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Genetic determination of regional connectivity in modelling the spread of COVID-19 1 

outbreak for improved mitigation strategies 2 

Leonidas Salichos1,2*, Jonathan Warrell2*, Hannah Cevasco2, Alvin Chung2, Mark Gerstein2,3,4,5 3 

 4 

ABSTRACT 5 

Covid-19 has resulted in the death of more than 1,500,000 individuals. Due to the pandemic's 6 

severity, thousands of genomes have been sequenced and publicly stored with extensive records, 7 

an unprecedented amount of data for an outbreak in a single year. Simultaneously, prediction 8 

models offered region-specific and often contradicting results, while states or countries 9 

implemented mitigation strategies with little information on success, precision, or agreement 10 

with neighboring regions.  Even though viral transmissions have been already documented in a 11 

historical and geographical context, few studies aimed to model geographic and temporal flow 12 

from viral sequence information. Here, using a case study of 7 states, we model the flow of the 13 

Covid-19 outbreak with respect to phylogenetic information, viral migration, inter- and intra-14 

regional connectivity, epidemiologic and demographic characteristics. By assessing regional 15 

connectivity from genomic variants, we can significantly improve predictions in modeling the 16 

viral spread and intensity. 17 

Contrary to previous results, our study shows that the vast majority of the first outbreak can be 18 

traced to very few lineages, despite the existence of multiple worldwide transmissions. 19 

Moreover, our results show that while the distance from hotspots is initially important, 20 

connectivity becomes increasingly significant as the virus establishes itself. Similarly, isolated 21 

local strategies -such as relying on herd immunity- can negatively impact neighboring states. Our 22 
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work suggests that we can achieve more efficient unified mitigation strategies with selective 23 

interventions. 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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 38 

 39 

 40 

 41 

INTRODUCTION 42 

Covid-19 related deaths have surpassed 1,500,000 worldwide and 330,000 in the United States. 43 

Due to the importance of the pandemic, many resources are available for COVID-19 genome 44 

research, including GenBank, GISAID, and Nextstrain 1–3. Due to the severity of the pandemic 45 
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combined with the advent of sequencing technologies, the amount of sequencing data within 46 

such a short time period for a single outbreak is unprecedented. GISAID is currently the largest 47 

COVID-19 database with more than 309,000 SARS-CoV2 genomes 2. This is compared to 1760 48 

sequences of influenza A/H3N2 collected from 2013 to 2020. These numbers are comparable or 49 

surpassing the number of HIV or HCV sequences in the Los Alamos national database 4,5. These 50 

COVID-19 genomes represent the spread of the pandemic from China to 188 countries 51 

worldwide, with more sequences added every day.  52 

Recent studies have modelled the transmission, diversity and spatial phylogeography of the virus 53 

mostly in a historical context 6–12. According to studies, Covid-19 first arrived in Washington 11, 54 

in what is considered a cryptic infection 11,13. However, known cases in persons with no relevant 55 

travel history also occurred in California in late January/early February11.While the first lineages 56 

arrived from China in Washington and California, subsequent infectious lineages (notably in 57 

New York) appear to represent importations from Europe 11,14. In this context, early results also 58 

suggested multiple worldwide transmissions responsible for the outbreak in the North-East of 59 

United States 12. 60 

From the beginning of the pandemic, different approaches have been developed for the modeling 61 

of the outbreak that use either epidemiological, demographic data 15–20 . Many -sometimes 62 

contradicting- prediction models offered temporal, and locally isolated results based on local 63 

outbreaks 16–18,21,22, while each country implemented their strategy to combat the outbreak, 64 

including controversial approaches such as “herd immunity”23–25. At the same time, different 65 

forms of local lockdowns have been tested to successfully mitigate viral spread as non-66 

pharmaceutical interventions (NPIs) 22,26–28. While previous studies offer extremely valuable 67 

insights into the history of viral transmission and the effectiveness of locally implemented NPIs, 68 
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they tend to overlook the inland spread (migration) of the virus in order to provide a unified 69 

mitigation strategy that complements local implementations.  70 

In this study, we show a strong association between the temporal and geographical spread of the 71 

virus. By using a case study of seven states [New York (NY), New Jersey (NJ), Connecticut 72 

