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Genetic disease risks can be misestimated
across global populations
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Abstract

Background: Accurate assessment of health disparities requires unbiased knowledge of genetic risks in different

populations. Unfortunately, most genome-wide association studies use genotyping arrays and European samples. Here,

we integrate whole genome sequence data from global populations, results from thousands of genome-wide association

studies (GWAS), and extensive computer simulations to identify how genetic disease risks can be misestimated.

Results: In contrast to null expectations, we find that risk allele frequencies at known disease loci are significantly different

for African populations compared to other continents. Strikingly, ancestral risk alleles are found at 9.51% higher frequency

in Africa, and derived risk alleles are found at 5.40% lower frequency in Africa. By simulating GWAS with different study

populations, we find that non-African cohorts yield disease associations that have biased allele frequencies and that

African cohorts yield disease associations that are relatively free of bias. We also find empirical evidence that genotyping

arrays and SNP ascertainment bias contribute to continental differences in risk allele frequencies. Because of these causes,

polygenic risk scores can be grossly misestimated for individuals of African descent. Importantly, continental differences in

risk allele frequencies are only moderately reduced if GWAS use whole genome sequences and hundreds of thousands of

cases and controls. Finally, comparisons between uncorrected and corrected genetic risk scores reveal the benefits of

considering whether risk alleles are ancestral or derived.

Conclusions: Our results imply that caution must be taken when extrapolating GWAS results from one population to

predict disease risks in another population.

Keywords: Ascertainment bias, Genetic risk scores, Genetic epidemiology, Genome-wide association studies,

Global health, Health disparities, Population genetics

Background

In the past decade, over 3300 genome-wide association

studies (GWAS) have successfully identified more than

58,000 genetic associations with common diseases and

other traits [1, 2]. However, the vast majority of pub-

lished GWAS have used samples of European ancestry

[3, 4], and a looming challenge is to be able to generalize

GWAS results across populations [5–11]. An additional

complication is that existing GWAS use genotyping ar-

rays, as opposed to whole genome sequencing (WGS).

Each disease-associated locus has risk and protective al-

leles. Results from GWAS can be combined to generate

polygenic risk scores to predict individual risks of dis-

ease [12–14]. These polygenic risk scores quantify her-

editary disease burdens by summing the number of risk

alleles in each individual’s genome and sometimes

weighting SNPs by effect size [15]. The “missing herit-

ability” problem hampers genetic risk scores, as many

causal variants remain undiscovered [16, 17]. Diseases

can also have different genetic architectures in different

populations [18]. Because of these issues, genetic predic-

tions of disease risk are not always accurate, and it is im-

portant to be able to distinguish between situations

where genetic risks actually differ between populations

and when genetic predictions of differences in disease

risks are spurious.

Although health disparities are often due to access to

healthcare and socio-economic factors [19, 20], genetic

differences in disease risks arise when allele frequencies

at disease-associated loci differ across populations [15].

Populations that share recent ancestry have similar allele

frequencies and hereditary disease risks, while popula-

tions that diverged in the deep past can have large allele
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frequency differences at disease-associated loci [21, 22].

These differences are magnified by population bottle-

necks and founder effects, including elevated risks of

cystic fibrosis among the Québécois [23] and cardiovas-

cular disease among the descendants of the HMS

Bounty mutineers [24]. However, many common dis-

eases are polygenic [25, 26], and allele frequency differ-

ences at individual loci tend to average out. Because of

this, the overall burden of hereditary disease is expected

to be similar across the globe [27], with the possible ex-

ception of reduced genetic load in African populations

[28]. For polygenic diseases, the null expectation is that

individuals from different populations will have similar

counts of risk alleles.

The genetic ancestry of study participants can cause

hereditary disease risks to be misestimated. Indeed, gen-

etic risk scores generated from different study cohorts

have been shown to vary across populations [5]. As of

2016, the ancestry of 81% of all GWAS samples was

European and 14% was Asian [3], and this is likely to

cause the set of known disease associations to be

enriched for alleles that are polymorphic or intermediate

frequency in Europe or Asia, but not Africa. Inequity in

genetic studies parallels what is observed in social sci-

ence research; most samples are from Western, edu-

cated, industrialized, rich and democratic (WEIRD)

societies [29, 30]. For disease associations to be detected,

loci need to be polymorphic in the study population. Be-

cause of this, disease loci with allele frequencies that are

zero or one in European populations are likely to be

missed (i.e., the “known unknowns” [31]), and some of

these disease loci will have intermediate frequencies in

other populations. Disease associations found in one

population can over- or underestimate genetic disease

risks in other populations. One partial solution to this

problem is to perform multiethnic GWAS that include

individuals from multiple populations [32].

Commonly used genotyping arrays can also cause pre-

dictions of hereditary disease risks to be misestimated.

One issue is that SNPs on genotyping arrays tend to

have large minor allele frequencies [33–35]. These older

SNPs often have large allele frequency differences be-

tween populations [36, 37]. Systematic biases can also

arise because commercially available genotyping arrays

tend to use SNPs that were originally ascertained in

European populations. This SNP ascertainment bias can

be particularly problematic if it yields disease loci with

risk allele frequencies that are high for one population

and low for another population.

Demographic history also affects whether known

disease-associated loci have biased allele frequencies.

