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Genetic differences among ethnic groups
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Abstract

Background: Many differences between different ethnic groups have been observed, such as skin color, eye color,

height, susceptibility to some diseases, and response to certain drugs. However, the genetic bases of such differences

have been under-investigated. Since the HapMap project, large-scale genotype data from Caucasian, African and Asian

population samples have been available. The project found that these populations were located in different areas of

the PCA (Principal Component Analysis) plot. However, as an unsupervised method, PCA does not measure

the differences in each single nucleotide polymorphism (SNP) among populations.

Results: We applied an advanced mutual information-based feature selection method to detect associations

between SNP status and ethnic groups using the latest HapMap Phase 3 release version 3, which included

more sub-populations. A total of 299 SNPs were identified, and they can accurately predicted the ethnicity of

all HapMap populations. The 10-fold cross validation accuracy of the SMO (sequential minimal optimization)

model on training dataset was 0.901, and the accuracy on independent test dataset was 0.895.

Conclusions: In-depth functional analysis of these SNPs and their nearby genes revealed the genetic bases of

skin and eye color differences among populations.

Background

A single nucleotide polymorphism (SNP) is defined as a

single base change in a DNA sequence that occurs in a

significant proportion (more than 1 %) of a large popula-

tion. SNPs occur at a frequency that ranges from 1 in

1000 to 1 in 100 bases. Recently, the NCBI (National

Center for Biotechnology Information) released the

SNP-138 database, which contains more than 60 million

SNP sites (ftp://ftp.ncbi.nlm.nih.gov/snp/). To our know-

ledge, over the millions of years of evolution, mutations

have occurred occasionally and are maintained or lost by

inheritance and natural selection. The more than 60 mil-

lion SNPs are scattered throughout the entire genome,

including −50 % on the coding region and the rest on

the non-coding region [1]. Based on the change in

amino acid sequence, SNPs in the CDS (coding se-

quence) region can be divided into 2 classes: synonym-

ous SNPs whose variants do not change the protein

sequence and non-synonymous SNPs that change the

amino acid sequence [2]. Along with the rapid develop-

ment of next-generation DNA sequencing technologies,

hundreds of thousands of novel human SNPs could be

discovered in the next several years [3]. In addition to

sequencing technology, GWAS (Genome-Wide Associ-

ation Study) has been applied to discover disease-related

SNPs [4–6]. To the best of our knowledge, functional

polymorphisms are used not only to develop useful gen-

etic markers but also to facilitate the outcomes of per-

sonalized medicines [7]. In addition, understanding the

role of SNPs has been important to understanding the

molecular mechanisms of evolution because SNPs could

be used as evolution markers [8].

Among humans, 99.9 % of the bases in the entire gen-

ome are remarkably similar; it is the remaining 0.1 % of

the bases that makes a person unique [9]. Among this

0.1 % of bases, more than 90 % are SNPs [10]. Barbujani

et al. estimated that −85 % of SNPs are common to all

human populations and that only approximately 15 % of

SNPs are population-specific [11]. However, among dif-

ferent populations, specific SNPs account for 15 % of all

SNPs, and common SNPs account for 85 % of all SNPs;

both types contribute to various characteristics, includ-

ing drug resistance and skin color [12, 13]. For example,

Xu et al. found that the incidence of G6PD deficiency

varies among populations because of the different pro-

portions of SNP alleles [14]. Similarly, β-thalassemia
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exhibits a varied incidence among populations from

Delhi (India), Lebanon and Sardinia because of the dif-

ferent predominant alleles in these areas [15–17]. In

addition to susceptibility to diseases, physical appearance

based on skin/hair color and physique varies among

populations, especially those traits observed on different

continents [12, 18]. The efforts of several groups have

led to the identification of a series of SNPs and their cor-

responding genes, which may influence human pigmen-

tation phenotypes; these include rs885479 at MC1R,

rs16891982 at SLC45A2, rs1545397 at OCA2,

rs12913832 at HERC2, rs6119471 at ASIP, and

rs1426654 at SLC24A5. [19–24]. Although many pivotal

SNPs have been discovered, they are far less important

to explaining the differences among populations, such as

the differences in physical appearance, disease suscepti-

bility [25], and drug responses [26]. The studies per-

formed in developed Caucasian countries may not apply

well to developing African and Asian countries [27].