(CT), Massachusetts (MA), Pennsylvania (PA), Maryland (MD) and Virginia(VA)], we utilize 73 

the concepts of ingrowing, incoming and outgoing viral connectivity between states and regions 74 

as factors that influence the spread and viral transmission. We then use regression and random 75 

walk models to show the importance of these concepts combined with epidemiological and 76 

demographic factors -such as transmission rates and Urbanization Index in providing more 77 

informative predictions and explaining the temporal and geographic spread of the pandemic. The 78 

significance of modeling the spread of the viral wave through geographical routes and regional 79 

connectivity reveals broader implications and opportunities for the consideration of more 80 

efficient mitigation strategies in blocking viral migration with additional selective interventions.   81 

 82 

Initial Distance From Hotspots Determines Outbreak Severity 83 

Using the numbers of ‘deaths per 1 million population’ as a proxy for regional outbreak severity, 84 

first we aimed to assess the association between distance from initial viral hotspots and the 85 

severity of the viral outbreak. To assign a geographic location for each state, we used the 86 

longitude and latitude from its respective larger city. Then, we considered the distance from New 87 

York City (New York), Seattle (Washington) and New Orleans (Louisiana) as the three initial 88 

hotspots of the outbreak. Introducing New York City (NYC) as a single initial hotspot, showed a 89 

high negative correlation (r=-0.37) between the severity of the outbreak and the distance from 90 

hotspot. By including Seattle (or San Francisco) as a second hotspot, the association increased 91 
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(r=-0.43). Finally, by fitting a logarithmic curve, the association increased further to R2=0.35 92 

(figure 1). The inclusion of New Orleans as a third hotspot did not improve our results, 93 

indicating an isolated outbreak. On the contrary, by removing Louisiana as an outlier, we 94 

improved the predictability of the logarithmic curve to R2=0.4. These results suggest a very high 95 

association between the outbreak’s severity during the first wave and the distance from the two 96 

initial hotspots. 97 

By fitting a log curve for the case study of seven states (NY, CT, MA, NJ, PA, MD and VA), we 98 

were able to associate the distance from NYC and the severity of the initial spread by explaining 99 

70% of the variance. Additional factors strongly linked to the spread and severity of the epidemic 100 

include Urbanization Index and maximum effective reproduction rate Rt per state during the first 101 

wave, as retrieved from “https://rt.live/us/” (figure 1). 102 

 103 

Major 7-state Outbreak is Related to Few European Lineages 104 

To create a dataset of world reference sequences, on June 25th, we sampled 50 sequences 105 

spanning the 5 Covid-19 lineages as determined by Nextstrain (Figure 2i). Lineages 19A and 106 

19B represent the earliest detected infections closely associated with the Wuhan epidemic. Using 107 

the GISAID database, we downloaded all available sequences for our 7 states case study until the 108 

6th of August 2020. These sequences represent the first viral wave in the USA. Then, we inferred 109 

a phylogenetic tree for each individual state using Bayesian inference with date constraints under 110 

a Yule process population model. For all states, the major outbreak clusters with a specific 111 

European lineage (reference sequence: HF1465 FRA). For New York, Connecticut and 112 

Massachusetts this lineage clearly constitutes the dominant outbreak. For New Jersey, 113 
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Pennsylvania, Maryland and Virginia, a secondary outbreak -which also circulates in NY, CT 114 

and MA- appears significant (figure 2, S1-7).  115 

 116 

Assessing Viral Connectivity Between States 117 

By selecting a set of (whenever possible) 50 reference sequences per state (in addition to the set 118 

of world reference sequences), we built a phylogenetic tree that includes sequences from all 7 119 

states. We then inferred a connectivity map between the different states by parsing the tree’s 120 

bipartitions (figure 3i). For this, we examined all possible connected pairs of sequences that 121 

cluster together, while moving hierarchically from smaller to larger bipartitions without double-122 

counting. To establish directionality between pairs, we used sampling dates. For example, the 123 

pair (NY-PV09151_USA_NY_2020-03-22, CT-UW-6574_USA_CT_2020-04-03) would be 124 

counted as NY -> CT, which denotes one incoming transitional connectivity from NY to CT. 125 