Consider a scenario where disease-associated alleles are

initially found at the same frequency in two populations,

i.e., prior to divergence (Fig. 1a). Note that risk alleles

can be ancestral (shared with other primates) or derived

(due to new mutations) and that ancestral alleles tend to

be high frequency while derived alleles tend to be low

frequency [38, 39]. Over time, allele frequencies at each

locus diverge between daughter populations. Import-

antly, bottlenecked non-African populations have experi-

enced greater amounts of genetic drift than African

populations [40] (Fig. 1b). This asymmetry, coupled with

statistical power being maximized at intermediate allele

frequencies [41], can cause known disease-associated

loci to have biased allele frequencies. Specifically, we

predict that non-African GWAS will catch disease loci

that have higher ancestral risk allele frequencies (and

lower derived allele frequencies) in Africa (Fig. 1c). By

contrast, we predict that African GWAS will catch a

relatively unbiased set of disease-associated loci (Fig. 1d).

Although continental differences in ancestral and de-

rived risk allele frequencies have been observed for pros-

tate cancer loci [42], these biases have yet to be studied

in a comprehensive way.

At present, it is unknown how much the set of known

disease associations hinders precision medicine and

personal genomics. To bridge this knowledge gap, we

integrated whole genome sequence data from global

populations with results from thousands of GWAS and

ran extensive computer simulations. These analyses (1)

revealed novel empirical patterns at disease-associated

loci, (2) identified multiple causes of how disease risks

can be misestimated in global populations, and (3) ex-

amined different solutions to this problem (including

alternative GWAS study designs and building genetic

risk scores that correct for major sources of bias).

Results
African risk allele frequencies differ from other continents

We tested whether there are any systematic biases in

genetic estimates of disease risk by analyzing allele fre-

quencies at 3036 GWAS loci for each continental popu-

lation in the 1000 Genomes Project. Contrary to null

expectations, mean risk allele frequencies are not the

same for each population (Fig. 2a). Overall, African pop-

ulations have significantly higher risk allele frequencies

compared to non-African populations (mean difference

+ 1.15%, p value = 0.0213, paired Wilcoxon signed-rank

test). Population-level differences in risk allele frequencies

persist when disease associations are binned into seven dif-

ferent categories. Compared to other populations, African

populations have the highest risk allele frequency for meta-

bolic (p value = 0.0055), morphological (p value = 0.0949),

cancer (p value = 0.1169), neurological (p value = 0.0995),

and miscellaneous (p value = 0.3865, paired Wilcoxon

signed-rank tests) diseases. African populations have inter-

mediate frequencies of risk alleles at the loci that are asso-

ciated with GI or liver diseases (p value = 0.6965) and

Kim et al. Genome Biology          (2018) 19:179 Page 2 of 14



lower frequencies of risk alleles at the loci that are associ-

ated with cardiovascular disease (p value = 0.0140, paired

Wilcoxon signed-rank tests). These statistical comparisons

reflect allele frequency differences at individual SNPs.

Among non-African populations there is no underlying

trend. Some of the continental patterns described here are

at odds with clinical data (e.g., health disparities involving

cardiovascular disease in African-Americans [43]). This

discrepancy between clinical data and allele frequencies

suggests that genetic disease risks may be misestimated for

individuals with African ancestry.

Disease categories that have a larger proportion of an-

cestral alleles tend to have elevated risk allele frequen-

cies in Africa (Fig. 2b). After binning GWAS loci by

disease category, we find that the differences in the

mean frequency of risk alleles between African and

non-African populations are highly correlated with the

proportion of risk alleles that are ancestral (r2 = 0.842).

Accurate estimation of genetic disease risks across global

populations may hinge upon knowledge of whether

risk-increasing alleles are ancestral or derived.

Ancestral and derived alleles yield different patterns of

genetic disease risk

For loci that are not associated with any disease, the

null expectation is that ancestral and derived allele fre-

quencies will be broadly similar across global popula-

tions. Just because Homo sapiens emerged in Africa

does not mean that African genomes have an excess of

ancestral alleles—all human populations share the

same evolutionary distance to chimpanzees. Due to the

out-of-Africa bottleneck, African genomes are more

likely to be heterozygous for derived alleles, and non-

African genomes are more likely to be homozygous for

derived alleles. Examining WGS data from the 1000

Genomes Project, we find that derived allele frequen-

cies (DAF) are similar for each population (Fig. 3a).

However, disease-associated loci need not exhibit the

same pattern.

The joint site frequency spectrum (SFS) enables the

frequencies of individual risk alleles to be compared be-

tween African and non-African populations. Similar

numbers of disease associations are found above and

Fig. 1 GWAS in bottlenecked European populations catch different types of disease loci than GWAS in non-bottlenecked African populations.

