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Genetic Differences in Drug Disposition

D. Gail May, MD

Genetic polymorphisms of drug metabolizing enzymes are well recognized. This review

presents molecular mechanisms, ontogeny and clinical implications of genetically deter-

mined intersubject variation in some of these enzymes. Included are the polymorphic

enzymes N-acetyl transferase, cytochromes P4502D6 and 2C, which have been well de-

scribed in humans. Information regarding other Phase I and Phase II polymorphic path-

ways, such as glutathione and methyl conjugation and alcohol and acetaldehyde oxida-

tion continues to increase and are also discussed. Genetic factors effecting enzyme activ-

ity are frequently important determinants of the disposition of drugs and their efficacy

and toxicity. In addition, associations between genetic differences in these enzymes and

susceptibility to carcinogens and teratogens have been reported. Ultimately, the applica-

tion of knowledge regarding these genetic factors of enzyme activity may guide medical

therapy and minimize xenobiotic-induced disease.

T he recognition of the importance of intersubject

variation in drug metabolism has increased mark-

edly over the past 20 years. Intersubject variation

may be genetically determined, environmentally in-

duced, or more commonly, a combination of both.

Pharmacogenetics is the study of the inherited traits

that are responsible for unusual responses to drugs or

xenobiotics. The inherited traits determining drug

disposition may be either genetic polymorphisms,

defined as Mendelian traits that exist in the popula-

tion in at least two phenotypes neither of which is

rare, or rare single gene defects. Genetically deter-

mined variation in drug disposition leads to re-

sponses that may be immediate, subacute, or de-

layed and may be either positive or adverse. The

clinical consequences of genetic polymorphisms in-

cludes increased risk of adverse drug reactions, a

lack of efficacy, or an association with disease states.

The identification of patients with genetic predispo-

sition using history, screening tests, and family stud-

ies may allow a priori dosage adjustment, alterations

in time scheduling of therapeutic monitoring, or the

use of drug alternatives. In this review, the Cy-

tochrome P450 oxidative polymorphisms and N-ace-

tylation are detailed as the best studied examples of
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phase I and phase II genetic polymorphisms. Other

genetically polymorphic pathways, including gluta-

thione and methyl conjugation and alcohol and acet-

aldehyde oxidation, as well as the genetic polymor-

phism of aryl hydrocarbon hydroxylase induction,

are also briefly described. Maturation of the polymor-

phic pathways is summarized, and examples of re-

sulting kinetic, therapeutic, and toxic differences are

presented. Data regarding potential differences in

susceptibility to xenobiotic-induced diseases, in-

cluding carcinogenesis and teratogenesis are out-

lined.

THE EVOLUTION OF KNOWLEDGE

Drug metabolism polymorphisms have been typi-

cally discovered after observations of marked inter-

subject differences in drug response during preclini-

cal or clinical trials. Subsequently, definitive phar-

macokinetic studies in which individuals were given

an oral dose of probe drug and either plasma or urine

collected were performed. For urinary sampling, the

ratio of the total urinary yield of the parent drug over

8 hours to the total urinary yield of metabolite was

calculated as the metabolic ratio. Next, the meta-

bolic ratios of large populations were evaluated us-

ing either frequency histograms or normit plots. Bi-

modal distributions suggested two populations of

phenotypes, termed extensive and poor metabo-

lizers. Family studies confirmed the genetic nature

of phenotypic bimodality. For some of the genetic

polymorphisms, the responsible enzymes have been
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isolated, and the antibodies subsequently raised

have permitted studies of substrate specificity.

Utilization of multiple molecular biology tools has

clarified fine details of the structure of some of the

involved genes and the definition of the mutations

causing absent or defective proteins, allowing the de-

velopment of simple tests to detect these mutations.

An insertion, deletion, or rearrangement mutation in

either the regulatory or structural sequence of the
gene for a drug-metabolizing enzyme may decrease

intracellular concentration or eliminate the enzyme

protein or may structurally alter the enzyme with

consequent changes in enzyme function. A defect in

transcription, RNA processing or RNA stability may

occur. At the protein level, either a decreased intra-

cellular concentration or total absence of the protein

may occur secondary to a diminished rate of synthe-

sis or an accelerated degradation. Alternatively,

there may be a normal intracellular concentration of

a mutant enzyme protein. Finally, an enzyme may

be structurally intact, but exhibit decreased affinity

or maximal velocity for substrates or a change in

stereoselectivity.

N-ACETYLATION (N-ACETYLTRANSFERASE-2)

Drugsand Other EnvIronmental Chemicals Subject

to PolymorphIc Acetylation In Humans

Hydrazines
Isoniazid

Hydralazine
Phenelzine

Acetylhydrazine
Hydrazine

Arylamines

Procainamide

Dapsone

Sulfamethazine
Sulfapyridine
Aminoglutethimide

Carcinogenic arylamines
Benzidine

2-aminofluorene
$-naphthylamine

4-aminobiphenyl
Drugs metabolized to amine

Sulfasalazine
Nitrazepam

Clonazepam

Caffeine

Acebutolol

The earliest described and most widely recognized

genetic polymorphism of drug metabolism is that of

N-acetylation. This polymorphism affects the dispo-

sition of many diverse xenobiotics (Table I). Using

one of several probe compounds, including isonia-

zid, sulfadimidine, procainamide, caffeine, dapsone,

sulfamethazine or isoniazid, individuals may be sep-

arated into either fast or slow acetylator phenotypes.

About half of Caucasian populations are slow acety-

lators. Compared with fast acetylators, slow acetyla-

tors achieve a higher parent drug blood concentra-

tion after the usual therapeutic dose of acetylated

drugs and are more likely to develop unwanted ef-

fects. These toxic effects include sulfasalazine-in-

duced hemolysis and hydrazine or arylamine-in-

duced peripheral neuropathy and lupus erythema-

tosus.1 The relationship between acetylator

phenotype and therapeutic response is less clear;

however, on the basis of higher cure rates in slow

acetylators,5 it has been advocated that rapid acety-

lators with pulmonary tuberculosis receive twice

weekly isoniazid, while slow acetylators are treated

once a week.

