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Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk

marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with

long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL

could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease

ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-

rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-

rs10936599) alone and combined in a LTL genetic score (“teloscore”, which explains 2.2% of the telomere variability) in

relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the

strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35–1.76; p = 1.54 × 10−10) and a novel one with the

NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73–0.88; p = 1.87 × 10−6, ptrend = 3.27 × 10−7). The association of short LTL,

measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10−9 for highest vs. lowest quintile;

p = 1.82 × 10−10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-

rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong

association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for

pancreatic cancer.

Introduction
Pancreatic cancer is a relatively rare disease, but it currently
ranks as the fourth cause of cancer-related deaths in Europe
and USA, and is projected to become the second in a few
years.1 There are several established or suggested environmen-
tal risk factors for pancreatic cancer such as smoking, heavy
alcohol abuse and predisposing conditions like family history
of pancreatic cancer, chronic pancreatitis, obesity, pre-existing

diabetes mellitus.2,3 In the last few years genome-wide associa-
tions studies (GWAS) and targeted large candidate gene/path-
way studies have identified several single nucleotide
polymorphisms (SNPs) associated with pancreatic cancer sus-
ceptibility and survival.4–18 Among these reports several point
toward a prominent involvement of the TERT-CLPTM1L gene
region in the disease etiology.5,7,10,15 This region, situated on
chromosome 5p15.33, is pleiotropic and there are

What’s new?
How does lymphocyte telomere length affect pancreatic cancer risk? These authors analyzed 10 SNPs associated with telomere

length and their relationship with pancreatic cancer risk, using data from the Pancreatic Disease Research (PANDoRA)

consortium. Each patient received a “teloscore” based on the combined SNP data, and it turned out that a low teloscore -

predicting a short telomere - was associated with increased pancreatic cancer risk. The researchers also identified for the first

time a significant genome-wide association between a SNP, TERT-rs2736100, and increased pancreatic cancer risk. They also

discovered a completely novel association between a SNP, NAF1-rs7675998, and decreased risk.
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overwhelming epidemiologic and molecular evidences on the
association of SNPs belonging to it and the risk of various
cancer types.19 The pleiotropy of the region is explained by
the central role that TERT exerts in the cell. The TERT gene
encodes the telomerase reverse transcriptase, and with the tel-
omerase RNA component (TERC gene) forms a key part of
the telomerase enzymatic complex, which synthesizes telo-
meric ends.20 Even moderate deregulations of the telomerase
activity can jeopardize telomere homeostasis21, which in turn
can affect chromosomal stability, cell growth and the correct
segregation of chromosomes to daughter cells.22,23 Interest-
ingly, considerable evidence from molecular cancer biology
indicates that telomere length in healthy or nonmalignant tis-
sues, usually studied as lymphocyte telomere length (LTL),
also represents a risk marker for a large number of tumor
types. Telomere length is highly correlated across tissues24,25,
therefore LTL is considered a valid surrogate for the measure
of telomere length in specific tissues. For pancreatic cancer,
five studies attempted to link LTL with risk of developing the
disease. The results were contrasting with two studies report-
ing an association with shorter telomere length and increased
risk5,26, one study reporting longer telomere and increased
risk27 and two studies reporting a U-shaped association.28,29

The lack of consensus for pancreatic cancer reflects the con-
flicting results reported for other cancer types and it is at least
partially due to the techniques, particularly sensitive to sample
handling30 and other confounders31 such as age, chemother-
apy and the epidemiologic design of the study (retrospective
vs. prospective).32 The associations between LTL and various
types of cancer and the possible caveats to consider have been
reviewed by Hou et al.31 However, LTL variability is under
genetic control. In particular, GWAS have identified 11 SNPs
associated with LTL. Recent Mendelian randomization
approaches have shown that a score built from these SNPs as
a surrogate of LTL could be used as a robust risk marker for
several cancer types.33–38 Two studies attempted this for pan-
creatic cancer, and found no association.39,40 Given that pan-
creatic cancer is a rare and very lethal disease, it is crucial to
expand our knowledge on risk factors, by conducting a Men-
delian randomization analysis of telomere length. This is
potentially a better way than measuring LTL directly, given
the difficulties in precisely determining this phenotype. We
explored this approach in a large scale study within the PAN-
creatic Disease ReseArch (PANDoRA) consortium, by analyz-
ing 10 telomere-defining SNPs separately or in conjunction
computing a score.