Ancestral risk alleles are labeled red and derived risk alleles are labeled blue. Statistical power to detect associations is maximized at intermediate

allele frequencies in the study population (gray shading). Filled circles indicate disease loci that are able to be caught by a GWAS, and open

circles indicate disease loci that are unable to be caught by a GWAS. a Prior to divergence, allele frequencies are the same in both populations.

b Non-African populations experience greater amounts of genetic drift. Diffusion of allele frequencies following divergence is indicated by red

and blue shading. c European GWAS are predicted to catch derived risk alleles that have higher frequencies in Europe and ancestral risk alleles

that have higher frequencies in Africa. d African GWAS are predicted to catch a relatively unbiased set of risk alleles
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below the diagonal in Fig. 3b. However, conditioning on

whether risk alleles are ancestral or derived reveals a

striking pattern: 69.2% of ancestral risk alleles are found

at higher frequency in African populations (red dots

below the diagonal), and 64.5% of derived risk alleles are

found at higher frequency in non-African populations

(blue dots above the diagonal). The magnitudes of allele

frequency differences between populations also vary for

ancestral and derived risk alleles. We find that ances-

tral risk alleles are found at much higher frequencies

in Africa, and derived risk alleles are found at moder-

ately lower frequencies in Africa (Fig. 3c). Specifically,

the mean difference in ancestral risk allele frequencies

between African and pooled non-African populations

is + 9.51%, and the mean difference in derived risk al-

lele frequencies between African and pooled non-African

populations is − 5.40% (p value < 2.2 × 10−16 for both

comparisons, Wilcoxon signed-rank tests). The overall

continental difference in risk allele frequencies of + 1.15%

arises because 44% of presently known disease-associated

loci have ancestral risk alleles.

Derived allele frequencies serve as proxies for SNP age

[44], and we find that older disease-associated loci are

more likely to have large differences in continental allele

frequencies. For each 20% DAF bin (pooled data), we

calculated the difference in risk allele frequencies be-

tween African and non-African populations. In sharp

contrast to other DAF bins, published disease loci with

DAF ≤ 0.2 exhibit only a small amount of bias (Fig. 3d).

This pattern occurs regardless of whether risk alleles are

ancestral or derived. Note that SNPs with DAF ≤ 0.2

tend to be younger than 125,000 years old, assuming an

effective population size of 10,000 individuals and gener-

ation times of 25 years [44].

Fig. 2 Known disease associations lead to misestimates of genetic disease risks. a Risk allele frequencies at published disease-associated loci from

the NHGRI-EBI GWAS Catalog vary by population. “*” indicates a statistically significant allele frequency difference between African and

non-African populations (p values < 0.05, paired Wilcoxon rank sum tests). n = number of disease-associated loci per disease category.

b Proportion of disease-associated loci where the risk allele is ancestral, as opposed to derived
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Choice of study population contributes to misestimates

of genetic disease risk

Most disease associations have been discovered in study

cohorts with European ancestry, and this can bias the es-

timation of genetic disease risks in diverse global popu-

lations. Empirical data reveal the effects of GWAS study

populations; many disease-associated alleles segregate at

intermediate frequencies in non-African populations but

are found at extremely low or high frequencies in Africa

(compare the vertical and horizontal borders of Fig. 3b).

This occurs because statistical power is maximized at

intermediate frequencies, and most disease-associated

loci have been discovered in non-African populations.

Existing GWAS have discovered relatively few disease al-

leles that segregate only in African populations.

To further isolate the effects of different study popula-

tions, we simulated a large number of GWAS results,

varying the continental ancestry of each study cohort.

Importantly, our GWAS simulations did not assume that

there are any underlying differences in hereditary disease

risks across populations. We find that computer simula-

tions recapitulate empirical patterns at known disease

loci and that GWAS of bottlenecked non-African popu-

lations yield different results than GWAS of African

populations (Fig. 4). Simulated GWAS that use an Afri-

can (AFR) cohort yield similar risk allele frequencies

across each of the five continental populations. However,

simulated GWAS that use American (AMR), East Asian

(EAS), European (EUR), or South Asian (SAS) cohorts

produce a set of disease-associated loci with elevated fre-

quencies of ancestral risk alleles in Africa (Fig. 4a) and

reduced frequencies of derived risk alleles in Africa

(Fig. 4b). These simulation results indicate that system-

atic allele frequency differences between populations

need not be due to any underlying difference in risk (re-

call that our simulations did not assume the existence of

any underlying differences in disease risks across popula-

tions). The effects of European study cohorts are still

a b

c d

Fig. 3 Empirical patterns depend on whether disease-associated alleles are ancestral or derived. a Mean derived allele frequencies of non-disease

SNPs from whole genome sequencing and genotyping arrays. 1000 Genomes Project data are shown. b Joint SFS of published GWAS loci.

Ancestral risk alleles are labeled red and derived risk alleles are labeled blue. c The frequencies of ancestral risk alleles are higher in Africa (+ 9.51%

on average), and the frequencies of derived risk alleles are lower in Africa (− 5.40% on average). Dashed lines indicate mean values. d Continental

differences in risk allele frequencies are minimal for young SNPs. Disease-associated loci are binned by DAF and whether risk alleles are ancestral

or derived
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seen when GWAS simulations use data from WGS, as

opposed to genotyping arrays (Table 1). We also find

that continental differences in risk allele frequencies

occur if GWAS simulations use a more stringent p value

filter, or simulations assume different modes of inherit-

ance, including dominant or recessive disease alleles

(Additional file 1: Table S1 and Additional file 2: Table S2).

