for in vivo colonization or survival of the pathogen that would be dependent on the 

altered host conditions. The altered host conditions could be contributed by genetic factors (e.g., 

different strains of mice, or transgenic animals) or environmental factors (e.g., modified gut 

microbiota, co-infection, diets, age, stress, gender etc.) as exemplified in several studies shown 

in Table 2 (Carter et al. 2014; Goodman et al. 2009; Wong et al. 2013; Zhang et al. 2013). 

Knowing the genetic factors required only under specific host or environmental conditions would 

be extremely helpful in revealing the mechanisms by which the pathogens cope with the 

dynamically changing microenvironments in the host. Until now most Tn-seq studies have been 

conducted to study bacterial species, and only one study was reported in which archaeal species 

was studied using a Tn-seq method (Sarmiento et al. 2013). Since any haploid microorganisms 

with an appropriate insertional mutagenesis system can be analyzed by Tn-seq, the method could 

be applied to the study of more archaeal species and even haploid yeast strains in the future.     
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Table 1. Strategies to amplify transposon-junction sequences in Tn-seq different methods 

 

Amplification strategy Specific 
transpos
on? 

Physic
al 
sheari
ng 

Amplicon 
Length  

Other  
pros & cons 

Reference* 
 

Type IIS restriction enzyme 
 Adapter  PCR 

Yes No Uniform  
PCR bias  

Short reads  
ambiguous  
mapping  

(Goodman et al. 2009; Khatiwara et al. 
2012; van Opijnen et al. 2009) 

Shearing  Adapter  
PCR 

No Yes Variable   
PCR bias  

Large quantity of 
DNA 

(Gawronski et al. 2009; Langridge et al. 
2009) 

Nested arbitrary PCR  
nested PCR 

No No Potential target bias (Christen et al. 2011) 

Shearing  Adapter   
Restriction enzyme   
circularization   PCR 

No Yes Large quantity of 
DNA 

Potential target bias 

Non-specific 
background  

(Gallagher et al. 2011) 

Shearing  C-tailing  
PCR 

No Yes Large quantity of 
DNA 

(Klein et al. 2012) 

Single primer extension   
C-tailing  PCR 

No No  (Dawoud et al. 2014) 

Simple PCR of barcode 
regions with 2 universal 
primers  

Yes No Uniform  
PCR bias  

Construction of 
transposon with 
random barcodes 

Simple PCR 
protocol 

Throughput  

(Wetmore et al. 2015) 

* Only representative references are shown. 
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Table 2.  Applications of Tn-seq. 

Target 
categories 

Microorganisms Selection conditions References 

Conditionally 
essential genes 
under in vitro 
conditions 

Salmonella enterica Typhi 
Mycobacterium tuberculosis 

Pseudomonas aeruginosa 

Shewanella oneidensis 

Salmonella enterica Typhimurium 
Streptococcus pneumoniae 

Escherichia coli ST131 
Haemophilus influenza 

Streptococcus pneumoniae 

Sphingomonas wittichii 

Staphylococcus aureus ST398 
Escherichia coli 

Moraxella catarrhalis 

Haemophillus influenza 

Staphylococcus aureus 

Pseudomonas aeruginosa 

Bacteroides thetaiotaomicron 

Staphylococcus auresus 

Escherichia coli 

Caulobacter crescentus 

Bile resistance 
Growth on cholesterol as a carbon source 
Intrinsic resistance to tobramycin  
Anaerobic minimal broth medium 
Growth in 42ºC, bile salts, and limited nutrients  
17 in vitro conditions representing in vivo selective pressures 
Serum resistome (genes required for resistance to human serum) 
Fitness in ambient air 
Growth under CO2-poor condition 
Fitness in sand with salicylate as a carbon source 
Whole porcine blood  
Resistance to ionizing radiation 
Serum resistome (genes required for resistance to human serum) 
Resistance to neutrophils and serum  
Growth in blood and ocular fluids 
Cystic fibrosis sputum 
Fitness in the presence of polymyxin B 
Fitness at different temperatures (16, 23, 30, 37, and 42ºC) 
Fitness in gentamicin during stationary-phase  
Genetic factors required for uranium resistance  

(Langridge et al. 2009) 
(Griffin et al. 2011) 
(Gallagher et al. 2011) 
(Brutinel and Gralnick 2012) 
(Khatiwara et al. 2012) 
(van Opijnen and Camilli 2012) 
(Phan et al. 2013) 
(Langereis et al. 2013) 
(Burghout et al. 2013) 
(Roggo et al. 2013) 
(Christiansen et al. 2014) 
(Byrne et al. 2014) 
(de Vries et al. 2014) 
(Langereis and Weiser 2014) 
(Valentino et al. 2014) 
(Turner et al. 2015) 
(Cullen et al. 2015) 
(Santiago et al. 2015) 
(Shan et al. 2015) 
(Yung et al. 2015) 

Genes required 
for in vivo 
fitness in the  
host 

Haemophilus influenza 

Escherichia coli O157:H7 

Streptococcus pneumoniae 

Salmonella enterica Typhimurium 
Pseudomonas aeruginosa 

Vibrio cholerae 

Vibrio cholerae  

Uropathogenic E. coli (UPEC) 
Yersinia pestis 

Acinetobacter baumannii 

Vibrio fischeri 

Campylobacter jejuni 

Pseudomonas aeruginosa 

Staphylococcus aureus 

Mycobacterium marinum 

 

Klebsiella pneumoniae 

Pseudomonas aeruginosa 

Acinetobacter baumannii 

Vibrio cholerae 

Murine pulmonary model 
Colonization in the intestinal tract of calves 
Nasopharynx colonization, and lung infection models of mice 
Gut colonization in chickens, pigs, and calve vs 
Gut colonization, and systemic infection of mice 
Colonization of the infant rabbit intestine 
Colonization of the infant rabbit intestine 
Murine model of systemic infection 
Systemic infection in mice 
Persistent infection in the mouse lung 
Symbiotic colonization in the light organ of squid 
Cecal colonization in chicks 
Murine models of acute vs. chronic wound infection  
Murine abscess model  
Intracellular survival in phagocytic cells of different origins 
(human, mouse, fish, and protozoa) 
Mouse model of pneumonia 
Mouse model of lung infection 
Murine infection model 
Rabbit infection model 

(Gawronski et al. 2009) 
(Eckert et al. 2011) 
(van Opijnen and Camilli 2012) 
(Chaudhuri et al. 2013) 
(Skurnik et al. 2013)  
(Kamp et al. 2013) 
(Fu et al. 2013; Subashchandrabose et 
al. 2013) 
(Palace et al. 2014) 
(Wang et al. 2014) 
(Brooks et al. 2014) 
(Johnson et al. 2014) 
(Turner et al. 2015) 
(Valentino et al. 2014) 
(Weerdenburg et al. 2015) 
 
(Bachman et al. 2015) 
(Roux et al. 2015) 
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Table 2. (Cont.) Applications of Tn-seq. 

Target 
categories 

Microorganisms Selection conditions References 

Genes required 
for in vivo 

fitness in altered 
host 
environment 

Bacteroides thetaiotaomicron 

 

 

Mycobacterium tuberculosis 

Haemophilus influenza 

Streptococcus pneumoniae  

Germ-free mice with WT, Rag1-/- or Myd88-/- genetic 
backgrounds; Germ-free WT mice with 3 different simple 
bacterial communities 
WT vs. CD4-deficient mice  

Murine model of coinfection with influenza A virus 
WT vs. SCD (sickle cell disease) mice 

(Goodman et al. 2009) 
 
 
(Zhang et al. 2013) 
(Wong et al. 2013) 
(Carter et al. 2014) 

Genes for 
required for 
dissemination 
from the host 

Vibrio cholerae Genes contributing to dissemination from the rabbits to pond 
water 

(Kamp et al. 2013) 

Genetic 
interaction 
mapping 

Streptococcus pneumoniae 

Streptococcus pneumoniae 

Staphylococcus aureus 

Caulobacter crescentus 

Genetic interactions connected to 5 query genes  
Genetic interactions connected to 1 query gene  
Cellular factors that interact with wall teichoic acids 
Genes synthetically lethal with ssrA gene (encoding tmRNA)  

(van Opijnen et al. 2009) 
(van Opijnen and Camilli 2012) 
(Santa Maria et al. 2014) 
(Feaga et al. 2014) 

Genetic factors 
involved in 
specific 
biological 
processes 

Salmonella enterica Typhi 
Moraxella catarrhalis  

Vibrio cholerae 

Vibrio cholerae 

Bacillus subtilis 

Campylobacter jejuni 

Escherichia coli O104:H4 
Clostridium difficile  

Mycobacterium marinum 

 

 

Escherichia coli ST131 
Vibrio cholerae 

Genetic factors required for efficient Vi capsule expression 
Adherence to epithelial cells 
Type VI protein secretion system (T6SS) immunity proteins 
Regulators responsible for in vivo-specific induction of xds gene 
Genes contributing to acquisition of a conjugative element 
Invasion to cultured mammalian cells 
Genes required for maintenance and transmission of ESBL 
plasmid 
Genes required for sporulation 
Essential genes rendered non-essential upon heterologous 
expression of outer membrane porin  
Genes required for the stable maintenance of IncF plasmid 
Novel facters required for expression of tcpA gene.  

(Pickard et al. 2013)  
(de Vries et al. 2013) 
(Dong et al. 2013) 
(McDonough et al. 2014) 
(Johnson and Grossman 2014) 
(Gao et al. 2014) 
(Yamaichi et al. 2015) 
 
(Dembek et al. 2015) 
(Ates et al. 2015) 
 
(Phan et al. 2015) 
(Wang et al. 2015) 
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Abstract 

Salmonella enterica serovar Typhimurium (S. Typhimurium), a non-typhoidal Salmonella 

(NTS), result in a range of diseases, including self-limiting gastroenteritis, bacteremia, enteric 

fever, and focal infections representing a major disease burden worldwide. There is still a 

significant portion of Salmonella genes whose biochemical basis to overcome host innate 

defense mechanisms, consequently causing disease in host, largely remains unknown. Here, we 

have applied a high-throughput transposon sequencing (Tn-seq) method to unveil the genetic 

factors required for the growth or survival of S. Typhimurium under various host stressors 

simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s (≥ 186, 000 unique 

insertions) was subjected to selection during growth in the presence of short chain fatty acid (100 

mM Propionate), osmotic stress (3% NaCl) or oxidative stress (1mM H2O2) or survival in 

extreme acidic pH (30 min in pH 3) or starvation (12 days in PBS). We have identified an 

overlapping set of 339 conditionally essential genes (CEGs) required by S. Typhimurium to 

overcome these host insults. Interestingly, entire eight genes encoding F0F1-ATP synthase 

subunit proteins were required for fitness in all the five stresses. Intriguingly, Salmonella 

pathogenicity island (SPI) genes like SPI-1, SPI-2, SPI-3, SPI-5, SPI-6 and SPI-11 are not only 

required during host infection, but also for fitness under in vitro conditions. Additionally, by 

comparative analysis of the genes identified in this study and the genes previously shown to be 

required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI and 

putative proteins STM14_1138, STM14_3334, STM14_485, and STM_5184) that has 

compelling potential to be exploited as vaccine development and/or drug target to curb the 

Salmonella infection. 

Key Words: Salmonella, host stress, Tn-seq, conditionally essential genes 
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INTRODUCTION 

Non-typhoidal Salmonella (NTS), a gram-negative bacterial pathogen, causes 93 million enteric 

infections, 155,000 diarrheal deaths, and 3.4 million blood stream infection worldwide annually 

(Ao et al., 2015; Majowicz et al., 2010). Gram-negative bacterial pathogens, including NTS, are 

developing resistance against antimicrobial agents including the last resort antibiotics at a 

startling rate, creating a global crisis in human health. Scientists fear the impending global 

epidemic of untreatable infections and return to a pre-antibiotic era where a common infection 

and minor injury can be lethal (Liu et al., 2015; McKenna, 2013; Spencer, 2015; World Health 

Organization (WHO)). Thus, there is an urgent need to identify genetic factors of pathogenic 

microorganisms that can serve as targets to develop novel strategies to combat infectious 

diseases (Medini et al., 2008; van Opijnen and Camilli, 2012). Nonetheless, the insufficiency of 

the genome-wide data that provide links between genotype and the infection-related phenotypes 

of bacteria is the major roadblock to discover suitable targets for development of the effective 

strategies to control infection.  

Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the leading cause of NTS 

(Carden et al., 2015; Crim et al., 2015). Despite Salmonella infection has an enormous global 

burden on disease worldwide and availability of complete genome sequence of S. Typhimurium 

LT2 nearly one and half decade (2002) ago, the biochemical basis of S. Typhimurium genes 

required for in vivo survival is still unknown for a large portion of the the genes (Feasey et al., 

2012; McClelland et al., 2001). Researchers have tried to delve into the pathogenesis of S. 

Typhimurium using different variations of high throughput screening of transposon mutants, 

with a limited number of mutants based on a negative selection (Kwon et al., 2016). Chan et al. 

(2005) had detected 157 and 264 genes required by S. Typhimurium strain SL1344 for acute 
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infection in mice (A-Mice) and survival inside macrophage (MΦ), respectively using a 

microarray-based tracking method (Chan et al., 2005). Lawley et al. (2006) used the same 

method to identify 118 genes of S. Typhimurium strain SL1344 required for long-term persistent 

infection in mice (P-Mice) collected from spleen after 28 day post infection (Lawley et al., 

2006). Additionally, Chaudhuri et al. (2013) have comprehensively assigned a core set of 611 

genes of S. Typhimurium strain ST4/74 required for effective colonization in the calf, pig, and 

chicken (Chaudhuri et al., 2013). Recently, Silva-Valenzuela et al. identified 224 mutants of S. 

Typhimurium 14028S that were negatively selected using two pools of single gene deletion 

mutants from spleen and liver at 2 days post infection in mice (Sp-Liv) (Silva-Valenzuela et al., 

2015). Previously, our laboratory conducted Tn-seq screening to identify an overlapping set of 

105 coding genes of S. Typhimurium 14028S required for in vitro growth in diluted Luria-

Bertani (LB) medium, LB medium plus bile acid and LB medium at 42°C (Khatiwara et al., 

2012). However, there is still a gap in the above approach to correlate in vivo and in vitro 

survival or growth genes required by S. Typhimurium that will help delve into biochemical basis 

of pathogenesis and potentially pave a roadmap towards the efficient development of novel 

vaccines, antibiotics, and control strategies.  

 In this study, we conducted Tn-seq analysis of S. Typhimurium 14028s under the five in vitro 

conditions mimicking host stressors during enteric and systemic infection. We have applied a 

highly efficient method for Tn-seq library preparation that requires only small amount of DNA 

without the need for enzymatic digestion or physical shearing of genomic DNA (Dawoud et al., 

2014). To cause enteric infection S. Typhimurium has to overcome gastrointestinal host insult 

like low acidic pH in the stomach, osmotic and short chain fatty acid (SCFAs) in intestine (Ha et 

al., 1998; Nava et al., 2005; Sleator and Hill, 2002; Smith, 2003). Eventually, for systemic 
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infection, S. Typhimurium has to vanquish macrophage stress like oxidation, starvation as well 

as hyperosmotic condition (Lee et al., 2014; Rosenberger and Finlay, 2003; van der Heijden et 

al., 2015). We hypothesized that the comparative analysis of the comprehensive sets of the in 

vivo (required for host enteric and systemic infection) and in vitro fitness genes (for stress 

resistance, this study and previous) will allow better understanding of the biochemical basis of 

the genetic requirements of S. Typhimurium for host infection and provide enhanced resolution 

to link genotype to phenotype. Thus, we performed a comparative study between the in vivo and 

in vitro fitness genes from previous studies and this study, respectively. 

RESULTS AND DISCUSSION 

Overall evaluation of resulting Tn-seq profiles  

We have constructed a highly saturated transposon mutant library of S. Typhimurium 14028S 

with more than 350,000 transposon mutants created via transformation of EZ-Tn5 transposome 

complex to electrocompetent cells. The complex Tn5 library, input pool 1(IP1) was then 

subjected to negative selection under the in vitro stress conditions encountered during enteric and 

systemic infection cycle as described in Materials and Methods. Input pool 2 (IP2) was the 

technical replicate of IP1 to evaluate the reproducibility of our Tn-seq method (Figure 1). DNA 

library of the input and output pool for Illumina sequencing were prepared (Figures S1A and 

S1B). This efficient Tn-seq protocol was developed in our laboratory that offers distinctive 

advantages over other Tn-seq library preparation methods, including a low amount (~100 ng) of 

DNA required, and no need for physical shearing or restriction digestion (Dawoud et al., 2014; 

Kwon et al., 2016). 
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Illumina sequencing using HiSeq 3000 produced 163,943,475 reads from a single flow cell lane. 

The raw reads were demultiplexed allowing a perfect match for barcode with exception of few 

mismatches within Tn5 mosaic end with a custom Perl script as shown in Table S5. H2O2 

(19,250,956) had the highest number of reads followed by IP1 (10,842,764), Starvation 

(9,518,226), IP2 (6,345,173), LB (5,004,934), pH3 (3,841,401), PA (2,113,033) and NaCl 

(1,970,072) (Figure 2A). Although, we pooled equal quantity of PCR products (~10 ng), there 

was a considerable variation in the number of the reads across the samples, suggesting the need 

for better strategy for sample pooling.  

After demultiplexing, Illumina reads were trimmed of barcode and transposon sequences. The 

Tn5-junction sequences of 20bp were extracted and mapped to the complete genome of S. 

Typhimurium 14028S (NC_016856.1) using Bowtie. The overall alignment rate throughout the 

Tn5 libraries were 85.19% (SE ± 1.79). Additionally, we looked for the unique insertion sites in 

the genome in each library. IP1 had had highest unique insertions (186,621) followed by LB 

(157,915), H2O2 (149,752), IP2 (149,740), PA (127,722), NaCl (125,918), Starvation (118,607) 

and pH3 (92,008). Similarly, H2O2 had highest average read per unique insertion site in the 

genome (96.007 ± 1.11) with 40 median reads whereas NaCl had the lowest (13.53 ± 0.99) with 

5 median reads (Figure 2A). 

Pre-aligned reads of the Tn5 library in default SAM mapping file format were fed to ‘Analysis of 

high-Resolution Transposon-Insertion Sequences Technique’ (ARTIST) pipeline (Pritchard et 

al., 2014). Tn5 insertions were mapped into 100 bp genome-wide windows. We observed a 

higher Spearman correlation of IP1 with IP2 and LB (0.98, p < 0.0001). However, there was 

lower Spearman correlation of IP1 with NaCl (0.97, p < 0.0001), PA (0.96, p < 0.0001), and 

H2O2 (0.93, p <0.0001). We observed lowest correlation of IP1 with pH3 and starvation (0.84 



  

47 
 

and 0.91 respectively, p < 0.0001) (Figure 2B). This relationship corroborates well with the Tn5 

library selection strategies employed, with that based on growth fitness showing higher 

correlation and that based on survival a lower correlation.  

Besides, we looked for the occurrence of any hot spots of Tn5 insertion in the sample libraries. 

We found an even distribution of Tn5 insertion reads across the libraries throughout the genome. 

Some of the genomic coordinate lacking insertions have white stripes that are clearly visible 

(Figure S2) across all the samples that represent essential loci in the S. Typhimurium genome. 

Identification of Conditionally essential genes (CEGs) 

In this study, we used two strategies to identify conditionally essential genes (CEGs) of S. 

Typhimurium to overcome host stressors. The first strategy was a negative selection of complex 

Tn5 mutant libraries based on growth fitness for mild stressors (3% NaCl, 100mM propionate, 

1mM H2O2) and second was based on survival (12 day starvation and pH3) of Tn5 mutant 

libraries for harsher stressors as shown in Figure 1.   

ARTIST pipeline can identify if genes are entirely essential or domain essential in a given 

condition. For simplicity, we assigned genes either entirely essential or domain essential into one 

category, conditionally essential genes (CEGs). Noteworthy, only a few of the genes were 

identified as domain essential and the majority of them were entirely essential. We deliberately 

compared output complex Tn5 libraries PA, NaCl, and H2O2 with both IP1 and LB. Interestingly, 

most of the CEGs were overlapped with this two comparisons. For these conditions PA, NaCl, 

and H2O2, we considered the union set of identified CEGs via comparison of output library with 

IP1 and LB as CEGs for each condition. However, the output libraries for pH3, and starvation 
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were compared only with IP1 because the selection of complex Tn5 library was based on 

survival strategy in which the mutant cells did not multiply in liquid media. 

We identified an overlapping set of 339 CEGs that are required for fitness of S. Typhimurium in 

at least one of the five conditions. Starvation had the highest CEGs (241), followed by pH3 

(103), NaCl (60), H2O2 (40) and PA (19) as shown in Table S1. This might likely reflect that 

starvation is the most severe stressor involving more genetic pathways for survival, while PA is a 

mild stressor for the fitness of S. Typhimurium. More than a half of CEGs were on the lagging 

strand (56.63%), which is somewhat contrary to responsive genes of Escherichia coli and 

Streptococcus pneumoniae (Nichols et al., 2011; van Opijnen and Camilli, 2012). We assigned a 

functional role to 96 CEGs that were putative proteins and 21 CEGs belonging to hypothetical 

proteins. The other common stress tolerant proteins in at least 2 of the in vitro stressors were 

ATP synthase, a transcriptional regulator, 3-dehydoroquinate synthase, site-specific tyrosine 

recombinase xerC, flavin mononucleotide phosphatase, ribulose-phosphate 3-epimerase, and 

DNA-dependent helicase II among others (Table S1). 

Intriguingly, we found the Salmonella pathogenicity island (SPI) genes were required for in vitro 

stress tolerance. SPI-1 and SPI-2 genes encoding Type III secretion system, SPI-3, SPI-5, SPI-6, 

and SPI-11 were required for fitness in pH3, NaCl, and Starvation stress. However, no SPI genes 

were identified for fitness in PA and H2O2. SPI-5 and SPI-11 genes were only conditionally 

essential in pH3, SPI-3 in NaCl and SPI-6 in starvation. Additionally, SPI-1 and SPI-2 were 

important for fitness in both NaCl and starvation stress (Table S1; Read coverage shown in 

Figure S3). 
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For broader insight into stress endurance pathways and functional role, we assigned each CEGs 

to the cluster of orthologous groups (COG) using eggNOG database (evolutionary genealogy of 

genes: Non-supervised Orthologous Groups) (Jensen et al., 2008). The CEGs having top hit for 

the COG in the S. Typhimurium str. LT2 were kept and CEGs with no orthologous group were 

allotted to group XX (Figure 3B; Table S1). In overall 21.83% of CEGs belonged to category 

“function unknown” followed by “intracellular trafficking, secretion, and vesicular transport ” 

(10.91%), “energy production and conversion” (9.44%), and “no orthologs found” (8.26%) 

among others. With a greater portion of CEGs (30.6%) falling into either “function unknown or 

“no orthologs found” shows that our data set is rich in novel genotype-phenotype relationships. 

