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Genetic determination of regional 
connectivity in modelling 
the spread of COVID‑19 outbreak 
for more efficient mitigation 
strategies
Leonidas Salichos 1,2,7*, Jonathan Warrell 1,7, Hannah Cevasco 1, Alvin Chung 1 & 
Mark Gerstein 1,3,4,5,6*

For the COVID‑19 pandemic, viral transmission has been documented in many historical and 
geographical contexts. Nevertheless, few studies have explicitly modeled the spatiotemporal flow 
based on genetic sequences, to develop mitigation strategies. Additionally, thousands of SARS‑
CoV‑2 genomes have been sequenced with associated records, potentially providing a rich source for 
such spatiotemporal analysis, an unprecedented amount during a single outbreak. Here, in a case 
study of seven states, we model the first wave of the outbreak by determining regional connectivity 
from phylogenetic sequence information (i.e. “genetic connectivity”), in addition to traditional 
epidemiologic and demographic parameters. Our study shows nearly all of the initial outbreak can be 
traced to a few lineages, rather than disconnected outbreaks, indicative of a mostly continuous initial 
viral flow. While the geographic distance from hotspots is initially important in the modeling, genetic 
connectivity becomes increasingly significant later in the first wave. Moreover, our model predicts that 
isolated local strategies (e.g. relying on herd immunity) can negatively impact neighboring regions, 
suggesting more efficient mitigation is possible with unified, cross‑border interventions. Finally, our 
results suggest that a few targeted interventions based on connectivity can have an effect similar 
to that of an overall lockdown. They also suggest that while successful lockdowns are very effective 
in mitigating an outbreak, less disciplined lockdowns quickly decrease in effectiveness. Our study 
provides a framework for combining phylodynamic and computational methods to identify targeted 
interventions.

As of October 2021, two years since the start of the pandemic, coronavirus disease 2019 (COVID-19)-related 
deaths have surpassed 4,800,000 worldwide and 700,000 in the United States. Due to the severity of the pandemic 
combined with the advent of sequencing technologies, the amount of sequencing data within such a short time 
period for a single outbreak is unprecedented. Indeed, many resources are available for COVID-19 genome 
research, including GenBank, GISAID, and  Nextstrain1–3. GISAID is currently the largest COVID-19 database 
with more than 3,900,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complete  genomes2. 
This number surpasses the number of human immunodeficiency virus or hepatitis C virus sequences in the Los 
Alamos national  database4,5 and far exceeds the 1,760 sequences of influenza A/H3N2 collected from 2013 to 
2020. The COVID-19 genomes in the GISAID database represent the spread of the pandemic from China to 188 
countries worldwide, with more sequences added every day.
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Recent studies have primarily modelled the transmission, diversity and spatial phylogeography of SARS-
CoV-2 in a historical  context6–12. According to these studies, with respect to the United States, COVID-19 first 
arrived in  Washington11, in what was considered a cryptic  infection11,13. However, cases in individuals with no 
relevant travel history also occurred in California in late January/early  February11.While the first lineages in 
Washington and California originated from China, subsequent infectious lineages [notably in New York (NY)] 
appeared to derive from  Europe11,14. In this context, early results also suggested that multiple worldwide trans-
missions were responsible for the outbreak in the North-East of United  States12.

From the beginning of the pandemic, researchers have developed various approaches for the modeling of the 
outbreak, using either epidemiological or demographic  data15–20. Numerous -sometimes contradicting- predic-
tion models have offered temporal, and locally isolated results based on local  outbreaks16–18,21,22, while individual 
countries have implemented their strategy to combat the outbreak, including controversial approaches such as 
“herd immunity”23–25. At the same time, local regions have applied different forms of lockdowns in an attempt 
to mitigate viral spread with non-pharmaceutical interventions (NPI)22,26–28. While most previous studies have 
offered valuable insights into the history of viral transmissions and the effectiveness of locally implemented NPIs, 
they tend to overlook the inland spread of the virus, which we term ‘aggregated transmission’ as a measure of 
viral flow, to provide a unified mitigation strategy that complements local implementations. Notably, shortly 
before the pandemic, Dellicour et al. demonstrated the impact of barriers on dispersal frequency for the West 
African Ebola virus outbreak, while quantifying the spread’s velocity and hypothetical impact under a distance-
dependent diffusion  model29.

In this study, we use the initial SARS-CoV-2 wave in United States as a testbed for our models. During our test 
period, the spread by air travel was limited, while the virus spreads to both previously infected and uninfected 
regions. First, we show that most of the outbreak derived from few phylogenetic lineages rather than random dis-
connected outbreaks, depicting a mostly continuous viral flow. We also demonstrate a strong association between 
the temporal and geographical spread of the virus. By using a case study of seven states [New York (NY), New 
Jersey (NJ), Connecticut (CT), Massachusetts (MA), Pennsylvania (PA), Maryland (MD) and Virginia (VA)], we 
introduce the concepts of ingrowing, incoming and outgoing genetic connectivity between states and regions as 
factors that influence the geographic spread. We then apply regression and random walk models to illustrate the 
importance of these factors combined with epidemiological and demographic factors -such as virus reproduc-
tion rates and the Urbanization Index to provide more informative predictions and to explain the temporal and 
geographic spread of the pandemic. By modeling the viral aggregated transmission through geographical routes 
and regional connectivity, we reveal broader implications and opportunities to consider more efficient mitigation 
strategies for slowing viral migration with unified, cross-border selective interventions.