Additionally, GWAS simulations of study cohorts that con-

tain a mixture of individuals from different populations still

yield disease-associated loci with continental biases in risk

allele frequencies (MIX in Fig. 4). These results suggest that

pooling samples with different ancestries is unlikely to

completely alleviate the problem of misestimating gen-

etic disease risks. Regardless of the choice of study co-

hort, allele frequencies are similar for each non-African

population, reflecting the relatively recent divergence

times between these populations.

We also examined the effects of genotype-by-envir-

onment (GxE) interactions by allowing effect sizes to

vary by population in our GWAS simulations. In gen-

eral, results from these simulations mirror the results

of other simulations; ancestral risk allele frequencies are

higher in African populations than non-African popula-

tions, and derived risk allele frequencies are lower

in African populations than non-African populations

(Additional file 3: Figure S1). Compared to African study

cohorts, European study cohorts magnify these allele fre-

quency differences between populations. Choice of study

cohort imposes a filter on effect sizes, as SNPs with very

small effect sizes do not yield detectable associations

(compare gray pre-GWAS effect sizes to red and blue

post-GWAS effect sizes in Additional file 3: Figures

S1-S3). Large effect sizes enable high-frequency

ancestral alleles and low-frequency derived alleles to be

detected in a GWAS. The results described above are also

robust to systematic biases in effect sizes, i.e., scenarios

where pre-GWAS European effect sizes tend to be larger

than African effect-sizes or vice versa (Additional file 3:

Figures S2 and S3).

Fig. 4 GWAS simulations reveal the effects of different study cohorts. Mean risk allele frequencies in different continental populations are shown

for each study cohort (3036 disease associations per simulation). Despite the absence of any underlying differences in risk, disease-associated loci

that are detected in non-African study cohorts have biased frequencies. a GWAS simulations where the ancestral allele increases risk. b GWAS

simulations where the derived allele increases risk

Table 1 Differences in allele frequencies between African and

European populations for different genotyping technologies

Data type Allele frequency difference
between Africa and Europe

Ancestral risk
allele (%)

Derived risk
allele (%)

NHGRI-EBI GWAS Catalog (empirical) + 11.7 − 6.7

Affymetrix Genome-Wide Human
SNP Array 6.0 (simulated)*

+ 10.7 − 8.0

Illumina Omni 5M microarray
(simulated)*

+ 11.0 − 8.2

Whole genome sequences
(simulated)*

+ 9.7 − 7.2

*GWAS simulation parameters: sample size = 3500 cases and 3500 controls, study

population = EUR, p value threshold = 1 × 10−5, mode of inheritance = additive,

prevalence = 0.1, genotype relative risk = 1.211
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Genotyping arrays and SNP ascertainment bias cause

disease risks to be misestimated

Many commonly used genotyping arrays contain SNPs

that were ascertained in a relatively small number of

European individuals. This ascertainment bias results in

allele frequency distributions that vary by genotyping

platform. Compared to WGS data, derived allele frequen-

cies are higher for SNPs on the Affymetrix Genome-Wide

Human SNP Array 6.0 and the Illumina Omni 5M micro-

array. SNPs on genotyping arrays also exhibit continental

biases (Fig. 3a). Specifically, we find that derived allele fre-

quencies in African populations are markedly lower

than derived allele frequencies in non-African popula-

tions (p value < 2.2 × 10−16 for both arrays, Wilcoxon

signed-rank tests).

The joint SFS of non-African and African populations

further reveals the effects of SNP ascertainment bias.

Examining WGS data, we find that similar numbers of

SNPs have elevated derived allele frequencies in

non-African and African populations (Additional file 3:

Figure S4a). By contrast, the Affymetrix Genome-Wide

Human SNP Array 6.0 and the Illumina Omni 5M

microarray are enriched SNPs with higher derived allele

frequencies outside of Africa (i.e., SNPs above the diag-

onal in Additional file 3: Figure S4b and Additional file 3:

Figure S4c). Importantly, this pattern mirrors what is seen

for empirical GWAS data (Additional file 3: Figure S4d),

which suggests that genotyping arrays contribute to con-

tinental differences in risk allele frequencies at known

disease-associated loci.

Because many disease-associations involve imputed

SNPs, we also tested whether continental differences in

risk allele frequencies persist for disease-associated loci

that are not on the Affymetrix Genome-Wide Human

SNP 6.0 Array. For this empirical set of disease-associated

loci, we find that sites with ancestral risk alleles have

higher allele frequencies in Africa (+ 8.63% on average)

and that SNPs with derived risk alleles have lower allele

frequencies in Africa (− 4.83% on average). This suggests

that biases persist even for imputed SNPs.

Continental differences in allele frequencies persist even

if whole genome sequencing and large sample sizes are

used

Simulations of GWAS results were used to infer the ex-

tent that misestimates of disease risks depend upon

genotyping technology (Table 1). Here, simulations as-

sume European ancestry for each study cohort and sam-

ple sizes of 3500 cases and 3500 controls. We find that

different genotyping arrays yield similar results: the Affy-

metrix Genome-Wide Human SNP Array 6.0 and the

Illumina Omni 5M microarray yield ancestral risk allele

frequencies that are 10.7% and 11.0% higher in Africa

and derived risk alleles that are 8.0% and 8.2% higher in

Europe, respectively. Somewhat surprisingly, continental

differences in allele frequencies also occur for GWAS

simulations that use WGS data. Focusing on WGS

GWAS simulations, ancestral risk allele frequencies are

9.7% higher in Africa, and derived risk alleles are 7.2%

higher in Europe. These patterns arise because of our

choice of study cohort and because sample sizes of 3500

cases and 3500 controls have relatively little power to

catch rare disease alleles.