Additionally, we were interested to see if the CEGs identified in our study fell into the essential 

genomes of S. Typhimurium. Essential genomes of S. Typhimurium strain SL3261 (selected on 

LB agar) (Barquist et al., 2013) and S. Typhimurium strain LT2 (selected on rich medium) 

(Knuth et al., 2004; Zhang et al., 2004) were compared with the CEGs of S. Typhimurium 

14028S. Genes in different strain background were looked for the orthologous gene in same 

strain background (S. Typhimurium 14028S). Interestingly, 10 and 15 CEGs in this study were 

shared with the essential genes of S. Typhimurium strain SL3261 and LT2, respectively (Table 

S2, Figure S4). This indicates that these genes are dispensable in S. Typhimurium 14028S strain 

background, making the essential genome smaller in this strain as compared to other two strains.  

Genetic and biochemical basis of CEGs in S. Typhimurium 

We delve into the genetic and biochemical mechanisms related to the CEGs identified in our 

study. For convenience, we split the section into specific CEGs, required for fitness in only one 
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stressor, and common CEGs, shared in at least two stressors out of five host stressors mimicked 

in vitro.   

Specific CEGs required for propionate (100 mM PA) stress resistance 

CEGs specific for fitness of S. Typhimurium in propionate were yiiD and sdhAD. YiiD is a 

putative acetyltransferase protein (Read coverage shown in Figure 4C). Acetylation, a post-

translation modification of protein was previously shown to enable prokaryotes to increase stress 

resistance (Ma and Wood, 2011). Additionally, succinate dehydrogenase flavoprotein (sdhA) and 

cytochrome b566 (sdhD) subunit proteins were up-regulated by intestinal SCFA in S. 

Typhimurium (Lawhon, 2002). Chowdhury and Shimizu (2008) reported that sdhA in the 

tricarboxylic acid cycle (TCA) were highly induced during temperature upshift in E. coli (Hasan 

and Shimizu, 2008). 

Specific CEGS required for osmotic (3% NaCl) stress resistance 

Twenty-six resistance genes of S. Typhimurium were required for fitness in osmotic stress (3% 

NaCl) alone. Protein-protein network analysis using STRING database (http://string-db.org) 

against S. enterica LT2 showed three distinct clustering of genes, SPI-3 (mgtBC, misL, cigR, 

slsA, fidL and marT), two-component system (dcuBRS) and sodium ion transport (yihPO) along 

with other nodes (http://bit.ly/2bCKGVG). SPI-3 genes are important for intracellular replication 

inside phagosome where Salmonella experience hyperosmotic stress (Schmidt and Hensel, 

2004). The virulence protein mgtC and mgtB, Mg2+ transporter were expressed five-fold when 

Salmonella Typhimurium was exposed to 0.3 M NaCl (Lee and Groisman, 2012). MisL, an 

autotransporter protein is an intestinal colonization factor (activated by marT, a transcriptional 

regulator) that binds to extracellular matrix fibronectin in an animal host and is also involved in 

http://string-db.org/
http://bit.ly/2bCKGVG
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adhesion to plant tissue (Dorsey et al., 2005; Kroupitski et al., 2013). Deletion of cigR in S. 

Pullorum resulted in a significantly decreased biofilm formation and increased virulence (Yin et 

al., 2016). However, Figueira et al. showed ∆cigR strain of S. Typhimurium had attenuated 

replication in mouse bone marrow-derived macrophage (Figueira et al., 2013).  

yihPO genes are essential for capsule assembly that is required by Salmonella for environmental 

stress persistence such as desiccation (Gibson et al., 2006). The absence of ompL (ortholog of 

yshA) leads to solvent hypersensitivity as it helps in the stabilization of cell wall integrity 

protecting from solvent penetrance as a physical barrier (Murinova and Dercova, 2014). In E. 

coli, the genes under the control of dcuS-dcuR, a two-component system, were not affected upon 

a hyperosmotic shock (Weber and Jung, 2002). However, dcuBRS were conditionally essential in 

S. Typhimurium for fitness during osmotic stress. Putative cytoplasmic protein (STM14_4542, 

STM14_4828, and STM14_5175), putative inner membrane protein (STM14_4824 and 

STM14_5184) and putative hydrolase (STM14_4823) were also required for osmotic stress 

tolerance. 

Specific CEGs required for oxidative (1 mM H2O2) stress resistance 

We identified 16 specific resistance genes required for fitness of S. Typhimurium in the presence 

of 1 mM H2O2 and the functional protein association network analysis among the genes was 

constructed using STRING against S. enterica LT2 (http://bit.ly/2bsVKXF). Major resistance 

genes were those involved in two-component system (glnD, rpoN, arcA (STM4598), and arcB 

(STM3328)), DNA recombination (recJ, and xerD), and metal ion transport (corA, and trkA). 

Hydrogen peroxide kills E. coli cells with two distinct modes, mode-1 killing occurs at a lower 

concentration of H2O2 due to DNA damage and mode-2 killing occurs at a higher concentration 

http://bit.ly/2bsVKXF
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of H2O2 due to damage of other structures like proteins and lipids(Imlay and Linn, 1986). 

Nucleic acid metabolic process genes involved in oxidative stress resistance were recJ, xerD, 

sun, and rpoN. RecJ protein, a single-stranded DNA (ssDNA)-specific 5’-3’ 

exonuclease/deoxribophophodiesterase, plays a role in homologous recombination, mismatch 

repair, and base excision repair (Wakamatsu et al., 2011). In E. coli, xerD knockout mutants are 

hypersensitive to tightly bound DNA-protein complexes (TBCs) that block replication forks in 

vivo (Henderson and Kreuzer, 2015). RpoN, the alternative sigma factor 54 (σ54), an important 

regulator of stress resistance and virulence genes in many bacterial species (Riordan et al., 2010). 

σ54 is involved in carbon/nitrogen limitation, nucleic acid damage, cell envelope, and nitric oxide 

stress (Hartman et al., 2016).  However, Hwang et al. 2011 found that rpoN mutant in 

Campylobacter jejuni was more resistant to 1mM H2O2 (Hwang et al., 2011).  

Besides, cellular component genes crucial for fitness in H2O2 stress were dsbC, glmS, trkA, corA 

including sun and xerD. DsbC, a protein essential for disulfide bond isomerization in the 

periplasm, has a new role in E. coli in protection against oxidative stress (Denoncin et al., 2014). 

In E. coli GlmS plays an important role in cell wall synthesis thus providing protection against 

cell envelope stress response (Zhou et al., 2009). HscB, a chaperone-encoding gene is 

upregulated after exposure to oxidative stress in Burkholderia pseudomallei (Jitprasutwit et al., 

2014). YbgF, an outer membrane vesicle protein, increases the survival of bacteria during 

exposure to stress or from toxic unfolded proteins by releasing the unwanted periplasmic 

component (Gogol et al., 2011). 
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Specific CEGS required for higher acidic (pH 3) stress resistance 

We found 49 specific stress resistance genes required for survival of S. Typhimurium in extreme 

acidic condition (pH 3). Formate dehydrogenase (fdoHI, and fdhDE) curli proteins (csgBDEFG), 

virulence and envelope proteins (SPI-2: orf245, orf408, ssaB; SPI-5: pipBC, sopB, and SPI-11: 

envEF, pagCD, msgA, STM14_1486 where ssaB, pipB, and sopB are effector proteins), and 

biopolymer transport protein (exbD and exbB) were clustered in functional protein association 

network analysis using STRING (http://bit.ly/2bCLVnL).  

Formate dehydrogenase catalyzes the oxidation of formate (HCOO-) to CO2 and H+.  The 

released electrons from this reaction are used by two cytoplasmic protons to form dihydrogen 

thus consuming net protons, consequently, counteracting acidification (Leonhartsberger et al., 

2002). Curli are major complex extra-cellular proteinaceous matrix produced by 

Enterobacteriaceae that helps pathogenic bacteria like Salmonella in adhesion to surfaces, cell 

aggregation, and biofilm formation (Barnhart and Chapman, 2006). Acidic pH strongly enhances 

biofilm formation in Streptococcus agalactiae (D'Urzo et al., 2014). We hypothesize that curli 

fibers might potentially protect bacteria from severe acid stress through the physical barrier and 

likely by the generation of alkaline compounds as in oral biofilms (Cotter and Hill, 2003). PhoP 

regulates SPI-11 genes such as envEF, pagCD, and msgA where later three are required by 

Salmonella to survive low pH within macrophage (Gunn et al., 1995; Lee et al., 2013). In 

Helicobacter pylori, only the organism to colonize in the acidic human stomach, 

ExbB/ExbD/TonB complex is required for acid survival and periplasmic buffering (Marcus et al., 

2013). Additionally, survival of ΔexbD was diminished compared to wild type at pH 3 in E. coli 

(Ahmer et al., 1995). The metC gene encoding a key enzyme in methionine biosynthesis, 

http://bit.ly/2bCLVnL


  

54 
 

required for the generation of homocysteine, pyruvate, and ammonia, play a crucial role in 

bacterial acid stress responses (Reid et al., 2008). 

Specific CEGs required for starvation stress resistance 

Out of 261 Salmonella fitness genes essential for starvation stress, 160 genes were explicitly 

important for resistance against starvation stress among the five infection-relevant conditions in 

this study (http://mcaf.ee/k0uhrm). Major enriched gene pathways were oxidative 

phosphorylation, pathogenesis, two-component system, and lipopolysaccharide biosynthetic 

process among others. 

NADH dehydrogenase, the first component of the respiratory chain, subunit proteins 

(nuoCEFGHLMN) were required for fitness of Salmonella during long-term carbon starvation. 

Salmonella defective in NADH dehydrogenase enzyme exhibits defective energy-dependent 

proteolysis during carbon starvation (Archer et al., 1993). Proteolysis of unbound or unemployed 

proteins helps bacteria to access nutrients as an important survival strategy during carbon 

starvation (Michalik et al., 2009). SPI-1 (hilACD, iagB, invH, orgAC, prgHIJK, STM14_3500, 

and STM14_3501) and SPI-2 (ssaMNOPQRSTV, sscB, and sseDEF) encoding type III secretion 

system (T3SS) and SPI-6 (safABCD, sinR, STM14_0359, and ybeJ) encoding type VI (T6SS) 

secretion system were required for in vitro survival in long-term starvation stress. Salmonella 

usually requires SPI-1 genes for the invasion of intestinal epithelial cells (Klein et al., 2000). 

HilACD regulates SPI-1 invasion gene expression during multiple environmental conditions 

including stationary phase, pH, osmolarity, oxygen tension, and short chain fatty acids 

(Olekhnovich and Kadner, 2007). SPI-2 genes are expressed under in vitro starvation conditions 

indicating the use of nutritional deprivation as a signal (Hensel, 2000). T6SS has been 

http://mcaf.ee/k0uhrm
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hypothesized to confer a growth advantage to bacteria in environmental niches where bacterial 

competition for nutrient is critical for survival (Brunet et al., 2015). 

Two-component systems (TCs), a basic stimulus-response coupling mechanism, enable microbes 

to respond to various stimuli such as pH, osmolarity, quorum signals, or nutrient availability and 

regulate their cellular functions (Freeman et al., 2013). TCs required for fitness during starvation 

conditions were envZ/OmpR, cpxA/cpxR, sensory histidine kinase protein (phoQ), and kdpD 

(Figure S3B). EnvZ/OmpR regulates the synthesis of porin proteins (ompF and OmpC) that are 

important for the survival of E. coli in sea water under starvation stress condition (Darcan et al., 

2009). It is believed that carbon starvation causes cell envelope stress. Bacchelor et al. (2005) 

found cpxA/cpxR in E. coli regulates the expression of prions ompF and ompC, a major 

component of the outer membrane. However, Kenyon et al. (2002) showed the starvation stress 

of S. Typhimurium do not require cpxR-regulated extra-cytoplasmic functions (Batchelor et al., 

2005; Kenyon et al., 2002).  PhoQ and kdpD plays a role in Mg2+ and K+ homeostasis 

respectively, critical to the virulence and intracellular survival of S. Typhimurium (Freeman et 

al., 2013; Kato and Groisman, 2008). 

The outer membrane of Gram-negative bacteria contains phospholipids and lipopolysaccharides 

(LPS). LPS molecules act as a permeability barrier to prevent the entry of toxic compounds and 

allow the entry of nutrient molecules (Schakermann et al., 2013). LPS biosynthetic process genes 

required for fitness in starvation conditions were rfbABCD, rfbUNMKP, galF, udg, wzxE, and 

wzzB. Starvation of carbon energy source activates envelope stress response in S. Typhimurium 

(Rowley et al., 2006). Additionally, pstSCAB coding for the Pst ABC transporter catalyzes the 

uptake of inorganic phosphate (Lüttmann et al., 2012). Mutations in the Pst system results in 

structural modifications of lipid A and an imbalance in unsaturated fatty acids consequently 
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leading to increase in outer membrane permeability making E. coli more vulnerable to 

environmental stresses including antimicrobial peptide and low pH (Lüttmann et al., 2012).  

Additional genes required for starvation stress resistance were aroGH, ytfMNP (ytfM - outer 

membrane protein), stcB (putative periplasmic outer chaperone protein).  Furthermore, other 

envelope proteins were outer membrane lipoproteins (stcD and yifL), putative outer membrane 

proteins (stcC, STM14_0404, and ytfM), and putative inner membrane proteins (STM14_0398, 

STM14_0402, STM14_2763, STM14_4741, STM14_4742, STM14_4745, STM14_4880, ydiK 

and yjeT).  Similarly, putative cytoplasmic proteins required for starvation stress were 

STM14_2759, STM14_4743, STM14_5374, ydiL, and ytfP. 

CEGs required for tolerance to multiple stressors 

We found 12 Salmonella genes required for stress resistance in either three or four of the in vitro 

host stresses in our study as shown in STRING protein-protein interaction network 

(http://bit.ly/2btx1zg). The enriched GO biological process / KEGG pathways were ncRNA 

processing (gidAB and mnmE), DNA metabolic process (dam, uvrD (SOS response), xerC), and 

biosynthesis of amino acids (aroB and rpe - microbial metabolism in diverse environments). In 

addition, other responsive proteins include ATP synthase subunit protein (atpI), putative 

permease (STM14_4659), inner membrane protein (damX), and flavin mononucleotide 

phosphatase. 

DamX, dam, rpe, aroB, uvrD, and yigB were required for fitness in pH3, Starvation, and H2O2. 

Disruption of damX in S. enterica causes bile sensitivity (López-Garrido and Casadesús, 2010). 

DNA adenine methylation gene (dam) plays an important role in bacterial gene expression and 

virulence (Low et al., 2001). Dam mutants of S. enterica are extremely attenuated in mouse 

http://bit.ly/2btx1zg


  

57 
 

(Jakomin et al., 2008). The gene aroB encodes dehyroquinate synthase, a part of shikimate 

pathway, is essential for bacteria and absent in mammals (de Mendonca et al., 2007). In 

prokaryote species, uvrD is involved in maintaining genomic stability and helps DNA lesion 

repair, mismatch repair, nucleotide excision repair and recombinational repair (Kang and Blaser, 

2006). Overproduction of yigB produced higher-level persister, cells that exhibit multidrug 

tolerance, in E. coli (Hansen et al., 2008). However, deletion of gidB (glucose-inhibited division 

gene B) confers high-level antimicrobial resistance in Salmonella and has compromised overall 

bacterial fitness compared to wildtype (Mikheil et al., 2012). GidA (together with mnmE) is 

responsible for the proper biosynthesis of 5-methylaminomethtyl-2-thouridine of tRNAs and 

deletion causes attenuation in bacterial pathogenesis (Shippy and Fadl, 2014b). 

ATP synthase genes are obligatory for Salmonella fitness during in vitro host stressors  

ATP synthase (F1F0-ATPase) is a ubiquitous enzyme largely conserved across all domains of 

life. All the eight genes encoding ATP synthase subunit proteins were required for fitness of S. 

Typhimurium in every 5 in vitro conditions of our study (Figure 3A and 4A). F1F0-ATP synthase 

complex is required for ATP production from ADP and Pi. ATP synthase also regulates pH 

homeostasis in bacteria (Listeria monocytogenes and S.  Typhimurium) at the expense of ATP 

(Balemans et al., 2012). In Streptococcal faecalis, upregulation of F1F0-ATPase promotes ATP-

dependent H+ extrusion under acidic conditions. However, in E. coli the expression of ATP 

synthase is decreased under acidic condition (Krulwich et al., 2011). ATP synthase in 

Mycobacterium and Staphylococcus has been validated as a promising target for new 

antimicrobial drugs (Balemans et al., 2012; Lu et al., 2014). 
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Mechanistic basis of Salmonella to cause enteric and systemic infection 

The network diagram shown in Figure 4 and Figure 5 shows all of the genes that are commonly 

important for fitness under at least one in vitro and in vivo conditions. The genes that were 

important only either in the in vitro or in vivo conditions were excluded in the diagram. This will 

show the biochemical basis of the genetic requirements for in vivo fitness.  

Enteric infection 

We have identified an overlapping set of 135 CEGs common in at least one of the host [pig, calf, 

and chicken (Chaudhuri et al., 2013)] that causes enteric infection and one of the in vitro host 

stressors [LB42, Bile (Khatiwara et al., 2012), pH3, PA, and NaCl] encountered during enteric 

infection (Figure 5, Table S3). Genes in SPI-1 (invABCEIJ, sicAP, sipABCD, spaOPQRS, sptP) 

and SPI-3 (cigR, marT, mgtBC, misL, slsA) were required for fitness in NaCl and all host. 

However, genes encoding SPI-2 (sseCG), SPI-5(slsA, pipC) and SPI-11(envEF) were essential 

for fitness only one in vitro stressor pH3 and intestinal colonization in 3 hosts. Other enriched 

pathways were lipopolysaccharide biosynthesis (rfaIJKLQY and rfbBDKMNP), oxidative 

phosphorylation (ATP synthase genes and sdhA), and biosynthesis of amino acids (aroABD, rpe 

and metC) including others as shown in STRIN protein-protein interaction against S. enterica 

LT2 (http://mcaf.ee/wzljud). 

High osmolarity, low oxygen, and late log phase induce hilA expression in vitro that in turn 

regulates the expression of SPI-1 genes (Lostroh and Lee, 2001). Interestingly, we identified 

SPI-1 genes as fitness genes required for in vitro NaCl stressor. Similarly, lipopolysaccharide 

(LPS) biosynthetic process genes were enriched in LB42, Bile and in pig, calf, and chicken for 

fitness during enteric infection. LPS, a critical factor in the virulence of gram-negative bacterial 

http://mcaf.ee/wzljud
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infection is required for intestinal colonization, resistance to killing by macrophage, swarming 

motility, serum resistance and bile stress (Khatiwara et al., 2012; Kong et al., 2011). CsgBA 

(curli subunit protein) mutant of S. Typhimurium was attenuated to elicit fluid accumulation in 

bovine ligated ileal loops (Tükel et al., 2005) and are required for fitness in pH3 including csgF 

and csgG. Additionally, putative proteins STM14_1138, STM14_1486, STM14_1981, 

STM14_3333 and STM14_4826, STM14_4828, STM14_5184, STM14_5185 (hypothetical 

protein) were required for fitness in vitro acidic and osmotic stress respectively and enteric 

infection in the entire three host. 

Systemic infection 

We compared the CEGs that are at least shared between the one of the in vitro systemic host 

stressors (H2O2, NaCl, pH3, Starvation and dLB (Khatiwara et al., 2012), stress encountered 

inside MΦ) and in vivo systemic infections (MΦ (Chan et al., 2005), A-Mice (Chan et al., 2005), 

P-Mice (Lawley et al., 2006), Sp-Liv (Silva-Valenzuela et al., 2015)) with an overlapping set of 

130 genes (Figure 6, Table S4) shown in protein-protein interaction network using STRING 

(http://mcaf.ee/p34rjn). SPI-1 genes (hilACD, iacP, iagB, invABCEFGI, orgA, prgHIJK, sicA, 

sipABC, spaOPQRS) encoding TTSS were essential for fitness in NaCl, Starvation, MΦ survival 

and systemic infection. Additionally, SPI-2 genes (ssaBCDEGIJKLMNOPQRSTV, orf245, 

orf408, sscAB, sseCDEF, ssrA, STM14_1706) encoding TTSS were required for fitness in pH3, 

starvation, MΦ survival and systemic infection. Similarly, SPI-3 genes (marBCT) were required 

for fitness in NaCl, MΦ survival, and persistent infection in mice (P-Mice). SPI-11 genes (envF, 

pagCD) were required for fitness in pH3, MΦ survival, and P-Mice. 

http://mcaf.ee/p34rjn
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Other than SPI genes, the majorly enriched genes were nucleic acid metabolic process (dam, 

trpS, MnmE, truA, serc, csgD, ompR and cra), lipopolysaccharide biosynthetic process 

(rfbABCNPU, rfaB, udg, galF), oxidative phosphorylation (ATP synthase genes, NADH 

dehydrogenase genes), two component system (ompR, barA, phoQ, glnDL, pagKO) among 

others (Figure 6). Gene dam was required for fitness in H2O2, NaCl, A-Mice, and Sp-Liv. XerC 

and rpe were required for H2O2, pH3, Starvation and Sp-Liv. Interestingly, pagK were not 

identified as CEG in A-Mice, P-Mice, Sp-Liv but in pH3, Starvation, and MΦ. Putative genes 

either essential for one of in vitro or in vivo systemic infection were STM14_1138, 

STM14_4880, STM14_4992, STM14_5184, STM14_2759, STM14_2807, STM14_3334, 

STM14_4825, STM14_5299, and STM14_5300. 

CONCLUSION 

A recent study by Kroger et. al. (2013) presented transcriptomes of S. Typhimurium in 22 

distinct infection-relevant environmental conditions in vitro. The researchers found induction of 

Salmonella pathogenicity islands in vitro conditions such as early stationary phase, anaerobic 

growth, oxygen shock, nitric oxide shock as well as in pH3, NaCl, bile, and peroxide shock 

including others (Kröger et al., 2013). However, transcription of a gene does not necessarily 

indicate the need of that gene in given particular condition. The transcript may be a leaky 

expression or required for fitness in the upcoming environment in a cost effective way through 

predictive adaptation, phenomena where microorganisms are able to anticipate and pre-

emptively respond to the regular environmental fluctuations (temporally distributed stimuli) that 

confers a considerable fitness advantage for the survival of an organism (Mitchell et al., 2009; 

Tagkopoulos et al., 2008). Traditionally, it is believed that “central dogma of life” i.e. flow of 

information from DNA to RNA to proteins are highly concordant. However, there is a modest 
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correlation between levels of transcripts and corresponding proteins (Foss et al., 2007; Fu et al., 

2009; Ghazalpour et al., 2011). Thus, that functional genomics screening such as Tn-seq is 

expected to reveal more direct functional aspects of the genes involved in responding to the 

current stresses. 