Major outbreaks linked with few European lineages showing viral flow continuity. While cur-
rently consisted of millions of sequences, by the end of April 2020, the GISAID database contained only about 
3500 complete SARS-CoV-2 genomes. For modeling the first wave of the COVID-19 outbreak in our case study 
of 7 states, we also collected all 1,505, 353, 418, 45, 112, 178, and 522 sequences from NY, CT, MA, NJ, PA, 
MD, and VA, respectively, that were collected between January 29, 2020 and July 05, 2020, for a total of 3133 
sequences. To create a dataset of world reference sequences, we sampled 50 early SARS-CoV-2 sequences mostly 
representing the backbone of all five COVID-19 lineages as determined initially by the state-of-the-art Nextstrain 
 tree3, while also including some later tips for  calibration30. Lineages 19A and 19B represent the earliest detected 
infections, which were closely associated with the Wuhan epidemic. These clades were also subsequently used 
to root the phylogenetic trees (for presentation purposes), in the absence of an appropriate  outgroup31. Then, 
we inferred a Bayesian phylogenetic tree using BEAST, which includes the consideration of population growth 
models, as commonly implemented in viral phylodynamic analyses. For all states, the major outbreak clustered 
with a specific European lineage (represented by reference sequence: HF1465 FRA). For NY, CT, and MA this 
lineage clearly constituted the dominant outbreak. For NJ, PA, MD and VA, a significant secondary outbreak 
-which also circulates in NY, CT, and MA- occurred (Fig. 1, Figs. s1–s7). Our results demonstrate the outbreak’s 
continuity and regional connectivity despite multiple initial worldwide transmissions.

Assessing genetic connectivity between states from phylogenetic information. By select-
ing a subset of (whenever possible) 50 reference sequences per state (in addition to the set of world reference 

Figure 1.  Few worldwide infections responsible for major and minor outbreaks in 7 states. According to a 
Nextstrain tree, initially there were five main initial lineages of the pandemic (19A, 19B, 20A, 20B, 20C), which 
can be used to suggest the original routes of the transmission in the United States. In (i) we show the topology 
of our selected world reference sequences as collected spanning the Nextstrain tree (https:// github. com/ nexts 
train/ ncov) on June 25th (dots on tree topology). From these randomly collected sequences, sample HF1465 
FRA (blue circle) is the sequence that consistently clusters with each state’s major outbreak (black line). Three 
other reference sequences from Italy, USA, and Germany (black circles) cluster -again consistently- with each 
state’s major outbreak (black line), suggesting that most of the outbreak derives from these lineages, which 
correspond to a small part of the whole Nextstrain tree topology. In (ii) we show the New York outbreak, which 
we consider to be the outbreak epicenter. In (iii–viii) we show the phylogenetic tree analysis for Massachusetts, 
Pennsylvania, Virginia, Connecticut, Maryland, and New Jersey, as rooted by the older lineage that contains 
sequences from Wuhan dating in 2019. Black lines represent each states major outbreak, while the four circles 
on the black line correspond to the 4 specific reference sequences from a single initial lineage. Tree in Fig. (i) 
was inferred using nextstrain/ncov (https:// github. com/ nexts train/ ncov). Trees in figures (ii–viii) were visualized 
using FigTree v1.4.4. Figure 1 was designed and illustrated with PowerPoint 2019.

▸

https://github.com/nextstrain/ncov
https://github.com/nextstrain/ncov
https://github.com/nextstrain/ncov
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Figure 1.  (continued)
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Figure 1.  (continued)
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sequences), we built a phylogenetic tree that includes sequences from all seven states. We then inferred a connec-
tivity map between the states by parsing the tree’s partitions with respect to each state’s prevalence (see “Meth-
ods”). The connectivity map does not represent direct viral transmissions between individuals, but rather the 
genetic connectivity between states X and Y as a rate or probability that sequences from these regions are grouped 
together in the tree’s considered partitions, while using dating information to further rank the sequences and 
assign directionality between terminal pairs. This allows us to assess incoming, outgoing, and ingrowing rates 
for each state (Fig. 2ii), as well as directional connectivity between states (Fig. 2iii). Overall, the NY outbreak 
showed the highest connectivity compared to other states, while VA and MA outbreaks showed the lowest con-
nectivity. Interestingly, although CT showed a high connectivity comparable to that of NJ, the decreased number 

Figure 1.  (continued)
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of outgoing versus incoming connections explains the low connectivity exhibited by MA. This is also supported 
by the outbreak’s high connectivity from NY to CT (NY → CT) rendering CT as a potential bottleneck (Fig. 2).