Continental biases in risk allele frequencies occur even

if GWAS use large sample sizes. Simulated GWAS with

less than 10,000 European cases and controls yield large

differences in African and non-African allele frequencies

(Fig. 5). This occurs regardless of whether simulations

use SNPs from the genotyping arrays or WGS. Increas-

ing GWAS sample sizes increases the statistical power

to detect associations with rare alleles. However, our

simulations reveal that there are diminishing returns for

increasing sample sizes, especially if GWAS use geno-

typing arrays. Well-powered studies with hundreds and

thousands of cases and controls still yield notable differ-

ences in continental allele frequencies—even if WGS are

used (Fig. 5). These results indicate that WGS is unable to

completely mitigate the effects different study populations.

Correcting for ancestral and derived risk alleles leads to

improved genetic risk scores

Standardized genetic risk scores (GRS) were generated for

2504 individuals and 7 different disease categories. This in-

volved integrating a curated list of disease-associated loci

from the NHGRI-EBI GWAS Catalog with individual-level

genotype data from the 1000 Genomes Project. Positive

GRS values indicate genomes that contain more risk alleles

than the global mean, and negative GRS values indicate ge-

nomes that contain less risk alleles than the global mean.

Standardized GRS are scaled in terms of standard devia-

tions from the mean, i.e., they are Z-scores. In general, dif-

ferent populations have GRS distributions that mirror what

is seen for allele frequency data (compare Fig. 6 to Fig. 2a).

We find that African individuals have uncorrected GRS

that differ from other populations (p value = 0.0037 for GI

or liver diseases and p value < 2.2 × 10−16 for all other dis-

ease categories, Mann-Whitney U tests). These differences

are larger for metabolic, cancer, and cardiovascular disease

risks. There is a substantial amount of overlap between the

GRS distributions of each non-African population, and this

pattern occurs for all disease categories. Within each popu-

lation, there is also a large range of GRS values. Also note

that admixed genomes from the Americas (AMR in Fig. 6)

have GRS that are broadly similar to other non-African ge-

nomes. Although GRS reflect an individual’s genetic pro-

pensity for different disease categories, we caution against

over-interpreting these results. This is because GRS have

been built from a biased set of disease-associated loci.
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GRS corrections reduce some, but not all, of the

population-level differences in predicted disease risks.

Here, we compensate for continental differences in an-

cestral and derived risk allele frequencies by generat-

ing corrected GRS for African genomes. We find that

African individuals have corrected GRS that are simi-

lar to other populations for metabolic (p value =

0.8080), morphological (p value = 0.0671), and neuro-

logical (p value = 0.7116, Mann-Whitney U tests) disease

risks. By contrast, African individuals have corrected GRS

that are different than other populations for GI or liver,

cancer, miscellaneous, and cardiovascular disease risks (p

value < 2.2 × 10−16 for each disease category, Mann-Whit-

ney U tests). Corrections involve in a leftward shift in the

GRS of African genomes, the magnitude of which depends

on the proportion of ancestral risk alleles for each disease

category (compare the size of arrows in Fig. 6). We

observe three different outcomes: minimal effects,

over-correction, and reduction of bias. Cardiovascular

risk predictions for African genomes were largely un-

changed (i.e., GRS still appear to underestimate the

risks of cardiovascular disease in individuals of African

descent). Two disease categories (GI or liver and mis-

cellaneous diseases) have corrected GRS distributions

that differ more between African and non-African popula-

tions than uncorrected GRS distributions. The remaining

four disease categories (metabolic, morphological, cancer,

and neurological diseases) have corrected GRS distri-

butions that overlap heavily with other populations.

Although the correction method used here alleviates

some forms of bias, our results suggest that GRS can be

further improved by considering additional parameters.

Discussion

The biased set of disease associations that are presently

known leads to misestimates of hereditary disease risks.

Specifically, African populations tend to have higher fre-

quencies of ancestral risk alleles and lower frequencies

of derived risk alleles at existing GWAS loci. Consider-

ing the magnitude of these differences and the propor-

tion of disease-associated alleles that are ancestral, as

opposed to derived, yields risk allele frequencies that are

1.15% higher in Africa. Elevated risk allele frequencies in

African populations are the opposite of what one expects

to see given human demographic history. Due to popula-

tion bottlenecks, non-African populations are expected

to have greater amounts of genetic load [28]. This dis-

crepancy arises because GWAS rely on European study

cohorts and data from genotyping arrays. Systematic al-

lele frequency biases can be mistaken for directional se-

lection, hindering tests of polygenic selection acting on

GWAS traits [45]. Continental differences in allele fre-

quencies also have important ramifications for precision

medicine and personal genomics; disease risks are likely

to be misestimated if GWAS results are naively used to

calculate genetic risk scores (Fig. 6). This can obscure the

existing health disparities that are due to socio-cultural

factors including access to medical care [46, 47]. High-risk

Fig. 5 GWAS simulations reveal that continental differences in allele frequencies persist even if whole genome sequencing and large sample sizes

are used. Bean plots show the results of 1000 simulations per set of parameter values (3036 disease associations per simulation). Simulations using

SNPs on genotyping arrays are represented by light shading, and simulations using WGS data are represented by dark shading. Colors indicate

whether risk alleles are ancestral (red) or derived (blue). Sample sizes shown are the number of cases and the number of controls
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individuals may have genetic profiles that lull them into

a false sense of security, and low-risk individuals may

have genetic risk profiles that lead to an undue amount

of worry.