Similarly, the pair (NY-PV08434_USA_NY_2020-03-18, NY-NYUMC659_USA_NY_2020-126 

03-18) would be counted as ingrown connectivity NY -> NY. Overall, the NY outbreak showed 127 

the highest connectivity, while VA and MA showed the lowest. Interestingly, even though CT 128 

showed high connectivity comparable to NJ, the decreased number of outgoing versus incoming 129 

connections explains the low connectivity shown by MA. This is also supported by the 130 

outbreak’s high transitional connectivity from NY to CT (NY ->CT) rendering CT as a potential 131 

bottleneck (figure 3).   132 

 133 

Urbanism and Transitional Connectivity Increase Outbreak’s Severity 134 

Previously, by considering the geographic distance from the initial hotspots NY and WA, we 135 

found a strong association between the distance and the severity of the outbreak for the first 136 
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month of the epidemic. Additional factors associated with the spread included urbanism, the 137 

maximum Rt per state, as well as the neighboring states’ maximum Rt. Here, we test the 138 

importance of various features in predicting the per-state death rate across the first wave of the 139 

pandemic (March to August 2020). We include in our analysis features including the estimated 140 

incoming, outgoing and ingrowing transmission rates between states, and a transmission-based 141 

normalized distance of each state from New York representing the viral flow (described below).  142 

The full feature set includes: maximum Reproduction rate per state (Rt) usually in April, 143 

Urbanization Index (U), Geographic or transition-based distance from New York (D or trD), and 144 

incoming, outgoing and ingrowing transmission rates. To determine the importance of regional 145 

transitional connectivity in addition to these factors in explaining and predicting the outbreak 146 

intensity during the whole first wave, we built 4 regression models with increasing complexity 147 

that combine phylogenetic information with epidemiological data from 10 dates (April 29th, May 148 

1st 8th and 15th, June 11th 18th 25th, July 2nd, 29th, August 23rd).  149 

In our simplest model (figure 4i) we examined the role of urbanism, distance (D) from NYC and 150 

virus’ maximum reproduction rate Rt . U and D showed high and increasing significance 151 

throughout the whole first wave, while the use of maximum Rt -as obtained by 152 

‘https://rt.live/us/’- showed maximum significance at the beginning of the outbreak but 153 

eventually decreased. This is possibly because max Rt only represents the virus’ reproductive 154 

rate during the first stage of the outbreak (i.e in March-April), before the lockdowns. In our 155 

second model (figure 4ii), we substituted D with Transitional Distance (trD), a weighted version 156 

of distance as a proxy for viral flow which considers transitional connectivity between states 157 

(e.g. NY -> CT, NY -> NY, CT -> NY, NY -> NJ, .. etc ) using random walks between the states 158 

(see methods). By replacing D with trD we were able to significantly increase our model’s 159 
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predictability throughout the first wave (p=0.0003, figure S8). In our third model (figure 4iii), we 160 

returned to using the geographic distance D, but this time we also included each states’ total 161 

incoming, outgoing and ingrowing rates. Finally, in our 4th model (figure 4iv), we again replaced 162 

D with trD, while also including states’ incoming and outgoing rates. While our 4th model also 163 

integrates transitional connectivity in trD, this information is also used in calculating each state’s 164 

incoming, outgoing and ingrowing connectivity. Therefore, as expected, factors trD, incoming 165 

and outgoing rates often behave in a complementary manner. However, model 4 is still 166 

significantly more informative than model 3 (p=0.0273). Moreover, model 4 indicates that the 167 

initial importance of trD during the beginning of the outbreak, is gradually replaced by the state’s 168 

connectivity rate, as the outbreak spreads away from the initial hotspots.   169 

 170 

A Case Study for Selective Mitigation Strategies Based on Regional Connectivity 171 