A baseline model for modeling viral flow using factors associated with early spread. After 
assessing the genetic connectivity between states, we want to evaluate its role in the spread and severity of COVID-
19, compared to a simple outbreak prediction model (the baseline model). Initially, we aimed to identify factors 
associated with the early geographic spread and severity of the outbreak. On average, deaths occurring on the 
29th of April typically follow 5.1 days of incubation and 13 days from  symptoms32. Using the numbers of ‘deaths 
per 1 million population’ as a proxy for regional outbreak severity, we first assessed the association between dis-
tance from initial viral hotspots and the severity of the viral outbreak across United States. Introducing New York 
City (NYC) as a single initial hotspot, showed a high negative correlation (r = − 0.37, p-value = 0.008) between 
the severity of the outbreak and the distance from hotspot. When we included Seattle (or San Francisco) as a 
second hotspot, the association strengthened (r = −  0.43, p-value = 0.001). Finally, when fitting a logarithmic 
curve, the association increased further to  R2 = 0.33 (Fig. 3). These results suggest a strong association between 
the outbreak’s severity during the first wave and the distance from the two initial hotspots. By limiting our study 
to the case study of seven states (NY, CT, MA, NJ, PA, MD, and VA), we established an even stronger relation-
ship between the distance from NYC and the severity of the initial spread. Additional factors were also strongly 
associated with the spread and severity of the outbreak at the beginning of the first wave, including urbanism, 
maximum effective reproduction rate Rt per state, and average maximum Rt from neighboring states. Thus, for 
our simplest baseline model (Fig. 4i) we included urbanism (Urbanization index U), geographic distance from 
the hotspot (D), and maximum virus reproduction rate Rt (maxRt). In a network flow context, these factors can 
be considered analogues to node capacity, connectivity, and network sources  respectively33. Moreover, we found 
that these factors were strongly associated with the outbreak’s severity, explaining more than 75% of the variance 
(Fig. 3ii).

Three additional models show increased predictive accuracy by including genetic connectiv‑
ity. We next tested the importance of various features in predicting the per-state death rate across the first 
wave of the pandemic (March to August 2020) with respect to aggregated transmissions. To determine the 
importance of regional genetic connectivity in explaining and predicting the outbreak intensity throughout 

Figure 2.  Assessing Genetic Connectivity Between States from phylogenetic information. In (i) using world 
reference sequences and selected reference sequences from 7 states, we inferred a phylogenetic tree with time 
constraints for each state. Each sequence’s tip color corresponds to the state it was collected from. Using pairing 
and dating information, we derived (ii) incoming, outgoing, and ingrowing connectivity for each state and 
(iii) genetic connectivity between all states. For convenience, we only show neighboring and geographical 
connectivity. Tree in figure (i) was visualized using FigTree v1.4.4. Figure 2 was designed and illustrated using 
PowerPoint 2019.
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Figure 3.  Distance from hotspots correlates with initial outbreak severity. Using data collected on the 29th 
of April we show the logarithmic association between i) the number of deaths per million individuals for 
every state and the distance from hotspots (New York or Washington). In a case study of 7 states (New York, 
New Jersey, Connecticut, Massachusetts, Pennsylvania, Virginia, and Maryland), ii) we show the logarithmic 
association between the number of deaths per million individuals versus the Distance from New York city, 
each state’s maximum reproduction rate Rt, each state’s average neighboring maximum Rt, and each state’s 
urbanization index.

Figure 4.  Four predictive models with increasing complexity to examine the role of genetic connectivity. 
Predictive models with connectivity-based features. (i,ii) baseline and “random walk” models respectively (three 
factors), (iii,iv) “state connectivity” and “full” models respectively (six factors). Likelihood significance was 
found for models “random walk” vs “baseline”, and “full” versus “state connectivity. (p = 0.0003, 0.0273 resp., 
2-sided t-test for Pearson’s r). Model fit R2 values are: 0.850 (Baseline), 0.877 (Random walk), 0.956 (State-
connectivity), 0.967 (Full).
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the entire first wave, we built three additional regression models (beyond our baseline model) with increasing 
complexity, combining phylogenetic information with epidemiological data from ten dates (April 29, May 1, 
8, and 15, June 11, 18 25, July 2, 29, August 23). Our analysis included the estimated incoming, outgoing, and 
ingrowing rates for each state (see Fig. 2ii), and the transmission-based distance from NY as constructed from 
the directional connectivity rates (see Fig. 2iii). The full feature set comprised the maximum reproduction rate 
per state  (Rt), urbanization index (U), geographic or genetic-based transmissional-distance from NY (D or  Dt 
respectively), and incoming, outgoing, and ingrowing transmission rates.