To systemically investigate the genetic differences

among ethnic groups, we analyzed the latest HapMap

[28] genotype data, which included more ethnic groups

than the early releases and allowed us to explore the

structure of the data in more detail. Advanced feature

selection methods were applied to identify the different

SNPs. Four different model construction methods were

tested. Finally, a total of 299 SNPs were selected, and the

prediction accuracy with SMO (sequential minimal

optimization) evaluated using 10-fold cross validation on

the training dataset achieved 0.901, and the accuracy on

the independent test dataset was 0.895. Some selected

SNPs demonstrated a high potential to be ethnic bio-

markers, and the genes closest to those SNPs showed in-

teresting functions, such as keratinization, which may

reveal the genetic basis of some of the observed

phenotype differences, such as skin color, between differ-

ent ethnic populations.

Methods

The genotype data set

We downloaded the genomes of different ethnic

groups from the HapMap Phase 3 [28] release version

3 (ftp://ftp.hgsc.bcm.tmc.edu/HapMap3-ENCODE/Ha

pMap3/HapMap3v3), which includes 1397 samples

and 1,457,897 SNPs among 11 ethnic groups. Because

the Chinese and Japanese samples were very similar

[28, 29], they (CHB: Han Chinese in Beijing, China,

CHD: Chinese in Metropolitan Denver, Colorado and

JPT : Japanese in Tokyo, Japan) were combined. To

compile an independent test dataset, we randomly

chose 15 % of the samples from each population. The

other 85 % of the samples formed the training dataset.

The final nine ethnic groups and their sample sizes in

the training and independent test dataset are shown in

Table 1.

The original PED and MAP files (hapmap3_r3_b36_fwd.

consensus.qc.poly.ped.gz and hapmap3_r3_b36_fwd.con

sensus.qc.poly.map.gz) were transformed into a matrix

using PLINK [30] with “–recodeA” and read into R using

package adegenet [31] (http://cran.r-project.org/web/pack-

ages/adegenet/). The genotype matrix was a matrix of 0, 1

and 2, which were the numbers of the minor SNP alleles in

that sample.

Irrelevant SNPs were excluded using Cramer’s V coefficient

Because there were too many SNPs and because most of

them differed among the ethnic groups, we calculated

the Cramer’s V coefficient [32] for each SNP and re-

moved the SNPs with Cramer’s V coefficients smaller

than or equal to 0.6.

Table 1 The 1397 samples from nine ethnic groups

Index Abbreviation Full Name Training Sample Size Independent Test
Sample Size

1 ASW African ancestry in Southwest USA 74 13

2 CEU Utah residents with Northern and Western European ancestry
from the CEPH collection

140 25

3 CHB/CHD/JPT Han Chinese in Beijing, China/ Chinese in Metropolitan Denver,
Colorado/Japanese in Tokyo, Japan

305 54

4 GIH Gujarati Indians in Houston, Texas 86 15

5 LWK Luhya in Webuye, Kenya 94 16

6 MEX Mexican ancestry in Los Angeles, California 73 13

7 MKK Maasai in Kinyawa, Kenya 156 28

8 TSI Tuscan in Italy 87 15

9 YRI Yoruban in Ibadan, Nigeria (West Africa) 173 30

Total 1188 209
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The Cramer’s V coefficient measured the association
between SNP status and ethnic groups and was defined
as follows:

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2=N

min k−1; r−1ð Þ

s

ð1Þ

where N was the total number of genotype samples,
1397 in our study, k was the number of ethnic groups
(k = 9) and r was the number referring to the SNP sta-
tus (r = 3, for “0 minor allele”, “1 minor allele” and “2
minor allele”). χ 2 is Pearson’s chi-squared statistic,
which can be calculated as follows:

χ2 ¼
X

k

i¼1

X

r

j¼1

Oi;j−Ei;j

� �2

Ei;j
ð2Þ

where Oi,j is the number of the occurrences of SNP sta-
tus j among ethnic group i and Ei,j is the expected occur-
rences of SNP status j among ethnic group i, which can
be calculated as follows:

Ei;j ¼
ni �mj

N
ð3Þ

where ni is the number of samples in ethnic group i and
mj is the number of samples with SNP status j.