Two enzymes catalyzing N-acetylation, N-Acetyl-

transferase I and 2 (NAT1 and NAT2), are expressed

in human liver, and both show selectivity for aryl-

amine substrates.6 NAT1 has higher affinity and sub-

strate turnover for monomorphic arylamines, such

as p-aminosalicylic acid and p-aminobenzoic acid,

while NAT2 isoforms have higher affinity for the

polymorphic arylamines substrates, such as sulfa-

methazine and procainamide. Thus, the NAT2 en-

zyme is responsible for the genetic polymorphism of

N-acetylation. The detailed human tissue distribu-

tion of NAT1 and NAT2 remains to be determined,

but it seems likely from the rabbit model that NAT2

is present in liver and gut, while NAT1 is present

more widely.7 From the arylamine substrate specific-

ity of human peripheral blood cells, the acetylation

enzyme present in blood is almost certainly NAT1 8,9

The enzyme NAT2 exists as two isoforms, NAT2A

and NAT2B. In genetically slow acetylators, the liver

content of both NAT2A and NAT2B is markedly re-

duced.1#{176}

NAT1 and NAT2 are encoded at two genetic loci

on chromosome 8.11 A lack of correlation of NAT1

and NAT2 enzyme activities in the human liver cy-

tosol suggests that the two genes are independently

regulated.6 Isolation of the DNA and corresponding

cDNA for the polymorphic NAT2 locus has been

well described.11-13 Using PCR and NAT2 specific oh-

gonucleotide primers, at least 4 alleles, one fast (Fl)

and 3 slow (SI, S2, and S3) may be present at the

polymorphic NAT2 locus.14’15 The fast allele in both

heterozygotes and homozygotes produces the fast

phenotype. In homozygotes, the three slow alleles

are associated with slow acetylation in vivo without

significant difference in the resulting acetylation ac-



Beta Blockers

Propranolol

Metroprolol
Timolol

Bufuralol
Antiarrhythmics

Sparteine

N-propylajmaline
Propafenone
Flecainide
Encainide

Tricyclic antidepressants
Nortnptyline
Desipramine

Climipramine
Imipramine
Amitriptyline

Neuroleptics

Perphenazine

Thioridazine
Miscellaneous

Codeine

Debrisoquine
4-Hydroxyamphetamine

Phenformin

Amiflamine

Perhexiline
Dextromethorphan

Guanoxan
Indoramin

Methoxyamphetamine
Methoxyphenamine
Tomoxetine
Ethylmorphine
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tivities among the three alleles. In either autopsied

livers or in transfected cells, the mRNA levels deter-

mined by the three mutant alleles are not different

from mRNA levels from the fast Fl allele, suggesting

that the difference in NAT activity is mainly deter-

mined by the amount of enzyme protein.15 In Cauca-

sians, the most common allele at the polymorphic

NAT locus in Caucasians is the Si which has a fre-

quency of 45%,14 In the Japanese population, the ab-

sence of this allele in association with a 68% fre-

quency of the Fl allele explains the markedly lower

incidence of slow acetylation (6.6%) in this popula-

tion.14’16

DEBRISOQUINE/SPARTEINE (CYTOCHROME

P450 2D6)

The genetic polymorphism associated with debriso-

quine and sparteine metabolism is the first and most

fully described genetic polymorphism of a Cy-

tochrome P450 enzyme. The observation of unusual

subject sensitivity to the hypotensive effects of de-

brisoquine led to this discovery.17 Contempor-

aneously, German investigators identified a poly-

morphism from observations of unusual neurologic

side effects in some patients treated with the oxyto-

cic agent sparteine.18 From cosegregation of poor me-

tabolizers19 and from competitive inhibition stud-

ies,2#{176}these polymorphic responses were shown to re-
flect differences in the activity of the same

Cytochrome P450 enzyme, currently labeled Cy-

tochrome P450 2D6 (CYP2D6). Using the metabolic

ratio of parent drug to its 4-hydroxymetabolite, in-

vestigators separated individuals into extensive and

poor metabohizer phenotypes and found 7-10% of

Caucasian populations deficient in the activity of

this enzyme.21’22

Purification and characterization of the responsi-

ble enzyme led to studies that confirmed the cosegre-

gation of debrisoquine and sparteine, bufuralol, en-

cainide, and propranolol and allowed the develop-

ment of specific polyclonal antibodies, which has

allowed substrate specificity studies.23 The large

number of drugs that are oxidized by CYP2D6 (Table

II) and the 10-20 fold difference in disposition of

some of these substrates account for the tremendous

clinical interest in this polymorphism. Multiple

drugs lack cosegregation with the debrisoquine poly-

morphism (Table III). Although criteria have not

been formed to structurally assess whether a com-

pound is metabolized by this enzyme a priori, all

CYP2D6 metabolized substrates have a basic nitro-

gen and are oxidized at a site within 0.5-0.7 nm of

this basic nitrogen.24 Not only does the polymor-

TABLE Ii

Drugs That Undergo Oxidation

by Cytochrome P450 2D6

phism alter the rate of metabolism, the stereoselecti-

vity of CYP2D6 may also be modified. In extensive

metabohizers, inactive R-metoprolol is metabolized

faster than the active S-enantiomer, whereas metabo-

lism is not stereoselective in poor metabolizers.25 For

some substrates, such as imipramine, the disposition

of CYP2D6 substrates may exhibit nonlinear kinetics

in extensive metabohizers but linear kinetics in poor

metabohizers.26 Phenotypic differences may be re-

duced by functional impairment of the enzyme in

extensive metabolizers. For example, quinidine is a

competitive inhibitor that almost completely abol-

ishes the in vivo metabolism of debrisoquine.27

Hence, a genetic extensive metabolizer taking quini-

dine would phenotypicahly appear to be a poor meta-

bolizer. Other compounds that inhibit debrisquine

metabolism in viva include thioridazine, levomepro-

mazine, and propafenone.28’2#{176} Compounds that com-

petitively inhibit enzyme activity in vitro which
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TABLE III