Beyond our baseline, in our second model (“random walk”, Fig. 4ii), we substituted D with the transmissional-
distance  (Dt), a proxy for viral flow, using a random walk between the states, based on genetic connectivity 
(see “Methods”, Fig. 2iii). By including transmissional-distance  (Dt), we were able to significantly increase our 
model’s predictive power throughout the first wave compared to our baseline model (p = 0.0003, Fig. s8). In our 
third model (“state connectivity”, Fig. 4iii), we returned to using the geographic distance D, but in this case, 
we also included the total incoming, outgoing, and ingrowing rates for each state, also estimated using genetic 
connectivity (see Fig. 2ii). Finally, in our fourth model (“full”, Fig. 4iv), we again replaced D with  Dt, while still 
including the states’ incoming, and outgoing rates. While our fourth model integrates genetic connectivity in 
 Dt, this information derives from the tree partitions and is also used in calculating the incoming, outgoing, and 
ingrowing connectivity for each state. Therefore,  Dt, the incoming, and outgoing rates often behave in a comple-
mentary manner. However, our “full” model is still significantly more informative than the “state connectivity” 
model, which does not include the transmissional-distance (p = 0.0273). Moreover, our full model indicates that 
the initial importance of D or  maxRt during the beginning of the outbreak, is gradually replaced by the state’s 
connectivity rate, as the outbreak spreads away from the initial hotspots. The model fit R2 values for our models 
are: 0.850 (Baseline), 0.877 (Random walk), 0.956 (State-connectivity) and 0.967 (Full). While, these values are 
extremely high, it should be mentioned that this is a case study which is limited to only seven states. Overall, U 
and D showed high significance throughout the entire first wave, while the use of  maxRt showed greater signifi-
cance at the beginning of the outbreak but eventually decreased (Fig. 4, Fig. s8). This is possibly because  maxRt 
represents the virus reproductive rate for only the first stage of the outbreak (i.e. in March–April), before the 
implementation of lockdowns.

Managing regional connectivity for targeted mitigation strategies. After assessing the signifi-
cant role of genetic connectivity on predicting the spread and severity of the outbreak, we tested the positive or 
negative impact of selective mitigation interventions by removing the connections between state pairs. These 
interventions may represent different implementations such as blockades between states, enhanced vaccination 
etc. Our “random walk” model which considers transmissional-distance  Dt calculated from these paired connec-
tivities, was significantly more predictive than our baseline model (p = 0.0003). Using our implementation of the 
“random walk” model, we re-predicted the total number of deaths by modeling severely restricted mobility—in 
particular, by systematically reducing the connectivity between every geographically linked state pair according 
to Fig. 2iii by 90%. Our results suggested that by restricting mobility by 90% between NY from PA, as well as MD 
from PA would save approximately 450 and 200 lives per million individuals respectively, after the lockdowns 
(Fig. 5i). This finding is particularly interesting since our model appears to consider the drop in deaths in specific 
states after the imposed lockdowns (based on epidemiological data from NJ, NY, MA, and CT) and respond to 
the temporal flow of the pandemic which resulted in later death peaks in states like VA. This trend becomes more 
evident in Fig. 5ii, where we depict the temporal effect of each blockade in reducing the number of total deaths 
per million individuals at each time point. The link between NY and PA becomes important around May 2020, 
while the link between MD and PA is important a month later. At the same time, by estimating the change in 
death rate for various degrees of full lockdown (in terms of efficiency), we found that by targeting the two most 
important links (NY > PA and MD > PA) we were able to achieve the effect of a full lockdown with 78% efficiency. 
Finally, our results show that while strict full lockdowns (> 90% efficiency) perform well in our models (in terms 
of change in death rates), the effects of less efficient lockdowns (< 80%) can be potentially be achieved by targeted 
interventions (Fig. 5iii).

Discussion
Previous studies have provided an important historical view of the travel and viral transmission of COVID-19 
based on genetic  variability6,8,9,11–15 Click or tap here to enter text. Other data-driven work has modeled the 
spread of SARS-CoV-2 and the effectiveness of government  interventions20,27,28. Thus far, the most efficient NPIs 
are forms of regional  lockdowns19,22,26,35, while strategies relying on ‘herd immunity’ have been  disputed23–25.

Here, we used SARS-CoV-2 genomes to determine regional connectivity as a direct measurement of the 
viral mobility in a case study of seven states. We generated and applied four regression models to evaluate the 
importance of different factors influencing outbreak severity throughout the first viral wave. Our models showed 
high predictability and temporal variation.