The Cramer’s V coefficient ranges from 0 to 1, where 0

indicates no association between the SNP status and eth-

nic group and 1 indicates a complete association be-

tween SNP status and ethnic group.

The Cramer’s V coefficients of the 1,457,897 SNPs
were calculated using the function CramerV from R pack-
age DescTools https://cran.r-project.org/web/packages/
DescTools/. The 2,448 SNPs with Cramer’s V coefficients
greater than 0.6 on the training dataset were considered
to be candidate SNPs and were analyzed using more ad-
vanced machine learning based feature selections [33–36]
to obtain the optimal discriminating SNPs.

The optimal SNPs were selected using mRMR and IFS

We applied a widely used [37–39] mutual information based
method, mRMR (minimal Redundancy Maximal Relevance)
[40], to rank the SNPs. The mRMR program was down-
loaded from http://penglab.janelia.org/proj/mRMR/. Unlike
a univariate filter, such as Cramer’s V coefficient, mRMR not
only considered the associations between SNPs and ethnic
groups but also the redundancies between SNPs.

Ω, Ωs and Ωt were used to denote the entire set of
2,448 (N) candidate SNPs, the selected m SNPs, and the
to-be-selected n SNPs, respectively. The relevance of the
SNP f from Ωt with ethnic group c can be measured
with mutual information [41, 42] (I):

D ¼ I f ; cð Þ ð4Þ

In addition, the redundancy R of the SNP f with the

selected SNPs can be calculated as follows:

R ¼
1

m

X

f i∈Ωs

I f ; f ið Þ ð5Þ

To obtain the SNP fj from Ωt with maximum rele-

vance with ethnic group c and minimum redundancy

with the already-selected SNPs, the mRMR function was

defined as follows:

max
f j∈Ωt

I f j; c
� �

−
1

m

X

f j∈Ωs

I f j;f i

� �

2

4

3

5 j ¼ 1; 2;…; nð Þ ð6Þ

The mRMR feature evaluation is continued for N

rounds, and then a ranked SNP list S using the mRMR

method is obtained:

S ¼ f
0

1; f
0

2;…; f
0

h;…; f
0

N

n o

ð7Þ

The SNP with a smaller index h has a better trade-off

between relevance and redundancy and is more import-

ant for classifying samples from different ethnic groups.

Based on the top 2,448 mRMR SNPs, we constructed

2,448 classifiers and applied an Incremental Feature Se-

lection (IFS) method [43–47] to identify the optimal

SNP set. Candidate SNP set Si = {f1, f2,…, fi}(1 ≤ i ≤ 2,

448) included the top i SNPs.

Based on the prediction performance of each candi-

date SNP set, an IFS curve was plotted. The x-axis de-

noted the number of SNPs, and the y-axis denoted the

10-fold cross validation accuracies using these SNPs.

Different predictive models were compared

We used 10-fold cross validation [48, 49] to test the pre-

dictive performance of the predictive models on the

training dataset and then tested the trained model on

the independent test dataset. During 10-fold cross valid-

ation, all of the samples were randomly divided into 10

equal parts; in each iteration, nine parts were used to

train the classifier, and the remaining part was used for

the test. After 10 rounds, all samples were predicted

with an ethnic group, and the predicted ethnic groups

were compared with the actual ethnic groups. The entire

training dataset was used to train the final predictive

model, which was then tested on the independent test

dataset. Figure 1 showed the flowchart of model con-

struction and performance evaluation. The predictive ac-

curacy of ethnic group i was

Qi ¼
Ti

Ni

ð8Þ

where Ni is the number of samples in ethnic group i and

Ti is the number of correctly predicted samples in ethnic

group i. The total accuracy [50, 51] was
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Q ¼

X

9

i¼1

Ti

X

9

i¼1

Ni

ð9Þ

We constructed the classifiers by using four common

predictive methods: SMO (sequential minimal

optimization), IB1 (nearest neighbor algorithm), Dag-

ging, and RandomForest (random forest) in Weka [52].