Materials and Methods
For our study we used 2,374 pancreatic cancer cases and
4,326 controls belonging to the PANDoRA, EPIC and
ESTHER consortia. The PANcreatic Disease ReseArch
(PANDoRA) consortium has been described in detail else-
where.41 We collected cases and controls from 8 European
countries (Italy, Germany, Czech Republic, Hungary, United

Kingdom, Lithuania, Poland, Netherlands). Cases were
defined by a confirmed diagnosis of PDAC by histopathology.
Controls were collected in the same geographical regions as
the cases, mostly in the context of the PANDoRA consortium.
Additionally, a part of the German controls was enrolled in
ESTHER, a prospective cohort with 9,953 participants
recruited during a general health check-up between July 2000
and December 2002 in Saarland (a state in South-western
Germany). The remaining German controls and all of the
British and Dutch controls were selected from healthy volun-
teers recruited from the general population in the European
Prospective Investigation on Cancer (EPIC), an ongoing pro-
spective cohort study in ten European countries (http://epic.
iarc.fr/). All subjects signed a written consent form. Ethical
approval for the PANDoRA study protocol (that in this report
also included controls from ESTHER and EPIC cohorts) was
received from the Ethics Commission of the Medical Faculty
of the University of Heidelberg.

SNP selection
We selected 11 independent SNPs (r2 = 0 for all pairwise com-
parisons) that were consistently shown by GWAS to influence
telomere length.40 Our final selection consisted of: ZNF676-
rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466,
PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-
rs9420907, ACYP2-rs11125529, TERC-rs10936599 and ZBTB46-
rs755017. The polymorphic variant reported in the original publi-
cation for the ZNF676 gene was rs412658, but the genotyping
assay for this SNP failed quality controls, therefore we genotyped
instead rs409627, a proxy in perfect linkage disequilibrium
(r2 = 1 in all European populations of the 1,000 Genomes pro-
ject). A list of the selected SNPs with betas, variance explained
and all the relevant information can be found in Table 1.

Genotyping
DNA was extracted from whole blood. Genotyping was car-
ried out at the German Cancer Research Center (DKFZ) in
Heidelberg, Germany, using TaqMan (ABI, Applied Biosys-
tems, Foster City, CA) technology. Genotyping was conducted
in 384-well plates and for quality control duplicates of 10% of
the samples were interspersed throughout the plates. The
order of DNA samples from case and control subjects was
randomized on plates to ensure that similar numbers of cases
and controls were analyzed in each batch. PCR plates were
read on a ViiA7 real time instrument (Applied Biosystems).
The ViiA7 RUO Software, version 1.2.2 (Applied Biosystems)
was used to determine genotypes.

Teloscore computation
For each study subject, a SNP score to estimate telomere
length (which we called “teloscore”) was computed as follows:
for each SNP the number of alleles associated with longer
telomeres (according to the results of the literature reported
in Table 1) were counted, and added up, resulting in the
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unweighted score for each subject. Since we finally selected
10 SNPs, the unweighted score can assume any integer value
between 0 (shortest telomeres) and 20 (longest telomeres). We
then created a weighted score for each study subject. First, we
took from the literature estimates of the per-allele effect on
LTL in base pairs for each SNP (Table 1). Then, we multiplied
at each SNP the number of alleles associated with longer telo-
meres by the per-allele effect on LTL in base pairs. Finally, we
summed up these quantities for each study subject. The
weighted score thus represents the estimated difference in
telomere length, measured in base pairs, attributable to the
SNPs under investigation. Only a subset of the study subjects
had a 100% SNP call rate (N = 1,246 cases (52.5%), 1945 con-
trols (45.0%), total 3,191 (47.6%)), while the remaining sub-
jects had a call rate between 80% and 100%. Therefore, in
order to be able to compute comparable score values for all
study subjects, we also considered average values for each
score. Supporting Information Table 1 shows examples of
how the teloscores were generated.