Here, we are concerned with the limitations of using

disease associations discovered in one population to pre-

dict disease risks in another population, as opposed to

whether GWAS findings can be successfully replicated

across multiple populations. The effects of different

study cohorts are asymmetric. Non-African GWAS re-

sults can be used to predict disease risks in other

non-African populations, but these disease associations

generalize poorly to African populations (Fig. 4). By con-

trast, African GWAS results can be used to predict

Fig. 6 Genetic risk scores (GRS) before and after correcting for ancestral and derived risk alleles. GRS probability densities for each continental

population are shown (solid lines, uncorrected GRS; dashed lines, corrected GRS for African genomes). n = number of disease-associated loci per

disease category. Arrows indicate the shift in African GRS after correcting for whether risk alleles are ancestral or derived. “*” indicates uncorrected

African GRS that are significantly different than non-African GRS, and “©” indicates corrected African GRS that are significantly different than non-

African GRS (p values < 0.05, Mann-Whitney U tests)
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disease risks in a relatively unbiased way across all global

populations. This asymmetry arises as a by-product of

demographic history and the out-of-Africa migration

(Fig. 1) and because GWAS use arrays that suffer from

SNP ascertainment bias (Fig. 3a). Our results suggest

that there may be additional benefits to including a large

number of African individuals in multiethnic GWAS.

We note that difficulties can arise when transferring

GWAS results from one non-African population to an-

other non-African population. This is due to both the

existence of private risk alleles and divergence times that

can exceed 30,000 years. Regardless of the study cohort

used to generate genetic risk scores, it is impossible to

fully correct for missing risk alleles from understudied

populations. Problems generalizing GWAS results can-

not be solved by only using WGS and large sample sizes

(Fig. 5). Furthermore, many variants discovered by WGS

are rare and population-specific. That said, genetic risk

scores generated from WGS data are expected to be less

biased than genetic risk scores generated from array

data, especially when sample sizes are large.

Although this paper focuses on risk allele frequency

differences across populations, we note that many disease

loci remain undetected, and this also contributes to misesti-

mates of disease risks. These missing disease loci are par-

ticularly important when risk alleles are population-specific.

This underscores the need for genetic epidemiology studies

to include samples from a diverse set of populations.

Our study demonstrates the benefits of adopting an

evolutionary perspective towards health and disease

[48, 49]. Important empirical patterns would not have

been noticed without considering ancestral vs. derived

states of alleles. Continental differences in allele fre-

quencies also depend upon SNP age. An evolutionary

perspective is also valuable for understanding how gen-

etic disease risks can be misestimated across popula-

tions. Specifically, we find that it matters whether

populations have experienced a history of bottlenecks

and founder effects. Knowing whether individual dis-

ease loci have experienced a history of natural section

can lead to additional insights [42, 50, 51].

Recently, Martin et al. found that polygenic risk scores

yield inaccurate predictions of height and schizophrenia

and that GRS for type II diabetes depend upon on

choice of study cohort [5]. Using coalescent simulations,

they also found that the proportion of heritability that

can be explained decreases with distance to the GWAS

study population. Using complementary approaches, our

study resulted in novel discoveries. We find that ances-

tral and derived states of risk alleles play a central role

in the estimation of genetic disease risks across multiple

populations, something missed by prior studies that exam-

ine the generalizability of GWAS results. We also find that

important asymmetries exist when extrapolating the

results between African and non-African populations

and that population bottlenecks play a key role (i.e.,

generalizability of results depends on much more than

the evolutionary distance between populations). By ex-

plicitly testing the effects of different genotyping tech-

nologies and sample sizes, we were able to discover

that WGS of hundreds of thousands of cases and con-

trols still yields biased GWAS results. Martin et al. also

advocate mean-centering GRS for each population [5],

but this solution can be problematic if hereditary dis-

ease risks actually differ between populations.

Our GRS calculations illustrate how misestimation of

genetic risks can obscure whether there are any real dif-

ferences in disease risks across populations (Fig. 6). Two

types of error are possible: (1) The underlying risk of a

particular disease may actually be the same for different

populations, yet GRS distributions show little overlap.

(2) The underlying risk of a particular disease may actu-

ally differ for populations, yet GRS distributions show

extensive overlap. Accurate GRS corrections are needed

to exclude either of these two possibilities. Environmental

effects and genotype-by-environment interactions also

contribute to disease phenotypes [52]. Studies of immi-

grants, admixed families, and adopted individuals may

prove to be particularly informative with respect to genet-

ics and health inequities [53–56]. PCA information can be

used to improve GRS for admixed genomes [57]. Cor-

rected GRS for admixed genomes may also benefit from

local ancestry painting tools like RFMix [58] or ELAI [59].