Drugs That Are Not Eliminated

by Cytochrome P450 2D6

Alfentanil

Acetanilide
Amobarbital

Antipyrine

Carbamazepine

Carboxymethylcysteine
Cholesterol
Cyclosporine

Desmethyldiazepam

Diazepam

Ethinyloestradiol
Ethosuximide
Haloperidol

Maprotiline

Mephenytoin

Methaqualone

Midazolam
Niledipine
Phenytoin

Pinacidil

Prazosin

Propranolol

Quinidine

Theophylline

Tolbutamide

may be in viva inhibitors include important drugs

such as haloperidol, fiuphenazine and trifluperidol,

metoclopramide, apomorphine, phenylcyclopropy-

lamine, diphenhydramine and nicardipine and th

estrogen norethindrone acetate.3#{176}These compounds

likely bind to CYP2D6 and might convert a geneti-

cally extensive metabohizer to a phenotypic poor

metabohizer. Inducers of CYP2D6, such as antipyrine

and rifampicin, will exaggerate the differences ob-

served in metabolic ratios between extensive and

poor metabohizers, but have minimal effect on drug

elimination.31

The debrisoquine/sparteine polymorphism is

caused by mutations of the CYP2D6 gene, which is

part of a gene cluster on chromosome 22 that in-

cludes several related pseudogenes.32 Analysis of ge-

notype may be performed using allele-specific prob-

ing of PCR amplified DNA. Restriction fragment

length polymorphism (RFLP) analysis after digestion

with the encfonuclease XbaI usually results in frag-

ments of 29, 44, and 11.5 kb length,33 or in a smaller

number of individuals, 16+9 kb.34 Unfortunately,

RFLP analysis does not distinguish between exten-

sive and poor metabolizers because a 44 kb and a 29

kb fragment may occur in both. A 29 kb fragment

may represent either the wild type (normal) allele or

may represent mutant alleles, called 2D6(A) and

2D6(B). The 2D6(A) mutant allele features a deletion

in exon 5, while the 2D6(B) mutant allele contains

multiple mutations leading to a splicing defect.35

Some individuals with the 2D6(B) mutation and

splicing defect, have an additional gene in the cluster

that renders a 44 kb fragment instead of a 29 kb frag-

ment.36 In Chinese populations, a large segment of

the population has a 44 kb fragment associated with

the gene insertion, but without the splicing defect.37

These individuals are extensive metabolizers in con-

trast to Caucasians with a 44 kb fragment who are

poor metabohizers. The 2D6(C) mutant allele in-

volves deletion of 3 base pairs in exon 5, resulting in

a single amino acid deletion in the protein. The pro-

tein produced appears to function, but at markedly

reduced levels.38 In individuals with the 2D6(D) mu-

tation, the entire gene is deleted, resulting in an 11.5

kb fragment.39 Using PCR and RFLP analysis, these

four mutant alleles have been shown to account for

over 95% of deficient metabohizers of debrisoquine

with approximately 43, 31, 14 and 9% of the mutant

alleles in poor metabohizers associated with the

29(B), 44 kb, 11.5 and 29(A) fragments, respectively.40

Using a nested primer strategy, allele specific ohigo-

nucleotide probing of PCR amplified DNA has

correctly predicted 100% of extensive metabohizers

and 86%-97% of poor metabohizers in two large inde-

pendent population studies.41’42

The frequency of the poor metabohizer debriso-

quine phenotype appears to be markedly lower in

non-Caucasian populations. Conflicting studies have

reported and 0% of black Nigerians to be poor

metabohizers.44 In 80 Ghanaians, no individuals were

poor metabohizers of sparteine while 6% were poor

metabohizers of debrisoquine.45 Similarly, black

South Africans exhibited no evidence of poor metab-

olism for sparteine.46 African American children had

a lower incidence of the poor metabolizer phenotype

for debrisoquine (1.9%) compared with Caucasian

children (7.7%).47 The incidence of poor metabolizers in

Orientals, including Japanese, Thai, Malaysian, and Chi-

nese populations, appears to be 0_2%.4852

A low incidence of the debrisoquine polymorphism

has been reported in other ethnic groups of Mongo-

lian origin with 3.2% and 0% of Greenlanders and

Amerindians phenotyped as poor metabolizers, re-

spectively.53’54 The regulation of sparteine and debri-

soquine oxidation may be different in different eth-

nic groups.45’55

PCR techniques to determine CYP2D6 genotypes

are highly accurate41’42 and genetic influences ac-

count for 0.79 of variation in the activity of the debri-

soquine enzyme, with non-genetic factors such as

age, smoking, and alcohol use having little or no im-

pact on enzyme activity.48’56 Thus, PCR determina-
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tions of genotype may replace debrisoquine pheno-

type studies for some purposes. Genotyping may be

useful when subjects are already taking inducers or

inhibitors which alter phenotype or when giving a

probe compound or collecting total urine may be

medically or ethically difficult. Pregnant, pediatric,

and geriatric patients may be examples of the latter;

however, information regarding hormonally or de-

velopmentally induced alterations in enzyme activ-

ity must be considered. For instance, during preg-

nancy, the hepatic clearance of metoprolol, an anti-

hypertensive metabolized by CYP2D6, increases
with resulting plasma concentrations being only

12% to 55% of those seen in the nonpregnant state.57

Thus, although genotyping may be easier to perform

than phenotyping, the application to specific clinical

questions may be less direct.

MEPHENYTOIN HYDROXYLATION

(CYTOCHROME P4502C)