Weka is an easy-to-use software package that integrated

various machine learning models and can be down-

loaded from http://www.cs.waikato.ac.nz/ml/weka/.

The SMO method is an algorithm for building support

vector machine (SVM) models [53]. The optimization of

an SVM was broken into a series of the sub-problems,

which were as small as possible and were then solved

analytically [53]. Because there were nine ethnic groups,

the prediction problem was multi-class, and pairwise

coupling [54] was adopted to construct the multi-class

predictive model.

IB1 was an application of the nearest neighbor method

[55]. The sample similarity was measured using the nor-

malized Euclidean distance. For a test sample, the ethnic

group of a training sample with closest distance was

assigned as the predicted ethnic group.

Dagging was used as a meta classifier, and the ethnic

group of the test sample was predicted by voting [56]. If

the training dataset ℑ included N samples, they were

randomly divided into k subsets that each contained n

samples (kn ≤N). In each subset, a basic model Mi(1 ≤

i ≤ k), was trained on these k subsets. A test sample was

predicted to be the ethnic group with most votes.

The random forest algorithm [57] was an ensemble

predictor with multiple decision trees. If there were N

samples and M SNPs in the training set, each tree was

trained using n randomly selected samples. At each

node, m features were randomly selected and used to

optimize the split. The test sample was predicted to be

the ethnic group with the most votes from the decision

trees.

The IFS prediction accuracies of these four methods

were evaluated by 10-fold cross validation and com-

pared, and the selected model was tested on the inde-

pendent test dataset.

Results and discussion
Identify the relevant SNPs

We analyzed the HapMap genotype data, which in-

cluded 1,457,897 SNPs on 1397 samples from nine eth-

nic groups. The sample sizes of each ethnic group in the

training dataset and independent test dataset are shown

in Table 1. The high dimension of the genotype data

makes their analysis difficult and time-consuming. To

reduce the SNPs and remove the irrelevant SNPs that

did not differ among ethnic groups, we calculated the

Cramer’s V coefficient that measured the univariate asso-

ciation between SNP status, i.e., the number of minor

HapMap dataset

(1397 samples)

Training set

(1188 samples)

Independent 
test set 

(209 samples)

For each population, 

randomly choose 

85% samples as training set 

and 15% samples as test set

1st partition

2nd partition

10th partition

…

10-fold cross validation

Feature selection 

(Cramer‘s V coefficient and mRMR) 

Classifier construction

(SMO/IB1/Dagging/RandomForest)

Prediction model 

Prediction performance on test set

Fig. 1 Flowchart for the predictive model construction and performance evaluation. First, we randomly divided the HapMap dataset into the training set

(85 % of samples from each population) and independent test set (15 % of samples from each population). Then, the training samples

were further partitioned into 10 equally sized partitions for 10-fold cross validation. Based on the training dataset, the features were selected, and the

predictive model was constructed. Finally, the constructed model was tested on the independent test dataset
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alleles, and ethnic group categories in the training data-

set. The 2,448 SNPs with Cramer’s V coefficient greater

than 0.6 in the training dataset were considered to be

relevant and were further optimized.

The SNP set was optimized with the best classifying

performance

We applied the mRMR method to rank the 2,448 SNPs.

Then, the top SNPs were optimized using the IFS

method. The predictive accuracies of the samples and

each ethnic group were elevated using 10-fold cross val-

idation. Four widely used predictive models, i.e., SMO,

IB1, Dagging and RandomForest, were compared. Their

performances based on using different numbers of top

SNPs are shown in Fig. 2. IB1 failed to predict LWK and

TSI, Dagging performed poorly on ASW, LWK and TSI,

and RandomForest did not correctly predict ASW, LWK

and TSI. SMO was able to predict all ethnic groups, and

its total accuracy was 0.955.