Our results can explain the discordance among regions and strategies, especially between the first and sec-
ond pandemic waves. For example, states at a larger distance from hotspots are able to handle a milder initial 
outbreak before the virus becomes established at a later time point, depending on the transmissional-distance 
(i.e. the speed of the wave) and regional connectivity. Similarly, states with lower connectivity (e.g. naturally or 
physically isolated regions) are more efficient in battling the viral spread, as they encounter a reduced viral wave 
and fewer incoming infections. This finding suggests that reducing incoming transmission routes can have a 
significant effect. This approach does not necessarily require complete isolation, but rather a restriction of spe-
cific viral transmission routes. Moreover, our framework can also be used to implement enhanced vaccination 
strategies, for instance, by targeting specific transmission routes we can drastically reduce the temporal spread 
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of an outbreak. Finally, our results also suggest that states deciding to follow less stringent mitigation strategies 
are largely responsible for their outgoing viral connectivity, affecting neighboring regions, while in turn taking 
advantage of the low incoming connectivity resulting from potential neighboring lockdowns.

Throughout our analyses, we aimed to model the viral geographic aggregated transmission as a probability 
rate, rather than a compilation of individual transmissions. To showcase our models, we restricted our analyses 
during the first months of the pandemic where commercial air-travel was limited. Therefore, we focused on esti-
mating the genetic connectivity between adjacent states and inland viral spread, although we may therefore have 
missed non-adjacent state infections (e.g. private planes, trains etc.). Nonetheless, our connectivity network can 
be expanded to consider genetic connectivities between non-adjacent states. Similarly, for reasons of convenience 
and simplicity, we trained our models using a subset of around fifty SARS-CoV-2 sequences per state. Again, our 
framework is set to include varying number of sequences per region, according to their respective prevalence 
and regional sampling (see “Methods”). Finally, according to our analysis, the first wave of the outbreak derived 
from few viral lineages, which allowed us to -in principle- model a homogenous viral outbreak. In the pres-
ence of parallel outbreaks, our framework can also be implemented with respect to those outbreaks and/or the 
geographic aggregated transmission of specific strains. While we were able to identify and quantify factors that 
contribute to the viral spread within the specific framework of initial COVID-19 outbreak, the implementation of 
predictive models in the future would require further parametrization and validation using new viral sequences 
or simulations (we note that constructing such simulations for validation is a challenging task, since the effects 
of unmodelled variables may bias the results; indeed, a particular strength of our framework is that the genetic 
connectivity measure implicitly incorporates the influence of such latent variables).

By deriving genetic connectivity among regions from genomic information, we create a model and a proxy 
for the flow of the viral wave using factors that have temporally influenced the severity of local outbreaks 
throughout the pandemic. We then applied this model to consider the outcome of selective intervention strate-
gies using geographic blockades. Overall, our results suggest that unified mitigation strategies are more efficient 
for responding to a pandemic. This study also provides a framework for pursuing these strategies, which can be 
implemented for both pharmaceutical interventions (e.g. vaccinations) and NPIs (e.g. lockdowns, blockades).

Methods
Available sequences. The datasets used in this study are available in public databases. SARS-CoV-2 
genomes were retrieved from the GISAID  database2. For the first wave of the COVID-19 outbreak in the United 
States, we collected 1505, 353, 418, 45, 112, 178 and 522 sequences from NY, CT, MA, NJ, PA, MD, and VA, 
respectively, that were sampled between January 29, 2020 and July 05, 2020, for a total of 3,133 sequences.

237World reference sequences. To apply reference sequences representing the global pandemic, we manually 
selected 50 sequences spanning all Nextstrain lineages 19A, 19B, 20A, 20B, and 20C (see Fig. 2i). The majority 
(76%) of the selected world reference sequences represent early infections, occurring between December 2019 
and April 2020 in order to consider the pandemic’s early divergence profile and correspond to the backbone of a 
tree analysis. The rest of the sequences were selected to be used as tip  calibration30. More specifically, our world 
reference sequences include 3 sequences from December 2019, 8 sequences from January, 6 sequences from 
February, 10 sequences from March, 10 sequences from April, 6 sequences from May, and 6 sequences from 
June 2020 (Supplementary Fig. s9). By including the world reference sequences, our goal is not to subtype the 
individual transmissions in different states, but to determine whether neighboring states had similar outbreak 
profiles when inferring their individual state trees.

State reference sequences. We randomly selected up to 50 reference sequences from each state, prioritizing the 
selection of one sequence per bipartition with higher than 50% posterior probability. Excluding world reference 
sequences, we selected 50 sequences from NY, CT, MA, and VA, and 43, 37, 22 from NJ, PA, and MD, respec-
tively. To demonstrate that there is no potential accidental bias, we show the position of these sequences span-
ning the state trees of NY, CT, MA and VA (Supplementary Figs. s10–s13) and we also calculated the number 
of base differences per sequence from averaging over all sequence pairs. Standard error estimates were obtained 
by a bootstrap procedure of 100 replicates (Supplementary Fig. s14). Evolutionary analyses were conducted in 
 MEGA1138.