The observation of unusual clinical sensitivity to a

low dose of the anticonvulsant drug mephenytoin

led to the discovery of this genetic polymor-

phism.58’59 Mephenytoin is a chiral compound that

displays stereoselective metabolism in vivo. In nor-

mal or extensive metabolizers, S-mephenytoin is ox-

idized to 4’-hydroxymephenytoin, which is then ex-

creted as the glucuronide conjugate over about 4

days, while the R-enantiomer is preferentially N-de-

methylated and slowly excreted with only about

10% excreted in 14 days.6#{176}Thus, in the normal indi-

viduals, the clearance of the S-enantiomer is about

200-fold greater than the R-enantiomer.6#{176} In geneti-

cally deficient subjects, this stereoselectivity is vir-

tually absent and both enantiomers undergo demeth-

ylation and slow excretion. The mephenytoin poly-

morphism and this change in stereoselective

metabolism is generally described using 8-hour uri-

nary R/S mephenytoin ratios with extensive and

poor metabolizers having very low ratios and ratios

of 1 or more, respectively. Poor metabolizers of me-

phenytoin are characterized by a high Km and a low

Vmax for S-mephenytoin hydroxylation.24 This is

consistent with results of in vitro studies using hu-

man autoantibodies suggesting that the mepheny-

tom hydroxylation deficiency is caused by a struc-

tural change leading to a functionally altered en-

zyme.61 Family studies suggest the defect in

S-mephenytoin hydroxylation is consistent with au-

tosomal recessive inheritance.6263 The enzyme re-

sponsible for mephenytoin hydroxylation has not

been identified; however, it is believed to belong to

the Cytochrome P4502C family. Although 4-hydrox-

ylation of R-mephenytoin is catalyzed by 2C9, no ac-

tivity has been observed against S-mephenytoin.M

A small number of other drugs cosegregates with

mephenytoin. Mephenytoin hydroxylase catalyzes

the 3’-hydroxylation of hexobarbital.65’66 The oxida-

tion of mephobarbital cosegregates with mepheny-

tom hydroxylation,67 and the incidence of adverse

reactions to mephobarbital is similar to the inci-

dence of slow metabolizers.4969 Because tolbutamide

hydroxylase copurified with mephenytoin hydroxy-

lase, tolbutamide oxidation was believed to cosegre-

gate with mephenytoin hydroxylation. However, no

cosegregation of poor metabolizers occurs,7#{176}and tol-

butamide is oxidized by both CYP2C8 and C9, nei-

ther of which metabolize S-mephenytoin. Mepheny-

tom 4’hydroxylation is inhibited in vitro by cortisone

and ethinyloestradiol and weakly by cortisol, estra-

diol, adrenosterone, and testosterone.71 Competitive

inhibition occurs with ethotoin, mephobarbital,

methsuximide, phensuximide, and high doses of

warfarin.72 Other commonly used anticonvulsants

such as ethosuximide, phenobarbital, phenytoin, di-

azepam, and primidone do not competitively in-

hibit.72 An aryl residue alpha to the carbonyl carbon

of an N-alkyl lactam in a 5 or 6 membered ring is a

minimal requirement for interaction with the 4’hy-

droxylase.

The defect in S-mephenytoin metabolism is found

in about 2-5% of Caucasian populations73’74 and 18-

23% of Japanese populations.49’5#{176} In Chinese popula-

tions, studies report 5-17.4% poor metabolizers.5074

In contrast, no poor metabolizers were identified in

90 Panamanian Amerindians.75 The relative impor-

tance of genetic and non-genetic influences on me-

phenytoin hydroxylase is unknown; however,

among extensive metabolizers, clearance of S-me-

phenytoin varies by more than an order of magni-

tude, suggesting non-genetic influences are impor-

tant. Age may have an influence on mephobarbital

hydroxylation, which cosegregates with mepheny-

tom oxidation.76 The suggestion of an age specific

effect of gender overlooked likely confounding from

oral contraceptive use.76’77

OTHER CONJUGATION POLYMORPHISMS:

GLUTATHIONE AND METHYL TRANSFERASES

Glutathione S-transferases (GSTs) comprise a family

of proteins that conjugate electrophilic molecules

with glutathione to render them less toxic. The mul-

tiples forms of GST are divided into three classes,

acidic, neutral and basic, based on their pH in isoelec-

tric focusing. Each class shares significant physical

and immunologic properties and substrate specifici-
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ties. Three genetic bc!, GSTI, GST2, and GST3, en-

coding human liver GST isoenzymes have been

characterized.78#{176} Of these, the GSTI locus, which

encodes for the neutral mu form, appears to be poly-

morphic with three possible alleles, GSTI-0 (null),

GST1-l and GST1-2.81 Although mu GST is a rela-

tively small contributor to total GST activity, this

polymorphism is of interest because of the relatively

high specific activity of the mu class for epoxides.82

The null variant is found in every ethnic group

tested thus far with a gene frequency ranging from

43 to 82%.78.83 Individuals who are homozygous for

the null allele have significantly lower total GST ac-

tivity79 and lack any immunologically detectable

GSTI isozyme.TM The other possible alleles at the

GST1 locus, GST1-i and GST1-2, have been cloned

and sequenced; however, the localization of the hu-

man mu class genes has not been resolved.85’86

Methylation, an important pathway for many

drugs, neurotransmitters and xenobiotics, is cata-

lyzed by a number of enzymes, two of which exhibit

genetic polymorphism. Thiopurine methyl transfer-

ase (TPMT) and thiomethyl transferase (TMT) have

been identified in the human red blood cell and act

on thiol groups.87.sa TPMT is present in the red blood

cell lysate and catalyzes methylation of 6-thioguan-

in azathioprine and 6-mercaptopurine.8#{176} Segrega-

tion analysis of family studies suggests TPMT en-

zyme activity is controlled by a single locus with two

alleles.#{176}#{176}Eighty nine percent of Caucasians have

high TPMT activity and represent the homozygous

high activity genotype, while 11% have intermediate

activity and are heterozygotes.9#{176} Rare individuals

lack TPMT activity and are homozygous for the low

activity allele. This phenotype distribution yields

low and high activity allele frequencies of 6% and

94%, respectively. The activity of TPMT in the red

blood cell correlates well with the relative activity in

other sites, including the lymphocyte, kidney and

liver.9193 Low levels of activity reflect quantitatively

low enzyme concentrations.92 The biochemical and

physical properties of TPMT are similar in animals

with low and high activity, suggesting a non-struc-

tural polymorphismY’ The other polymorphic

methyl transferase, thiol methyltransferase (TMT),

is membrane bound and catalyzes the methylation of

a number of nonpurine molecules, such as 2-mer-
captoethanol, captopril, and N-acetylcysteine.95 The

biochemical properties of human liver TMT are very

similar to those of human red blood cell TMT. TMT

activity in red blood cells is genetically regulated

with about 98% heritability.97 Fifty-eight percent of

individuals have high activity, whereas 42% have

low activity. Whether genetic variation in red

blood cell membrane TMT parallels the variation of

TMT in other tissues is unknown.