In Table 2, the best predictive accuracies of each

method are listed. The SMO performed best not only in

total accuracy but also for almost every ethnic group. To

make sure the great performances of SMO are not spe-

cific to a certain partition of training and independent

test datasets, we randomly divided the training (85 % of

the samples) and independent test (15 % of the samples)

datasets for 30 times and for each time, the training and

test processes were repeated. The mean and standard

deviation of the accuracies on 30 training and inde-

pendent test datasets were calculated and shown in

Additional file 1. The mean accuracies were close to

the accuracies of SMO in Table 2 and the standard de-

viations were very small which indicated that the par-

tition of training and independent test datasets does

not affect the prediction performance.

However, the best SMO model requires too many fea-

tures. To balance the model complexity and predictive

performance, we considered the top 299 SNPs used by

the SMO to be the optimal SNP set because subse-

quently, upon adding more SNPs, the performance did

not increase greatly. In other words, the IFS curve

shown in Fig. 2a became stable after the top 299 SNPs,

and the accuracy was consistently over 90 %. As shown

in Table 3, the 10-fold cross validation accuracy of SMO

method with the top 299 SNPs on the training dataset

was 0.901, and the accuracy on the independent test

dataset was 0.895. The 299 SNPs and their annotations,

such as dbSNP IDs, minor alleles, chromosome positions

and nearby genes (within 500Kb), are provided in

Additional file 2.

The allele frequency differences among ethnic groups

We sought to explore how these 299 SNPs differed

among ethnic groups and calculated their minor allele
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Fig. 2 The IFS curves of four different methods. The IFS curves show how the 10-fold cross validation accuracies in each ethnic group (y-axis)

change with the number of SNPs (x-axis) using SMO (a), IB1 (b), Dagging (c) and RandomForest (d) methods
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frequency in each ethnic group. In Fig. 3, the top nine

SNPs are plotted. The same plot for all 299 SNPs are

provided in Additional file 3.

As shown in Fig. 3, each ethnic group has its own spe-

cific alleles. For example, the allele frequencies of

rs6023406_G, rs1426654_A, rs1325421_T, rs8049040_G,

rs13432350_T, rs1834640_A and rs3764719_C were very

low, but those of rs1325055_G and rs2973133_A were

very high in the Asian population (CHB/CHD/JPT).

The biological relevance of likely ethnicity-related SNPs

In our study, 299 SNPs, which varied significantly

among different ethnic groups, were identified. Consid-

ering the large number of our SNPs, we selected the 9

SNPs that achieved the highest score in our list. The

SNP with the highest score (0.861) was rs6023406,

which is located in the intron region of the DOX5 gene.

As Tabassum R and his colleagues reported, DOX5 was

a susceptibility gene for type 2 diabetes [58, 59]. Further,

we know that the risk of type 2 diabetes varied greatly

among Asian races and European ethnic groups [60, 61].

Globally, some regions, such as South Asians, Pacific Is-

landers, Latinos, and Native Americans, have a higher

likelihood of developing type 2 diabetes [62]. Although

the link between the different risk factors of type 2 dia-

betes and DOX5 was unclear, our findings might offer

clues to answer this question.

rs1426654, which is a coding SNP that scores 0.581

and ranks 2nd in our analysis, was located on chromo-

some 15, where the G- > A transition changes p.A111T

in the SLC24A5 protein. Lamason RL et al. revealed that

SLC24A5 affects pigmentation in zebrafish and humans

[63]. Recently, Wei A et al. identified SLC24A5 as a can-

didate gene for nonsyndromic oculocutaneous albinism

(OSA) [64]. Interestingly, Mikiko S and his group in-

vestigated the allele frequency of rs1426654 in Chinese,

Sinhalese and Tamils from Sri Lanka, Uygurs, Europeans,

and Xhosans (Africans) from South Africa, and Ghanaians

using polymerase chain reaction-restriction fragment length

polymorphism. They found that the A nucleotide was

predominant in the European population but exhibited low

levels in the Asian population [65]. Notably, another top-

ten SNP rs1834640 (6th place, with a score of 0.436) is lo-

cated 21327 bp upstream of SLC24A5. Intriguingly,

rs1426654 and rs1834640 had highly similar distribution of

minor allele frequency among the 9 ethnic groups, which

also implied the potential synergistic function of the two

SNPs. However, the detailed relationship between

rs1426654 (or rs1834640) and pigmentation still needs

more experimental evidence.

rs1325421, the 3rd SNP, which scored 0.515 in our

analysis, is located downstream from the PREP gene.