Statistical analysis
The association between the SNPs and PDAC risk was tested
using unconditional logistic regression computing odds ratios
(OR) and 95% confidence intervals (CI). We used co-domi-
nant, dominant, recessive and per-allele models of inheritance,
calculating also a trend test for the co-dominant model. The
threshold for statistical significance was therefore p = 0.05/
(10 SNPs x 4 models) = 0.00125.

We used each of the teloscores (weighted and unweighted)
as continuous variables and as discrete values, calculating
quintiles based on the distribution of values of the healthy
controls. The association between the teloscores and PDAC
risk was tested with logistic regression, computing ORs and
95% CIs.

For a subset of German controls from the ESTHER cohort
(N = 885), Spearman’s correlation coefficients were calculated

between the teloscores and values of relative telomere length
previously obtained with a real-time quantitative PCR
protocol.42

All analyses were adjusted for age, sex and geographic
region of origin. Additional analyses were performed includ-
ing, as adjustment factors, also tobacco smoking, diabetes
diagnosed at least two years before onset of pancreatic cancer
and family history of pancreatic cancer, which were available
for subsets of cases and controls (Supporting Information
Table 2). We also tested the association between the teloscore
and smoking and diabetes as endpoints. Egger regression was
used to test for possible pleiotropic effects of our genetic
instrument. All statistical tests were two-sided.

Bioinformatic tools
We used several bioinformatic tools to assess possible func-
tional relevance for the three SNPs showing the most signifi-
cant associations with risk of pancreatic cancer. RegulomeDB
(http://regulome.stanford.edu/)43 and HaploReg44 were used
to identify the regulatory potential of the region nearby each
SNP. The GTEx portal web site was used to identify potential
associations between the SNP and expression levels of nearby
genes (eQTL).45

Results
Data filtering and quality control
Relevant characteristics of the study population are shown in
Table 2. All the genotyped SNPs were in Hardy–Weinberg
equilibrium when analyzed in controls with the exception of
the polymorphic variant ZBTB46-rs755017 that was therefore
excluded from the statistical analysis and from the score com-
putations. Subjects with a call rate lower than 80% (N = 272
controls, 361 cases, total 633) were excluded from further ana-
lyses. This left 2,374 cases and 4,326 controls, for whom the
average SNP call rate was 95.7%, with a minimum of 81.81%
(ACYP2-rs11125529) and a maximum of 98.99% (CTC1-

Table 1. SNPs associated with telomere length and genotyped in this study1

SNPs Chr2 Pos2 Gene Alleles (M/m)2 Effect allele2 Beta2 SE2 % variance explained1 Base pairs1

rs4096273 19 22,176,638 ZNF676 G/C C 0.086 0.010 0.484 103.2

rs2736100 5 1,286,401 TERT C/A C 0.085 0.013 0.310 102.0

rs3027234 17 8,232,774 CTC1 C/T C 0.103 0.012 0.292 123.6

rs6028466 20 39,500,359 DHX35 G/A A 0.058 0.013 0.041 69.6

rs6772228 3 58,390,292 PXK T/A T 0.041 0.014 0.200 49.2

rs7675998 4 163,086,668 NAF1 G/A G 0.048 0.012 0.190 57.6

rs8105767 19 22,032,639 ZNF208 A/G G 0.064 0.011 0.090 76.8

rs9420907 10 103,916,707 OBFC1 A/C C 0.142 0.014 0.171 170.4

rs11125529 2 54,248,729 ACYP2 C/A A 0.065 0.012 0.080 78.0

rs10936599 3 169,774,313 TERC C/T C 0.100 0.011 0.319 120.0

1Data from Refs. 40,52.
2Chr = chromosome; pos = base-pair position (GRCh38.p3); Effect allele = allele associated with longer telomeres; Beta = standard deviation change in
telomere length per copy of the effect allele; SE = standard error; Base pairs = telomere length difference in base pairs associated with each allele.
3Surrogate of rs412658 (r2 = 1).
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rs3027234). Quality control analysis showed a concordance
rate of 98.85%.