OTHER OXIDATIVE POLYMORPHISMS:
ALCOHOL DEHYDROGENASE AND ALDEHYDE
DEHYDROGENASE

Twin studies suggest that genetic factors play a role

in the threefold intersubject variation observed in

ethanol metabolism.’10#{176} Both alcohol dehydroge-

nase, which oxidizes ethanol to acetaldehyde, and

aldehyde dehydrogenase, which oxidizes acetalde-

hyde to acetate, exhibit genetic polymorphism. Alco-

hol dehydrogenase is a dimeric enzyme whose sub-

unit chains are determined by at least six genetic

loci, of which at least two, ADH2 and ADH3 are poly-

morphic.101 The three possible alleles at the polymor-

phic ADH2 locus determine subunit chains called i,

fl2, and 3, and the two possible ADH3 locus alleles

result in rl and r2 subunit chains (Table IV). These

subunit chains hybridize to form homo or hetero-

dimers which vary markedly in their kinetic proper-

ties. Allele frequencies vary across ethmc groups (Ta-

ble \1J1o2 Isolation, purification and sequencing of

the isoenzymes led to the development of specific

oligonucleotides to detect complementary se-

quences in cDNA libraries. cDNA clones were then

used to detect complimentary sequences in the li-

braries of human genomic DNA, leading to the isola-

tion of genomic clones for each chain. Both polymor-

phic ADH loci have been localized to the long arm of

chromosome 4103 Substrate specificity studies of hu-

man ADH have largely addressed the metabolism of

various alcohols, however, the oxidation of the seda-

tive drug chloral hydrate appears to involve

ADH.’#{176}4’105

There are at least four forms of aldehyde dehydro-

genase (ALDH) whose characteristics and activity

vary substantially.106 The major isoenzyme form re-

sponsible for acetaldehyde oxidation is the mito-

chondrial, low Km form, ALDH2, encoded by the

ALDH2 gene. In Asians and South American Indians,

TABLE IV

Disparity in Alcohol Dehydrogenase lsoenzy

Kinetic Constants Secondary to ADH

Genetic Polymorphism

me

Km(mM)

Allele Enzyme ETOH

V

MIn1

ADH261 0.05

ADH262 fl2f92 0.9
ADH263 3$ 34
ADH3*1 yy 1.0
ADH362 ‘2’2 0.63

9

400
300

87
35

(Data from Bosron and Li, 1987).
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TABLE V

Frequency of Polymorphic ADH Alleles
Across Ethnic Groups

ADH3

ADH2 Alleles Alleles

1 21 2 3

Caucasians >95 <5 <5 50 50

Japanese 35 65 <5 95 5

African Americans 85 <5 15 85 15

a null allele at this locus causes impaired elimination

of acetaldehyde and the flushing reaction following

ingestion of ethanol.107 The null allele is dominant,

and heterozygotes exhibit ALDH deficiency.108 The

ALDH2 gene has been localized to chromosome 12,109

and the null allele encodes a single substitution of

lysine for glutamic acid.11#{176}

POLYMORPHISM OF ENZYME INDUCTION:

THE Ah RECEPTOR

Cytochrome P450 1AI (CYPIAI), or aryl hydrocar-

bon hydroxylase, catalyzes the conversion of many

procarcinogens into active carcinogens and is in-

duced by various polycyclic aromatic hydrocarbons.

CYPIAI induction is a multistep process which has

been elucidated using murine models.”1”4 The first

step requires the presence of a cytosolic receptor

protein, the Ah receptor, whose presence is deter-

mined by a genetic polymorphism at the Ah locus.

The inducing agent binds to this Ah cytosolic recep-

tor; subsequently, the inducer-receptor complex

gains chromatin binding properties. The inducer-re-

ceptor complex binds to regulatory elements up-

stream from the CYP1AI coding site. The Ah recep-

tor has been refractory to purification; however, it is

thought that at least two proteins are involved.115

The molecular mechanisms and the epidemiology of

Ah induction in humans is currently under investi-

gation. Consistent with animal models demonstrat-

ing the genetic basis for Ah inducibility,”5’11#{176} induc-

tion in human lymphocytes appears trimoidal with

segregation analysis strongly suggestive of a single

diallelic locus determining the response.”7

DEVELOPMENTAL ASPECTS OF GENETICALLY

POLYMORPHIC PATHWAYS

Although characterization of the ontogeny of the ge-

netically polymorphic pathways is incomplete, sev-

eral in vitro studies of human fetal liver tissue and a

limited number of in viva clinical studies have been

reported. Acetylation of the polymorphic NAT2 sub-

strate 7-clonazepam was absent in human fetal liver

at 11 and 14 weeks, with some activity starting at 16

weeks.118 However, at gestational ages up to 22

weeks, NAT2 activity is less than 1% of adult activity

and bimodality is not detectable. CYP2D6 is not ac-

tive early in gestation, as codeine and dextromethor-

phan oxidation also do not occur in human fetal liver

at 14-24 weeks gestation.119 An increase in immuno-

chemically detected protein occurs during the first

postnatal week, irrespective of gestational age.120’121

The increase in protein is associated with the onset

of dextromethorphan 0-demethylation and is pre-

ceded by a rise in CYP2D6 mRNA, suggesting that

regulation early is life is primarily at the transcrip-

tional level. In vitro evaluation of a single human

fetal liver suggests that hexobarbital hydroxylation,

which cosegregates with mephenytoin hydroxyla-

tion, does not occur during mid-gestation.122 This

finding is consistent with the lack of hexobarbital

oxidation observed in sheep fetuses between 12 and

20 weeks.122

Glutathione transferase is present in the fetus as

early as 11 weeks.123 Fetal hepatic GST activity is

about two-thirds of adult activity, and non-hepatic

fetal activity may actually exceed adult activ-

ity.124’125 The polymorphic mu form of glutathione

transferase has not been easy to observe in the fetus

before 30 weeks gestation, but does increase steadily

after that time with normal adult values reached bate

in infancy.126 Other GST isoforms, alpha and pi gluta-

thione transferase, are similar to the corresponding

adult forms.127’128 TPMT and TMT activities are pres-

ent at in human fetal liver at mid-gestation, but the

activities are about one third and one sixth that of

adult activity, respectively.129’130 Interestingly, fetal

renal TPMT is about twice that of adult hepatic

TPMT. For TMT activity, no correlation is observed

between fetal hepatic activity and gestational age,

suggesting that late antenatal or postnatal ontogeny

is important.129

ADH activity is present in human fetal liver at

about 2 months, but at about 3% of adult activity.131

Human hepatic ADH activity continues to increase

during gestation and early childhood with adult ac-

tivity reached by age 5. The ontogeny of hepatic

ADH involves a sequential initiation of expression of

the genetically regulated ADH isoenzymes with a

chain production beginning in the first fetal trimes-

ter, chains in the second trimester and r chains

after birth.”2 The temporal expression correlates

with sequential promoter activation of the corre-

sponding ADH alleles by hepatic nuclear factor 1

(HNF-1), CCAAT/enhancer-binding protein (C/

EBPa) liver activator protein (LAP) and D-element

binding protein (DBP).133
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In vivo phenotype studies of the genetically poly-