In this report, we were able to map genotype to phenotype links providing the biochemical basis 

the genetic requirements for fitness for an overlapping set of 221 virulence genes for in vivo 

fitness (Figure S5). These CEGs were required for fitness in at least one of the in vitro host 

stressors (PA, NaCl, pH3, Starvation, Bile, LB42 and dLB), enteric infection (calf, chicken and 

pig), or systemic infection (mice including intracellular survival inside macrophage). Forty-four 

common CEGs were required to cause both systemic and enteric infections (in vivo fitness) and 

in vitro fitness (Figure S5 and Table S6). Common SPI genes for in vivo and in vitro fitness were 

SPI-1 (invABCEI, sicA, sipABD, spaOPQRS), SPI-2(sseC), SPI-3(marT, mgtCB) and SPI-

11(envF). Salmonella genes other than SPI essential for fitness in vitro stresses and in vivo 

survival were atpAEF, lepA, dam, pstB, xerC, manA, phoQ, rfaQ, rfbBIP, rpe, trmE, rfbIP, 

ompR, csgF, recG, hscA, barA, and putative genes STM14_1138, STM14_3334, STM14_4825, 

and STM14_5184 (Table S6).  

Interestingly, most of the common forty-four genes required for in vitro and in vivo (enteric and 

systemic infection) fitness have been implicated in vaccine or drug target development against 

broad spectrum of bacteria. Such as ATP synthase genes (Balemans et al., 2012; Lu et al., 2014), 

dam (Garcia-Del Portillo et al., 1999), pstB (Garmory and Titball, 2004), phoQ (Miller and 

Mekalanos, 1998), ompR (Dougan et al., 1996), xerC (Hur et al., 2011), and rfbBPN (Sturm and 

Timmis, 1986), manA (Amineni et al., 2010), rpe (Edwards et al., 2004), lepA (Patton, 2007), 

csgF (Cegelski et al., 2008), trmE (Shippy and Fadl, 2014a), and SPI-1 and SPI-2 (Matulová et 
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al., 2012) have been used as vaccine development or drug target (Table S6). Thus, there lies a 

great potential to explore genes marBCT, envF, barA, hscA, rfaQ, rfbI and putative proteins 

STM14_1138, STM14_3334, STM14_485, and STM_5184 as novel therapeutic and intervention 

strategy to curb Salmonella infection. However, there is the possibility that mutation only 

attenuates the bacterium but do not elicit appropriate immune response, which needs further 

verification. 

MATERIAL AND METHODS 

Bacterial strains and growth conditions. 

Salmonella enterica serovar Typhimurium 14028S, a spontaneous mutant resistant to nalidixic 

acid (NA) were grown in Luria-Bertani (LB) plate or LB medium (BD Difco, Sparks, MD) on 

shaking rack at 225 rpm and incubated at 37°C unless otherwise indicated. Nalidixic acid (NA, 

ICN Biomedicals Inc., Aurora OH, USA) and kanamycin (Km, Shelton Scientific, Inc. CT, 

USA) were used at 25 µg/ml and 50 µg/ml respectively. S. Typhimurium was stored in 50% 

glycerol at -80°C.  

Construction of Transposon mutant library. 

To prepare electrocompetent cells, S. Typhimurium was grown overnight in 10 ml LB medium 

with NA and was diluted 100 fold in 10 ml 2xYT (BD Difco, Sparks, MD, USA) medium with 

NA and incubated for 3 h on a shaking rack. Bacterial cells were washed 6 times with wash 

solution (10% glycerol). Centrifugation was done at 8,000 rpm for 1 min at refrigeration 

temperature (4ºC). The bacterial pellet was mixed gently in 60µl of wash solution preventing 

aeration. One µl of the EZ-Tn5 <KAN-2> Tnp transposome complex (Epicentre 
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BioTechnologies, Madison, WI, USA) was added to electrocompetent S. Typhimurium cells and 

incubated on ice for 10 min.  Then, the bacteria were gently transferred to ice cold cuvette 

avoiding the formation of any air bubble and electroporated at 2450 V. Immediately, 500 µl of 

SOC was added and incubated for 90 minutes on a shaking rack at 37°C. The transformants were 

plated on LB plate with NA and Km. With three electroporations we were able to collect 700,000 

Tn5 mutants and stored them in LB medium with 50% glycerol at -80ºC (Figure 1).  

In vitro growth assay of transposon mutant library. 

In vitro selection of transposon mutant library was done as described by Opijnen and Camilli, 

(2010)(van Opijnen et al., 2014) with some modifications. Briefly, transposon mutant library was 

thawed on ice and 300 µl of aliquot were added to 60 ml LB with NA and Km (OD600 = 0.131). 

The library was incubated at 37°C on a shaking rack for 30 min (OD600 = 0.135) and centrifuged 

at 5500 rpm for 8 min at room temperature. The transposon mutant library pellet was mixed in 

50 ml 1X phosphate buffer saline (PBS) (OD600 = 0.143) and CFU (4X107/ml) was measured 

(t1). Ten ml aliquot were saved from t1 as an input pool (IP1). Above procedure were repeated to 

make a technical replicate of IP1 as input pool 2(IP2). An aliquot of 0.5 ml from t1 was 

inoculated to 10 ml LB (LB), LB with 3% NaCl (NaCl), LB with 100mM propionate adjusting to 

pH 7 (PA), LB with 1mM H2O2 (H2O2). The initial OD600 of inoculated medium was 0.009. We 

then incubated the library on shaking rack at 37°C with variable incubation time ranging from 

3.75 h to 7 h (t2) to a mid-logarithmic. The final OD600 of output pool was 0.64 at time point t2. 

Input pool and output pool library were centrifuged and the pellet was stored at -80°C for DNA 

extraction (Figure 1). 
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In vitro survival assay of transposon mutant library. 

To identify genes negatively selected during starvation, an aliquot of 0.5 ml from t1 was 

transferred to 10 ml PBS and incubated at 37°C on shaking rack for 12 days. On the 12th day, the 

tube was centrifuged and the pellet was dissolved in 1 ml PBS. 100 µl aliquot was incubated on 

LB plate (NA + Km) overnight at 37°C. The cells were collected in PBS and stored at -80°C for 

DNA extraction. Whereas for survival in pH3, 0.5 ml from t1 was exposed to LB medium 

adjusted at pH3 for 30 min at 37°C and immediately transferred to 40 ml PBS. The cells were 

centrifuged at 8000 rpm for 8 min and pellet was mixed in 1ml PBS. An aliquot of 250 µl was 

plated on LB plate (NA + Km) overnight at 37°C. Colonies were collected in PBS and stored at -

80°C for DNA extraction (Figure 1). 

DNA library preparation for Illumina sequencing 

Genomic DNA (gDNA) from the bacterial pellet of input library and output library stored at -

80°C was extracted using QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) following 

manufacturer’s protocol. The purity and concentration were checked using Qubit 2.0 

Fluorometer (Life Technologies, Carlsbad, CA) with Qubit Assay Kits (dsDNA BR Assay) 

following the manufacturer’s manual. The sample for Illumina sequencing was prepared 

according to Dawoud et al. (2014)(Dawoud et al., 2014) with significant modifications. All the 

DNA primers (Table S5) used for Tn-seq library were custom designed using Primer3 (v. 0.4.0) 

(Untergasser et al., 2012) and ordered from Integrated DNA Technologies (Coralville, Iowa). 

The simplified figure for DNA library preparation is shown Figure S1A. 
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 Briefly, Tn5-junctions at the right end of transposon was enriched from gDNA extracted from 

input and output library. The single primer linear extension was done with EZ-Tn5 primer3 using 

Taq DNA polymerase (New England Biolabs, Ipswich, MA, USA). The 50 µl linear PCR 

reaction constituted: Nuclease-free water – 40 µl (volume adjusted according to gDNA volume), 

Thermopol buffer (10X) – 5 µl, dNTPs (2.5 mM each) – 1 µl, EZ-Tn5 primer3 (20 µM) – 1 µl, 

gDNA library (50 ng/ul) – 2 µl (~100 ng), and Taq DNA polymerase – 1 µl (added during PCR). 

The PCR cycle consisted of manual hot start with initial denaturation at 95°C for 2 min, addition 

of Taq DNA polymerase followed by 50 cycles of 95°C for 30 s, 62°C for 45 s, and 72°C for 10 

s, and followed by a hold at 4°C.  The linear PCR products were then purified with MinElute 

PCR purification kit (Qiagen, Valencia, CA, USA) and eluted in 10 µl of elution buffer 

following manufacturer’s protocol. 

Then deoxycytosine homopolymer tail (C-tail) was added to the linear extension purified PCR 

product using Terminal Transferase (TdT, New England Biolabs, Ipswich, MA, USA) enzyme 

following previous protocol (Lazinski and Camilli, 2013). The C-tailing reaction consisted: DNA 

(linear extension product from linear PCR) – 10 µl, TdT Buffer (10X) – 2 µl, CoCl2 (2.5 mM) – 

2 µl, dCTP (10 mM) – 2.4 µl, ddCTP (1mM) – 1 µl, Nuclease-free H2O – 1.6 µl, and Terminal 

Transferase – 1 µl, making a total volume of 20 µl. The reaction was incubated at 37°C for 1 h 

followed by heat inactivation of the enzyme at 75°C for 20 min on a thermocycler. The C- tailed 

products were purified using MinElute PCR purification kit and eluted to 10 µl.  

Subsequently, C-tailed PCR product was enriched with exponential PCR. PCR reaction 

constituted: nuclease-free H2O – 35 µl, Thermopol Buffer (10X) – 5 µl, dNTPs (2.5 mM each) – 

4 µl, IR2 BC primer (with Illumina adapter and barcode, 10 µM) – 2 µl, HTM primer (with 

Illumina adapter, 20 µM) – 1 µl, C-tailed DNA – 2 µl, and Taq DNA Polymerase (NEB) – 1 µl, 
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making a total volume of 50 µl. The manual hot start PCR cycle comprised of 95°C for 2 min, 

followed by 25 cycles of 95°C for 30s, 58°C for 45s, and 72°C for 20s, trailed by a final 

extension at 72°C for 10 min. 

Finally, the exponential PCR products were pulse heated at 65°C for 15 min and ran on 1.5% 

agarose gel. Tn-seq library had smear pattern whereas gDNA of S. Typhimurium (-ve control) 

had almost no amplification (Figure S1B). Gel was excised ranging from 300-500 bp and DNA 

was extracted using QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). The purity and 

concentration of DNA were measured using Qubit 2.0 Fluorometer. An equal amount (~ 10 ng) 

of DNA (gel-purified products) from each library were mixed together and sent for next 

generation sequencing, Illumina HiSeq 2000 single end read 100 cycles (Center for Genome 

Research and Biocomputing, Oregon State University, Corvallis).  

Analysis of Transposon sequencing data. 

Raw reads from HiSeq Illumina sequencing were de-multiplexed based on the barcode to their 

respective library using custom Perl script. The barcode and transposon sequence were trimmed 

off from 5’ end. Consequently, the remaining sequence was genomic DNA (junction sequence) 

with/without poly C-tail.  Only 20 bp from the Tn5-junction were kept discarding most of the 

poly C-tail.  

The reads (junction sequence) mostly with genomic sequence were then aligned against S. 

Typhimurium 14028S complete genome (NC_016856.1) using Bowtie version 0.12.7(Langmead 

and Salzberg, 2012). The aligned sequence (SAM mapping file) were fed to ARTIST pipeline to 

identify CEGs using Con-ARTIST(Pritchard et al., 2014). Briefly, Tn5 insertion frequency was 

assigned to the S. Typhimurium 14028S genome divided into 100 bp window size. Uncorrected 
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raw data (non-normalized) of input and output libraries were used to normalize the control data 

(IP-1) to account for the random loss of mutants in output pool. Then, reads were compared 

between input and output pool using a Mann-Whitney U test (MWU). The MWU results were 

used train hidden Markov model (HMM) to predict the likelihood of loci that were not required 

for growth in either condition, essential under both conditions, enriched in output library and 

window depleted in output library (p < 0.01). The insertions were only considered in the central 

80% of the gene to avoid any polar effect of transposon insertion. The cutoffs for depleted loci 

and enriched loci were >8 fold and >2 fold respectively. 

Comparative analysis of conditionally essential genes (CEGs) between in vitro and in vivo 

stressors 

We compared the in vitro essential genes identified in this study including Khatiwara et al. 

(2012) with the previously identified in vivo fitness genes. CEGs for acute infection of mice (A-

Mice), macrophage survival (MΦ) (Chan et al., 2005) and persistent infection of mice (P-Mice) 

(Lawley et al., 2006) were identified in S. Typhimurium strain SL1344 backgound. Additionally, 

Salmonella genes required for gastrointestinal colonization of pig, calf and chicken were studied 

in S. Typhimurium strain ST4/74 (Chaudhuri et al., 2013), and for intraperitoneal infection of 

mice (Sp-Liv) were reported in  S. Typhimurium strain 14028S background (Silva-Valenzuela et 

al., 2015). The CEGs of different strain were looked for the orthologous gene in S. Typhimurium 

strain 14028S background using Prokaryotic Genome Analysis Tool (PGAT) (Brittnacher et al., 

2011). To get insight into the biological basis of CEGs required for in vivo intestinal colonization 

of pig, calf and chicken were compared with CEGs of in vitro host stressors found in the gut 

(PA, NaCl, pH3, Bile, and LB42). Similarly, for the biological basis of CEGs for in vivo 
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systemic infection (A-Mice, MΦ, P-Mice and Sp-Liv) were compared to in vitro macrophage 

stressors (H2O2, NaCl, Starvation, dLB, and pH3). The CEGs that were common in at least one 

of the in vitro host stressors and at least one of in vivo infection were only used for the 

comparative study. 
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Figure 3: Conditionally essential genes (CEGs) of S. Typhimurium 14028S and cluster of 

orthologous groups (COG). A) Distribution of CEGs identified in the 5 conditions. Numbers 

inside the bracket indicate number of CEGs. Red dashed box is the CEG (ATP synthase genes) 

common to all 5 conditions. X-axis: Overlapping set of 339 CEGs B) Functional assignments of 

CEGs into COG category. Overall is the COG assigned to all the 339 CEGs. (Red asterisk (*): 

Abundance of COG C in PA was 57.89 %). 

Figure 4: Read coverage of select genes in 7 conditions. Y-axis: Numbers is bracket indicates 

the raw read coverage. A) ATP synthase genes conditionally essential in all the 5 conditions (PA, 

NaCl, H2O2, pH3 and Starvation. B) Gene mrp essential in pH3 and Starvation. C) Gene yiiD 

essential in PA only. 

Figure 5: Mechanistic basis of enteric infection [In vitro vs in vivo (Enteric)]. Large square 

nodes indicates various conditions (studies) and small nodes are fitness genes. Each node (gene) 

is at least shared by one of the in vitro condition i.e. stressors encountered by Salmonella during 

enteric infection (PA, pH3, NaCl, Bile, and LB42) and at least one of the in vivo enteric 

condition (Pig, Calf, and Chicken). 

Figure 6: Mechanistic basis of systemic infection [In vitro vs In vivo (Systemic)]. Large square 

nodes indicates various conditions (studies) and small nodes are fitness genes. Each node (gene) 

is at least shared by one of the in vitro condition i.e. stressors encountered by Salmonella inside 

macrophage (NaCl, H2O2, pH3, Starvation, and dLB) and at least one of the in vivo systemic 

condition (Pig, Calf, and Chicken).  
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Integrative Genomics Viewer (IGV) showing raw read coverage [100-600] in seven conditions. 

(Blue asterisk: conditionally essential in NaCl and Starvation; and Red asterisk: conditionally 

essential in Starvation only). B) CpxAR were conditionally essential in starvation only. 

Figure S4: Comparison of overlapping set of conditionally essential genes of S. Typhimurium 

14028S (this study) with essential genome of S. Typhimurium SL3261 and S. Typhimurium LT2. 

Figure S5: Venn diagram shows the number of common genes between in vitro vs in vivo 

(Enteric) (135 CEGs, Figure 4) and in vitro vs in vivo (Systemic) (130 CEGs, Figure 5). 

Common list of genes (44) are shown in Table S6. 
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Figure 1: Schematic overview of experimental design. A highly saturating Tn5 library was 
constructed through electroporation Ez-Tn5 transposome complex to electrocompetent S. 
Typhimurium 14028s. More than 350,000 Tn5 mutants were collected on LB (Km + NA) plate. 
Complex Tn5 mutant library (IP1) were selected based on growth (LB medium, 100 mM 
Propionate in LB medium (PA), 3% NaCl in LB medium, and 1mM Hydrogen peroxide (H2O2) 
in LB medium) and survival (exposed to pH3 in LB medium (pH3) and incubated for 12 days in 
1X PBS (Starvation)). Input pool 2 (IP2) is the technical replicate of input pool 1 (IP1). After 
selection, DNA was extracted from each sample and stored at -20ºC for DNA library 
preparation. 
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Figure 2: Demultiplexing of Illumina sequencing reads and correlation between Tn5 mutant 
libraries. A) Bar graph shows the number of Illumina sequencing reads distribution in each Tn5 
libraries after sorting according to the barcode (blue color), unique insertions (orange color), 
mean reads per unique insertions (grey color), and median reads for each unique insertions 
(yellow color). B) Scatter plot display Spearman correlation (R2) among the Tn5 mutant libraries 
based on read count per 100 bp window across the genome (p < 0.0001).  
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Figure 3: Conditionally essential genes (CEGs) of S. Typhimurium 14028S and cluster of 
orthologous groups (COG). A) Distribution of CEGs identified in the 5 conditions. Numbers 
inside the bracket indicate number of CEGs. Red dashed box is the CEG (ATP synthase genes) 
common to all 5 conditions. X-axis: Overlapping set of 339 CEGs B) Functional assignments of 
CEGs into COG category. Overall is the COG assigned to all the 339 CEGs. (Red asterisk (*): 
Abundance of COG C in PA was 57.89 %).  
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Figure 4: Read coverage of select genes in 7 conditions. Y-axis: Numbers is bracket indicates 
the raw read coverage. A) ATP synthase genes conditionally essential in all the 5 conditions (PA, 
NaCl, H2O2, pH3 and Starvation. B) Gene mrp is essential in pH3 and Starvation only. C) Gene 
yiiD essential in PA only. 
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Figure 5: Mechanistic basis of enteric infection [In vitro vs in vivo (Enteric)]. Large square nodes indicates various conditions 
(studies) and small nodes are fitness genes. Each node (gene) is at least shared by one of the in vitro condition i.e. stressors 
encountered by Salmonella during enteric infection (PA, pH3, NaCl, Bile, and LB42) and at least one of the in vivo enteric 
condition (Pig, Calf, and Chicken).  
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Figure 6: Mechanistic basis of systemic infection [In vitro vs In vivo (Systemic)]. Large square nodes indicates various 
conditions (studies) and small nodes are fitness genes. Each node (gene) is at least shared by one of the in vitro condition i.e. 
stressors encountered by Salmonella inside macrophage (NaCl, H2O2, pH3, Starvation, and dLB) and at least one of the in vivo 
systemic condition (Pig, Calf, and Chicken).  
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Figure S1: DNA library preparation protocol for Illumina sequencing. A) DNA of Tn5 mutant 
library was amplified using Tn-specific primer 1 (Ez-Tn5 primer3, Table S1). Then after C-tail 
was ligated to the 3’ end of purified DNA. The C-tailed product was purified and exponential 
PCR was performed using Tn-specific primer 2 (Barcoded primers, Table S1) and C-tail specific 
primer (HTM-Primer, Table S1) with Illumina adapter attached to primers. B) Exponentially 
amplified DNA was than run on 1.5% agarose gel. DNA from 300bp to 500bp was extracted 
from the gel and sent for Illumina sequencing. [M: Hi-Lo DNA marker; 1, 2, 3, 4: Tn5 mutant 
libraries; and C: negative control (gDNA of S. Typhimurium 14028S)]. 
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Figure S2: Overlay plot displays global view of genome-wide distribution of Tn5 insertion read 
count for all samples. X-axis: Position on genome; and Y-axis: Number of read count per 100 bp 
scaled to log10.  
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Figure S3: Read coverage of select genes. A) Tn5 insertion in Salmonella pathogenicity island 1 
(SPI-1) genes encoding type III secretion system (TTSS). Screen shot image produced using 
Integrative Genomics Viewer (IGV) showing raw read coverage [100-600] in seven conditions. 
(Blue asterisk: conditionally essential in NaCl and Starvation; and Red asterisk: conditionally 
essential in Starvation only). B) CpxAR were conditionally essential in starvation only. 
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Figure S4: Comparison of overlapping set of conditionally essential genes of S. Typhimurium 
14028S (this study) with essential genome of S. Typhimurium SL3261 and S. Typhimurium LT2. 
 

 

 

 

 

 

 

 

 

 

  

 

 



  

82 
 

Figure S5: Venn diagram shows the number of common genes between in vitro vs in vivo 
(Enteric) (135 CEGs, Figure 4) and in vitro vs in vivo (Systemic) (130 CEGs, Figure 5). 
Common list of genes (44) are shown in Table S6. 
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Table S5: Oligonucleotides used in this study.  

NNNN: random sequence for efficient cluster analysis. XXXXXX: 6nt sample barcode 
sequences. For exponential PCR, barcoded and HTM-primer were used. Few wild characters 
(.C.G.G.T.A.A.G.G.A.A.GAGACAG in Perl script, where “.” is any character) were used in 
mosaic end reads for identification of the reads containing Tn5-junction sequences.

Primer Sequence (5'-3') Barcode Library 
Ez-Tn5 
primer3 

5’-GATCCTCTAGAGTCGACCTGCAGG 
CATGCA-3’ 

  

IR2-IS-B7 5’-AATGATACGGCGACCACCGAGATC 
TACACTCTTTCCCTACACGACGCTCTT 
CCGATCTNNNNAGcagatcCTCAGGGTT 
GAGATGTGTATAAGAGACAG-3’ 

CAGATC IP1 

IR2-IS-B15 5’-AATGATACGGCGACCACCGAGATC 
TACACTCTTTCCCTACACGACGCTCTT 
CCGATCTNNNNAGttcggcTCAGGGTTG 
AGATGTGTATAAGAGACAG-3’ 

TTCGGC IP2 

IR2-IS-B8 5’-AATGATACGGCGACCACCGAGATC 
TACACTCTTTCCCTACACGACGCTCTT 
CCGATCTNNNNAGacttgaTCAGGGTTG 
AGATGTGTATAAGAGACAG-3’ 

ACTTGA LB 

IR2-IS-B12 5’-AATGATACGGCGACCACCGAGATC 
TACACTCTTTCCCTACACGACGCTCTT 
CCGATCTNNNNAGcttgtaTCAGGGTTGA 
GATGTGTATAAGAGACAG-3’ 

CTTGTA PA 

IR2-IS-B10 5’-AATGATACGGCGACCACCGAGATC 
TACACTCTTTCCCTACACGACGCTCTT 
CCGATCTNNNNAGtagcttTCAGGGTTGA 
GATGTGTATAAGAGACAG-3’ 

TAGCTT NaCl 

IR2-IS-B9 5’-AATGATACGGCGACCACCGAGATCT 
ACACTCTTTCCCTACACGACGCTCTTCC 
GATCTNNNNAGgatcagTCAGGGTTGAGA 
TGTGTATAAGAGACAG-3’ 

GATCAG H2O2 

IR2-IS-B11 5’-AATGATACGGCGACCACCGAGATCT 
ACACTCTTTCCCTACACGACGCTCTTCC 
GATCTNNNNAGggctagTCAGGGTTGAGA 
TGTGTATAAGAGACAG-3’ 

GGCTAG pH3 

IR2-IS-B13 5’-AATGATACGGCGACCACCGAGATCT 
ACACTCTTTCCCTACACGACGCTCTTCC 
GATCTNNNNAGataacgTCAGGGTTGAGA 
TGTGTATAAGAGACAG-3’ 

ATAACG Starvation 

HTM-Primer 5’-CAAGCAGAAGACGGCATACGAGCTC 
TTCCGATCTGGGGGGGGGGGGGGGG-3’ 
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Table S6: Common genes required for fitness in vitro and in vivo (enteric and systemic) conditions.  
 