Using our second regression model with normalized transitional distance trD, we predicted the 172 

total number of deaths by removing one by one each geographic connection between every 173 

geographically linked state pair according to figure 3iv. Our results suggested that by enforcing a 174 

blockade between New York and Pennsylvania, as well as between Maryland and Pennsylvania 175 

would result in saving around 450 and 200 deaths per million individuals respectively, after the 176 

lockdowns. This is a particularly interesting result, since our model seems to take into account 177 

the drop in deaths in specific states after the imposed lockdowns (based on epidemiological data 178 

from NJ, NY, MA and CT) and respond to the temporal flow of the pandemic resulting in later 179 

death peaks in states like Virginia (figure S9).  This becomes more evident in figure 4vi, where 180 

we depict the temporal effect of each blockade in reducing the number of total deaths per million 181 

individuals.  182 
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 183 

New York’s Second Wave 184 

To understand the origin of New York’s second wave, we inferred a new phylogenetic tree, this 185 

time by including all sequences from GISAID after August 2020 and until November 24th 186 

(figure 5). In addition to these new sequences, we also included our set of 50 world reference 187 

sequences and 50 from NY as mentioned previously. Our results indicate that about half of the 188 

second NY outbreak, has been re-introduced from Europe, possibly from Great Britain. This 189 

appears to be a completely new lineage, previously unseen in New York. 190 

 191 

METHODS 192 

Data Availability 193 

All data are available in public databases. SARS-CoV2 genomes were retrieved from the 194 

GISAID database 2. Epidemiological data concerning the daily and total deaths per million 195 

individuals have been retrieved from Worldometer ‘worldometers.info/coronavirus/’. Maximum 196 

reproduction rates have been retrieved from The Covid Tracking Project 197 

“https://covidtracking.com/” and ‘https://rt.live/us/’ 29. For the first wave of Covid-19 outbreak in 198 

United States we collected a total of 3,133 sequences for the states of New York (NY), 199 

Connecticut (CT), Massachusetts (MA), New Jersey (NJ), Pennsylvania (PA), Maryland (MD) 200 

and Virginia (VA) that were sampled between 01/29/2020 and 07/05/2020. More specifically, we 201 

collected 1505, 353, 418, 45, 112, 178, 522 sequences from each state, respectively. For the 202 

second wave of Covid-19 in New York, we collected a total of 112 sequences sampled between 203 

08/01/2020 to 10/18/2020. 204 
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World reference sequences: For the use of reference sequences representing the global pandemic, 205 

we randomly selected 50 sequences spanning Nextstrain lineages 19A, 19B, 20A, 20B and 20C 206 

(see figure 2i).  207 

State reference sequences: We randomly selected up to 50 reference sequences from each state, 208 

prioritizing selection of one sequence per bipartition with higher than 50% posterior probability. 209 

Excluding world reference sequences, 50 sequences were selected from NY, CT, MA and VA 210 

while 43, 37, 22 were selected from NJ, PA and MD, respectively. 211 

 212 

Phylogenetic Analysis 213 

By retrieving the genomic sequences from GISAID (Supplementary table), we used MAFFT 214 

(45) to build multiple sequence alignments for every state based on nucleotide sequence data. 215 

Then, using BEAST (31, 32), we performed Bayesian phylogenetic analysis with time 216 

constraints based on sampling dates, under a GTR evolutionary model. To determine the 217 

appropriate growth models and population size, we tested various growth models including a i) 218 

Yule process, ii) exponential growth, iii) logistic growth iv) Bayesian Skyline v) Birth–Death 219 

skyline. The BEAST suite also includes multiple software tools that aid in selecting appropriate 220 

models and parameters (BEAUti) to infer a phylogenetic tree using Bayesian inference, 221 

coalescent theory and speciation with respect to the time of sequence collection. We evaluated 222 

the efficacy of these models using Tracer v1.7.1(46). The best model (Yule process) for this data 223 

was selected based on the estimated sample size, posterior probabilities, and reports on algorithm 224 

convergence.  225 

 226 

Estimating Transitional Connectivity 227 
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Using custom scripts, we were able to parse the inferred phylogenetic trees into groups of 228 

sequences based on the tree bipartitions. Then, by further parsing the groups in ascending order 229 

based on group size (from groups of 2 to X=10), we determined all possible pairs and state 230 

connectivity based on dates. For example, pair of sequences {NY-PV09151_USA_NY_2020-03-231 