Conclusions
Going forward, multiple approaches can be used to ex-

tend the benefits of precision medicine and personal

genomics to a wide range of global populations. One op-

tion is to assume that disease associations can be gener-

alized across populations without any complications.

However, this approach is flawed because only a biased

set of disease loci is known at present. A second option

is to require that genetic risk scores only use disease as-

sociations discovered in the same population (i.e., avoid

generalizing results across populations). However, this is

unfeasible from a logistical standpoint—as it would require

repeating every GWAS in every global population. A third

option is to use whole genome sequencing and large Afri-

can study cohorts to generate sets of disease-associated loci

that can be generalized as free of bias. On a more practical

side, genetic risk scores can be generated that correct for

existing biases. This requires understanding how risk allele

frequencies differ between populations (as shown here) and

leveraging linkage disequilibrium information to infer the

effect sizes of risk alleles in non-study populations [60, 61].

Finally, we note that the gold standard for evaluating the

genetic risk scores involves testing how well they predict

disease phenotypes in diverse populations—something that
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requires individual-level phenotype data. Only by under-

standing population genetics and the effects of SNP ascer-

tainment bias can accurate predictive models of genetic

disease risks be built.

Methods

Population genetic data

Allele frequencies were obtained for each of the five

continental populations of the 1000 Genomes Project:

Africa (AFR), Americas (AMR), East Asia (EAS), Europe

(EUR), and South Asia (SAS) [21]. These frequencies

were used to generate risk allele frequencies and derived

allele frequencies at disease-associated loci from the

NHGRI-EBI GWAS Catalog and simulated datasets. An-

cestral and derived states in phase 3 1000 Genomes Pro-

ject VCF files were used (these ancestral states were

inferred via the EPO pipeline from Ensembl). We found

that derived allele frequencies in all populations were ele-

vated for large chunks of chromosome 8, which is indica-

tive of misidentified ancestral states. To compensate for

this, we masked SNPs found in the chr8: 89,000,000–

146,364,022 region (hg19). Individuals in phase 3 of 1000

Genomes Project were genotyped using WGS. Allele

frequencies of SNPs on the Affymetrix Genome-Wide

Human SNP Array 6.0 and the Illumina Omni 5M

microarray were found by merging data from the 1000

Genomes Project with lists of SNP IDs obtained from

the Affymetrix and Illumina websites.

Identification of disease-associated variants

Using the NHGRI-EBI GWAS Catalog [1], Berens et al.

generated a curated set of 3180 disease-associated loci

[62]. This involved filtering out SNPs that were not asso-

ciated with a disease, eliminating SNPs lacking risk allele

or odds ratio information, and LD-pruning. Here, we

further constrained the set of disease-associated loci

from [62] by requiring knowledge of whether risk alleles

are ancestral or derived. After excluding 144 SNPs with

unknown ancestral states, we were left with a focal set of

3036 disease-associated loci (Additional file 4: Table S3).

We classified these 3036 disease-associated loci into 7

non-overlapping categories: gastrointestinal/liver, meta-

bolic, morphological, cancer, neurological, miscellaneous,

and cardiovascular. Wilcoxon signed-rank tests were used

to compare disease allele frequencies between African and

non-African populations. Disease-associated loci were

binned by DAF, averaging across all 1000 Genomes Popu-

lations. Allele ages were estimated as per Eq. 4 in [44] (as-

suming N = 10,000 and a generation time of 25 years).

GWAS simulations

Computer simulations were used to test whether SNP

ascertainment bias alone can produce what appears to

be genetic differences in disease risks across populations.

The goal here was to generate simulated datasets com-

parable to the set of 3036 disease-associated loci from

the NHGRI-EBI GWAS Catalog. These simulations as-

sume that the underlying risks of disease are the same

across the globe. Two general types of simulations were

run: simulations with ancestral risk alleles and simula-

tions with derived risk alleles. Simulations involved ran-

domly drawing a test SNP from a list of known genetic

variants ascertained via WGS or found on commercial

genotyping arrays. Conditioning on whether risk alleles

are ancestral or derived, the risk allele frequency of the

test SNP was found in the study population. We then

used a Perl script based on the GAS/CaTS power calcu-

lator [41] to determine the probability of detecting a

successful genetic association at the test SNP. The GAS

power calculator leverages information about the num-

ber of cases and controls, p value threshold, disease

model, prevalence, disease allele frequency, and genotype

relevant risk (http://csg.sph.umich.edu/abecasis/cats/gas_

power_calculator/). For each test SNP, we generated a uni-

formly distributed random number between 0 and 1. The

test SNP was retained if the random number was less than

the power to successfully detect a genetic association, and

the test SNP was rejected if the random number was

greater than the probability of detection. This process was

repeated until a set of 3036 successful disease associations

were detected. At each of these 3036 SNPs, we obtained

simulated risk allele frequencies for five populations in the

1000 Genomes Project dataset (AFR, AMR, EAS, EUR,

SAS). Our default parameters were as follows: genotyping

technology = Affymetrix Genome-Wide Human SNP

Array 6.0, study population = Europe (EUR), sample

size = 3500 cases and 3500 controls, genetic model =

additive, p value threshold = 10−5, prevalence = 0.1, and

genotype relative risk = 1.211. These parameter values

were chosen to be representative of the empirical data

found in the NHGRI-EBI GWAS Catalog.