Category Genes 

Salmonella pathogenicity island 

genes (SPI) 

 

SPI-1* invABCEI, sicA, sipABD, and spaOPQRS 

SPI-2* sseC 

SPI-3 marBCT 

SPI-11 envF 

Non pathogenicity island genes  

Two-component system ompR*, phoQ*, and barA 

O antigen biosynthetic process rfbBPN 

ATP synthase genes atpAEF* 

Mismatch repair dam* 

chromosome segregation xerC* 

Fructose and Mannose Metabolism manA* 

Carbon metabolism rpe* 

Homologous recombination recG 

ABC transporter pstB* 

Translational elongation lepA* 

Iron-sulfur cluster assembly hscA 

Others csgF*, rfaQ, rfbI, and trmE* 

Putative Protein STM14_1138, STM14_3334, 
STM14_485, and STM_5184  

Genes marked with asterisk (*) have been implicated in vaccine development or drug target against a wide range of bacteria. 
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ABSTRACT 

Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to 

survive under desiccation condition in foods and food processing facilities for years and is the 

most notable and frequent cause of contamination in low water activity foods. The response of 

Salmonella to desiccation stress is complex involving immediate physiological actions as well as 

coordinated genetic responses. However, the exact mechanisms of Salmonella to resist 

desiccation stress remain to be fully elucidated. For the first time to our knowledge, we screened 

a genome-saturating  transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 

14028S under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 

61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella 

desiccation resistance genes were mostly related to energy production and conversion; cell 

wall/membrane/envelope biogenesis, inorganic ion transport and metabolism; regulation of 

biological process; DNA metabolic process; ABC transporters; and two component system. 

More than 20% of the Salmonella desiccation resistance genes encode either putative or 

hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants during 

desiccation survival showed 3 mutants (atpH, atpG, and corA) showed significantly (p < 0.02) 

reduced survival as compared to the wild type. Thus, our study was able to provide new insights 

on the molecular mechanisms utilized by Salmonella for survival against  desiccation stress. The 

findings might be further exploited to develop effective control strategies against Salmonella 

contamination in low water activity foods and food processing facilities. 

Keywords: Salmonella; Desiccation stress; Genetic determinants; Tn-seq  
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INTRODUCTION 

Salmonella is one of the most common causes of foodborne illness worldwide. It is capable of 

withstanding a spectrum of hostile milieus such as desiccation found in natural and food industry 

settings (1). Salmonella can persist in the low water activity (low-aw) environment for extended 

periods of time. Salmonella are able to survive from several weeks and months, even to years in 

dry foods (chocolate, hard cheese, dried eggs, infant dried milk, salami, halva, almonds kernels, 

pecans, dry confectionery raw materials, and peanut-flavored candy) (2-8) and dry surfaces 

(desiccated paper discs, plastics , and eggshells) (9). Globally, there were 7,315 cases of bacterial 

outbreak illness and 63 deaths due to consumption of contaminated low-water activity foods and 

spices during the period from 2007 to 2012. Salmonella alone was accountable for 94% of the 

low water activity food recalls in the U.S. and 53% of outbreaks worldwide in above six years 

(10). 

Additionally, exposure of Salmonella to low water activity increases cross-protection against 

other stresses including heat, ethanol, sodium hypochlorite, dodecyl dimethyl ammonium 

chloride, hydrogen peroxide, NaCl, bile salts, and UV irradiation (11), which ultimately makes 

the prevention and control strategies less effective. Food industry faces a significant challenge to 

rein Salmonella burden from dry foods and spices without damaging the organoleptic properties. 

Control of Salmonella contamination in the low water activity foods might be improved 

marginally through improvement in the hygiene and rapid and sensitive detection of Salmonella 

in food and food processing environment. However, more critical is to understand the genetic 

mechanism of Salmonella resistance in low water activity environment for improvement of food 

safety and public health (12). 
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In the last few years, a considerable progress has been made to unveil the underlying mechanism 

of Salmonella tolerance against desiccation using transcriptome analysis (13-16). Immediate 

response of bacteria to low moisture environment involves balancing the internal osmotic 

pressure to keep it viable. Commonly believed features for desiccation tolerance in Salmonella 

include the followings: increased potassium influx by kdp transporter; increased expression of 

osmoprotectant transport (proPU and osmU), glutamate and trehalose synthesis; and up-

regulation of fatty acid catabolism, Fe-S cluster, sigma factors (rpoE and rpoS) and ompC. 

Additionally, cellulose and curli fimbrae may play important role in desiccation resistance in 

Salmonella. However, Finn et al. (2015) reported that S. Typhimurium response to different 

humectants, agents that reduce water content of food products, does not simply reflect low water 

activity but rather are linked to specific humectants (17). In addition, transcripts present at a 

given time in a cell do not necessarily reflect the functional role of the genes at the given 

moment. The presence of transcripts can be a reflection of the predictive adaptation of bacteria, 

thus expression of the transcripts may not have any functional role in the current conditions (18, 

19). Furthermore, there can be posttranscriptional regulation of genes and constitutively 

expressed genes. The limitations of transcriptional analysis can be circumvented by a more direct 

functional screening approach such as Tn-seq screening employed in the current study.  

In this study, for the first time to our knowledge, we used the transposon sequencing (Tn-seq) 

approach to undermine the genetic mechanisms of desiccation survival in S. Typhimurium 

14028S. We screened a genome-saturating Tn5 mutant library of S. Typhimurium, and identified 

61 fitness genes required for survival of S. Typhimurium during desiccation stress. 
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MATERIALS AND METHODS 

Bacterial strains and growth conditions 

Salmonella enterica serovar Typhimurium 14028S, a spontaneous mutant resistant to nalidixic 

acid (NA) was used for the transposon insertional mutagenesis. Bacteria were grown in Luria-

Bertani (LB) medium or LB agar plates at 37°C and stored at -80°C unless indicated otherwise. 

NA (ICN Biomedicals Inc., Aurora OH, USA) and kanamycin (Km, Shelton Scientific, Inc. CT, 

USA) were used at 25 µg/ml and 50 µg/ml, respectively. Bacteria were incubated on shaking 

rack at 225 rpm when required. Polystyrene disposable petri dish (60 x 15 mm; (VWR 

International, USA) were used for screening of the mutant library under desiccation stress. 

Construction of Tn5 mutant library 

Electrocompetent S. Typhimurium cells were prepared and transformed with EZ-Tn5 <KAN-2> 

Tnp transposome complex (Epicentre BioTechnologies, Madison, WI, USA). Electroporation 

was performed using 0.1-cm cuvettes in a Micropulser electroporator (Bio-Rad Laboratories, 

Inc., Mississauga, Ontario, Canada) with a field strength of 2450 V. The electroporated cells 

were immediately resuspended in 500 µl of SOC medium (Quality Biological Inc., Gaithersburg, 

MD) and incubated for 1.5 h at 37°C on shaking rack (225 rpm). Then, the Tn5 mutant cells 

were plated on LB plate with double antibiotics (NA and Km) and incubated overnight at 37°C. 

We collected and combined ~370,000 Tn5 mutants from three transformations, making it a 

highly complex library. The mutant cells were scrapped off LB plates in 1X phosphate buffered 

saline (PBS) and stored in 50% glycerol at -80°C. 
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Screening of Tn5 mutant library during desiccation stress 

The Tn5 complex library stored at -80°C was thawed on ice and 300 µl was mixed in 60 ml LB 

and incubated at 37°C on a shaking rack (OD600=0.135) for 30 min. Then, bacteria were 

collected by centrifugation at 5,500 rpm for 8 min at room temperature (RT) and resuspended in 

50 ml PBS (OD600=0.143). Ten ml from this mutant suspension (t0 time point) were centrifuged 

and the bacterial pellet was saved for DNA extraction (Input pool, IP).  

For negative selection of Tn5 mutants during desiccation survival, 10 ml of suspension from t0 

was centrifuged and resuspended in 1 ml PBS (~8.0 108 CFU/ml). Then aliquots of 100 µl were 

placed at the center of 10 petri plates (60 x 15 mm size) and air-dried with the lid open inside a 

bio-safety hood with blower on for 4 h. Then, the plates were covered with the lids and incubated 

at the RT for 24 h. The desiccated cells were collected from all the 10 petri plates by 

resuspending them in one ml PBS buffer on each petri plate (in total10 ml PBS) and concentrated 

to in one ml PBS (8.7 106 CFU/ml) with recovery rate of 1.08 % in reference to t0. Bacterial 

cells (100 µl aliquot) were plated on 10 LB plates (Km + NA) and incubated overnight. The cells 

were collected from all the plates in PBS, centrifuged and the pellet was stored at -20°C [output 

pool (OP) – Desiccation]. 

DNA library preparation for Illumina sequencing 

Genomic DNA (gDNA) were extracted from the input and output pools (100 µl aliquot) using 

QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) following manufacturer’s protocol. The 

purity and concentration were checked using Qubit 2.0 Fluorometer (Life Technologies, 

Carlsbad, CA). DNA library were prepared following the protocol developed in our lab (20) with 

some modifications with details in Supplementary File 1. Briefly, linear extension PCR was done 
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to enrich the Tn5-juction sequences using a single primer specific to Tn5 transposon (7 bp 

upstream of invert repeat 2, IR2). The linear extension products were purified and C-tail was 

attached to it. Then, C-tailed products were purified and exponential PCR was performed using 

barcoded forward primer and poly G primer with Illumina adapter attached to it (HTM primer; 

Table S1). The PCR product were purified on 1.5 % agarose gel ranging from 300 – 500 bp. 

Equal quantity of DNA (10 ng) were mixed and sent for Illumina sequencing using HiSeq 2000 

single end read option with 100 cycles (Center for Genome Research and Biocomputing, Oregon 

State University, Corvallis).   

Data analysis 

Sequencing reads obtained from the Illumina HiSeq 2000 single end read were analyzed using 

Analysis of high-Resolution Transposon-Insertion Sequences Technique (ARTIST) (21). Briefly, 

demultiplexed reads with 20 bp transposon junction sequence were aligned against S. 

Typhimurium 14028S complete genome (NC_016856.1) using Bowtie version 0.12.7 (22). The 

aligned SAM mapping file were fed to ARTIST pipeline to identify conditionally essential genes 

(CEGs) using Con-ARTIST (21). Tn5 insertion reads were assigned to 100bp window size of S. 

Typhimurium genome. Uncorrected raw data were used to normalize input data and then reads 

were compared between input pool and output pool using Mann-Whitney U test (MWU). The 

MWU results were used to train hidden Markov model (HMM) to predict the likelihood of loci 

to be conditionally essential or non-essential in the output pool (p <0.01). Only the insertions in 

the mid 80% (excluding 10% at both 5’ and 3’ ends) of the protein-coding genes were considered 

to inactivate the protein functions and thus included in the analysis  with cutoff >8 fold and >2 

fold for depleted and enriched loci, respectively.   
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Phenotypic evaluation of single gene knockout mutants 

Single-gene knockout mutants of S. Typhimurium 14028S were ordered from the BEI Resources 

(www.beiresources.org) (23). The mutants from 96 well plates were streaked on LB plate (Km) 

and grown overnight on standard conditions. A single colony was picked and grown in LB broth 

(Km) for each mutant, and the strains were stored at -80°C in 50% glycerol. Twelve mutants 

were chosen based on the availability in our strain collection to represent the wide range of fold 

reduction in read numbers after the selection. Desiccation experiment was performed as 

described by Gruzdev et al. (2011) with some modifications (11).  Single colony of bacteria was 

picked from LB plate with appropriate antibiotics (wild type with NA and mutant with Km) and 

incubated in 10 ml LB broth with appropriate antibiotics aerobically overnight in standard 

conditions (37ºC and shaking rack @225 rpm). Overnight grown bacteria were washed 3 times 

in 1X PBS at 4ºC with centrifugation at 8,000rpm for 2 min. O.D600 was adjusted to 0.4 (±0.05) 

in 1X PBS. Colony forming units (CFUs) were measured for the wild type and mutants. Fifty µl 

of bacteria with adjusted OD600 (0.4) was then transferred to 96 microtiter well plates. The 

microtiter plate (with lid open) was placed inside a laminar flow hood with blower on for 10 h 

for desiccation. The bottom of the microtiter well was completely opaque after drying. After 10 h 

of drying the microtiter plate was covered with a lid and placed on bench for additional 14 h. 

Then 200 µl of 1X PBS was added to each well and the plate was shaken  for 30 minute at RT. 

The desiccated bacteria were then released from the wells and resuspended in PBS by vigorously 

pipetting 15 times and collected in 1.5 ml micro centrifuge tubes. The CFU of the recovered 

viable cells was measured by plating the suspension on LB plates, followed by overnight 

incubation for each of the wild type and mutants. Three replications were performed for each 

http://www.beiresources.org/
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strain. Survival (%) for each strain was calculated as [Total bacteria recovered after desiccation / 

Total bacteria added to microtiter well plate]*100. 

RESULTS AND DISCUSSION 

Overview of the selection process and Illumina Sequencing 

In this experiment, we subjected a complex Tn5 library of S. Typhimurium with more than 

350,000 mutants to desiccation stress. The complex Tn5 library (input pool) was air-dried for 4 

hours on petri plates inside a laminar flow hood and incubated at the room temperature for 24 h. 

The number Tn5 mutants before and after the desiccation selection was 8108 CFU/ml and 

8.7106 CFU/ml, respectively, indicating only 1.08% of the mutants were able to survive 

following the desiccation stress. The desiccated Tn5 mutant were resuscitated on LB agar plates 

(Na + Km) with standard growth conditions. DNA was extracted from the input and output pool 

and DNA library was prepared for HiSeq Illumina sequencing as described in Material and 

Methods. Illumina sequencing reads were first demultiplexed based on perfect matching to 

sample barcodes and then Tn5-junction sequences (20 bp) were extracted allowing some 

ambiguities in the Tn5 mosaic end of transposon as summarized in Table S1. IP and OP 

(Desiccation) had 10,842,764 and 5,516,907 reads, respectively and more than 186,000 and 

132,000 unique insertions, respectively (Table 1). The number of genomic sites disrupted by Tn5 

transposon in the input pool was unexpectedly low (10,842,762/186,000≅58), considering the 

number mutants collected after electroporation of transposome complex. This might be due to 

replication of Tn5 mutants during 1.5 h of incubation in SOC medium immediately after 

electroporation. Moderate Spearman’s correlation was observed between input pool and 

desiccation pool (R2=0.85, p<0.0001) with Tn5 insertion frequency at nucleotide level (Fig. 1A; 
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Table S2). Additionally, Tn5 transposon were randomly inserted throughout the entire genome 

without any genomic hot spots and amplification bias (Fig. 1B). This reflects the good quality of 

Tn5 mutant library and DNA library used for Illumina sequencing. 

Identification of desiccation resistance genes 

We used Con-ARTIST pipeline to identify the resistance genes required for the desiccation stress 

tolerance in S. Typhimurium. Con-ARTIST identifies transposon mutants at the single-insertion 

level and normalizes bottleneck effect enabling discovery of conditionally essential mutants at 

subgenic level (21). We identified 37 entirely conditionally essential and 24 domain essential 

genes that were required for survival during desiccation stress (Table 2). Among them, ten genes 

encode putative proteins, and six genes hypothetical proteins. 

Further, we assigned desiccation resistance gene to the cluster of orthologous groups (COG) 

using EggNOG 4.5 (http://eggnogdb.embl.de/#/app/home) with target taxa Salmonella (Table 2, 

Fig 1C). The desiccation resistance genes having no orthologous were assigned to ‘No orhtho 

group’. Equally highly abundant COG were energy production and conversion (C), Cell 

wall/membrane/envelope biogenesis (M) (14.45%), followed by post-translational modification, 

protein turnover, and chaperones (O) and inorganic ion transport and metabolism (P) (both 11. 

48%). Additionally, desiccation resistance genes belonging to no orthologous group and function 

unknown were also relatively higher (11.48 and 9.84 % respectively). The moderately abundant 

COGs were replication, recombination and repair (L), intracellular trafficking, secretion, and 

vesicular transport (U), translation, ribosomal structure and biogenesis (J) and transcription (K) 

(4.92 % - 3.28%). Furthermore, COGs with only one genes were amino acid transport and 

metabolism (E), carbohydrate metabolism and transport (G), nucleotide transport and 

http://eggnogdb.embl.de/#/app/home
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metabolism (F), signal transduction mechanisms (T), and defense mechanism (V). PagO 

belonged to both amino acid and carbohydrate metabolism and transport (Table 2; Fig. 1C). 

Additionally, we performed gene enrichment analysis using STRIN database. The KEGG 

pathways and gene ontology (GO) process enriched for desiccation stress survival were searched 

in S. enterica LT2 (http://bit.ly/2cBK2e6). Genes (STM14_1487, STM14_3165, STM14_4725) 

that do not have orthologous genes in S. enterica LT2 background were not considered. The 

abundant enriched categories were oxidative phosphorylation (ATP synthase genes), ABC 

transporters (fepCDG, siiF and pstB), two component system (glnD, rpoN, and pagO), regulation 

of biological process (hfq, rpoN, lepA, dsbC, dam, and glnD), DNA metabolic process (dam, 

dnaJK, and xerCD) and O antigen biosynthetic process ( rfbU, and rfbA) plus others. 

ATP synthase  

All genes encoding the 9 subunits of ATP synthase were shown to be important for dessication 

survival of S. Typhimurium (Table 2). ATP synthase is a highly conserved enzyme across the 

kingdoms of life with pivotal role in chemiosmotic energy conversion. Bacteria when exposed to 

desiccation stress, also suffers osmotic stress. Nouri and Komatsu (2010) found that during 

osmotic stress in soybean plant, H+-ATPases were the most prominent upregulated proteins, 

which help the plant maintain membrane potential for energy production, cell turgidity and 

intracellular pH (24). Also, ATP synthase were one of the dominant proteins expressed over 

dehydration stress in chickpeas (25). Additionally, in Plectus murrayi, a bacteria feeding 

nematode, ATP synthase subunit transcripts were among the abundantly expressed under 

desiccated condition (26). 

Cell wall/membrane/envelope biogenesis 

http://bit.ly/2cBK2e6
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Genes involved in cell wall/membrane/envelope biogenesis required by S. Typhimurium for 

desiccation survival were rfbAU, wzxE, yaeL, pal, lepA, glmS, STM14_0838, and STM14_0839. 

RfbAU are essential for O antigen (O polysaccharide) biosynthetic process. Polysaccharides in 

bacteria may act as water reservoir in dry terrestrial environments. Garmiri et al. (2008) found 

that Salmonella spp. lacking O antigen are more sensitive to desiccation (27). Additionally, wzxE 

is involved in translocation of O antigen. STM14_0838 (putative UDP-galactopyranose mutase) 

generates UDP-alpha-D-galactofuranose required for synthesis of cell wall in bacteria, fungi and 

protozoa (http://www.genome.jp/dbget-bin/www_bget?ec:5.4.99.9). Furthermore, Escherichia 

coli yaeL, a membrane-bound zinc metalloprotease involved in regulated intramembrane 

proteolysis, is required for activation sigma factor E (σE) encoded by rpoE gene in response to 

an envelope stress (28). Mutation in pal gene (peptidoglycan associated lipoprotein) causes a 

severe defect in the cell envelope of gram-negative bacteria (29). LepA, ribosomal elongation 

factor 4 (EF4), has two opposing function – promoting survival during moderate stress by 

allowing stress-paused translation to resume and death during severe stress through self-

destruction in E. coli (30). 

Post-translational modification, protein turnover, and chaperones 

Salmonella desiccation resistance genes belonging to COG “O” category were dnaJK, dsbC, 

glnD, STM14_3328, STM14_2014, and STM14_2258. DnaK/DnaJ chaperone machinery are 

required for protein folding and DNA replication process and essential for protein repair under 

all stressful conditions including heat shock stress (31, 32). E.coli DsbC, a protein required for 

disulfide bond isomerization in periplasm, assist in folding of several envelope proteins 

containing disulfides formed between cysteine residues and involved in the defense mechanism 

against oxidative stress (33). E. coli GlnD, a bifunctional uridylyltransferase/uridylyl-removing 

http://www.genome.jp/dbget-bin/www_bget?ec:5.4.99.9
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signal-transduction enzyme and the primary sensor of nitrogen status in cell, has a critical role in 

response to growth in either nitrogen limitation or excess. Commonly, nitrogen is an essential 

chemical for all living being, which is irreplaceable constituent of proteins, DNA and RNA (34, 

35). Probably, S. Typhimurium faces nitrogen limitation stress during desiccation in PBS making 

glnD a survival fitness gene. STM14_2258 (STM1864), a putative inner membrane protein, is 

regulated by RcsCDB system, which responds to envelope stress (36). 

Inorganic ion transport and metabolism 

Salmonella genes involved in inorganic ion transport and metabolism involved in desiccation 

stress survival were fepCDG, pstB, corA, nhaA, and phoU. The fepCDG and pstB encode ATP-

binding cassette (ABC) transporters. In Rhizobium leguminosaurm, a soil bacterium with ability 

to fix nitrogen, mutation in an uncharacterized ABC transporter operon (RL2975–RL2977) is 

highly sensitive to desiccation stress due to significantly lower accumulation of 

exopolysaccharide (37). FepCDG are iron-enterobactin transporter, a high affinity siderophore 

that acquires iron for microbial systems (38). Virtually, iron is a vital nutrient for all forms of life 

and is required for energy generation, DNA replication, oxygen transport and protection against 

oxidative stress (39). Finn et al. (2013) showed a number of genes involved in Fe-S clusters 

formation were upregulated during desiccation on a stainless steel surface which are induced 

under iron-limiting conditions (16). Majority of bacteria regulate the uptake of inorganic 

orthophosphate (Pi) by a negative regulatory protein PhoU via ABC phosphate-specific 

transporter (Pst). Phosphorous is an essential element in all cells with roles in ranging from 

structural and metabolic biological processes to the composition of nucleic acids, phospholipids, 

and energy intermediates. However, we found only a cytoplasmic ATPase (pstB) and phoU 

required for survival during desiccation in S. Typhimurium. The other three genes involved in Pi 
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uptake systems includes extracellular Pi binding proteins (pstS) and two transmembrane channel 

proteins (pstCA) (40). This might indicate the possibility of other redundant pathways doing the 

job of these three genes. Nonetheless, phosphate transport genes (pstACS) were differentially 

upregulated for survival of desiccated S. Typhimurium on s stainless steel surface (16). 