PREP could reportedly play an important role in many

biological processes, such as the maturation and degrad-

ation of peptide hormones and neuropeptides, learning

and memory, cell proliferation and differentiation, and

glucose metabolism [66]. Considering the multiple func-

tions of PREP, it might be altered by rs1325421 and thus

manifest different characteristics among different

populations.

rs8049040, which ranked 4th place in our data and is

located on chr15:48392415, is nearest to gene ZNF23,

which was widely reported among multiple types of can-

cers, including liver and ovarian cancer [67–69]. Inter-

estingly, 2 other SNPs in our top-ten list were related to

cancers. One, rs1325055, is an SNP that ranked in 7th

place and is located downstream of the FAM135B gene.

Song Y. et al. identified the mutation on FAM135B in

esophageal squamous cell cancer, which implied a bio-

logical function of FAM135B in cancer [70]. The other

SNP was rs3764719, ranked in 8th place and located in

Rbm38, which is a target of the p53 family and could

modulate p53 expression via mRNA translation [71].

Xue JQ et al. found that Rbm38 could act as a tumor

suppressor in breast cancer [72]. Furthermore, p53 de-

ficiency was common among many types of cancers

[73, 74]. In contrast, it is reported that the risk of sev-

eral cancers, including breast cancer, colorectal cancer,

liver cancer and lung cancer, varied among different

ethnic groups [75, 76]. Nevertheless, the underlying

Table 2 The best predictive performance of the different methods

Method #SNP ASW CEU CHB/CHD/JPT GIH LWK MEX MKK TSI YRI Total

SMO 2192 0.932 0.921 1.000 1.000 0.926 0.945 0.987 0.724 0.994 0.955

IB1 2413 0.757 0.943 1.000 0.930 0.213 0.863 0.795 0.483 1.000 0.838

Dagging 186 0.338 0.964 1.000 0.988 0.383 0.808 0.968 0.345 0.994 0.840

RandomForest 75 0.459 0.900 0.993 0.884 0.543 0.74 0.853 0.345 0.931 0.815

Table 3 The predictive performance of the SMO method in the top 299 SNPs in the training and independent test dataset

Dataset ASW CEU CHB/CHD/JPT GIH LWK MEX MKK TSI YRI Total

Training (10-fold cross validation) 0.865 0.836 1.000 0.977 0.723 0.904 0.968 0.644 0.919 0.901

Independent test 0.846 0.760 1.000 1.000 0.688 1.000 0.786 0.800 1.000 0.895
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mechanism leading to the disparities of cancer inci-

dence remain unclear. The differences of the SNPs

that were on or near cancer-related genes may shed

light on the variation.

rs13432350, an SNP that ranked 5th in our analysis, is

located in EXOC6B. As Evers.C et al. reported, EXOC6B

might play an important role in the molecular pathogen-

esis of intellectual disabilities [77]. Intellectual disabilities

affect approximately 2–3 % of the general population,

whereas approximately 95 million cases were due to un-

known causes [78]. In contrast, the highest incidence of

intellectual disability was observed in low- and middle-

income countries [79]. Although economic disparities

should be considered, differences in SNPs such as

rs13432350 may also contribute to the varied risks of in-

tellectual disability.

rs2973133, the 9th-ranked SNP in our data, is located

upstream of PRR16 gene. Liu X. et.al reported that dys-

function of PRR16 could lead to Coronary Artery Dis-

ease (CAD) [80]. In fact, the incidences of CAD varied

significantly among different races; for example, almost

60 % of the world’s cardiovascular disease burden occurs

in South Asia, although it only accounts for 20 % of the

world’s population [81]. However, the potential under-

lying reasons were not fully answered, and our finding

may provide an alternative explanation for the varied

risks of CAD.