SNP main effects
When analyzing the effect of the SNPs on PDAC risk we
observed several statistically significant associations. The
strongest from a statistical point of view was between the
homozygous of the minor allele (A) compared to the carriers
of the C allele of the TERT-rs2736100 SNP (OR = 1.54; 95%
CI 1.35–1.76; p = 1.54 × 10−10). The association with the sec-
ond lowest p-value was between carriers of the minor A allele
of the NAF1-rs7675998 SNP and decreased risk of PDAC
(OR = 0.80; 95%CI 0.73–0.88; p = 1.87 × 10−6, ptrend = 3.27 ×
10−7). We observed two additional signals that were very close
to the threshold for multiple testing, both assuming a recessive
model of inheritance: ZNF676-rs409627 (OR = 0.76; 95%CI
0.64–0.91; p = 0.003) and ZNF208-rs8105767 (OR = 0.69; 95%
CI 0.54–0.87; p = 0.002). The results of this analysis are pre-
sented in Table 3.

Association of the “teloscore” with telomere length
measurement and PDAC risk
As a first step we checked whether the computed teloscore
was effectively able to predict telomere length. For this pur-
pose we used part of the controls for which we had previ-
ously measured telomere length with a real-time quantitative
PCR protocol42 and we observed a statistically significant
association between the teloscore and LTL with a correlation
coefficient of 0.122 (p = 0.0017), confirming the hypothe-
sized association between the genetic variance in telomeric
genes and telomere length. In this subset of controls the
10 SNPs collectively explain 3.35% of the telomere length
variation. We subsequently tested the association between Ta
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Table 2. Description of the study population

PDAC cases Controls

Country/region

Germany 789 1,779

Northern Italy 447 540

Central Italy 382 535

Southern Italy 103 499

Czech Republic 243 156

Poland 74 191

Lithuania 47 172

Netherlands 106 102

Hungary 95 176

United Kingdom 88 176

Total 2,374 4,326

Sex

Male 1,342 2,178

Female 1,008 2,079

Median age 65.6 59.0

(25th–75th percentile) 57.8–72.3 49.7–66.0

Campa et al. 1279

Int. J. Cancer: 144, 1275–1283 (2019) © 2018 UICC

C
an

ce
r
E
pi
de
m
io
lo
gy



the score and PDAC risk. Since not all the individuals were
genotyped successfully for all the selected SNPs, in order to
increase our statistical power we used the average scores
rather than the absolute values (see methods). Considering
the average score we observed a strong association between
genetically determined long telomere and decreased risk of
PDAC when analyzing the score as a categorical variable
(OR = 0.59; 95%CI 0.49–0.70; p = 2.98 × 10−9 for highest vs.
lowest quintile) and also as a continuous variable
(OR = 0.88; 95%CI 0.85–0.92; p = 1.82 × 10−10). The results
are shown in Table 4.

We checked possible associations between the teloscore
and known risk factors for pancreatic cancer, namely
tobacco smoking and diabetes diagnosed before onset of
pancreatic cancer. No association was found. Furthermore,
we recalculated the association between the teloscore and
pancreatic cancer risk by adding the risk factors as adjust-
ment variables, but no substantial difference was observed
(data not shown).

In order to explore the possibility that some of the SNPs
could have a pleiotropic association with pancreatic cancer
risk, we recalculated the teloscore without rs7675998 and
rs2736100, that show the most significant associations with
pancreatic cancer risk, and the results did not substantially
change (data not shown). However Egger regression results
were not statistically significant (p = 0.738).

Possible functional effects
We used several bioinformatic tools to test for possible func-
tional relevance of the four variants that reached study-wide
significance (TERT-rs2736100, NAF1-rs7675998, ZNF676-
rs409627, ZNF208-rs8105767). RegulomeDB did not reveal
any interesting regulatory potential associated with any of
the variants. The GTEx portal web site, instead, showed that
all the SNPs, with the exception of TERT-rs2736100, are
multi-tissue eQTLs (p < 1.1 x10−4). For TERT-rs2736100
there were no significant associations with gene expression
levels in pancreatic tissue. It is interesting to note that,
according to GTEx, ZNF676-rs409627 modulates the expres-
sion of ZNF676 in the pancreatic tissue (effect size 0.59,
p = 2.2 x 10−6).