morphic pathways in children have been delayed

compared with adult studies, partially rebated to the

potential toxicity of the probe substrates classically

used in adult studies. Ethically, a probe for use in

pediatric patients should be an innocuous, easily ad-

ministered compound likely to be taken by a large

number of children with a phenotype determination

that is noninvasive, either using urine or salivary

sampling. Dextromethorphan, a common ingredient

in nonprescription cough medicine, is oxidized by

CYP2D6 to dextrophan, and the urinary metabolic

ratio of the parent drug to its metabobite yields pheno-

types that totally cosegregate with phenotypes deter-

mined with debrisoquine.”4’135 Caffeine, commonly

consumed by children in soft drinks, undergoes

complex metabolism; however, the urinary ratio of

two metabobites, 5-acetybamino-6-formylammno-3-
methyluracil (AFMU) and 1-methylxanthmne (1X)

cosegregates with acetylation phenotypes that were

determined using sulfamethazine.136 Evans and col-

leagues determined CYP2D6 oxidation and acetyba-

tion phenotypes in 26 children (ages 3-21, median 10

yr) using dextromethorphan cough syrup and caf-

feine-containing cola.137 Unfortunately, in the urine

samples of many children, dextromethorphan could

not be detected. Although the extensive debriso-

quine oxidation phenotype could be assigned, quan-

titative metabolic ratios could not be determined.

The distribution of N-acetylation and debrisoquine

ratios in children were similar to those of adult popu-

lations. Fifty-eight percent of children were fast acet-

ybators and 8% (2/26) children were poor metabo-

lizers of dextromethorphan. A comparable incidence

(6.4%) of dextromethorphan poor metabolizers was

reported in 31 healthy children, ages 5_16.138

In a study of the maturation of caffeine metabolism

in 14 infants, the oldest infant (age 588 days) was a

fast acetybator, while the remaining infants (ages 19-

434 days) were slow acetybators.139 The phenotype of

a single patient studied longitudinally changed from

slow to fast between 54 and 196 days of age.”9 These

results are consistent with the fetal liver data and the

increased incidence of slow acetybator phenotype in

neonates (83%).140 The mechanism underlying slow
acetybation at very early ages is unknown and may

involve insufficient Coenzyme-A synthesis in addi-

tion to NAT2 maturation.

SIGNIFICANCE OF DRUG METABOLISM

POLYMORPHISMS: PHARMACOKINETICS,
TOXICITY, AND EFFICACY

Those authors questioning the clinical significance

of genetic polymorphisms141 should remember that

genetic polymorphisms of oxidative drugs were dis-

covered because astute investigators wondered

about the mechanisms underlying unusual adverse

side effects. Genetic polymorphism may result in ac-

cumulation of the parent drug, reduced formation of

an active metabolite, accumulation of an active me-

tabobite or accumulation of the parent drug and the

active metabobite. The determinants of the extent of

pharmacokinetic consequences include the amount

of hepatic clearance and the relative importance of

the defective pathway. In addition to the magnitude

of genetically-induced differences in drug disposi-

tion, the quantity of clinical use, pharmacodynamic

properties of a drug and the size of its therapeutic

index are important determinants of clinical signifi-

cance. The presence of clinical or paraclinical drug

effects which may be used for titrating the drug dose

decreases the need for a priori knowledge regarding

genetic differences. Thus, theoretically, therapeutic

decisions regarding drugs subject to genetic poly-

morphism which have widespread clinical use, a low

therapeutic index and no means to titrate the dose

on the basis of immediate clinical measures of effect

would be facilitated by genotype knowledge. Gener-

ally, adverse reactions are more frequent in poor me-

tabobizers, with extensive metabolizers at greater

risk for decreased efficacy. However, if drug effect is

dependent on an active metabolite, the opposite may

occur, with poor metabobizers at risk for decreased

efficacy and extensive metabobizers at risk for in-

creased toxicity.

The antiarrhythmic drug encainide undergoes Cy-

tochrome P4502D(6) oxidation to several metabo-

bites, O-desmethylencainide (ODE), N-desmethylen-

cainide (NDE), 3-methoxy-O-desmethylencainide
(MODE), and N-O-didesmethylencainide.142 ODE is a

more potent antiarrhythmic agent than the parent

drug, while MODE and NDE appear about equipo-

tent to encainide.143145 The characteristic electrocar-

diographic effects associated with antiarrhythmic

action, namely an increase in QRS duration, are best

correlated with plasma ODE.146 With either oral or

intravenous administration, poor metabolizers have

plasma encainide concentrations that are 10-20-fold

higher than extensive metabobizers, and the half life

is prolonged by three-fourfold with a significant ac-

cumulation of unchanged drug.142 Equally impor-

tantly, poor metabolizers have tenfold lower concen-

trations of ODE associated with an absence of QRS

changes.142

Flecainide is an effective antiarrhythmic agent

whose major metabolic pathway to meta-O-dealky-

bated flecainide cosegregates with that of sparteine/

debrisoquine oxidation, resulting in a tenfold differ-

ence in metabolic clearance.147 A number of patient

deaths in association with high serum flecainide

concentrations have been reported.148 In poor meta-



GENETIC DIFFERENCES IN DRUG DISPOSITION

PEDIATRIC SERIES 889

bolizers, increased renal elimination of unchanged

drug occurs. However, in renal failure, disposition of

flecainide proceeds almost entirely by hepatic oxi-

dation.149 Thus, therapy in poor metabobizers with

renal failure requires close monitoring and reduc-

tions greater than that suggested with renal failure

alone.