22 and CT-UW-6574_USA_CT_2020-04-03} would depict an outgoing connectivity between 232 

New York (NY) and Connecticut (CT) denoted as NY>CT +1 (see figure 3i). In the manuscript 233 

we show results for a strict/conservative approach where pair inconsistencies are dropped, and 234 

sequences cannot be considered as incoming twice.   235 

 236 

Maximum Reproduction Rate Rt  237 

To calculate the maximum reproduction rate Rt, we used the maximum Rt value for each state 238 

from ‘https://rt.live/us/’ during the first wave of the pandemic (until August 2020). Rt represents 239 

the effective reproduction rate of the virus calculated for each locale. It allows to estimate how 240 

many secondary infections are likely to occur from a single infection in a specific area.  241 

States 

Maximum 

Reproduction rate Rt 

Neighboring max Rt 

(Average) 

New York 5.3 3.3 

New Jersey 4 3.32 

Connecticut 3.1 3.53 

Massachusetts 2.8 2.88 

Maryland 2.9 2.66 

Pennsylvania 3.2 3.25 

Virginia 2.4 2.45 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2021. ; https://doi.org/10.1101/2021.01.30.21250785doi: medRxiv preprint 

https://rt.live/us/
https://doi.org/10.1101/2021.01.30.21250785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Delaware 2 

 
North Carolina 2.5 

 
West Virginia 1.7 

 
Tennessee 2.7 

 
 242 

 243 

Urbanization Index 244 

For the Urbanization Index, as an indication of how “urban” a state is, we used the definition and 245 

data from 538 (‘https://fivethirtyeight.com/’). FiveThirtyEight’s urbanization index is calculated 246 

as the natural logarithm of the average number of people living within a five-mile radius of a 247 

given resident. 248 

State  Urbanism 

New York 12.56 

New Jersey 12.24 

Connecticut 11.41 

Massachusetts 11.84 

Maryland 11.71 

Pennsylvania 11.15 

Virginia 10.91 

 249 

 250 

Regression Analysis Models 251 
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We perform multiple linear regression analyses in order to assess the importance of each factor 252 

on the prediction of the per-state death rate.  We use data from 7 states (NY, CT, MA, PA, NJ, 253 

VA, MD), over a series of 10 timepoints from April 29 to July 23.  We regress the per-state death 254 

rate (the cumulative ratio of deaths to cases from the earliest date) on either three variables 255 

(Transmission rate (R0), Urbanism, Distance from NYC) or six variables (Transmission rate 256 

(R0), Urbanism, Distance from NYC, ingoing/outgoing/ingrowing rates per-state).  Prior to the 257 

analysis, we Z-score all variables (enforcing zero mean and unit covariance).   For distance from 258 

NYC, we use either the geographic distance between the state’s capital and NYC, or the 259 

transition distance as defined below. For each model, we calculate the log-likelihood by fitting a 260 

variance parameter to the predicted outputs and using a Gaussian noise model.  Hence, we set 261 𝜎𝑡2 = (1/𝑁)𝛴𝑖=1:𝑁(𝑦𝑖𝑡 − 𝛽𝒕𝒙𝒊𝒕)2, where 𝑁is the number of states, 𝛽𝑡and 𝑥𝑖𝑡 are the vectors of 262 

coefficients and features associated with state i at time t respectively, and 𝑦𝑖𝑡 is the associated 263 

death rate.  We calculate the log-likelihood at time t as 𝐿𝑡 = 𝛴𝑖𝑙𝑜𝑔(𝐺𝑎𝑢𝑠𝑠(𝑦𝑖𝑡 − 𝛽𝒕𝒙𝒊𝒕; 𝟎, 𝝈𝒕 )), 264 

where Gauss is the probability density function of a normal distribution.  We then compare the 265 

log-likelihood differences of pairs of models over time using the Pearson Correlation Coefficient 266 