CorA encodes magnesium/nickel/cobalt transporter. CorA mutant of Salmonella shows a range 

of phenotype including altered expression of Salmonella pathogenicity island 1(SPI-1) genes; 

decreased tolerance to heat shock and peroxide; defective invasion, survival, and proliferation 

inside macrophage and epithelial cells; decreased virulence and decreased tolerance to 

lactoperoxidase enzyme (41). NhaA is pH-dependent sodium/proton (H+) antiporter that plays a 

critical role in intracellular pH regulation under alkaline conditions, cell volume regulation, and 

maintenance of electrochemical potential of Na+ across cytoplasmic membrane plus other (42). 

Transcription (K) and Replication, recombination and repair (L) 

Salmonella desiccation tolerance gene related to transcription (K) were rpoN and wecD; and 

replication, recombination and repair (L) were dam and xerCD. Alternative sigma factor 54 

(rpoN, σ54) plays important role in regulation of stress resistance in many bacteria species. E. 

coli RpoN controls more than 14 operons/regulators during nitrogen-limiting conditions and 

protects the cells from alkaline pH during stationary-phase growth (43, 44). Deletion of rpoN in 

Listeria monocytogenes affects ability to grow under osmotic stress (45). Importantly, 

Salmonella Typhi RpoN regulates the expression of O-antigen, a water reservoir, during nitrogen 

limitation via transcriptional control of rfaH gene (46). Additionally, in Bradyrhizobium 

japonicum, a nitrogen-fixing bacteria, deletion of σ54 (rpoN1, rpoN2, and both) led to significant 

decrease in viability  during desiccation stress (47). WecD, TDP-fucosamine acetyltransferase, is 
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required in the final step for the synthesis of 4-acetamido-4,6-dideoxy-d-galactose, a sugar unit 

of polysaccharide (O antigen) which is composed of repeating unit of trisaccharide (48).  

Dam, DNA adenine methylase, plays important role in DNA replication, DNA mismatch repair 

and SOS response (a genome-wide response to DNA damage where cell cycle is arrested and 

DNA repair and mutagenesis is active) (49). Dam plays a protective role during oxidative stress 

in S. Typhimurium (50). XerCD are site-specific tyrosine recombinase genes that resolves 

chromosome dimer (and is lethal if not resolved) at a dif site (51). Mutation of xerC mutant in 

Staphylococcus aureus limited biofilm formation and attenuated virulence in murine bacteremia 

model (52). 

Other desiccation survival genes 

Hfq, an RNA chaperone protein, has diverse role in bacterial physiology including growth-

dependent metabolism, stress resistance, virulence and drug resistance through post-

transcriptional control of gene expression. The most prominent role of Hfq protein in bacteria is 

in facilitating the interactions between noncoding sRNAs and their cognitive target mRNA 

molecules (53). Although no sRNA genes implicated in desiccation survival has been reported, 

the importance of hfq gene in desiccation survival of S. Typhimurium may suggest the 

involvement of unknown sRNAs in the process. The 6 intergenic regions identified in this study 

to be involved in desiccation survival may support this hypothesis (see the next section). In 

Francisella novicida, Hfq protein have important role in stress like osmotic change, low pH, heat 

shock and oxidative stress. Salmonella Hfq protein positively regulates virulence by targeting 

hilD mRNA that affect secretion of type III secretion system (T3SS) encoded by Salmonella 

pathogenicity island 1 (SPI-1) (54, 55). SPI-2 genes (ssaHIJ) encoding T3SS were also required 
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for desiccation survival of Salmonella. TolB, a translocation periplasmic protein, is involved in 

maintaining the integrity of outer membrane via Tol/Pal system in E. coli (56).  

MiaA, a tRNA delta (2)-isopentenylpyrophosphate transferase gene, is required for the efficient 

translation of the rpoS (σS) mRNA. σS factor is necessary for the stationary phase/general stress 

response and required during nutrient starvation and presence of toxic metabolite in E. coli (57). 

However, rpoS was not identified as desiccation survival gene in this study. Pnp, a 

polynucleotide phosphorylase/polyadenylase, provides protection against lactic acid exposure in 

S. Typhimurium. Moreover, pnp mutant in E. coli have a decrease in RpoS-regulated transcripts 

(58). Null mutations of wecE gene (TDP-4-oxo-6-deoxy-D-glucose transaminase) in E. coli 

responsible for synthesis of enterobacterial common antigen (ECA), a glycolipid found in the 

outer leaflet of the outer membrane in all species of family Enterobacteriaceae, confer 

sensitivity to bile (59). PagO, an integral inner membrane protein, is activated by phoPQ regulon. 

Salmonella phoPQ is a two-component regulatory system that provides protection against host 

cationic antimicrobial peptides and intracellular survival within acidic phagosomes by regulating 

outer membrane (OM) acidic glycerophospholipids with lipid A structure (60). Salmonella 

lacking tpiA gene, a glycolytic enzyme triosephosphate isomerase plays a key role in the central 

carbon metabolism, have an altered morphology with an elongated shape compared with wild 

type and is required for full in vivo fitness (61).  

Additionally, putative genes required for desiccation survival included inner membrane protein 

(STM14_3329, STM14_2258, and STM14_3328); glycosyl transferase (STM14_0839 and 

STM14_0845); STM14_1490 (envF, putative envelope protein); STM14_1486 (putative 

cytoplasmic protein); STM14_2014 (putative thiol peroxidase); and STM14_0838 (putative 

UDP-galactopyranose mutase). Similarly, S. Typhimurium desiccation tolerance genes encoding 
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hypothetical proteins were STM14_0872 (ybgF), STM14_1487, STM14_2015, STM14_3164 

(gogB), STM14_3165, and STM14_4907 (yiiQ). ybgF (ybgC-tolQRAB-pal-ybgF operon) is 

involved in maintenance of cell envelope integrity. GogB, a phage-encoded effector protein, is 

an anti-inflammatory effector, which regulates inflammation-enhanced colonization and limits 

tissue damage during Salmonella infection (62).  

Desiccation resistance Salmonella intergenic regions 

We identified six entirely essential intergenic regions of S. Typhimurium required for survival in 

desiccation stress on petri plate (Table 3). To determine if any of these intergenic regions encode 

noncoding sRNA,genomic DNA sequence was extracted for these intergenic region and blasted 

for the presence of small RNA (sRNA) against sRNATarBase 2.0, a database for bacterial sRNA 

targets verified by experiment (63). However, we could not find hit for any known sRNA. There 

might be novel genetic elements in these intergenic regions of Salmonella genome yet to be 

explored.  

Furthermore, we searched for the presence of coding region in the desiccation resistance 

intergenic region using GeneMark 

(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/genemark.cgi). There was no coding 

sequence in the 5 intergenic regions. Strikingly, IG_STM14_1490 had a coding sequence with 

start at 1337639 bp and end at 1337842bp of 204 bp. The result corroborates with PATRIC 

annotation that contains a hypothetical protein (fig|588858.6.peg.1457) on negative strand 

(http://mcaf.ee/7pj21l). Moreover, we looked for the promoter regions in the desiccation 

resistance intergenic regions using PePPER 

(http://genome2d.molgenrug.nl/index.php/prokaryote-promoters). Interestingly, only 

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/genemark.cgi
http://mcaf.ee/7pj21l
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IG_STM14_3165 had the predicted promoter starting at 2782101 bp with 28 bp length on plus 

strand. 

Phenotypic evaluation of single gene knockout mutants 

We preformed phonotypic evaluation of 12 single knockout mutants to validate the involvement 

of the genes in desiccation survival. Six S. Typhimurium knockout mutants were entirely 

essential (∆nahA, ∆atpG, ∆atpH, ∆ssaj, ∆lepA and ∆pagO) and six were domain essential 

(∆corA, ∆pstB, ∆STM14_2014, ∆STM14_5120, ∆STM14_2258, and ∆STM14_5122). Tn-seq 

analysis showed read fold change [log2(Output pool reads/Input pool reads)] of mutant strains 

varied from -7.98 to -0.6 with difference of unique insertion count (DUIC; unique insertions of 

Desiccation – unique insertions of Input pool) ranging from -86 to -10 (Table 2) calculated using 

Tn-Seq Explorer (64). Unique insertion count is the number of genomic locus disrupted by Tn5 

insertion. Mutant survival (%) was calculated as described in MATERIALS AND METHODS. 

The result showed that only five of the mutants have reduced survival as compared to the wild 

type and seven strains had higher survival rate than the wile type (Fig. 2A). Among the five 

mutants with reduced desiccation survival, only three mutants (∆atpH, ∆atpG and ∆corA) 

showed statistically significant reduction in survival than wild type (p < 0.02, unpaired t-test). To 

surprise, four mutants had significantly increased survival compared to wild type 

(∆STM14_5122, ∆STM14_2258, ∆pagO, and ∆pstB) contrary to the results of Tn-seq analysis 

(Fig. 2A). To understand the discrepancy between Tn-seq result and phenotypic data, we 

inspected Tn5 insertion profiles in the input pool and desiccation. The profiles show significantly 

reduced read numbers after the selection for each identified gene as shown in Fig. 2 (B, C, D, E, 

and F) and Fig. S1 (A, B, C, D, and E), corroborating well with the genes identified by the 
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analysis of Tn-seq data. Spearman correlation analysis also indicated that there was significant 

correlation between survival (%) and log2FC (R2 = 0.62, p = 0.0307) as shown in Fig. S2.  

However, the result of phenotypic study did not well substantiate the result of Tn-seq analysis for 

all mutants tested. We speculate that the disagreement is partially due to the differences in the 

assay conditions for the library selection and phenotypic assay for single mutants. They differ in 

terms of the context of experimental vessel (petri plate vs. 96 well plate) and cells (library vs. 

single mutant), drying method, duration of desiccation stress etc. During the process of 

optimizing the condition for phenotypic assay, we found that the survival rate of the wild type 

cells fluctuates greatly depending on the parameters used in the assays. Also, if the phenotype is 

influenced by the factors secreted into media, the phenotypic outcome of a mutant can be 

different depending on whether it exist in the context of a library or the pure culture of the same 

mutant cells. Therefore, we expect that the use of further optimized assay condition may provide 

the results more consistent with the result of Tn-seq analysis for all mutants tested.  

 

Comparative study 

We have searched for Salmonella genes in literature, which have been associated with 

desiccation resistance. Major genes involved in desiccation resistance were K+ transport channel 

kdpFABC transporter, isocitrate-lyase aceA, lipid A biosynthesis palmitoleoyl-acyltransferase 

ddg, iron-sulfur cluster scaffolding protein nifU, global regulator fnr, alternative sigma factor 

rpoE (13), specialized sigma factor rpoS (65), osmoprotectant transporters (proUP and osmU) 

(16), and trehalose biosynthesis genes (ostAB) (15). All of these genes were disrupted by Tn5 in 

both input pool and output pool (Table S3), making them non-essential for survival during 
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desiccation in our experimental setting. Furthermore, these mutants were not sensitive to 

desiccation stress in our study (Fig. S3). We speculate that the discrepancy may be due to the 

differences in multiple factors, including the experimental settings (stainless steel surface, sterile 

filter paper or plasticware), variable desiccation period (couple of hours to weeks), genomic 

techniques (transcriptome vs Tn-seq), and/or sensitivity of Con-ARTIST pipeline to identify 

conditionally essential genes. Interestingly, trehalose-negative strains of Cronobacter spp., was 

shown to survive dry stress as well as the wild type strains, suggesting that the factors for 

desiccation survival could vary in different genetic backgrounds (66).  

Additionally, we compared the desiccation resistance genes with related environmental stress 

like starvation, osmotic, and oxidative stress encountered during the infection cycle by S. 

Typhimurium from our recent study (unpublished data). To note, same input pool (Tn5 complex 

library of S. Typhimurium 14028S) was used for all the stress conditions. Interestingly, we found 

a more than 50% of desiccation resistance genes were shared to the genes for starvation survival  

(Salmonella starved for 12 days) and more than 30% of desiccation resistance genes were shared 

to the genes required for resistance to hydrogen peroxide (H2O2, 1mM) stress. Hence, this may 

indicate that S. Typhimurium experience starvation as well as oxidative stress during desiccation. 

Additionally, only ATP synthase genes (9 subunit proteins) were shared between desiccation and 

osmotic stress (3% NaCl) that were also required for fitness during starvation and hydrogen 

peroxide insult (Fig. 3). Thus, osmotic stress imposed by 3% NaCl is distinct from the osmotic 

stress incurred by Salmonella during desiccation stress. 
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CONCLUSION 

For the first time to our knowledge, we performed a genome-wide screening of a transposon 

mutant library to identify desiccation survival gene in S. Typhimurium. The precision and 

accuracy for the identification of conditionally essential genes depends on complexity of input 

and output library, experimental design and downstream bioinformatics analysis. Tn-seq 

bioinformatics analysis depends on several factors like library normalization (bottleneck, 

positional read bias, differences in sequencing depth and stochastic difference in library 

complexity), annotation dependent analysis and annotation-independent analysis (67). In this 

study, we used Con-ARIST pipeline that enables the characterization of transposon mutant with 

annotation-independent approach for discovery of genetic elements at a sub-genic level. We 

identified 61 protein coding genes and six intergenic regions required for the survival of S. 

Typhimurium during desiccation stress. The important resistance genes to survive the desiccation 

stress by S. Typhimurium were related to energy production and conversion required to maintain 

basal metabolism; cell wall/membrane/envelope biogenesis required for production of 

extracellular polysaccharide ; post-translational modification, protein turnover, and chaperones; 

inorganic ion transport and metabolism for transport of magnesium, nickel, cobalt, sodium, iron 

and phosphate; replication, recombination and repair to overcome DNA damage; intracellular 

trafficking, secretion, and vesicular transport ;translation, ribosomal structure and biogenesis and 

transcription. More than 20% of were either putative or hypothetical genes, thus indicating that 

this study assigned novel functions to previously unknown genes. Few genes related to amino 

acid, nucleotide and carbohydrate transport and metabolism were also required to survive 

desiccation stress encountered by Salmonella. Thus, our study was able to provide novel insights 

into the underlying mechanisms of desiccation survival of Salmonella. We expect that our 
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findings can be further exploited to develop effective control strategies to control the Salmonella 

contamination from low water activity foods and food processing facilities. 
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Table 1: Summary of Illumina Sequencing Reads 

Library Total Reads 
Reads Mapped 
(% Aligned) 

Unque 
Insertions 

Mean 
Reads/UnqIns 
(±SE) 

Median 
Reads 

Input pool (IP) 10,842,764 8,867,116 (81%) 186,621 48.99 ±0.99  20 

Desiccation 5,516,907 4,248,156 (77%) 132,631 33.18±0.13 18 
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Table 2: The protein coding genes of S. Typhimurium 14028S required for desiccation survival.  

Locus_Tag (Gene) Protein annotation 
COG 
Symbol 

Ess [log2FC] 
{DUIC} 

STM14_4660 (atpC) F0F1 ATP synthase subunit epsilon C 1 [-5.16] {-10} 

STM14_4661 (atpD) F0F1 ATP synthase subunit beta C 2 [-3.58] {-39} 

STM14_4662 (atpG) F0F1 ATP synthase subunit gamma C 2 [-6.51] {-21} 

STM14_4663 (atpA) F0F1 ATP synthase subunit alpha C 2 [-7.25] {-27} 

STM14_4664 (atpH) F0F1 ATP synthase subunit delta C 2 [-5.97] {-10} 

STM14_4665 (atpF) F0F1 ATP synthase subunit B C 2 [-4.32] {-5} 

STM14_4666 (atpE) F0F1 ATP synthase subunit C C 2 [-5.11] {-13} 

STM14_4667 (atpB) F0F1 ATP synthase subunit A C 2 [-7.01] {-25} 

STM14_4668 (atpI) F0F1 ATP synthase subunit I C 2 [-0.44] {-4} 

STM14_4723 (wecE) TDP-4-oxo-6-deoxy-D-glucose 
transaminase 

E 2 [-2.94] {-9} 

STM14_2256 (pagO) integral membrane protein EG 2 [-2.16] {-23} 

STM14_3075 (guaA) bifunctional GMP synthase/glutamine 
amidotransferase protein 

F 2 [-4.74] {-17} 

STM14_4906 (tpiA) triosephosphate isomerase G 1 [-5.39] {-10} 

STM14_3964 (pnp) polynucleotide 
phosphorylase/polyadenylase 

J 2 [-2.68] {-32} 

STM14_5241 (miaA) tRNA delta(2)-isopentenylpyrophosphate 
transferase 

J 1 [-5.64] {-22} 

STM14_4008 (rpoN) RNA polymerase factor sigma-54 K 1 [-5.08] {-18} 

STM14_4722 (wecD) TDP-fucosamine acetyltransferase K 1 [-5.43] {-8} 

STM14_3676 (xerD) site-specific tyrosine recombinase XerD L 2 [-3.7] {-11} 

STM14_4196 (dam) DNA adenine methylase L 1 [-4.2] {-20} 

STM14_4750 (xerC) site-specific tyrosine recombinase XerC L 2 [-7.81] {-8} 

STM14_0265 (yaeL) zinc metallopeptidase M 1 [-7.81] {-18} 

STM14_0838 putative UDP-galactopyranose mutase M 2 [-3.78] {-31} 

STM14_0839 putative glycosyl transferase M 1 [-1.93] {-12} 

STM14_0871 (pal) peptidoglycan-associated outer 
membrane lipoprotein 

M 2 [-3.8] {-4} 

STM14_2580 (rfbU) mannosyl transferase M 2 [-6.95] {-40} 

STM14_2589 (rfbA) dTDP-glucose pyrophosphorylase M 1 [-6.81] {-49} 

STM14_3163 (lepA) GTP-binding protein LepA M 2 [-2.33] {-17} 

STM14_4656 (glmS) D-fructose-6-phosphate amidotransferase M 2 [-5.37] {-26} 

STM14_4724 (wzxE) O-antigen translocase M 2 [-6.17] {-38} 

STM14_0013 (dnaK) molecular chaperone DnaK O 2 [-5.39] {-12} 

STM14_0014 (dnaJ) chaperone protein DnaJ O 1 [-1.26] {-17} 

STM14_0254 (glnD) PII uridylyl-transferase O 2 [-3.96] {-30} 

STM14_2014 putative thiol peroxidase O 1 [-3.03] {-16} 
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Table 2. (Cont.) The protein coding genes of S. Typhimurium 14028S for desiccation survival. 

Locus_Tag (Gene) Protein annotation 
COG 
Symbol 

Ess [log2FC] 
{DUIC} 

STM14_2258 putative inner membrane protein O 1 [-1.15] {-23} 

STM14_3328 putative inner membrane protein O 2 [-2.11] {-25} 

STM14_3675 (dsbC) thiol:disulfide interchange protein DsbC O 1 [-0.13] {-4} 

STM14_0048 (nhaA) pH-dependent sodium/proton antiporter P 2 [-7.98] {-15} 

STM14_0688 (fepC) iron-enterobactin transporter ATP-
binding protein 

P 1 [-4.21] {-10} 

STM14_0689 (fepG) iron-enterobactin transporter permease P 2 [-4.67] {-5} 

STM14_0690 (fepD) iron-enterobactin transporter membrane 
protein 

P 2 [-4.46] {-4} 

STM14_4648 (phoU) transcriptional regulator PhoU P 2 [-3] {-8} 

STM14_4649 (pstB) phosphate transporter subunit P 1 [-2.9] {-17} 

STM14_4754 (corA) magnesium/nickel/cobalt transporter 
CorA 

P 1 [-4.94] {-25} 

STM14_0845 putative glycosyl transferase S 1 [-0.41] {-18} 

STM14_0872 (ybgF) hypothetical protein STM14_0872 S 1 [0.64] {-4} 

STM14_1486 putative cytoplasmic protein S 2 [-3.08] {-20} 

STM14_3164 (gogB) hypothetical protein STM14_3164 S 2 [-0.63] {-34} 

STM14_3329 putative inner membrane protein S 1 [-2.64] {-8} 

STM14_4907 (yiiQ) hypothetical protein STM14_4907 S 1 [0.77] {-3} 

STM14_5242 (hfq) RNA-binding protein Hfq T 1 [-0.57] {-6} 

STM14_0870 (tolB) translocation protein TolB U 1 [-3.35] {-15} 

STM14_1703 (ssaH) type III secretion system apparatus 
protein 

U 2 [-0.58] {-1} 

STM14_1705 (ssaJ) needle complex inner membrane 
lipoprotein 

U 2 [-3.47] {-10} 

STM14_5122 putative ABC-type bacteriocin/lantibiotic 
exporter 

V 1 [-0.6] {-86} 

STM14_1487 hypothetical protein STM14_1487 No ortho 2 [-1.59] {-3} 

STM14_1490 (envF) putative envelope lipoprotein No ortho 2 [-0.58] {-7} 

STM14_1704 (ssaI) type III secretion system apparatus 
protein 

No ortho 2 [-5.47] {-10} 

STM14_2015 hypothetical protein STM14_2015 No ortho 2 [-0.55] {-8} 

STM14_3165 hypothetical protein STM14_3165 No ortho 2 [NA] {NA} 

STM14_4725 4-alpha-L-fucosyltransferase No ortho 2 [-2.36] {-23} 

STM14_5120 cation efflux pump No ortho 1 [-1.56] {-23} 

Ess: Essentiality based on Con-ARTIST; 1- Domain essential; 2- Entirely Essential; COG- 
Cluster of Orthologous Groups; log2FC: log2 fold change after read normalization in central 80% 
of gene; DUIC: difference of unique insertion count between input pool and desiccation in core 
80% of gene; the more –ve more reduced is the fitness. COG annotation are similar as Fig. 1. 
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Table 3: The intergenic regions of S. Typhimurium 14028S required for desiccation survival. 