Our default model was modified to test which aspects

of SNP ascertainment bias contribute the most to con-

tinental differences in risk allele frequencies. This in-

volved varying the following simulation parameters:

genotyping technology, sample size, mode of inheritance,

and the p value threshold required for association detec-

tion. To examine the effects of different study popula-

tions, simulated risk allele frequencies were chosen from

one of the five different populations (AFR, AMR, EAS,

EUR, or SAS) or from an equal mixture of all five popu-

lations (MIX). The effects of different sample sizes were

simulated by varying the number of cases and controls

from three to six on a log10 scale at intervals of 0.1 (i.e.,

between 1000 and 1,000,000 cases and controls). The ef-

fects of different genotyping technologies were simulated

by drawing random SNPs from either the Affymetrix

Genome-Wide Human SNP Array 6.0, the Illumina
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Omni 5M microarray, or WGS data from the 1000 Ge-

nomes Project. Three genetic modes of inheritance

were simulated: dominant, additive, and recessive. Two

different p value thresholds were simulated: 1 × 10−5

and 5 × 10−8.

We also simulated the results of GWAS when effect

sizes vary between populations. Simulations examined

three different effect size distributions (symmetric, larger

effect sizes in Europe, and larger effect sizes in Africa),

two different types of risk alleles (ancestral and derived),

and two different study cohorts (European and African).

In each simulation run, 3036 disease-associated loci were

obtained using the power calculator described above.

Simulations were repeated 1000 times per combination

of parameters. Symmetric effect sizes were generated by

drawing locus-specific genotype relative risks for each

test SNP from a gamma distribution (shape = 1.24, scale

= 0.85). These parameter values were chosen to give a

distribution of effect sizes that is comparable to loci in

the NHGRI-EBI GWAS Catalog. We allowed genotype

relative risks for each test SNP to vary by population by

adding random noise (normally distributed, mean = 0,

standard deviation = 0.5). Simulated genotype relative

risks < 1 were set equal to 1. Larger European effect

sizes were generated by drawing locus-specific genotype

relative risks from a gamma distribution that was

shifted 0.5 upwards (Additional file 3: Figure S3). Lar-

ger African effect sizes were generated by drawing

locus-specific genotype relative risks from a gamma

distribution shifted 0.5 to the right (Additional file 3:

Figure S4). A representative dataset from GWAS simu-

lations is included in Additional file 5: Table S4.

GRS corrections

Genetic risk scores (GRS) for 2504 individuals were built

using genotypes at a curated set of 3036 disease-associ-

ated loci from the NHGRI-EBI GWAS Catalog. Note

that genetic risk scores are sometimes called polygenic

risk scores (PRS). For each disease locus, we counted

whether an individual has 0, 1, or 2 copies of the risk al-

lele. Because each disease category includes a heteroge-

neous set of diseases and phenotypes, we did not

incorporate odds ratio and/or effect size information

into our GRS calculations. Counts of risk alleles were

then summed across all loci that belong to a particular

disease category, yielding a raw GRS for each individual.

Standardized GRS values were calculated for each com-

bination of individual and disease category by finding

the mean and standard deviation of raw GRS values

across all 2504 individuals in our global dataset. Given

our empirical results (Fig. 3c), diploid African genomes

tend to have 0.1902 (2 × 9.51%) additional copies of each

ancestral risk allele and 0.1082 (2 × 5.41%) fewer copies

of each derived risk allele compared to non-African

genomes. Because of this, our correction method consid-

ered the state of the risk alleles (ancestral or derived).

Uncorrected African GRS use counts of 0, 1, or 2 risk al-

leles at each disease locus. Corrected African GRS use

counts of − 0.1902, 0.8098, and 1.8098 “effective risk al-

leles” for ancestral alleles and 0.1082, 1.1082, and 2.1082

“effective risk alleles” for derived alleles. The same map-

ping of raw GRS to standardized GRS was used for un-

corrected and corrected African GRS.

Additional files

Additional file 1: Table S1. Effects of different p value thresholds for

GWAS simulations. (DOCX 49 kb)

Additional file 2: Table S2. GWAS simulations of dominant, additive,

and recessive disease alleles. (DOCX 49 kb)

Additional file 3: Figure S1. GWAS simulations that allow effect sizes to

vary by population. Figure S2. GWAS simulations with larger effect sizes

in Europe. Figure S3. GWAS simulations with larger effect sizes in Africa.

Figure S4. Joint site frequency spectra for multiple genotyping technologies.

(DOCX 2049 kb)

Additional file 4: Table S3. Curated set of 3036 disease-associated loci

from the NHGRI-EBI GWAS Catalog. (TXT 798 kb)

Additional file 5: : Table S4. Representative set of loci from GWAS

simulations. Simulation parameters: technology = Affymetrix Genome-

Wide Human SNP Array 6.0, sample size = 3500 cases and 3500 controls,

mode of inheritance = additive genetic effects, p value cutoff = 10-5,

prevalence = 10%, study cohort = EUR, genotype relative risks vary sym-

metrically across populations. (TXT 245 kb)
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