Propafe none, a Class I antiarrhythmic agent, is me-

tabolized by both 5-hydroxybation and N-dealkyla-

tion. The hydroxylation reaction cosegregates with

the debrisoqumne polymorphism and poor metabo-

lizers exhibit impaired 5-hydroxybation resulting in

very low or absent levels of this active metabo-

lite.28’15#{176}The disposition of the parent drug in poor

metabobizers is also altered with largely missing first

pass metabolism, greater bioavailability, dramati-

cally reduced apparent oral clearance and much

higher steady state concentrations. These higher par-

ent drug concentrations are associated with a greater

frequency of CNS side effects in poor metabolizers

(67%) compared with extensive metabolizers (14%).28

Propafenone is delivered as a racemate with both

enantiomers exhibiting similar activity on sodium

channels. However the S-enantiomer is 100-fold

more potent at receptor blockade.150 The relation-

ship between the R and S enantiomers is similar in

extensive metabolizers and poor metabolizers, but

greater concentrations of the S-enantiomer in poor

metabolizers may place the poor metabolizer at

greater risk of $ blockade related side effects.”’ Fur-

thermore, propafenone therapy is frequently com-

bined with a j3 blocking agent. When given with me-

toprolob, the oral clearance of metoprobol decreases

two fold, while no difference is seen in the metabo-

lism of propafenone. This suggests the dose of meto-

prolol should be reduced when propafenone is

given.152

Codeine O-demethylation to its active moiety,

morphine, correlates with debrisoquine hydroxyba-

tion ability.”’155 In poor metabolizers and in quini-

dine-transformed extensive metabolizers, signifi-

cant morphine production is absent and is associated

with a lack of analgesia.156 In contrast, extensive me-

tabolizer subjects demonstrate measurable mor-

phine and both subjective and objective increases in

pain thresholds.

Tricyclic antide”pressants undergo 2-hydroxyba-

tion which is CYP2DS mediated and lO-hydroxyla-

tion and demethylation which is not.157 The demeth-

ybated metabobites also undergo hydroxybation

which is CYP2D6 dependent.158 The first pass metab-

olism of imipramine in poor metabolizers is less than

in extensive metabolizers; however, the difference is

less dramatic than expected because the process is

saturated in extensive metabolizers.”9 As a result of

impaired elimination in poor metabobizers, accumu-

bation of the secondary amine metabobites which are

effective antidepressants may occur with an in-

creased risk of side effect.ThO However, in a small

study, the incidence of imipramine related side ef-

fects in 5 poor metabolizers was not different than

the incidence in 103 extensive metabobizers.161 Ther-

apeutic management of tricycbic therapy is compli-

cated because symptoms of excessive drug concen-

trations are similar to those of the disease process

under treatment. The metabolic ratio for debriso-

quine has been shown to correlate well with plasma

nortriptybine and desipramine concentrations, sug-

gesting knowledge of CYP2D6 activity might be

helpful in therapeutic decision making.’59 A second

complicating factor in tricyclic therapy is the fre-

quent use of combination therapy with neurobeptic

drugs. Several reports indicate that neurobeptics in-

hibit the in viva metabolism of tricycbic antidepres-

sants.’62 This inhibition is at beast partially CYP2D6

dependent as the neuroleptics are competitive inhibi-

tors of human liver microsomal metabolism of spar-

teine163 and debrisoquine,1M and neurobeptic ther-

apy has been shown to increase the metabolic ratio

of sparteine and debrisoquine in vivo.29’165 In addi-

tion to inhibition of CYP2D6, some of the neurolep-

tics, such as perphenazine are substrates for

CYP2D6,166 while others such as haboperidob are

not. 165

TPMT genotype is an important risk factor for the

development of thiopurine-mnduced myebosuppres-

sion. Both 6-mercaptopurine and azathioprine are

converted irito 6-thioguanine.”7 Red blood cell 6-

thioguanine concentrations are directly correlated

with adverse effects and inversely correlated with

TPMT concentrations.”’169 Leukemic children with

bower TPMT activity are at greater risk of 6-MP in-

duced myebosuppression. In a retrospective study of

21 patients, all five subjects developing azathio-

prine-induced myelosuppression had low or absent

TPMT levels.’70 The mechanism for the inverse rela-

tionship between TPMT and 6-thioguanine is un-

known.

Recent work suggests a correlation between the

genetic polymorphisms for the enzymes involved in

alcohol metabolism and in vivo ethanol metabolism.

In the Chinese, both the ALDH2 and ADH2 geno-

types influence the alcohol metabolic rate, the alco-

hol-flush reaction and susceptibility to alcohol-
ism.171 In the African American population, control-

ling for the impact of alcohol intake, the presence of

the ADH2*3 allele has been shown to impact ethanol

disposition.172 Caucasians and native Americans do

not exhibit variation at these ADH2 and ALDH2 boci,

and genetic explanations for the intersubject differ-

ences in ethanol metabolism in these populations

have not been reported. The mechanism of alcohol
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related flushing occasionally reported in Caucasians

and American Indians is unknown but does not ap-

pear related to an ALDH2*2 allele.

SIGNIFICANCE OF DRUG METABOLISM

POLYMORPHISMS: DISEASE SUSCEPTIBILITY

The activation of chemical toxicants and carcino-

gens by drug metabolizing enzymes is believed im-

portant in the pathophysiobogy of carcinogenesis,

mutagenesis, and teratogenesis, as webb as other envi-

ronmentally-induced diseases. Host susceptibility

may be partially explained by variation in the ge-

netic control of the activity and mnducibibity of these

enzymes. The association between cancer risk and

genetic polymorphisms has been evaluated for N-

acetybation, the debrisoquine oxidation, mepheny-

tom oxidation, and glutathione transferase. Several

carcinogenic arybamines, including 2-aminofluo-

rene, methylene-bis-orthochboroaniline, benzidine

and a and naphthylamine are detoxified by acetyba-

tion by NAT2.’73 In contrast, the alternate pathway,

N-hyroxylation, is the first step in the formation of

toxic metabolites. N-hydroxybation, followed by 0-

acetylation, leads to the formation of acetoxyb aryl-

amines. These derivatives break down spontane-

ously to form highly reactive arylnitrenium ions, the

ultimate metabolite responsible for carcinogenesis

and mutagenesis.174 NAT activity has been reported

in human bladder,’75 an interesting finding in view

of the 39% increase in the incidence of slow acetyba-
tion in bladder cancer patients compared to matched

controls.176’177 Colonic cancer is associated with the

fast acetylator phenotype.’78 The incongruity be-

tween increased risk of bladder cancer in slow acety-

lators and increased risk of colon cancer in fast ace-

tylators is unexplained; however, organ specific ex-

pression of N- and 0-acetyltransferase may be a

significant factor. In contrast to bladder cancer and

colon cancer, acetybator status and lung cancer risk

appear unrelated.179

Extensive metabolism of debrisoqumne may be a

genetic risk factor for bronchogenic carcinoma; how-

ever, this is controversial. Ayesh and coworkers re-
ported that among smokers, very rapid metabolizers