Intergenic region Start End Length Essentiality 
IG_STM14_3329 2923580 2923838 259 2 
IG_STM14_3165 2782023 2782225 203 2 
IG_STM14_3164 2780125 2780528 404 2 
IG_STM14_2257 1971827 1971958 132 2 
IG_STM14_1490 1337373 1338163 791 2 
IG_STM14_0255 253521 253756 236 2 

2- Entirely essential as classified by Con-ARTIST pipeline  
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Fig 1: Overview of transposon sequencing. A) Spearman correlation (R2) of Tn5 insertion raw 
reads frequency distribution between input pool and desiccation at nucleotide level. X- and Y-
axis are log transformed. B) Overlay plot displays genome wide Tn5 insertion distribution in 
input pool and desiccation at nucleotide level (Table S1). C) Cluster of orthologous group (COG) 
assigned to S. Typhimurium desiccation resistance genes using EggNOG 4.5 database. X-axis: 
Percentage of genes into each COG category. Y-axis: COG category. (C- Energy production and 
conversion; E - Amino acid transport and metabolism; EG- Amino acid transport and 
metabolism, Carbohydrate transport and metabolism; F -Nucleotide transport and metabolism; 
G- Carbohydrate transport and metabolism; J- Translation, ribosomal structure and biogenesis; 
K-Transcription; L - Replication, recombination and repair; M- Cell wall/membrane/envelope 
biogenesis; O- Post-translational modification, protein turnover, and chaperones; P-Inorganic ion 
transport and metabolism; S- Function unknown; T- Signal transduction mechanisms; U- 
Intracellular trafficking, secretion, and vesicular transport; V- Defense mechanisms and No 
ortho: No orthologous found). 
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Fig 2: Phenotypic study of null mutants. A) Box plot displays survival (%) of WT (S. 
Typhimurium, yellow) and mutants (red and green). Red and green color boxplot has mean 
survival (%) lower and greater than WT respectively. Box represents first and third quartile, line 
inside box is median and whisker shows minimum and maximum. Strain marked with asterisk 
(*) have significantly different survival than wild type. ( ∆2014 - ∆STM14_2014, ∆5122 – 
∆STM14_5122, and ∆5120- ∆STM14_5120). B,C,D,E, and F) Presentation of Tn5 read 
coverage in input pool (red) and desiccation (green) produced using Integrative Genomics 
Viewer (IGV)(68). Numbers in square is read coverage. 

 

 

  



  

126 
 

Fig 3: Venn diagram showing comparison of S. Typhimurium desiccation resistance genes with 
other environmental stress resistance genes. Desiccation resistance genes compared with 
previously identified resistance genes (unpublished data) during: A- osmotic stress (3% NaCl in 
LB medium); B - Starvation (starved for 12 days in PBS); C - oxidative stress (1 mm hydrogen 
peroxide (H2O2) in LB medium); and D- all the four stressors. 
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Figure S1: Read coverage in input pool (red) and desiccation in genes of interest. Graph is 
produced using Integrative Genomics Viewer (IGV). Numbers in square shows read coverage. 
Dashed line across the gene indicate domain essential gene.  
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Figure S2: Spearman correlation between survival (%) of null mutants of this study and log2 fold 
change (log2FC).  log2FC is calculated for each gene after normalization of input pool read count 
based on desiccation read count. More –ve log2FC of a gene implies more reduced fitness and is 
lower survival (%) during desiccation. Y-axis: Average survival (%) of 12 mutants and X-axis: 
log2FC of read distribution in central 80% of gene based on Tn-seq analysis. Line of fit shows 
linear regression with confidence intervals. * is survival (%) of wild type (WT) with hypothetical 
log2FC of zero (There would be no change in the read count for WT after desiccation). 
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Figure S3: Tn5 insertion read coverage in the previously identified S. Typhimurium desiccation 
resistance genes. Graphs were generated using IGV. Tn5 insertion in K+ transport channel 
kdpABCDE transporter (A), isocitrate-lyase aceA (B), lipid A biosynthesis palmitoleoyl-
acyltransferase ddg (C), iron-sulfur cluster scaffolding protein nifU (D) and osmoprotectant 
transporters proP (E). 
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Table S1: Oligonucleotide used for Tn-seq PCR 

Tn-
seq 
PCR  

Oligonu
cleotide 

Sequence Barcode 

Linear 
Exten
sion 

Ez-Tn5 
primer3 

5’-GATCCTCTAGAGTCGACCTGCAGGCATGCA-3’  

Expon
ential 
PCR 

IR2-IS-
B7 

5’-AATGATACGGCGACCACCGAGATCTACACTCTT 
TCCCTACACGACGCTCTTCCGATCTNNNNAGXXXXX
XTCAGGGTTGAGATGTGTATAAGAGACAG-3’ 

CAGATC 

IR2-IS-
B14 

5’-AATGATACGGCGACCACCGAGATCTACACTCTTT 
CCCTACACGACGCTCTTCCGATCTNNNNAGXXXXXX 
TCAGGGTTGAGATGTGTATAAGAGACAG-3’ 

CGTTGT 

HTM-
Primer 

5’-CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT 
GGGGGGGGGGGGGGGG-3’   

NNNN: random sequence for efficient cluster analysis. XXXXXX: 6nt sample barcode 
sequences. For exponential PCR, IR2-IS-B7 and HTM-primer were used for input pool and IR2-
IS-B14 and HTM-primer was used for desiccation. Few wild characters 
(.C.G.G.T.A.A.G.G.A.A.GAGACAG in Perl script, where “.” is any character) were used in 
mosaic end reads for identification of the reads containing Tn5-junction sequences. 
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Supplementary File 1: DNA library preparation protocol for transposon sequencing (Tn-

seq) using regular primer 

This protocol for DNA library preparation of transposon mutant library is the improved version 

of previously developed methodology in our laboratory (1). This approach is based on addition 

of poly deoxycytosine (C) tails to 3’ end of either single or double-stranded DNA (2). Addition 

of C tail is controlled effectively by the mixture of deoxycytidine triphosphate (dCTP) and 

dideoxy CTP (ddCTP). A single-primer is used for the linear extension of transposon junction 

sequences with a transposon-specific primer. The linear extension product is purified and 

subsequently C-tail is attached to it. Next, the transposon junction sequence is easily amplified 

by transposon specific primer and poly G primer (3). This improved version uses only one 

polymearase and minimizes the use of oligonucleotide and PCR amplification. The simplified 

diagram for improved version is shown in Figure S4. DNA from 300 bp – 500 bp is extracted 

from 1.5% agarose gel as shown in Figure S5. 

 

MATERIALS 

DNA extracted from Tn5 mutant library  

Wild type DNA (Control DNA) 

QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) 

Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA) 

Oligonucleotide (Table S1) 

Taq DNA polymerase (New England Biolabs, Ipswich, MA, USA) 

Thermopol buffer 

2.5 mM dNTP mix 

Nuclease-free water 
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MinElute PCR purification kit (Qiagen, Valencia, CA, USA) 

Terminal Transferase (TdT, New England Biolabs, Ipswich, MA, USA) 

TdT Reaction Buffer (10X) 

CoCl2 (2.5 mM) (TdT, New England Biolabs, Ipswich, MA, USA) 

dCTP (100 mM) (Promega, Madison, WI, USA) 

ddCTP (10 mM) (Promega Madison, WI, USA) 

1.5% Agarose gel 

QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA) 

Thermocycler (PCR machine) 

 

STEPS 

Step1: Linear extension PCR 

1. Reaction mixture  
 
ddH2O      40 µl 
Thermopol Buffer (10X)   5 µl  
dNTPs (2.5 mM each)     1 µl 
EZ-Tn5 primer 3 (20 µM) (Tm=65.6ºC)  1 µl     
Genomic DNA of Tn library    2 µl  
Taq DNA polymerase (NEB)    1 µl  
____________________________________________ 

      Total    50 µl 

2. PCR cycle 

 95C    2 min (manual hot-start)  
   [95C    30 sec] 
 50 cycles [62C    45 sec]    
   [72C    10 sec]  
      4C    hold 
 
 

3. Purify the linear extension PCR products using Qiagen MinElute PCR-purification kit. 

Elute DNA in 10 µl EB buffer and store at -20C. 

Step 2: C-tailing reaction 

1. Preparation of dNTP working stock 
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Dilute 100 mM dCTP to 10 mM dCTP with ddH2O (nuclease-free)  
Dilute 10 mM ddCTPto 1 mM ddCTP with ddH2O (nuclease-free)  

 
 

2. Reaction mixture 
DNA (linear extension products)              10.0 µl 
TdT Buffer (10X)     2.0 µl 
2.5 mM CoCl2         2.0 µl 
10 mM dCTP      2.4 µl 
1 mM ddCTP      1.0 µl 
ddH2O       1.6 µl 

 Terminal transferase      1.0 µl 
 _____________________________________________ 
      Total      20.0 µl 
 

3. Incubate the reaction tube at 37C for 1 hr. 
 

4. Incubate the reaction tube at 75C for 20 min for heat inactivation of TdT.  

 
5. Purify the C-tailed products using Qiagen MinElute PCR-purification kit. Elute DNA in 

10 µl EB buffer and store at -20C. 

Step 3: PCR to amplify Tn-flanking sequences 

1. Reaction mixture 
 
ddH2O       35 µl 
Thermopol Buffer (10X)    5 µl  
dNTPs (2.5 mM each)      4 µl 
IR2-IS-BC primer (10 µM)    2 µl     
HTM primer (20 µM)      1 µl 
C-tailed DNA       2 µl  
Taq DNA polymerase (NEB)     1 µl  
____________________________________________ 

      Total    50 µl 

Note- IR2-IS-BC primer is barcoded primer used during exponential PCR. 

4. PCR cycle 

 95C    2 min (manual hot-start) 
   [95C    30 sec] 
 36 cycles [58C    45 sec]    
   [72C    20 sec]  
    72C    10 min 
     4C    hold 
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Step 4: Gel-purification of PCR products 

1. Mix the sample with loading buffer and heat at 65ºC for 15 min.  
2. Run 10 µl/sample on 1.5% agarose gel.  
3. Cut 300-500bp bands and gel-purify DNA fragments. 

 

 

References (Supplementary File 1): 

1. Dawoud TM, Jiang T, Mandal RK, Ricke SC, Kwon YM. 2014. Improving the efficiency 
of transposon mutagenesis in Salmonella enteritidis by overcoming host-restriction barriers. Mol 
Biotechnol 56:1004-1010.  

2. Lazinski DW, Camilli A. 2013. Homopolymer tail-mediated ligation PCR: a streamlined and 
highly efficient method for DNA cloning and library construction. BioTechniques 54:25.  

3. Kwon YM, Ricke SC, Mandal RK. 2016. Transposon sequencing: methods and expanding 
applications. Appl Microbiol Biotechnol 100:31-43.  
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 Figure S4: Schematic diagram of DNA library preparation of transposon library for Illumina 
sequencing. Tn-specific primer 1 (Ez-Tn5 primer3, Table S1) is used for linear extension and 
Tn-specific primer 2 (library specific barcoded primer according) is used for exponential PCR in 
conjunction with C-tail specific primer (HTM-Primer, Table S1).  
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Figure S5: Agarose gel (1.5%) run of DNA library after exponential PCR (Step 4). DNA from 
300 bp – 500 bp is extracted from gel using QIAquick Gel Extraction Kit. M: Hi-Lo Marker, 1: 
Input pool, 2: Desiccation, C: Control (Wild Type DNA). 
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ABSTRACT 

Campylobacter species are a leading cause of bacterial foodborne illness worldwide. Despite of 

the global efforts to curb the infection, the Campylobacter infections have increased 

continuously in both developed and developing countries, which warrants development of 

effective strategies to control the infection. The essential genes of bacteria are usually the most 

prominent targets for the purpose. In this study, we used transposon sequencing (Tn-seq) of a 

genome-saturating library of Tn5 insertion mutants to redefine the essential genome of C. jejuni. 

We constructed a Tn5 mutant library of unprecedented level of complexity in C. jejuni NCTC 

11168 with 95,929 unique insertions throughout the genome, and used the genomic DNAof the 

library for the reconstruction of Tn5 library in the same (C. jejuni NCTC 11168) and different 

strain background (C. jejuni 81-176) through natural transformation. We identified 166 essential 

protein-coding genes and 20 essential transfer RNA (tRNA) in C. jejuni NCTC 11168 which 

were intolerant to Tn5 insertions during in vitro growth. The reconstructed library C. jejuni 81-

176 had 384 protein coding genes with no Tn5 insertions. Essential genes in both of the strains 

were highly enriched in cluster of orthologous group (COG) category like ‘Translation, 

ribosomal structure and biogenesis (J)’, ‘Energy production and conversion (C)’, and ‘Coenzyme 

transport and metabolism (H)’. Comparative analysis among this and previous studies identified 

50 core essential genes of C. jejuni, where most of them have been implicated in the 

development of drug target and vaccines against a wide range of bacteria. Thus, this essential 

gene list can be further investigated for the development of novel target to limit the spread of this 

notorious foodborne pathogen.  

Keywords: Campylobacter, transposon sequencing (Tn-seq), essential genes,   
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INTRODUCTION 

Campylobacter species are a leading cause of bacterial foodborne illness worldwide and one of 

the most common infectious agent of the last century. Despite the reduction in incidence of a 

number of major foodborne pathogens due to global efforts, the Campylobacter infections have 

increased in both developed and developing countries across the globe like USA, Europe, 

Australia, Africa, Asia and Middle East. Additionally, Campylobacter harbors antimicrobial 

genes with potential of horizontal transfer between pathogenic and commensal microorganism 

and emergence of multiple drugs resistance Hence, researchers speculate that Campylobacter 

will continue to remain threat to global public health for the years to come [1, 2]. Thus, it 

warrants multifaceted approaches to intervene and control Campylobacter infections including 

identification of indispensable essential genes, which are related to basic cellular functions or 

metabolic pathways/processes that have the potential of becoming therapeutic targets and/or 

vaccine development. 

Essential genes are defined as those that are absolutely required for the viability of cellular life 

[3, 4]. Experimental techniques such as single-gene knockouts [5-7], transposon mutagenesis [8, 

9], and antisense RNA and RNA interference [10, 11], have been used to identify essential 

genes. In addition, computational approach to track down essential genes involves comparative 

genomics, supervised machine learning, constraint-based methods, and integrative genomics 

approach based on orthology and phylogeny [12-16]. However, the most reliable method used to 

define the essential genome is transposon mutagenesis via transposon sequencing (Tn-seq). The 

basic principle of the approach involves creation of transposon insertion library in bacteria of 

interest, and identification of individual transposon-genome junction site on a global scale by Tn-

seq method The process helps in identification of virtually all dispensable genes, which would 
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allow to identify the entire set of essential genes in the genome simultaneously in a single 

experiment by negative selection of transposon mutants [17].  These methods with little 

variations are named as InSeq [18], TraDIS [19], HITS [20], Tn-seq circle [21], Tn-seq[22], and 

RB-TnSeq [23]. Recently, Hutchison III et al. (2016) have used improved transposon 

mutagenesis methods for identification quasi-essential genes, which were then used as a basis  to 

create minimal synthetic bacterial genome JCVI-syn3.0, smaller than the genomes of any 

autonomously replicating cell found in nature [24].  

Stahl and Stintizi (2011) identified 195 essential genes of Campylobacter jejuni (C. jejuni) 

NCTC 11168 required for growth at 37ºC under a microaerophilic atmosphere on a rich Muller-

Hinton medium with 7,201 individual mutants (Tn5) using microarray transposon-based tracing 

approach [25]. Furthermore, Metris et al. (2011) also identified 233 essential genes of C. jejuni 

NCTC 11168 strain in vivo based on a total of 9,550 transposon insertions in the genome using 

two different transposons (Mariner and Tn7) on Blood Agar Base no.2 (Oxoid) plates 

supplemented with 5% v/v defribinated horse blood at 42ºC under microaerophilic 

conditions[26]. More recently, Gao et al. (2014) identified 175 essential genes of C. jejuni 81-

176 based on ~50,000 transposon insertion mutants of C. jejuni 87-176 strain on brucella agar 

plates at 37ºC in 10% CO2 atmosphere [27]. However, these studies had little overlap between 

the essential genes on the lists probably because of the different culture conditions for recovery 

of the mutants, different strain backgrounds, varying levels of saturation of transposon insertions, 

and analysis approach. Since these approaches for essential gene discovery are based on the 

identification of the genomic regions that do not tolerate transposon insertions, the accuracy of 

essential gene discovery should be critically dependent on the saturation level of the transposon 

insertion library. 
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In this study, we created a highly complex Tn5 mutant library of C. jejuni NCTC 11168 (seed 

library) with more than 95,000 unique insertions in the genome. C. jejuni NCTC 11168 required 

166 essential protein coding genes required for the growth on Muller-Hinton (MH) agar at 37ºC 

under microaerophilic condition. Additionally, we reconstructed Tn5 mutant library in the same 

(C. jejuni NCTC 11168) and different strain background (C. jejuni 81-176) by transferring the 

insertions in the seed library to the recipient cells via natural transformation to develop and 

validate a powerful approach for comparative functional genomics of C. jejuni.  Furthermore, we 

combined all existing data from the previous and current studies to define a core set of essential 

genome of Campylobacter.  

MATERIALS AND METHODS 

Bacteria strains and growth conditions 

C. jejuni NCTC11168 and C. jejuni 81-176 were grown on Muller-Hinton (MH) agar plates at 

37ºC under microaerophilic conditions (O2- 5%, CO2- 10%, and N2- Balance). Trimethoprim 

(TMP, 10 µg/ml,) and Kanamycin (Km, 50 µg/ml) was added to the MH agar when required. 

The bacteria pellet and extracted DNA were stored at -20ºC. C. jejuni frozen stocks were stored 

at -80ºC in 50% glycerol. 

Construction of Tn5 Transposon Mutant Library  

Construction of Tn5 seed library  

Tn5 transposon mutant library of C. jejuni NCTC11168 was generated using EZ-Tn5™ <KAN-

2>Tnp Transposome™ Kit (Cat. No. TSM99K2, Epicentre Biotechnologies, Madison, WI, USA) 

following manufacturer’s protocol. Briefly, in vitro transposition reaction consisted of 2 µl 10x 
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EZ-Tn5 reaction buffer, 1 µl of transposome complex, 2 µg of chromosomal DNA, and 15 µl of 

distilled deionized H2O and incubated for 4h at 37ºC. The transposed DNA was purified after 

adding of 60 µl of distilled deionized H2O followed by phenol-chloroform extraction and then 

ethanol precipitation of DNA. DNA was recovered in 40 µl TE buffer (pH 8.0). Next, in vitro 

transposed DNA was repaired by adding 40 µl of transposed DNA, 6 µl of T4 DNA polymerase 

buffer (New England Biolabs, NEB), 4.8 µl of dNTPs mix (2.5 mM), 7.7 µl distilled H2O, and 

1.5 µl T4 DNA polymerase (1 U/ µl, NEB) and incubated at 11ºC for 20 min in thermal cycler. 

The reaction was inactivated by incubating at 75ºC for 15 min. The second repair reaction 

consisted of 60 µl reaction mixture (previous rxn), 12 µl T4 DNA ligase buffer (NEB), 1.5 µl T4 

DNA ligase (NEB) and 46.5 µl dH2O and was incubated for overnight at 16ºC. This was 

followed by DNA dialysis on tip of a nitrocellulose membrane floating on 10-20 ml distilled 

deionized water for 20 min. All of the reaction was used for one transformation of C. jejuni 

NCTC11168 following the natural transformation method described by Davis et al. 2008 (briefly 

explained in next section) [25]. Naturally transformed C. jejuni NCTC11168 were selected on 

MH agar plates with TMP and Km. The mutants were scrapped off the plate in 1x PBS, 

centrifuged, and the pellet was stored at -80ºC. We performed 14 transformations with each 

producing ~100,000 mutants. Equal volume of mutants from each transformation was combined 

together to create Tn5 seed mutant library (seed library) as shown in Figure 1. 

Reconstruction of Tn5 library 

Genomic DNA extracted from the complex Tn5 seed library (Tn5 seed library DNA) was used 

for reconstruction of Tn5 library in the same and different strain background of C. jejuni. Tn5 

seed library was naturally transformed into C. jejuni NCTC11168 and C. jejuni 81-176 

background following natural transformation protocol of C. jejuni as described by Davis et al. 
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2008 [28]. Briefly, C. jejuni strains from frozen stock was streaked on MH agar plate containing 

TMP and incubated for 16 h under microaerophilic conditions at 37ºC. Next day, a heavy 

inoculum from the plate was streaked on MH agar with TMP and incubated for 16 h. The entire 

bacteria from16 h growth plate was resuspended in 1 ml MH broth without antibiotics and OD600 

was adjusted to 0.5 in MH broth. One ml fresh melted MH agar (without antibiotics) was 

pipetted in 5ml plastic test-tube and was allowed to solidify. An aliquot of 0.5 ml bacteria from 

adjusted OD600 was added in test-tube containing 1 ml of solidified MH agar and mixed gently 

and incubated for 3 h at 37ºC in microaerophilic conditions (bi-phasic medium). Then after, 500 

µg of seed library DNA was added to biphasic medium and incubated for 4 h in the above 

conditions. The transformants were collected in microcentrifuge tube, centrifuged for 2 min and 

resuspended in MH broth. Finally, the transformants were plated directly or after serial dilutions 

on MH agar plates supplemented with TMP and Km and incubated for 2 days. The colonies were 

counted from dilution plates and also collected from direct plates in 1X PBS, and centrifuged. 

The supernatant was discarded and bacterial pellet was stored at -20ºC (Figure 1).  

Transposon junction amplification and sequencing 

Genomic DNA was extracted from the bacterial pellets of complex Tn5 libraries using QIAamp 

DNA Mini Kit (Qiagen, Valencia, CA, USA) following manufacturer’s protocol. Qubit 2.0 

Fluorometer (Life Technologies, Carlsbad, CA) was used to check the concentration and purity 

of extracted DNA. Tn-seq DNA library for Illumina sequencing was prepared as previously 

developed protocol in our laboratory [29] with minor modifications as described in detail in File 

S1.  The first step was to single primer extension step using a primer specific to one end of the 

transposon. In this study, for each library DNA, the linear extension step was performed either a 

regular primer, dual priming oligonucleotide (DPO) primer or both. DPO primers was designed 
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as described by [30], and used to increase the specificity of PCR amplification of the Tn5-

chromosome junction sequences. The regular primer (5’-

GATCCTCTAGAGTCGACCTGCAGGCATGCA-3’) and DPO primer (5’-

ACCGTGGCGGGGATCCTCTAGAGTIIIIITGCAGGCAT-3’) were located 32 bp and 35 bp 

upstream of Tn5-genome junction, respectively as shown in Figure S1. Briefly, either regular or 

DPO primer was used for linear extension PCR using GoTaq G2 hot start colorless master mix 

(Promega Corporation, Madison, USA). Linear extension was followed by addition of C tail and 

then exponential PCR to amplify Tn5-genome junction sequences. Then after, exponential PCR 

product was heated at 65ºC for 15 min mixed with loading buffer and PCR product were ran on 

1% agarose gel. DNA from 300-500 bp were gel-purified using Zymoclean™ Gel DNA 

Recovery Kit following manufacturer’s protocol (Irvine, Ca, USA). Oligonucleotide used in this 

study are shown in Table S1. Equal quantity of DNA (10 ng) were mixed for each library and 

sent for Illumina HiSeq 4000 single end read with 90 cycles (DNA Technologies Core, UC 

Davis Genome Center, Davis, CA 95616).   