Discussion
There are overwhelming epidemiologic and molecular evi-
dences linking telomeres with the etiology of numerous dis-
eases. However, given the capricious nature of association
studies and the technical pitfalls in LTL measurement, both
short and long telomeres have been associated with the onset
of multiple cancer types. The situation is particularly unclear
for pancreatic cancer, with five published studies that mea-
sured LTL with a real-time quantitative PCR protocol.5,26–29

Among these studies, four were conducted in prospective
cohorts5,26,28,29 and one in a retrospective case–control
series27. Two studies found an association between shorter
telomeres and increased risk of pancreatic cancer, one found
an association with longer telomeres and two found associa-
tions with both longer and shorter telomeres (Supporting
Information Table 3).

Additionally, two studies that used a genetic risk score
reported no evidence for association with pancreatic cancer
risk.39,40

The aims of our study were to test whether telomere-
related SNPs could modulate pancreatic cancer risk, and to
use genetic markers of telomere length in order to understand
whether longer or shorter LTL increase the risk of
developing PDAC.

We observed a genome-wide significant association
(p = 1.54 × 10−10) between the TERT-rs2736100 A allele and
increased PDAC risk. This SNP is pleiotropic and has been
reported to be associated, alongside telomere length, with sev-
eral cancer types. TERT-rs2736100 has been reported by
others5 and by ourselves7 to be associated with PDAC risk,
but this is the first time that the association reaches a
genome-wide level of significance. This SNP is in very low
linkage disequilibrium with the other SNPs in this region that
were reported to be associated with pancreatic cancer risk
(rs401681 r2 = 0.01, rs2736098 r2 = 0.114) and therefore rep-
resents an independent signal. A functional explanation for
the consistent associations between this SNP and cancer risk
has yet to be found however, since the minor allele is associ-
ated both with increased PDAC risk and with decreased LTL.

The association between NAF1-rs7675998 SNP and
decreased risk of PDAC is novel. The association is close to a

Table 4. Association between teloscore and PDAC risk

Score1 Controls Cases OR 95% CI pvalue

Quintile 1 (0–47.22) 865 580 Ref. – –

Quintile 2 (47.23–55.30) 865 555 0.99 (0.85–1.17) 0.95

Quintile 3 (55.31–61.80) 866 426 0.74 (0.63–0.88) 5.30 × 10−4

Quintile 4 (61.81–70.56) 864 469 0.80 (0.67–0.94) 7.48 × 10−3

Quintile 5 (70.57–112.05) 866 344 0.59 (0.49–0.70) 2.98 × 10−9

Continuous variable 4,326 2,374 0.88 (0.85–0.92) 1.82 × 10−10

1Weighted average teloscore, calculated as described in the Methods section and in Supporting Information Table S1. Quintiles were calculated based
on the distribution of values of the controls. Numbers in parentheses represent the value in bp that defines the boundaries of each quintile. All ana-
lyses were adjusted for age, sex and geographic region of origin. The unit for the “continuous variable” is the increase of one quintile.
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genome-wide significance level (ptrend = 3.27 × 10−7). The
NAF1 (nuclear assembly factor 1) gene product is part of a
complex involved in the assembly of telomerase46 and is
therefore intimately linked to the telomerase activity and telo-
mere length. According to HaploReg NAF1-rs7675998 has
43 variants in high LD (r2 > 0.8) and 41 of them (as well as
rs7675998 itself ) are predicted to alter several regulatory
motifs. In particular, rs7675998 is predicted to alter 19 regula-
tory motifs including those of the forkhead box (FOX) family.
According to GTEx this SNP has also two eQTLs affecting
NAF1 expression. However, although these associations are
highly significant, they have not been observed in the pancre-
atic tissue. We observed two other potentially interesting asso-
ciations between ZNF676-rs409627, ZNF208-rs8105767 and
PDAC risk. The role of these two genes in telomere mainte-
nance has not been established yet, although several hypothe-
ses point to a possible involvement in stabilizing DNA or
proteins that bind to DNA.47 According to GTEx, rs409627
can modify ZNF676 expression in the pancreatic tissue while
rs8105767 can modify the expression of ZNF208 in various
tissues but not in pancreatic cancer. For both SNPs the allele
associated with an increase in risk is the major allele, while
the allele associated with telomere shortening is the minor
one, indicating that possibly their association with PDAC risk
is independent from telomere length.