Phylodynamic analysis. By retrieving the genomic sequences from GISAID (Data s1–7), we used the 
“-auto” with less than 2000 sequences command for MAFFT.v739 to produce multiple sequence alignments for 
every state based on nucleotide sequence data. Then, using BEAST v.2.6.33941, we performed Bayesian phyloge-
netic analysis with time constraints, under a generalized time reversible evolutionary model with invariant sites. 
To determine the appropriate growth models and population size, we tested various growth models including 
(i) Yule process, (ii) exponential growth, (iii) logistic growth, (iv) Bayesian skyline, and (v) birth–death skyline 
models with chain lengths of 100 million states while using 20% as our burn-in and sampling of 10,000 trees. 
We evaluated the efficacy of these models using Tracer v1.7.1(46). The best model (Yule process) for this data 
was selected based on the effective sample size (ESS > 200) on tree posterior and prior, trace inspection, and 
demographic data. None of the remaining growth models produced a converging trace for the mixed tree with 
combined states (Fig. 2). For our best model, MCMC was allowed to run for a chain length of 300 million states, 
while using 20% as our burn-in states and sampling aiming for 10,000 trees. The best tree was inferred using 
TreeAnnotator v2.6.3 from BEAST suite, while selecting for maximum clade credibility and “Common ancestor 
heights”.
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Estimating transmissional genetic connectivity. Using custom scripts, we parsed the inferred phy-
logenetic trees into groups of sequences based on the tree bipartitions. Then, by further parsing the groups in 
ascending order based on group size (from groups of 2 to X = 10 to preserve rooting information), we determined 
all unique pairs and state connectivity. To establish directionality between pairs, we used sampling dates for ter-
minal tips and when merging groups of smaller to larger size. For example, we considered the pair (NY-PV09151_
USA_NY_2020-03-22, CT-UW-6574_USA_CT_2020-04-03) would be counted as NY → CT, which denotes an 
incoming transmissional connectivity from NY to CT. Similarly, the pair (NY-PV08434_USA_NY_2020-03-18, 
NY-NYUMC659_USA_NY_2020-03-18) would be counted as ingrown connectivity NY → NY. Sequences {NY-
PV09151_USA_NY_2020-03-22 and CT-UW-6574_USA_CT_2020-04-03} depicted an outgoing connectivity 
between NY and CT denoted as NY > CT + 1 (Fig. 6). Pair inconsistencies were dropped, and sequences could 
not be considered as incoming twice. It should be noted that these pairs do not represent direct viral transmis-
sions, but are treated as reflective of an underlying probabilistic aggregated transmission rate. Formally, we 
define the transmissional genetic connectivity as follows. Having extracted all sequence pairs as above, we built 
a directed graph G whose nodes n ∈ N are individual sequences, and whose edges (n,m) ∈ E join the extracted 
sequence pairs, where the time stamp of n precedes that of m . Further, we let f (n) denote the geographic state of 
sequence n , and Ns =

∑

nf (n) = s denote the total count of sequences belonging to state s . Then, we defined the 
transmissional connectivity rate T(s1, s2) between geographic states s1 and s2 as:

where the constant of proportionality is calculated such that 
∑

s2
T(s1, s2) = 1.

Estimating geographic distance from initial hotspots. To assign a geographic location for each state, 
we used the longitude and latitude of the respective largest city. We considered the distance from New York City 
(NYC, NY), Seattle (Washington) and New Orleans (Louisiana) as the three initial hotspots of the outbreak. 
The inclusion of New Orleans as a third hotspot did not improve our results, indicating an isolated outbreaking 
contrast, by removing Louisiana as an outlier, we improved the predictability of the logarithmic curve to  R2 = 0.4. 
Calculations were performed using perl scripts (GIS-Distance-0.19, https:// github. com/ bluef eet/ GIS- Dista nce) 
freely available under a perl_5 license (Table 1).   

Maximum reproduction rate  Rt. To calculate the maximum reproduction rate  Rt, we used the maximum 
 Rt value for each state from ‘https:// rt. live/ us/’42 (https:// github. com/ rtcov idlive/ covid- model) during the first 
wave of the pandemic (through August 2020).  Rt represents the effective reproduction rate of the virus calculated 
for each locale but different studies have developed alternative methods for calculating maximum reproduction 

T(s1, s2) ∝

∣

∣

{

(n,m) ∈ E|f (n) = s1, f (m) = s2
}∣

∣

Ns2 · Ns2

,

Figure 6.  Workflow for estimating genetic connectivity. Here, we use a tree example to explain the workflow 
that we implemented in order to assign directed connectivity, including incoming, ingrowing, and outgoing 
connections between each state.

https://github.com/bluefeet/GIS-Distance
https://rt.live/us/
https://github.com/rtcovidlive/covid-model
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Table 1.  The absolute distance (in km) between major state cities and hotspots. Based on longitude and 
latitude (columns 2 and 3) we calculated the distance between each states’ largest city (in population) and New 
York City (column 4) and the minimum distance between each states’ largest city and either New York City 
(NYC) or Seattle (WA) (column 5).