of debrisoquine were overrepresented among pa-

tients with lung cancer.#{176} In a second study control-

ling for age, gender and smoking, non-occupationally

exposed extensive metabolizers of debrisoquine

were found to be at a 4 fold increased risk for lung

cancer.18’ When combined with asbestos exposure,

the relative risk of lung cancer in extensive metabo-

lizers increased 18 fold. In a conflicting report, Speirs

and colleagues found no difference in the frequency

distribution of debrisoquine metabolism in lung

cancer patients compared to controls.182 Similar de-

brisoquine metabolic ability was reported in bladder

cancer patients and controls.183 However, in a study

in which patients were differentiated by histological

criteria, aggressive bladder cancer was strongly asso-

ciated with efficient debrisoquine metabolism.IM

Cytochrome P450 2D6 is not known to activate any

known carcinogens; therefore, the relationship be-

tween extensive debrisoqumne genotype and carcino-

genesis likely reflects genetic linkage.

Presence of the GST1 null allele may predispose to

cancer. Using the mu-specific substrate, trans-stil-

bene oxide, presence of mu GST activity correlates

with inhibition of aflatoxinl DNA adduct forma-

tion,185”86 suggesting an important role for this en-

zyme in detoxification reactions that relate to cancer

risk. The high substrate selectivity of GSTI for epox-

ides suggests that individuals deficient in GST1 may

be at increased risk for cellular and genetic damage

following epoxide exposure. The frequency of GST1

deficiency is greater in heavy smokers with lung

cancer compared with heavy smokers without lung

cancer.187 The number of GSTI alleles correlates

with mu GST activity in lung tissue188 and high bev-

els of lung mu GST are associated with a decreased

risk of lung cancer in smokers.188 Similarly, individ-

uals who back mu GST activity are at a threefold

greater risk of adenocarcinoma of the stomach and

colon.189 The association of AH inducibility with sus-

ceptibility to lung cancer was first suggested by Kel-

berman19#{176}and affirmed by the association between

high aryb hydrocarbon hydroxybase activity in lym-

phocytes and lung cancer.19’

Increased risk for xenobiotic-induced nonmalig-

nant diseases may also be related to genetic differ-

ences in metabolic ability. Acetybator status is a risk

factor for hydralazmne or procainamide-induced

SLE.2’192 In contrast, idiopathic SLE does not appear

rebated to acetybator status.193 The distribution of de-

brisoquine phenotypes is altered in patients with sys-

temic bupus erythematosus with an increase in poor

metabobizers (21%) relative to the incidence in

healthy volunteers (8%).1 Although previous re-

ports using urinary ratios are conflicting,195197 indi-

viduals with the mutant forms of CYP2D6 alleles ex-

hibit a two and a half fold increase in risk for Parkin-

son’s disease.1 Support for the involvement of

CYP2D6 in Parkinson’s disease includes observa-

tions that a substrate of CYP2D6, 1-methyl-4-phenyl

I ,2,3,6-tetrahydropyridmne (MPTP) induces a form of

Parkinsonism. Also, within the brain, CYP2D6 is

localized to the substantia nigra, the area involved in

Parkinsonism,2#{176}#{176}and CYP2D6 has been shown to me-

tabolize several neurotransmitter antagonists.201’30
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SIGNIFICANCE OF DRUG METABOLISM

POLYMORPHISMS: BIRTH DEFECTS

Explanations for the variation in fetal susceptibility

to teratogen exposure include differences in the tim-

ing and extent of exposure. Analogous to carcino-

genic risk, teratogenic risk may involve intersubject

variation in the conversion of a proteratogen to ei-

ther a non-toxic metabolite or to the proximate tera-

togen. Genetic control of the rates of formation and

metabolism of reactive metabolites could determine

the availability of these toxic metabolites to bind co-

valently with either cell macromolecules or DNA,

leading to either cell death or mutations. Because

maternal metabolic ability is generally orders of

magnitude greater than fetal ability, for many expo-

sures it is likely a dominant factor. A report of dispa-

rate outcome in heteropaternal twins following intra-

uterine exposure to phenytoin202 suggested that ge-

netic differences in the fetus also can influence the

likelihood of drug- or xenobiotic-induced teratogen-

icity. Inherited decreased phenytomn detoxification,

documented by cytotoxicity, was observed in 14 of

24 children exposed to phenytomn throughout preg-

nancy.203 Twelve of the 14 children had major birth

defects, compared with 2 of the 10 children with

normal cytotoxic responses to phenytoin. Studies in

an animal model suggest genetically controlled in-

ducibibity of maternal and fetal hepatic aryb hydro-

carbon hydrobase is a factor in environmentally in-

duced birth defects.206 In an animal model, exposure

to benzyopyrene in offspring who were highly Ah

inducible resulted in an increase in binding of ben-

zyopyrene, more fetal resorptions, more birth defects

and poorer growth only if the mother was nonindu-

cible. If the mother had high activity, presumably

maternal metabolism of benzopyrene protected the

fetus. Similar studies are currently underway to eval-

uate the alcohol dehydrogenase genotype of mothers

and offspring to test whether these factors help ex-

plain the variation in alcohol rebated birth defects.

THE FUTURE

Continued advances in molecular biology will bead

to more information regarding the mechanisms and

consequences of genetically-determined intersub-

ject variation in drug metabolism. Over the next sev-

eral years, increasing availability of genetic data re-

garding an individual’s inherited ability to metabo-

lize drugs will likely guide therapeutic decisions,

including drug choice, drug dose, and optimum ther-

apeutic monitoring. The ability to determine geno-

type reliably using PCR technology will facilitate

large-scale multinational epidemiologic studies of

cancer, birth defects, and other environmentally in-

duced diseases that may be associated with genetic

polymorphisms. Multiple genetic polymorphisms of

xenobiotic metabolism may be synergistic as risk

factors. For example, for some diseases, extensive

metabolism for phase I reactions, which generally

generate toxic metabolites or intermediates, com-

bined with poor metabolic ability for phase II reac-

tions, which generally detoxify compounds, will rep-

resent the greatest risk. Ultimately, the results of

these barge-scale studies of multiple pathways may

lead to the prevention of exposure in at-risk individ-

uals, the detection of xenobiotic-induced disease ear-

lier, or improved treatment using either conven-

tional or genetic therapy.
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