The most important novel finding of our study is the sta-
tistically significant association between genetically deter-
mined short LTL (assessed through the teloscore) and
increased risk of PDAC. The association reached genome-
wide significance both considering the variable as categorical
(p = 2.98 × 10−9 for highest vs. lowest quintile) or as continu-
ous (p = 1.82 × 10−10) and does not support a U-shaped asso-
ciation. It should also be noted as a proof of principle that we
found a weak but significant correlation between the teloscore
and LTL measured by an established method (real-time quan-
titative PCR) in almost 900 controls belonging to our dataset.
In the last couple of years the approach of using SNPs related
to telomere shortening as an instrumental mean to infer the
effect of telomeres on cancer etiology has been successfully
used in different tumor types such as B-cell lymphoma35,
adult glioma36, breast cancer34 and squamous cell carcinoma
of the head and neck.48 The use of genetic markers decreases
the risk for reverse causation bias and therefore the differences
in the studies (some finding association between cancer risk
and longer telomeres, some with shorter telomeres) may
reflect tissue-specific effects and activity of TL or a specific
regulation of the genes involved in telomere regulation. It is
interesting to note that TERT-rs2736100 has been consistently
associated with several cancer types but the allele increasing
the risk is not always the same.19 Given the strong effect of
genetic variants on LTL and given that the allele associated
with telomere shortening is always the same, the difference in
LTL association with cancer risk may be explained by the dif-
ferent activity of the gene in different tissues.

Two studies previously attempted this analysis in PDAC,
but did not find an association.39,40 It is difficult to speculate
about the reasons for the discordance with our results. It
should be noticed that the results reported by Haycock et al.,
based on the PanScan GWAS (5,105 cases and 8,739 controls),
show a nonsignificant associations between shorter telomeres
and pancreatic cancer risk (OR = 0.86; 95%CI 0.56–1.32;
p = 0.50 for PanScan and OR = 0.74, 95%CI 0.53–1.02,
p = 0.0657 for PanC4), which are compatible with our
results.40 The results of the other study do not show any asso-
ciation between a teloscore of 8 LTL-associated SNPs and
pancreatic cancer risk (OR = 1.04; 95%CI 0.97–1.12;
p = 0.228), although the sample size was smaller than in our
study (1,500 cases and 1,500 controls). Moreover, their score
was calculated in a different way from ours (i.e. according to a
dominant model, whereby study subjects with one or two cop-
ies of the allele associated with shorter telomeres were com-
bined into one group and compared to those who carry two
copies of the allele associated with longer telomeres).39

Telomere shortening is known to be present in the first
stage of pancreatic onset49 and it could be an important deter-
minant of cell progression to malignant state.5 Constitution-
ally shorter telomeres, as determined by germline
polymorphisms, may contribute to the very early phases of
premalignant transformation of pancreatic cells.

Our study has several obvious advantages: the large scale
and the ability to test the teloscore in a group of individuals
for which telomere length was measured by RT-PCR homoge-
neously, in the same laboratory, in samples collected from the
same center (the controls belonging to the ESTHER cohort
n = 885) and using exactly the same procedure for sample
handling and storing. A possible drawback is that we tested
the teloscore on DNA collected from leukocytes and it is
therefore difficult to generalize its ability to be used as a proxy
for other tissues. However, there is a growing literature sug-
gesting that telomere shortening is generally consistent in dif-
ferent tissues50 and that the variation among different tissues
belonging to the same individual is lower that the variability
between different individuals.49,51 Additionally, an analysis
with Egger regression did not yield a significant result, and
pointed to high heterogeneity among SNPs, suggesting a pos-
sible pleiotropic effect of our SNPs.

In conclusion, here we present a novel genome-wide candi-
date for PDAC (TERT-rs2736100) and a completely new sig-
nal for PDAC in NAF1-rs7675998 that approaches the
genome-wide threshold. In addition, we found a strong associ-
ation between the teloscore and risk of pancreatic cancer, sug-
gesting that telomeres are a potential risk factor for pancreatic
cancer.
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