(differences versus temporal ordering). 267 

 268 

Random Walk Model   269 

We define the transmission distance of a state from NYC as the expected first arrival time at that 270 

state of a Markov random walk starting at NYC, using the transition probabilities between states 271 

inferred from the phylogenetic analysis.  Hence, we set 𝑑𝑖𝑗 = 𝐸(𝑚𝑖𝑛({𝑡|𝑠𝑡 = 𝑗})|𝑠0 = 𝑖) for the 272 

directed transmission-distance between states i and j (which is not a metric), where 𝑠𝑡 = 𝑖 273 

indicates that the state at time t in a sampled random walk is i, and E(.) denotes expectation.  To 274 
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estimate these distances, we run 1000 such random walks for 1000 time-steps and use the 275 

empirical mean time of first arrival at each state across samples.  As above, we Z-score the 276 

resulting distances for each state. 277 

 278 

Mitigation Analysis 279 

In order to break the link between geographically adjacent states 𝑠1 and 𝑠2, we set a reduction 280 

factor 𝑟 = 0.1, and update the transmission probabilities as: 𝑃′(𝑠𝑏|𝑠𝑎) = 𝑟 ⋅ 𝑃(𝑠𝑏|𝑠𝑎), and 281 𝑃′(𝑠𝑎|𝑠𝑎) = 𝑃(𝑠𝑎|𝑠𝑎) + (1 − 𝑟) ⋅ 𝑃(𝑠𝑏|𝑠𝑎), where 𝑃′(𝑠𝑎|𝑠𝑏) is the updated transition 282 

probability between states 𝑠𝑎 and 𝑠𝑏.  We make such updates for 𝑎 = 1, 𝑏 = 2 and 𝑎 = 2, 𝑏 = 1 283 

simultaneously, hence breaking the link in both directions.  We then recalculate the distances 284 𝑑𝑖𝑗𝑠1𝑠2, i.e. the distance between states i and j, given the link between 𝑠1 and 𝑠2 has been broken.  285 

We then use these to estimate the overall predicted reduction in the death-rate given the break as: 286 Δ𝑠1𝑠2 = ∑ 𝑤𝑖 ⋅ (𝑦𝑖𝑡′ − 𝑦𝑖𝑡)𝑖𝑡 , where 𝑤𝑖  is a weighting factor proportional to the population of state 287 𝑖 (and ∑ 𝑤𝑖𝑖 = 1), and 𝑦𝑖𝑡′  is the predicted death-rate for state i at time t when 𝑑𝑖𝑗𝑠1𝑠2 is substituted 288 

for 𝑑𝑖𝑗 in the predictive model from the Regression analysis. 289 

 290 

DISCUSSION 291 

Previous studies have provided an important historic view of travel history 8,9,11–14,30 and viral 292 

spread of Covid-196,11,12,15 using genetic variability. Others, data driven, have modeled the 293 

spread of the virus and effectiveness of government interventions 20,27,28. So far, the only 294 

acclaimed and efficient non-pharmaceutical interventions in our arsenal are forms of regional 295 

lockdowns 19,22,26,31,32, while other strategies relying on ‘herd immunity’ have also been 296 

suggested and disputed 23–25.  297 
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Here, we used SARS-CoV2 genomes to determine regional connectivity in a case study of 7 298 

states, where New York acted as an initial hotspot. By combining epidemiological demographic 299 

and genetic information, we used four regression models to evaluate the importance of different 300 

factors that contribute to outbreak severity throughout the first viral wave.  301 

Our results can explain the discordance between regions and strategies, especially between the 302 

first and second pandemic waves. For example, states within distance from hotspots are able to 303 

deal with a milder initial outbreak, before the virus establishes at a later timepoint, depending on 304 

transitional distance (i.e., the speed of the wave) and regional connectivity. Similarly, states with 305 

lower connectivity (e.g., naturally or physically isolated regions) can be more efficient in battling 306 

the viral spread, as they deal with reduced viral wave and incoming infections. This also suggests 307 

that reducing incoming transmission routes (through pharmaceutical or non-pharmaceutical 308 

interventions) can have a significant effect in addition to local mitigation strategies such as 309 

lockdowns. This does not necessarily mean complete isolation, but rather a blockade on 310 

transmission routes with high connectivity. However, our results also suggest that states deciding 311 

to follow less stringent mitigation strategies are also largely responsible for their outgoing viral 312 

connectivity, affecting neighboring regions, while often taking advantage of the low incoming 313 