In addition to the top-nine SNPs on our lists, several

other SNPs have a potential relationship with the varied

characteristics among ethnic groups, such as

rs12913832, an SNP ranked in 42nd place, which was

scored as 0.386 and is located within an intron of the

non-pigment gene HERC. Visser M et al. found that

rs12913832 modulates human pigmentation by attenuat-

ing chromatin-loop formation between a long-range en-

hancer and the OCA2 promoter [82]. Mengel FJ et al.

investigated rs12913832 in 395 randomly selected Danes

and found that rs12913832 affects eye color [83]. In

addition, Amos C et al. found that the 50 % variability in

eye color is associated with variations in the rs12913832

SNP based on their GWAS, in which 1804 melanoma

cases and 1026 controls were used [84]. Above all, the

results of our analysis could enhance our understanding

of the mechanisms of different characteristics among

ethnic groups.

The biological relevance of nearby genes

In addition to exploring the SNPs directly, we analyzed

the functions of 1,397 genes located within a 500 kb

range of the 299 SNPs using DAVID. The results are

shown in Table 4. The most enriched gene ontology

(GO) biological process (BP) terms were “GO: 0031424

keratinization” and “GO: 0030216 keratinocyte differen-

tiation” [85]. During keratinization, keratinocytes
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Fig. 3 The minor allele frequency of the top nine SNPs in each ethnic group. The minor allele frequencies of the top three SNPs, rs6023406 (a),

rs1426654 (b), rs1325421 (c), rs8049040 (d), rs13432350 (e), rs1834640 (f), rs1325055 (g), rs3764719 (h), rs2973133 (i) in the nine ethnic groups

were plotted. Each ethnic group has their own specific alleles. For example, the allele frequencies of rs6023406_G, rs1426654_A, rs1325421_T,

rs8049040_G, rs13432350_T, rs1834640_A and rs3764719_C were very low, but those of rs1325055_G and rs2973133_A were very high in the

Asian population (CHB/CHD/JPT)

Huang et al. BMC Genomics  (2015) 16:1093 Page 7 of 10



become cornified as keratin protein is incorporated into

longer keratin intermediate filaments; they eventually

undergo apoptosis and become fully keratinized [86].

Keratinization is indispensable to the development of

the epidermis and for hair growth [87]. Therefore, we

speculated that the various SNPs may contribute to the

differences in hair or skin characteristics among popula-

tions by affecting the critical genes related to

keratinization. Furthermore, some diseases were also re-

lated to keratinization, such as pachyonychia congenita

(PC), dyskeratosis congenita (DC), and Darier’s disease

[88–90]. Although no population pattern about these

diseases have been reported, our results indicated poten-

tial possibilities for the population distribution of these

diseases. In addition to keratinization, the “GO:0030855:

epithelial cell differentiation” and “GO: 0009913 epider-

mal cell differentiation” were included at the top of our

list. Several skin disorders, such as epidermolytic hyper-

keratosis and epidermolysis bullosa simplex, occur if

epidermis development is disrupted [91]. The most

enriched GO cellular component (CC) term was “GO:

0001533 cornified envelope”. To our knowledge, the cor-

nified envelope is a structure that forms beneath the

plasma membrane in terminally differentiating stratified

squamous epithelia, and it is essential for effective phys-

ical and water barrier function in the skin [92]. We sur-

mised that these components could contribute to these

differences, especially those that are directly or indirectly

related to skin color diversity among populations.

Conclusions

Above all, we learned that the various SNPs could con-

tribute to different characteristics, including skin color,

eye color and the risk of diseases, especially skin-related

disorders, among different populations. Our study re-

vealed a large spectrum of SNPs that could facilitate our

understanding of the different characteristics between

populations and the underlying mechanisms of molecu-

lar evolution.
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