State Latitude Longitude Distance from NY (Km)
Min [distance from NYC, distance from Seattle, 
(km)]

New York 40.712776  − 74.005974 0 0

New Jersey 40.735657  − 74.172363 14.24987988 14.24987988

Connecticut 41.179192  − 73.189484 85.97441091 85.97441091

Massachusetts 42.360081  − 71.058884 306.0934983 306.0934983

Louisiana 29.951065  − 90.071533 1880.214437 1880.214437

Michigan 42.332939  − 83.047836 773.5458496 773.5458496

District Of Columbia 38.907192  − 77.036873 327.5658436 327.5658436

Rhode Island 41.82399  − 71.412834 249.4471236 249.4471236

Maryland 39.29044  − 76.612328 272.545463 272.545463

Pennsylvania 39.952583  − 75.165222 129.6091349 129.6091349

Illinois 41.878113  − 87.629799 1144.238847 1144.238847

Indiana 39.768402  − 86.158066 1035.902562 1035.902562

Colorado 39.739235  − 104.99025 2618.92694 1640.656701

Washington 47.606209  − 122.332069 3865.343137 0

Delaware 39.739071  − 75.539787 169.3360522 169.3360522

Georgia 33.748997  − 84.387985 1200.258419 1200.258419

Mississippi 42.247452  − 84.408852 882.6192762 882.6192762

Vermont 44.47599  − 73.211 423.453307 423.453307

Nevada 36.169941  − 115.139832 3584.696039 1402.54933

Ohio 41.499321  − 81.694359 649.8243383 649.8243383

Florida 27.950575  − 82.457176 1615.374262 1615.374262

Virginia 36.84513  − 75.97544 462.6503612 462.6503612

Oklahoma 35.46756  − 97.516426 2131.172228 2131.172228

Wisconsin 43.038902  − 87.906471 1178.047729 1178.047729

Kentucky 38.252666  − 85.758453 1044.090281 1044.090281

Missouri 38.7269  − 94.71842 1780.925619 1780.925619

Alabama 33.522861  − 86.807701 1385.944612 1385.944612

California 37.774929  − 122.419418 4128.890575 1093.158971

Kansas 37.68602  − 97.335571 2031.992059 2031.992059

New Hampshire 42.990929  − 71.463089 329.388085 329.388085

New Mexico 35.0844444  − 106.6505556 2914.047894 1903.828858

Arizona 32.25346  − 110.911789 3403.255018 1960.423336

Minnesota 44.977753  − 93.265015 1635.581625 1635.581625

Maine 43.659222  − 70.256523 450.1866372 450.1866372

Idaho 43.615021  − 116.202316 3455.117344 650.9714118

Iowa 41.586834  − 93.624962 1641.926903 1641.926903

South Carolina 32.77647  − 79.93103 1027.66482 1027.66482

North Carolina 35.223789  − 80.841141 854.7086843 854.7086843

Tennessee 36.162663  − 86.781601 1220.705852 1220.705852

Nebraska 41.256538  − 95.934502 1836.683114 1836.683114

Texas 29.760427  − 95.369804 2281.234344 2281.234344

Oregon 45.51223  − 122.658722 3924.005523 234.1635691

North Dakota 46.876961  − 96.784637 1943.898966 1921.486278

West Virginia 38.351189  − 81.638359 704.9255916 704.9255916

Arkansas 34.746483  − 92.289597 1735.09253 1735.09253

Montana 45.783287  − 108.500687 2827.009373 1072.597358

Wyoming 41.14024  − 104.818802 2575.395552 1561.722056

Alaska 61.218056  − 149.900284 5409.611693 2308.628727

Utah 40.75848  − 111.888138 3166.306285 1126.553692

South Dakota 43.54731  − 96.7313 1894.123012 1894.123012

Hawaii 19.5555  − 154.879852 7853.670071 4279.36227
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and transmission rates based on demographic and epidemiological  data43–46. This value allows us to estimate 
how many secondary infections are likely to occur from a single infection in a specific area (Table 2).

Urbanization index. As an indication of how “urban” a state is, we used the urbanization index and data 
as defined and provided by FiveThirtyEight (‘https:// github. com/ fivet hirty eight/ data/ tree/ master/ urban izati on- 
index’). FiveThirtyEight’s urbanization index is calculated as the natural logarithm of the average number of 
people living within a five-mile radius of a given resident (Table 3).

Regression analysis models. We performed multiple linear regression analyses in order to assess the 
importance of each factor on the prediction of the per-state death rate. We used epidemiological data from seven 
states (NY, CT, MA, PA, NJ, VA, and MD), over a series of ten time points from April 29 to July 23, 2020. We 
regressed the per-state death rate (the cumulative ratio of deaths per million from the earliest date) on either three 
variables (transmission rate (R0), urbanization index, distance from NYC) or six variables (transmission rate 
(R0), urbanization index, distance from NYC, ingoing/outgoing/ingrowing rates per state). Prior to the analysis, 
we calculated Z-scores for all variables (enforcing zero mean and unit covariance). For distance from NYC, we 
used either the geographic distance between the state’s capital and NYC, or the transmissional distance as defined 
below. For each model, we calculated the log-likelihood by fitting a variance parameter to the predicted outputs 
and using a Gaussian noise model. Hence, we set σt2 = (1/N)�i=1:N (yit − βt xit )

2 , where N is the number of 
states, βt and xit are the vectors of coefficients and features associated with state i at time t respectively, and yit 
is the associated death rate. We calculated the log-likelihood at time t as Lt = �i log(Gauss(yit − βt xit ; 0, σ t)) , 
where Gauss is the probability density function of a normal distribution. We then compared the log-likelihood 
differences of pairs of models over time using Pearson’s correlation coefficient (differences versus temporal 
ordering).