Data analysis 

Illumina sequencing reads were demultiplexed allowing prefect match of barcode and transposon 

mosaic end using custom Perl script. The 22 bp genomic junction sequence were extracted and 

used for downstream analysis in different manners for (1) the seed library and the library 

reconstructed in the same C. jejuni NCTC11168 strain background, and (2) the library 

reconstructed in different background (C. jejuni 81-176). For the libraries in C. jejuni 

NCTC11168 background, the junction sequences were aligned to the complete sequence of the 

same genome using Bowtie version 2.2.8 [31]. The aligned SAM mapping file were then fed to 

EL-ARIST for the analysis of essential genome following user manual [32]. Briefly, C. jejuni 
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NCTC11168 Tn5 library were mapped to 400 bp genomic windows and C. jejuni 81-176 Tn5 

library to 500 bp genomic windows. Insertion sites were linked to their associated annotated 

genomic features. There was no obvious insertion bias according to the insertion sites in respect 

to the replication of origin as shown in Figure 2 (A, B, C, and D). Thus, raw data were used for 

downstream analysis. Then, sliding window analysis was used to define regions with lower read 

counts, which were used to train a hidden Markov model to predict each window to be essential 

or non-essential for growth. Because of the differences in read numbers and complexity of Tn5 

library, we used the sliding windows of different sizes and different p-value threshold for calling 

a region significantly underrepresented in reads appropriate for each Tn5 library as described in 

Table S2. 

Additionally, we used Tn-seq Explorer to assign the number of unique Tn5 insertions sites and 

read counts to each gene using Bowtie aligned SAM files [33]. Tn5 insertion read counts and 

unique insertion site were only considered in the central 80% of the gene (CDS) excluding 

insertion from the beginning and end 10% of the gene. While, for transfer RNA (tRNA), 

ribosomal (rRNA) and pseudogenes unique insertion and read counts were considered for the 

whole gene length. 

On the contrary, to the libraries in C. jejuni 11168 background, we had to employ a different 

strategy for the downstream analysis using the 22 bp junction sequences for the library 

reconstructed in C. jejuni 81-176 background due to the previously known differences in the 

genomic regions [34].  For this library, genomic DNA from the seed library (C. jejuni NCTC 

11168) was transferred to C. jejuni 81-176 through natural transformation. For the incoming 

genomic DNA fragments containing Tn5 insertion to integrate into the recipient genome, there 

should be sufficient homology between the two strains at DNA level. To determine the 
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homology levels in C. jejuni 81-176, DNA sequence flanking 1,000 bp upstream and 

downstream sequences of  the coding sequences(CDS)  was extracted along with the CDS for all 

genes in C. jejuni NCTC 11168 using custom Python script and BLASTed against C. jejuni 81-

176 from command-line interface with BLASTn tabular output format 6. Single best BLAST hit 

was kept for each query sequence based on the highest bit score that gives indication of how 

good the alignment is with higher score having the better alignment. Then after, BLAST output 

table was filtered so that gene having high homology with flaking sequences can be retained. We 

arbitrarily used the following combination of condition to filter the BLAST tabular output file: 

alignment over > 55% of query length, percent identity ≥ 98%, mismatches < 50 nucleotide and 

gaps < 5 with were kept. Next, the genes of C. jejuni NCTC 11168 having high probability of 

homologous recombination in C. jejuni 81-176 were searched again for orthologous gene present 

in C. jejuni 81-1176. Only the orthologous gene with flanking sequence of C. jejuni 81-176 

having higher homology in C. jejuni NCTC 11168 were considered for the analysis of essential 

genome as described above (Table S3). 

RESULTS AND DISCUSSION 

Evaluation and comparison of the libraries based on Illumina sequencing data 

We generated a complex library of C. jejuni NCTC 11168 following natural transformation of in 

vitro mutagenized genomic DNA with commercially available Tn5 transposome complex (EZ-

Tn5™ <KAN-2>Tnp Transposome™ Kit). Fourteen natural transformation were performed each 

producing ~100,000 mutants with 1.4 million mutants. Previously, various strategies have been 

attempted for efficient transposon mutagenesis of C. jejuni. For in vivo mutagenesis, the 

preformed Tn5 transposome complex was introduced into various C. jejuni strains via 
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electroporation [35]. This strategy yielded ~3,000 random mutants per electroporation for C. 

jejuni 81-176 strain, but the efficiency was extremely low for other strains tested, limiting the 

application of the approach. On the contrary, for in vitro mutagenesis, transposition reaction was 

conducted on the genomic DNA of C. jejuni using the purified transposon sequence plus purified 

transposase enzyme of either Tn5 [36] mariner [37]or Tn552 [38] Then the in vitro mutagenized 

DNA was used to transform C. jejuni cells through natural transformation, yielding 3,000-7,000 

transposon mutants per reaction. In the current study, we achieved the efficiency of transposon 

mutagenesis far higher than previously reported (100,000 vs. 3,000-7,000 transposon mutants per 

transformation). We speculate that the high efficiency in our study was due to the use of 

preformed transposome complex for in vitro mutagenesis of genomic DNA in our study as 

compared to that transposase and transposon sequences were separately added into the reaction 

in all previous studies on in vitro transposon mutagenesis in Campylobacter [36-38]. 

Equal volume of the mutant pools was combined  to make seed library (S-CJ11168). Genomic 

DNA of the seed library was used for the reconstruction of Tn5 mutant library. We collected 

281,000 mutants from natural transformation of seed library in the same strain background (C. 

jejuni NCTC 11168: R-CJ11168-D) and 82,000 mutants in different strain background (C. jejuni 

81-176: R-CJ81176-D) as shown in Figure 1 and Table 1.   

Transposon junction sequence were amplified using two different primers (regular and DPO 

primer) in the linear extension step with downstream process remaining the same for all DNA 

library. Regular primer was used for linear extension of seed library C. jejuni NCTC 11168 (S-

CJ11168) while DPO primer for seed library C. jejuni NCTC 11168 (S-CJ11168-D), 

reconstructed library in same strain background C. jejuni NCTC 11168 (R-CJ11168-D), and 

different strain background C. jejuni 81-176 (R-CJ81176-D). Dual priming oligonucleotide 
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(DPO) is believed to block mismatched priming, thereby accomplished of higher PCR specificity 

[30]. The site of Tn5 insertion in each Tn5 library was determined through next-generation 

sequencing on HiSeq platform. Demultiplexing Illumina sequencing reads without any mismatch 

in the barcode sequence and Tn5 mosaic end produced 9,040,241 reads for S-CJ11168; 

6,920,934 reads for S-CJ11168-D; 6,052,446 reads for R-CJ11168-D and 1,638,463 reads for R-

CJ81176-D. Similarly, R-CJ1168-D had highest reads per unique insertion and R-CJ81176-D 

had lowest reads per unique insertion with S-CJ11168 having highest and R-CJ81176-D having 

lowest median reads per unique insertion as shown in Table 1. 

Next, sequencing reads with  22 bp transposon genomic junction sequence were mapped to 

respective genome using default parameter of Bowtie2.2.8, which reports best alignment. 

Interesting to note, C. jejuni NCTC 11168 has 30.6% GC content [39]. However, the GC content 

of 22bp genomic sequence across all the Tn5 library was little higher 40.25% (SE ± 2.22) that 

might reflect the preference of Tn5 transposon towards guanosine (G) and cytidine (C) rich 

sequences [40]. The overall alignment rate was 85.50% (SE ± 5.46). Regular primer had 

significantly lower alignment rate as compared to DPO primer library (75.36% vs 92.87 % 

respectively) clearly indicating the higher specificity in binding target DNA for the DPO primer. 

It was also observed that regular primer produced lower standard error (SE) with mean reads per 

unique insertion as compared to DPO primer (0.90 vs 11.54, respectively, for S-CJ11168 library). 

Thus, from this data, we can conclude that DPO primer produced better sequence library than 

regular primer (Table 1). 

Furthermore, the seed library S-CJ11168 and S-CJ11168-D had the most unique insertions 

throughout the genome 95,920 and 79,178, respectively, followed by reconstructed library in 

same strain background (R-CJ11169-D: 52,607) and different strain background (R-CJ81176-D: 



  

155 
 

29,565) (Table 1). C. jejuni NCTC 11168 libraries had 47,090 shared unique insertions genome-

wide. Importantly, only 2218 (2.1%) of the Tn5 insertion sites were unique to the reconstructed 

library of C. jejuni NCTC 11168 (R-CJ11168-D). Similarly, the seed library amplified using 

regular and DPO primer had 73,649 (71%) unique insertions in common (Figure S2). The fact 

that significantly lower number of unique insertions were detected in R-CJ11168-D in 

comparison to S-CJ11168-D (52,607 vs. 79,178) may be due to the insufficient number Tn5 

mutants (281,000 mutant colonies) collected to form the mutant pool during the experiment. The 

considerably lower number of unique insertions in R-CJ81176-D in comparison to R-CJ11168-D 

(29,565 vs. 52,607) is probably due to the genomic differences in the two strains, and the 

insufficient number (82,000 mutants) of Tn5 mutants collected to form the reconstructed library 

R-CJ81176-D. The complexity of reconstructed libraries can be increased by increasing the 

number of Tn5 mutants with more natural transformation of the seed library. 

Identification of essential gene in Campylobacter jejuni NCTC 11168  

We used EL-ARTIST pipeline for the identification of essential genes of C. jejuni required for 

optimal growth on MH agar plates under microaerophilic condition at 37˚C. The Campylobacter 

Tn5 libraries had no noticeable replication bias in the reads distribution throughout the genome 

as shown in Figure 2 (A, B, C, and D) which is imparted by ‘V’ shaped read distribution with 

higher reads at origin of replication. This can be imparted due to higher doubling time (112 min) 

of C. jejuni NCTC 11168 grown in MH broth as compared to lower doubling time of some 

bacteria such as, V. cholera has doubling time of 16-20 min grown in rich media [41, 42]. Reads 

counts of Tn5 libraries were mapped to 400 bp genomic windows against C. jejuni NCTC 11168 

genome. A high Spearman correlation was observed between the seed library prepared with 

regular (S-CJ11168) and DPO primer (S-CJ11168-D) based on read counts binned to 400 bp 
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window size (R2 = 0.95, p < 0.0001) as shown in Figure 2 (E). Besides, a little lower Spearman 

correlation (R2 = 0.92, p < 0.0001) was observed amid the reconstructed library in same genetic 

background (R-CJ11168-D) with seed libraries prepared with DPO primer (S-CJ11168-D) as 

shown in Figure 2 (F and G). 

Tn5 sequencing analysis using EL-ARTIST pipeline revealed ~250 genes essential in C. jejuni 

NCTC 11168 required for optimal growth on rich MH agar under microaerophilic condition at 

37ºC. Seed library C. jejuni NCTC 11168 (S-CJ11168) required 280 genes (15 domain essential 

and 265 entirely essential genes) for optimal growth. Likewise, the same seed library prepared 

with DPO primer (S-CJ11168-D) had 278 essential genes (9 domain essential and 269 entirely 

essential genes) and reconstructed library in same genetic background (R-CJ11168-D) had 284 

essential genes (18 domain essential and 266 entirely essential genes) in the same condition. All 

these three libraries shared 200 common essential genes (Figure S3). 

However, when we looked Tn5 insertion at gene level, gene like spoT with 64 Tn5 unique 

insertions with 358 reads (in S-CJ11168 library) were called as essential for optimal growth. 

Furthermore, gene with less than 400 bp (window size used for EL-ARTIST) were not sensitive 

to be picked by the EL-ARTIST pipeline. In addition, windows smaller than 400 bp such as 100 

bp can give more false positive result due to lack of insertions in many 100 bp windows. 

Bioinformatics pipeline analysis results are subjected to variation depending upon the algorithm 

and statistical power. Thus, genes having no insertion in all the three Tn5 libraries of C. jejuni 

NCTC 11168 were considered to be essential for growth in this study. 

Genes that were not able tolerate Tn5 insertion in central 80% of the gene in all the three 

libraries of C. jejuni NCTC 11168 were considered essential. We identified 166 essential coding 
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sequence (CJ-11168) of C. jejuni NCTC 11168 with no Tn5 insertion (Table S2). 52.4% of the 

essential genes of C. jejuni NCTC 11168 were on negative strand while 47.5% were on positive 

strand. Genes that contain even one insertion can be called as non-essential but genes lacking 

insertions cannot be necessarily classified as essential due to sequence bias of Tn5 inseritons and 

the smaller genes with  lower chance of transposon insertion [26]. However, in this study, there 

was significantly low correlation between the Tn5 insertion read counts and gene length 

(Spearman correlation = 0.1852, p < 0.0001) (Figure 3A). Also, Tn5 transposon are inserted 

randomly throughout the entire genome with some preference towards GC rich DNA sequences 

[40]. Nonetheless, we did not observed any correlation between the Tn5 read inserstion in the 

central 80% of genes (CDS) and GC content (%) of entire gene (CDS) as shown in Figure 3B 

(Spearman correlation = 0.0488, p > 0.0531). 

Furthermore, to back up our analysis at gene level, we looked for the Tn5 insertion in 

pseudogenes of C. jejuni NCTC 11168. Out of total 38 pseudogenes in entire genome of C. 

jejuni NCTC 11168, all of the pseudogene had Tn5 insertion in at least one of the seed libraries 

of C. jejuni NCTC 11168. This also indicates the high complexity Tn5 transposon insertion 

mutagenesis of seed library. Nonetheless, seed library S-CJ11168 (sequenced with regular 

primer) and S-CJ11168-D (sequenced with DPO primer) missed Tn5 insertion in only one 

pseudogene Cj0740 and Cj0742, respectively. However, reconstructed library in same 

background R-CJ11168-D had zero Tn5 insertions in 11 pseudogenes. This could be due to the 

limited number of transposon mutants, which can be improved by increasing the number of Tn5 

mutants during reconstruction of library. 

Next, we assigned essential genes to Cluster of Orthologous Groups (COG) identifier using 

NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/). COG 

ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/
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categories highly enriched among 166 essential genes were: J- Translation, ribosomal structure 

and biogenesis (20.48%); Not in COG (18.07%); M- Cell wall/membrane/envelope biogenesis 

(10.24%); H- Coenzyme transport and metabolism (8.43%); C- Energy production and 

conversion (7.83%); I- Lipid transport and metabolism (6.02%). COG moderately enriched were: 

U- Intracellular trafficking, secretion, and vesicular transport (4.22%); P– Inorganic ion transport 

and metabolism (3.01%); F- Nucleotide transport and metabolism (2.41%); O- Post-translational 

modification, protein turnover, and chaperones (2.41%); and R- General function prediction only 

(2.41%). Also, lower abundant COG categories with only one genes were CP, HR, JO, JT, Q 

(Secondary metabolites biosynthesis, transport, and catabolism) and TK as shown in Figure 4. 

Similar to our finding, most commonly enriched COG in essential genes of other bacteria like 

Porphyromonas gingivalis, Herbaspirillum seropedicae, Vibrio cholera, Rhodopseudomonas 

palustris, Burkholderia cenocepacia, and synthetic bacteria Mycoplasma mycoides JCVI-syn3.0 

were related to Translation, ribosomal structure and biogenesis (J); Cell 

wall/membrane/envelope biogenesis (M); and Coenzyme transport and metabolism (H)’ [8, 9, 

24, 43-45]. 

Interestingly, we identified 20 essential transfer RNA (tRNA) out of total 43 tRNA gene in the 

entire genome of C. jejuni NCTC 1118 and none of the ribosomal RNA gene encoding 16S 

ribosomal RNA, 23S ribosomal RNA, and 5S ribosomal RNA, which is expected for these genes 

to be essential for growth on rich MH medium (Table S2). Essential tRNA gene were required 

for the transport of arginine, asparagine, aspartic acid, glutamic acid, glycine, leucine, lysine, 

methionine, selenocysteine, serine, tryptophan, tyrosine, and valine. Other essential ncRNA was 

rnpB which is a component RNA of ribonuclease P enzyme (RNAse P) together with RnpA 

protein (also essential gene identified in our study) acts in processing of 4.5S RNA and tRNA 



  

159 
 

precursor molecules in E. coli (https://ecocyc.org/gene?orgid=ECOLI&id=EG30069). In a recent 

study, Rosconi et al. (2016) found 22 tRNA and one 23S ribosomal RNA gene to be essential in 

Herbaspirillum seropedicae, an endophyte that colonizes crops like rice and maize, during in 

vitro growth in TY medium similar to our finding [44].  

Reconstruction of insertion library in different strain background (C. jejuni 81-176) 

We transformed the seed library genomic DNA through natural transformation into a different 

strain background (C. jejuni 81-176). The homologous recombination of the seed library 

genomic DNA into a different strain requires significant homology between the incoming DNA 

fragments and the target regions at the DNA level. C. jejuni strains have a high genomic 

diversity, and Poly et al. (2005) previously reported that C. jejuni 81-176 had 63 kb of new 

chromosomal DNA sequences and 87 novel genes as compared to C. jejuni NCTC 11168 based 

on microarray analysis [34]. To identify the genomic region in the donor strain with significant 

homology to the recipient genome, DNA sequence of 1 kb flanking upstream and downstream of 

the coding sequence (CDS) along with the CDS in C. jejuni NCTC 11168 were BLASTed 

against C. jejuni 81-176. This analysis produced 1,535 best BLAST hit based on highest bit score 

for each query sequence. Further filtering as described in Materials and Methods section resulted 

in 904 query genes with substantial homology of which 895 are orthologous gene commonly 

present in both C. jejuni 11168 and  C. jejuni 81-1176 genomes (Table S3). This process was 

aiming at at eliminating the genes that are unique in C. jejuni 81-1176 genome from downstream 

analysis, so that we can prevent or minimize false identification of the genes with zero Tn5 

insertions as essential genes, where the absence of insertion is in fact due to the lack of 

homology.  
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Out of 895 orthologous genes with significant homology including 1 kbp flanking sequences, 

384 genes had zero Tn5 insertions, and thus considered as essential genes required for the in 

vitro growth of C. jejuni 81-176 on rich MH agar at 37°C under microaerophilic conditions. 

These 384 essential genes (CJ-81176) of C. jejuni 81-176 were broadly categorized into cluster 

of orthologous group (COG). The highly enriched COG were: J- Translation, ribosomal structure 

and biogenesis (16.67%); Not in COG (13.28%); C- Energy production and conversion (7.55%); 

H- Coenzyme transport and metabolism (6.25%); R- General function prediction only (5%); E- 

Amino acid transport and metabolism (5.73%); S- Function unknown (4.95%); M- Cell 

wall/membrane/envelope biogenesis (4.43%); and F- Nucleotide transport and metabolism 

(4.17%). Other moderately enriched COGs ranging from 3.5% to 2.5% in abundance were: 

Posttranslational modification, protein turnover, chaperones (O); Inorganic ion transport and 

metabolism (P); Replication, recombination and repair(L); Intracellular trafficking, secretion, 

and vesicular transport (U); Cell cycle control, cell division, chromosome partitioning (D); 

Carbohydrate transport and metabolism (G); Lipid transport and metabolism (I); and 

Transcription (K). While the other COGs with 1 or 2 genes had 12.50% in abundance as shown 

in Figure S4.  

Both the strains C. jejuni NCTC 11168 and C. jejuni 81-176 had similar level of enrichment in 

COGs like: Nucleotide transport and metabolism (F); Transcription (K); Replication, 

recombination and repair (L); Posttranslational modification, protein turnover, chaperones (O); 

Cell cycle control, cell division, chromosome partitioning (D); Carbohydrate transport and 

metabolism (G ); Inorganic ion transport and metabolism (P); Energy production and conversion 

(C); and Intracellular trafficking, secretion, and vesicular transport (U) with difference in relative 

abundance ranging from -1.76% to + 1.62%. While, COG category such as ‘Amino acid 
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transport and metabolism’ (E) was relatively higher in C. jejuni 81-176 by 4.53% and ‘Lipid 

transport and metabolism’ (I) and ‘Cell wall/membrane/envelope biogenesis’ (M) was higher in 

C. jejuni NCTC 11168 by 3.68% and 5.81 %, respectively (Figure 5). These variations may be 

observed due to considerable variations in the genome contents of the two strains which in turn 

can affect their behavior towards environmental stimuli like availability of nutrients and 

temperature. In addition, the fact that the essential genes in C. jejuni 81-176 were identified only 

from the genomic regions common in both strains could have resulted in some bias in the overall 

enrichment representations.  

Comparative Study 

We compared the previously identified essential genes of C. jejuni using transposon mutagenesis 

with our finding. Surprisingly, there was not much correlation between essential genes reported 

by Metris et al. (2011) and Stahl and Stintzi (2011) and this study in C. jejuni NCTC 11168 as 

shown in Figure 6A. Likely explanations are: 1) limited number of transposon mutants (~ 10,000 

mutants) in previous studies, 2) difference in growth conditions: 37˚C vs 42˚C, and MH agar vs 

Blood Agar, and 3) techniques used for transposon insertion site mapping: microarray used in 

previous studies vs next-generation sequencing in this study. These arguments are also 

substantiated by Gao et al. (2014). 

Interestingly, substantial overlap was observed between the essential genes of C. jejuni 81-176 

identified in this report with previously reported by Gao et al. (2014) as shown in Figure 6B, 

inspite of the considerable variation in experimental procedure. Twenty-three percent of essential 

genes from this study were common to Gao et al. (2014) and more than 50% of genes identified 

by Gao et al. (2014) were identified in our study. The primary source of variation with previous 
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study (Gao et al 2014) was the method of Tn5 library construction. In our study, genomic DNA 

of C. jejuni NCTC 11168 Tn5 library was naturally transformed into C. jejuni 81-176 to create 

Tn5 mutant library. Thus, Tn5 mutagenesis only occurred only at the genomic loci in C. jejuni 

81-176 with significant amount of homology between the two strains.  

Additionally, we were interested in comparing our results with the essential genes used for 

creation of JCVI-syn3.0, the first synthesized minimal bacterium with the smallest genome (473 

genes) capable of self-replication in laboratory media. C. jejuni NCTC 11168 protein coding 

genes were searched for homologous proteins against JCVI-syn3.0 genome using BLASTP with 

similarity score cutoff of 1e-5. JCVI-syn3.0 and C. jejuni NCTC 11168 had 256 and 311 

homologous protein hits, respectively. Among 311 homologous proteins of C. jejuni, 52 genes 

overlapped with the essential genes of C. jejuni NCTC 11168 identified in our study (Figure 6C). 

Unsurprisingly, little overlap was seen between the two bacteria probably due to of the 

significant differences in their genomic contents. 