connectivity resulting from neighboring lockdowns in return. 314 

By deriving genetic connectivity between regions using genomic information, we combined 315 

genetic information with demographic and epidemiological data to create a model and a proxy 316 

for the flow of the viral wave in order to study factors that temporally contribute to the severity 317 

of local outbreaks throughout the pandemic. Then we used this model to consider the outcome of 318 

selective intervention strategies using geographic blockades. Overall, our results suggest that 319 

unified mitigation strategies are more efficient in tackling a pandemic, while also providing a 320 
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framework within which to pursue these strategies. Our framework can be implemented for both 321 

pharmaceutical (e.g vaccination) or non-pharmaceutical interventions (e.g., lockdowns, 322 

blockades).  323 
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 348 

FIGURES 349 

 350 

Figure 1. Using data collected on the 29th of April we show the logarithmic association between 351 

i) the number of deaths per million individuals for every state and the distance from hotspots 352 

(New York or Washington). Using a case study of 7 states (New York, New Jersey, Connecticut, 353 

Massachusetts, Pennsylvania, Virginia and Maryland), we show the logarithmic association 354 

between the number of deaths per million individuals versus ii) the Distance from New York 355 
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city, iii) each state’s maximum reproduction rate Rt, iv) each state’s average neighboring 356 

maximum Rt, and v) each state’s urbanization index. 357 

 358 

Figure 2. According to a Nextstrain adaptation, there were five main initial lineages of the 359 

pandemic (19A, 19B, 20A, 20B, 20C), which can be used to suggest the original routes of the 360 

transmission in the United States. In 2i) we show the topology of world reference sequences as 361 

collected spanning the Nextstrain tree on June 25th. From these randomly collected sequences, 362 

sample HF1465 FRA is the only sequence that consistently clusters with each state’s major 363 

outbreak (blue line). Two other reference sequences (from Italy and Germany) cluster -again 364 

consistently- with each state’s minor outbreak (black dotted line), suggesting that most of the 365 

outbreak derives from these specific lineages. In (2ii) we show the unrooted tree of the New 366 

York outbreak, which we consider as the outbreak epicenter. In (2iii-vi) we show the 367 

phylogenetic tree analysis for Massachusetts, New Jersey, Virginia and Connecticut as rooted by 368 

the older lineage that contains sequences from Wuhan dating in 2019.     369 
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 370 

 371 

 372 

Figure 3.  In i) we use a tree adaptation example to explain the workflow that we implemented 373 

in order to assign directed connectivity, incoming, ingrowing and outgoing connections between 374 
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each state. In ii) using world reference sequences and selected reference sequences from 7 states, 375 

we inferred a phylogenetic tree with time constraints for each state. Each sequence’s tip color 376 

corresponds to the state it was collected. Using pairing and dating information described in (i), 377 

we derived iii) incoming, outgoing and ingrowing connectivity for each state and iii) transitional 378 

connectivity between all states. For convenience, we only show neighboring and geographical 379 

connectivity.  380 

 381 
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 382 

 383 

Figure 4.  Predictive models with connectivity-based features.  (i-ii) Models 1-2 (three factors), 384 

(iii-iv) Models 3-4 (six factors).  Likelihood significance was found for models (1) vs (2) and (3) 385 

versus (4). (Model 1 vs. 2 / 3 vs. 4; p=0.0003, 0.0273 resp., 2-sided t-test for Pearson’s r). We 386 

then estimated the sum of total deaths that would be saved if we remove any geographic link 387 
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between two states. In v) we show the total number of deaths per million individuals per case, 388 

while in vi) we show the temporal distribution of these deaths, showing when specific links 389 

become important. The link between NY and PA becomes important around May, while the link 390 

between MD and PA a month later.   391 

 392 

Figure 5. By inferring a phylogenetic tree using sequences from New York that were collected 393 

after the 16th of August, together with previous world reference sequences and reference 394 

sequences from New York during the first wave, we show that about half of the 2nd wave’s 395 

outbreak in New York constitutes a previously unseen outbreak, clustering with reference 396 

sequences from Great Britain.  397 

 398 

 399 

 400 

 401 
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