Random walk model. We define the transmissional-distance of a state from NYC as the expected first 
arrival time at that state of a Markov random walk starting at NYC, using the transmissional probabilities 
between states inferred from the phylogenetic analysis. Hence, we set dij = E(min({t|st = j})|s0 = i) for the 
directed transmission-distance between states i and j (which is not a metric), where st = i indicates that the state 
at time t in a sampled random walk is i, and E(.) denotes expectation. To estimate these distances, we ran 1000 

Table 2.  Maximum Reproduction Rates (maximum  Rt) per state and average maximum  Rt from neighboring 
states per state. In this table, we show the maximum  Rt per state and the average maximum  Rt from all 
neighboring states (per state) as provided from rt.live covid-model from the beginning of the first wave 
through August 2020.

States Maximum reproduction rate  Rt Neighboring maximum  Rt (average)

New York 5.3 3.3

New Jersey 4 3.32

Connecticut 3.1 3.53

Massachusetts 2.8 2.88

Maryland 2.9 2.66

Pennsylvania 3.2 3.25

Virginia 2.4 2.45

Delaware 2

North Carolina 2.5

West Virginia 1.7

Tennessee 2.7

Table 3.  Urbanization Index. How “Urban” is each state, as calculated by FiveThirtyEight and included in our 
analysis as Urbanization Index (U).

State Urbanization index

New York 12.56

New Jersey 12.24

Connecticut 11.41

Massachusetts 11.84

Maryland 11.71

Pennsylvania 11.15

Virginia 10.91

https://github.com/fivethirtyeight/data/tree/master/urbanization-index
https://github.com/fivethirtyeight/data/tree/master/urbanization-index


15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8470  | https://doi.org/10.1038/s41598-023-34959-2

www.nature.com/scientificreports/

such random walks for 1000 time-steps and used the empirical mean time of first arrival at each state across 
samples. As above, we calculated Z-scores for the resulting distances for each state.

Mitigation analysis. In order to model severely restricted mobility to represent implemented interven-
tions between geographically adjacent states s1 and s2 , we set a reduction factor r = 0.1 , and updated the trans-
mission probabilities as: P′

(sb|sa) = r · P(sb|sa) , and P′
(sa|sa) = P(sa|sa)+ (1− r) · P(sb|sa) , where P′

(sa|sb) 
is the updated transmissional probability between states sa and sb . We made such updates for a = 1, b = 2, 
and a = 2, b = 1 simultaneously, hence restricting the connectivity in both directions. We then recalcu-
lated the distances ds1s2ij  , i.e., the distance between states i and j, given the link between s1 and s2 has been 
restricted. We then used these to estimate the overall predicted reduction in death rate given the interven-
tion as: �s1s2 =

∑

itwi · (y
′

it − yit) , where wi is a weighting factor proportional to the population of state i (and 
∑

iwi = 1 ), and y′it is the predicted death rate for state i at time t when ds1s2ij  is substituted for dij in the predictive 
model from the regression analysis. For the general lockdown comparison, we apply the reduction factor, r , as 
above, to the connections between all pairs of geographically adjacent states and renormalize the transmission 
probability matrix by increasing the ingrowing probability for each state. The ‘degree of lockdown’ is defined as 
f = 1− r . We recalculated the distances between states and estimate the overall predicted reduction in death 
rate using the same method as above. For comparison, we find the matching degree of full lockdown degree 
closest to the change in death rate for each of the single link restrictions, as well as the most effective two-link 
restriction, which occurs when NY-PA and MD-PA links are cut (using r = 0.1 for single and paired cut links).

Data availability
The datasets used in this study are available in public databases. SARS-CoV-2 genomes were retrieved from the 
GISAID (https:// gisaid. org/)  database2. Accession IDs, originating laboratories, and submitting laboratories for 
each state are provided in Data s1–7. Epidemiological data concerning the daily and total deaths per million 
individuals were retrieved from Worldometer ‘worldometers.info/coronavirus/’. Maximum reproduction rates 
were retrieved from The COVID Tracking Project at “https:// covid track ing. com/” and ‘https:// rt. live/ us/’42, but 
different studies have developed alternative methods for calculating maximum reproduction and transmission 
rates based on demographic and epidemiological  data43–46.
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