However, there was substantial overlap between essential genes of C. jejuni NCTC 11168 and C. 

jejuni 81-176 in this study (Figure 6D). Approximately, 65% percent essential genes of C. jejuni 

NCTC 11168 were common to C. jejuni 81-176. While fewer essential genes of C. jejuni 81-176 

was shared (~28%) with C. jejuni NCTC 11168. This can be due to false assumption of genes 

with zero Tn5 insertion read count that led to increased essential gene list with no Tn5 insertion 

in C. jejuni 81-176. This might be possibly due to lack homologous recombination site in two 

different strain background of C. jejuni despite extensive filtering for homologous sequence to 

reduce the noise in data analysis. Other important factor that contributed to disagreement was the 

insufficient number of Tn5 mutants collected during reconstruction of library. 
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Notably, the essential genes of C. jejuni NCTC 11168 identified in this study had extensive 

homologs hit in Database of Essential Genes (DEG). DNA sequence of 166 essential genes of C. 

jejuni NCTC 11168 were BLASTed using BLASTX against 46 bacterial essential genes in the 

database with default parameters (Expect - 1E-05, Score - 100, and Matrix –BLOSUM62). Out 

of 166 essential protein-coding genes of C. jejuni NCTC 11168, 135 genes had homologs in the 

DEG and 2,879 DEG genes had homologs with our essential genes of C. jeuni NCTC 11168. 

Most of the essential genes with no hit in the DEG were hypothetical proteins (15 genes), 6 

integral membrane proteins (Cj0369c, Cj0423, Cj0430, Cj0544, Cj0564, and Cj0851c), 3 

periplasmic proteins (Cj0659c, Cj0854c, and Cj0114), and other genes were pseH, rnpA. 

Next, we looked into the core essential genes of C. jejuni through comparative analysis of all 

essential genes identified in this research (C. jejuni NCTC 11168 and C. jejuni 81-176), previous 

studies by Metris et al. (2011), Stahl and Stintzi (2011), and Gao et al. (2014), and those in the 

synthetic bacterium, JCVI-syn3.0 as shown in Figure 7 and Table S4. Orthologous genes of 

essential genes in C. jejuni 81-176 in C. jejuni NCTC 11168 background and homologous 

proteins of JCVI-syn3.0 against C. jejuni NCTC 11168 were considered. There were 50 genes 

common to the six studies with each genes shared among at least four of the studies as shown in 

Figure 7.  Most of the genes belonged to COG category ‘Translation, ribosomal structure and 

biogenesis’ (J, 34%), ‘Carbohydrate metabolism and transport’ (G, 10%), followed by genes not 

in COG (8%), ‘Coenzyme transport and metabolism’ (H, 6%) and ‘Intracellular trafficking, 

secretion, and vesicular transport’ (U, 6%).  The ribosomal proteins are the most prominent drug 

targets in bacteria that have been used to control infections [46]. 

NrdF and folD were identified as essential in all of the above 6 studies while ftsY, fba, engB, and 

rplD in 5 of the studies. A live attenuated Salmonella Typhimurium aroA vector expressing 
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Mycoplasma hyopneumoniae ribonucleotide reductase R2 subunit (NrdF) gene can induce a cell-

mediated immune response [47]. Moreover, ftsY, fba, engB, and rplD were identified as essential 

in all 5 studies. Deletion of ftsY, gene encoding a signal recognition particle protein in 

Streptococcus pneumonia, induced potent serotype-independent protection against otitis media, 

sinusitis, pneumonia and invasive pneumococcal disease [48]. Fba encodes class II fructose 1,6-

bisphosphate aldolase enzyme important for bacterial, fungal and protozoan glycolysis and 

gluconeogenesis and is considered as a putative drug target against Mycobacterium tuberculosis, 

the causative agent for tuberculosis [49].  

Other essential Campylobacter genes shared among at least four of above studies have been used 

as drug targets and vaccine constructions to mitigate several bacterial infections. BirA, a biotin 

protein ligase, is an emerging drug target against E. coli and other prokaryotes such as 

Staphylococcus aureus, and Mycobacterium tuberculosis. Inhibition of lpxC by a small-molecule 

antibiotic in Acinetobacter baumannii that has a role in lipid A biosynthesis protects mice from 

its infection by modulation of inflammation and enhancing opsonophagocytic killing [50]. MreB, 

a rod shape-determining protein, when blocked by MreB-specific antibiotics inhibits growth of 

Chlamydia [51]. IspH (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) satisfied all criteria 

of being putative drug target against Corynebacterium pseudotuberculosis, pathogenic bacteria 

that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous in a 

broad spectrum of hosts [52]. KsgA (rRNA small subunit methyltransferase A) has been 

associated with clarithromycin resistance in Mycobacterium tuberculosis [53]. GalU (UTP-

glucose-1-phosphate uridylyltransferase) mutation in Francisella tularensis, the causative agent 

of tularemia, was protective against homologous challenge in mice [54]. GapA (glyceraldehyde 
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3-phosphate dehydrogenase) was used for the construction of DNA vaccine against Haemophilus 

parasuis, the causative agent of swine polyserositis, polyarthritis, and meningitis [55]. 

CONCLUSION 

We constructed an unprecedentedly complex Tn5 library of C. jejuni NCTC 11168 with more 

than 95,000 unique insertions in the genome. The genomic DNA of the seed library was 

effectively used for reconstruction of Tn5 library in the same strain background (C. jejuni NCTC 

11168) and with limited value in different strain background (C. jejuni 81-176). Despite 

discrepancies among studies, comparative analysis of this report showed the core essential genes 

of C. jejuni shared between studies where most of the gene have been implicated as drug target 

or vaccine development against wide range of bacterial diseases. Usually, all the essential genes 

have potential to severely affect the survival fitness of a bacterium, which can be further 

exploited to develop novel strategies to curb this blatant food-borne pathogen.  
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Table 1: Overview of C. jejuni Tn5 mutant libraries. 
 

Library # Tn5 
Mutants 

Total 
Reads 

Mapped Reads 
(%) 

# Unique 
Insertions 

Mean (± SE) 

S-CJ11168 1,400,000 9,040,241 6,812,731 (75.36) 95,929 71.02 ± 0.90 

S-CJ11168-D 1,400,000 6,920,934 6,448,244 (93.1) 79,178 81.44 ± 11.54 

R-CJ11168-D 281,000 6,052,446 5,685,107 (93.93) 52,607 108.07 ± 13.89 

R-CJ81176-D (a) 82,000 1,638,463 1,303,248 (79.54) 29,565 44.08 ± 5.89 

*a->CJ11168     1,493,694 (91.16) 32,623 45.79 ± 5.46 
S- Seed library; R- Reconstruction; D- DPO; CJ11168- C. jejuni NCTC 11168; and CJ81116- C. 

jejuni 81-176. Mean is the average reads per unique insertion in the Tn5 library with standard 
error (SE). *Tn5 library (R-CJ811176, a) when mapped against donor strain C. jejuni NCTC 
11168 genome (a->CJ11168), a higher alignment rate was achieved (91.6 %). 
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Figure 1: Design of experiment. EZ-Tn5™ <KAN-2>Tnp Transposome™ Kit was used for in 

vitro transposition of genomic DNA of C. jejuni NCTC 11168. The transposed DNA was then 
naturally transformed to C. jejuni NCTC 11168 and mutants were collected MH agar plate with 
TMP and Km (Seed library: S-CJ11168). Seed library DNA was extracted and used for the 
reconstruction of Tn5 library in same (C. jejuni NCTC 11168: R-CJ11168-D) and different strain 
background (C. jejuni 81-176: R-CJ811176-D). Regular and DPO primer was used for linear 
extension to make DNA library for Illumina sequencing. [S: Seed library, R: Reconstruction, D: 
Dual priming oligonucleotide (DPO), CJ11168: C. jejuni NCTC 11168; and CJ81176: C. jejuni 
81-176].
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Figure 2: Overview of Illumina sequencing of C. jejuni Tn5 libraries. Read distribution of Tn5 
mutant libraries of C. jejuni: A) S-CJ1118, B) S-CJ11168-D, C) R-CJ11168-D and D) R-
CJ81176 (X-axis: Genomic coordinate of Campylobacter; Y-axis: log10 transformed read 
counts). Spearman correlation (R2) of Tn5 reads distribution based on 400 bp window size 
between different libraries of C. jejuni NCTC 11168: E) S-CJ11168 vs S-CJ11168-D, F) S-
CJ11168 vs R-CJ11168-D and G) R-Cj11168-D vs S-CJ11168-D. Tn5 libraries are named as in 
Figure 1. 
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Figure 3: Tn5 insertion bias analysis in Tn5 libraries of C. jejuni NCTC 11168. Spearman 
correlation (R2) between: A) gene length (amino acid length) and average Tn5 insertion reads B) 
GC content (%) of all genes and average Tn5 insertion reads. Average  Tn5 reads is the average 
of Tn5 reads in the central 80% of gene in all the 3 libraries of C. jejuni NCTC 11168 (S-
CJ11168, S-CJ11168-D, and R-CJ11168-D). 
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Figure 4: Cluster of orthologous group (COG) categories of essential genes of C. jejuni NCTC 
11168 (CJ-11168).  Eessential genes were not able to tolerate any Tn5 insertion in central 80% 
of genes among all the three libraries of C. jejuni NCTC 11168 (S-CJ11168, S-CJ11168-D, and 
R-CJ11168-D). Figure at the top of bar is the number of essential genes in that COG category. J- 
Translation, ribosomal structure and biogenesis; M- Cell wall/membrane/envelope biogenesis; 
H- Coenzyme transport and metabolism; C- Energy production and conversion; I- Lipid transport 
and metabolism; U- Intracellular trafficking, secretion, and vesicular transport; P– Inorganic ion 
transport and metabolism; F- Nucleotide transport and metabolism; O- Post-translational 
modification, protein turnover, and chaperones; R- General function prediction only; D– Cell 
cycle control, cell division, chromosome partitioning; G- Carbohydrate metabolism and 
transport; L- Replication, recombination and repair;  S- Function unknown; E- Amino acid 
transport and metabolism; K- Transcription; N- Cell motility; V- Defense mechanisms; Q- 
Secondary metabolites biosynthesis, transport, and catabolism; and T- Signal transduction 
mechanisms. 
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Figure 5. Comparison of major COG categories enriched in essential genome of C. jejuni NCTC 
11168 (CJ11168) and C. jejuni 81-176 (CJ81176). COG categories annotations are same as in 
Figure 4. 
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Figure 6: Venn diagram indicating numbers of shared essential genes of C. jejuni between this 
and previous studies. A) Essential genes of C. jejuni NCTC 11168 common between Metris et al. 
(2011), Stahl and Stintzi (2011) and this study (CJ-11168). B) Essential genes of C. jejuni 81-
176 common between Gao et al. (2014) and this study (CJ-811176). Number of genes inside 
small bracket did not had high homologous sequence in C. jejuni NCTC 11168 background 
according to our criteria. C) Common genes shared between this study (CJ-11168) and 
homologous proteins of JCVI-syn3.0 against C. jejuni NCTC 11168. D) Common essential 
genes between the two Campylobacter strains identified in this study (CJ-11168 - C. jejuni 
NCTC 11168 and  CJ-81176 - C. jejuni 81-176). 
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Figure 7: Core essential genes of C. jejuni NCTC 11168. Genes are colored to indicate the COG 
category. Numbers after legend indicate percentage of COG category enriched in core essential 
gene list. (Soft edge rectangle- Various studies; Metris[26], Stahl-Stintzi [25], Gao-O [27]; 
JCVI-syn3-H [24]; CJ-811176-O: C. jejuni 81-176; CJ-11168: C. jejuni NCTC 11168; O-
orthologous; H- Homologs; Oval shape – essential gene). Genes circled in thick red and thin red 
are common in six and five studies respectively. All the genes in this network were identified as 
essential in at least four of the studies.  
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Figure S1:  Primer design for linear extension of Tn5 junction sequence during DNA library 
preparation for Illumina Sequencing. DPO-Tn5-Kn2 primer (green) is dual priming 
oligonucleotide primer and Ez-Tn5 primer3 (blue) is regular primer. ME: Mosaic end sequence.  

  



  

180 
 

Figure S2: Number of unique Tn5 insertion sites in Tn5 mutant libraries of C. jejuni NCTC 
11168. Number inside the bracket is percentage. Tn5 libraries are named accordingly as in the 
main body of manuscript. 
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Figure S3: Essential gene of C. jejuni NCTC 11168 identified using EL-Artist pipeline. Figures 
outside brackets are number of identified essential genes and numbers inside bracket are overall 
percentage (%). Libraries are named accordingly as in the main body of manuscript. 
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Figure S4: Assignment of cluster of orthologous group (COG) to essential genes of C. jejuni 81-
176 (CJ-811176). Essential gene were only analyzed for genes of C. jejuni 81-176 that had 
sufficient homologous sequence in upstream and downstream including coding sequence in the 
C. jejuni NCTC 11168 background (Since Tn5 library in C. jejuni 811176 were constructed 
using genomic DNA of Tn5 library of C. jejuni NCTC 11168). Figure at the top of bar indicated 
the number of essential genes.  
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Table S1: List of primers used for DNA library preparation of transposon sequencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ez-Tn5 primer3 (regular primer) and DPO-Tn5-Kan2 (dual priming oligonucleotide) were used 
for linear extension during DNA library preparation. NNNN: four random nucleotide used for 
efficient clustering. Nucleotide in small letter are barcode designed to allow sorting of Illumina 
sequence reads according to sample. Barcoded primer and HTM-primer were used for 
exponential PCR. 

Primer Name Sequence (5'-3') Sample 

Ez-Tn5 
primer3 

5’-GATCCTCTAGAGTCGACCTGCAGGC 
ATGCA-3’ 

 

DPO-Tn5-
Kan2 

5’-ACCGTGGCGGGGATCCTCTAGAGTCGA 
CCTGCAGGCAT-3’ 

 

IR2-IS-B4 5’-AATGATACGGCGACCACCGAGATCTAC 
ACTCTTTCCCTACACGACGCTCTTCCGA 
TCTNNNNAGaatgataTCAGGGTTGAGATG 
TGTATAAGGGACAG-3’ 

S-CJ11168 

IR2-IS-B19 5’-AATGATACGGCGACCACCGAGATCTACA 
CTCTTTCCCTACACGACGCTCTTCCGATC 
TNNNNAGatcgacTCAGGGTTGAGATGTGT 
ATAAGAGACAG-3’ 

S-
CJ11168-D 

IR2-IS-B7 5’-AATGATACGGCGACCACCGAGATCTACA 
CTCTTTCCCTACACGACGCTCTTCCGATC 
TNNNNAGcagatcTCAGGGTTGAGATGTGT 
ATAAGAGACAG-3’ 

R-
CJ11168-D  

IR2-IS-B8 5’-AATGATACGGCGACCACCGAGATCTACA 
CTCTTTCCCTACACGACGCTCTTCCGATCT 
NNNNAGacttgaTCAGGGTTGAGATGTGTAT 
AAGAGACAG-3’ 

R-
CJ81176-D 

HTM-Primer 5’-CAAGCAGAAGACGGCATACGAGCTCTTC 
CGATCTGGGGGGGGGGGGGGGG-3’ 
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File S1:  

DNA library preparation protocol for transposon sequencing (Tn-seq) using dual priming 

oligonucleotide (DPO) 

This method of DNA library preparation is improved version of previously developed 

methodology in our laboratory [1, 2]. A single dual priming oligonucleotide (DPO) primer is 

used for linear extension of transposon junction [3]. The purified PCR product is subjected to 

addition of C tail, which is controlled effectively by the mixture of deoxycytidine triphosphate 

(dCTP) and dideoxy CTP (ddCTP) [4]. Then, the purified C-tailed product is amplified by 

transposon specific primer and poly G primer. 

MATERIALS 

DNA extracted from Tn5 mutant library  

Wild type DNA (Control DNA) 

QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) 

Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA) 

Oligonucleotide (Supplementary Table 1) 

GoTaq® G2 Hot Start Colorless Master Mix (Promega, WI, USA) 

Nuclease-free water 

DNA Clean and Concentrator Kit ( Zymo Research, Irvine, CA, USA) 

Terminal Transferase (TdT, New England Biolabs, Ipswich, MA, USA) 

TdT Reaction Buffer (10X) 

CoCl2 (2.5 mM) (TdT, New England Biolabs, Ipswich, MA, USA) 

dCTP (100 mM) (Promega, Madison, WI, USA) 

ddCTP (10 mM) (Promega Madison, WI, USA) 

1 % Agarose gel 

Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA, USA) 
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Thermocycler (PCR machine) 

 

STEPS: 

Step 1: Linear extension PCR 

5. Reaction mixture  
 
Nuclease free H2O    22 µl 
GoTaq G2 Hot Start Colorless Mx  25 µl  
DPO-Tn5-Kan2 (10 µm)   1 µl     
Genomic DNA of Tn library (~100ng) 2 µl   
____________________________________________  

      Total    50 µl 

6. PCR cycle 

 95C    2 min   
   [95C    30 sec] 
 50 cycles [63C    45 sec]    
   [72C    10 sec]  
      4C    hold 
Note: Regular primer was used during the linear extension of the seed library. 
 

7. Purify the linear extension PCR products using DNA clean and concentrator kit. Elute 

DNA in 11µl EB buffer and store at -20C. 

Step 2: C-tailing reaction 

6. Preparation of dNTP working stock 
 
Dilute 100 mM dCTP to 10 mM dCTP with ddH2O (nuclease-free)  
Dilute 10 mM ddCTPto 1 mM ddCTP with ddH2O (nuclease-free)  
 

7. Reaction mixture 
DNA (linear extension products)                             10.0 µl 
TdT Buffer (10X)     2.0 µl 
2.5 mM CoCl2         2.0 µl 
10 mM dCTP      2.4 µl 
1 mM ddCTP      1.0 µl 
ddH2O       2.1 µl 

 Terminal transferase      0.5 µl 
 _____________________________________________ 
      Total      20.0 µl 
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8. Incubate the reaction tube at 37C for 1 hr. 
 

9. Incubate the reaction tube at 75C for 20 min for heat inactivation of TdT.  
 

10. Purify the C-tailed products using DNA clean and concentrator kit. Elute DNA in 10 µl 

EB buffer and store at -20C. 

Step 3: PCR to amplify Tn-flanking sequences 

2. Reaction mixture 
 
ddH2O       22.5 µl 
GoTaq G2 Hot Start colorless Mx   25 µl  
IR2 BC primer with an unique barcode (10 µM) 1 µl     
HTM primer (20 µM)      0.5 µl 
C-tailed DNA         1 µl  
____________________________________________ 

      Total    50 µl 

8. PCR cycle 

 95C    2 min 
   [95C    30 sec] 
 36 cycles [58C    45 sec]    
   [72C    20 sec]  
    72C    10 min 
      4C    hold 
 

Step 4: Gel-purification of PCR products 

4. Mix the sample with loading buffer and heat at 65ºC for 15 min.  
5. Run 10 µl/sample on 1% agarose gel.  
6. Cut 300-500bp bands and gel-purify DNA fragments. 
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Figure S5: Schematic diagram of DNA library preparation of transposon library for Illumina 
sequencing using DPO primer. Tn-specific primer 1 (DPO-Tn5-Kan2, Supplementary Table1) is 
used for linear extension and Tn-specific primer 2 (library specific barcoded primer according) is 
used for exponential PCR in conjunction with C-tail specific primer (HTM-Primer, 
Supplementary Table 1). 
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Figure S6: Agarose gel electrophoresis of Tn5 mutant library after exponential PCR. DNA from 
300-500 bp is extracted from agarose gel (1%), pooled in equal quantity (10 ng/ sample) and sent 
for sequencing. [1,2: Tn5 library of C. jejuni; 3: Control (genomic DNA of C. jejuni NCTC 
11168); and M: Hi-Low DNA Marker). 
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CONCLUSION 

In this dissertation, we have applied high throughput transposon sequencing (Tn-seq) for 

systems-level analysis of foodborne pathogens that can screen thousands of transposon mutants 

in a single experiment accompanied by massively parallel next-generation sequencing (NGS). 

Foodborne pathogens Salmonella and Campylobacter represents a leading cause of foodborne 

pathogen illness worldwide. Increased understanding of the genetic determinants of foodborne 

pathogens can help formulate the effective strategies to mitigate these nasty bugs from the food 

web without altering the consumer preference. In the first part, we reviewed current methods and 

applications of Tn-seq (Chapter 1), In the second part, Salmonella Typhimurium 14028S (S. 

Typhimurium) complex Tn5 mutant library was subjected to growth and survival fitness assay 

(Chapter 2 and 3).  In the third part, we investigated the essential genome of two stains of 

Campylobacter jejuni (C. jejuni) NCTC 11168 and C. jejuni 81-176 (Chapter 4). 

We have improved the previously developed protocol in our laboratory of DNA library 

preparation for Illumina sequencing using regular and dual priming oligonucleotide (DPO) 

primer. Additionally, comparative bioinformatics studies were heavily employed in our studies 

to pinpoint and narrow down the most indispensable genetic factors required for the fitness of 

Salmonella and Campylobacter. Furthermore, we constructed an unprecedented level of highly 

complex Tn5 mutant library in C. jejuni NCTC 11168 and uniquely used the library DNA for the 

reconstruction of Tn5 library in the same (C. jejuni NCTC 11168) and different strain 

background (C. jejuni 81-176). 

In the Chapter 2, a highly saturating Tn5 library of S. Typhimurium 14028s (≥ 186, 000 unique 

insertions) was subjected to selection during growth in the presence of short chain fatty acid (100 
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mM Propionate), osmotic stress (3% NaCl) or oxidative stress (1mM H2O2) or survival in 

extreme acidic pH (30 min in pH 3) or starvation (12 days in PBS). A comparative study with in 

vivo (previously study) and in vitro genes (our study), we identified 25 set of other than virulence 

genes (non-pathogenicity island genes) that can potentially invoke host immune response with 

has great prospects to be exploited as vaccine development and/or drug target to curb the 

Salmonella infection. 

In chapter 3, we performed global screening of S. Typhimurium 14028S Tn5 mutant library in 

abiotic stress such as desiccation stress that Salmonella faces outside the body of host. 

Salmonella desiccation resistance genes were mostly enriched for energy production and 

conversion; cell wall/membrane/envelope biogenesis, inorganic ion transport and metabolism; 

regulation of biological process; DNA metabolic process; ABC transporters; and two component 

system with more than 20% genes being putative or hypothetical. 

In chapter, 4 we constructed an unprecedented level of highly complex Tn5 mutant library in C. 

jejuni NCTC 11168 with 95,929 unique insertions and reconstructed Tn5 to same and different 

strain background. Essential genes in both of the strains were highly enriched in cluster of 

orthologous group (COG) category like ‘Translation, ribosomal structure and biogenesis (J)’, 

‘Energy production and conversion (C)’, ‘Coenzyme transport and metabolism (H)’ and not in 

COG category. Comparative analysis among our and previous studies identified 50 core essential 

genes of C. jejuni, where most genes have been implicated in the development of drug target and 

vaccines against a wide range of bacteria. 
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In short, comprehensive analysis of in vitro fitness genes of Salmonella and Campylobacter 

provided a solid background research for the development of more effective strategies to 

alleviate the foodborne pathogens. 
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