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Abstract Maize is one of the most important
crops, but its production is threatened by drought
stress worldwide. Thus, increased drought toler-
ance has been a major goal of maize breeding.
Conventional breeding strategies have led to sig-
nificantly increase of maize yields; however, these
strategies often fail to meet the need for drought
stress tolerance enhancement. Here, we focus on
progress related to the genetic dissection of
drought tolerance in maize at different develop-
mental stages achieved through linkage mapping
and association mapping. Moreover, recent molec-
ular breeding systems, including transgenic,
genome-wide marker-assisted selection, and ge-
nome editing technologies, have provided a more
direct, efficient, and accurate approach for trait
improvement. We also provide perspectives on
future directions regarding multi-omics studies
and maize improvement. Overall, the application
of acquired knowledge will facilitate maize breed-
ing to meet the challenges.
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Introduction

Maize (Zea mays L.) is a primary cereal crop and is
cultivated for food, feed, and industrial materials. Al-
though maize yields have increased significantly in
modern times, its production in all stages of plant
growth, especially flowering and grain filling, is threat-
ened globally by drought (Boyer and Westgate 2004;
Lobell et al. 2014). Germination, emergence, seedling
establishment, vegetative growth and development, and
reproductive growth are all sensitive to drought stress.
Thus, increased drought tolerance has been a major goal
of maize breeding. Germination in maize varieties be-
gins to markedly decline at − 0.99 MPa of solution
osmotic potential, and this level of osmotic potential is
also associated with poor post-germination performance
(Liu et al. 2015). The effect of drought on seedling
growth is intensively studied since subsequent develop-
ment may be irreversibly impacted (Maiti et al. 1996). In
spring and early summer in arid and semiarid regions
such as northern China, crops often undergo drought
stress when water deficits threaten germination and
seedling growth. Therefore, it is essential to improve
the drought tolerance of maize at the primary growth
stages to improve establishment and subsequent growth.
Moreover, when drought episode happens in reproduc-
tive growth, it typically results in asynchronous devel-
opment of anthesis and silking (known as anthesis and
silking interval, ASI) (Bruce et al. 2002; Tuberosa et al.
2002). The drought-induced ASI hampers successful
pollination and greatly reduces the grain yields. Thus,
there is tremendous interest in genetic dissection of ASI
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and correlated secondary traits, such as kernel number
and hundred-kernel weight. In addition, an important
feature of water stress is that the hyperosmotic signal
causes the accumulation of the phytohormone abscisic
acid (ABA), which in turn elicits adaptive responses in
plants (Zhu 2016).

Although conventional breeding strategies have led
to the release of many new maize varieties, these strat-
egies often fail to meet the need for improved yield and
stress tolerance (Tester and Langridge 2010). Over the
past decade, however, significant new information has
been gained on the alleles that contribute to these traits.
Most recently, molecular breeding systems, including
transgenic, genome-wide marker-assisted selection, and
gene-editing technologies, have provided a more direct,
efficient, and accurate approach for trait improvement.

In this review, we focus on recent progress related to
the genetic dissection of drought tolerance in maize at
different developmental stages achieved through link-
age mapping and association mapping. In addition, this
review also provides an overview of recent progress in
drought improvement in maize using genetic engineer-
ing combined with conventional breeding strategies.

The physiological and morphological adaptations
of maize under water-stressed conditions

Crops possess numerous physiological and molecular
mechanisms to adapt to environmental stress that have
been obtained through the course of natural and artificial
selection (Fig. 1a). Responses to drought stress are depen-
dent on plant species, the stage of plant development, the
rate of dehydration, and the duration and severity of the
drought stress. Drought resistance is generally defined as
the ability of a plant to perceive a water deficiency and
initiate coping strategies. It is a complex trait that encom-
passes threemechanisms: “drought escape” (completion of
its life cycle prior to the detrimental effect of drought or
undergo a period of dormancy until suitable conditions
return); “drought avoidance” (the ability to maintain a
relatively high tissue water content despite reduced soil
water availability); and “drought tolerance” (ability to
maintain cellular homeostasis through adaptive traits de-
spite low water potential) (Levitt 1980). Leaf-rolling and
survival rate are two common physiological indexes that
are used tomeasure drought tolerance at the seedling stage.
Beginning at leaf water potentials of − 1 MPa, leaf-rolling
is observed and reaches a maximum around − 2 MPa

(Baret et al. 2018). It helps plant to reduce water loss and
avoid further stress injury. If the severity of drought con-
tinues to increase, the level of plant deathwill also increase.
Survival rate refers to the ability of the plant to maintain
viability while being subjected to drought stress and re-
sume normal growth when sufficient water becomes avail-
able. The survival rate of maize across different genetic
resources was investigated to range from 1.65 to 82.98%,
when severe drought stress was applied to the seedlings,
indicating a great genetic diversity in themaize germplasm
(Wang et al. 2016). At a cellular level, drought signals
promote stomatal closure to save water, stimulate the
production of stress-protectant metabolites, upregulate the
antioxidant system, and deploy peroxidase enzymes to
prevent acute cellular damage and loss of membrane in-
tegrity (Gupta et al. 2020) (Fig. 1b).

Crop yield is vulnerable when drought conditions
occur during the reproductive phase of plant growth.
Although grain yield (GY) when plants subjected to
water stress is the final target trait used to assess the
degree of drought tolerance, correlated traits, such as
ASI and kernel number per row (KNR), are considered
to have a higher heritability and thus may be more
suitable as target traits for improving maize drought
resistance (Monneveux et al. 2008; Xue et al. 2013; Jia
et al. 2020). A universal response in maize to drought
stress is a delay in silking in relation to pollen shed,
which is a critical index for drought tolerance in maize
genotypes, and has been shown to be highly correlated
with grain yield under water-stressed conditions (Bruce
et al. 2002).

Roots are the essential organ for perceiving water
deficit signals and water uptake. Maize seminal roots
are initiated after germination, and a nodal root system is
subsequently developed. The uptake of water and nutri-
ents is initially carried out by the seminal root system.
The first nodal roots that form aboveground will pene-
trate the soil to provide support and keep the plant
upright (Zhang et al. 2018b). Plant species, such as
maize, have two general mechanisms about nutrient
acquisition: the distribution of the root system and the
efficiency of transmembrane nutrient uptake. Larger
root cortical cell size and fewer root cortical cell file
number were characterized to beneficial for drought
tolerance by reducing the metabolic cost of soil explo-
ration and enabling deeper soil exploration (Chimungu
et al. 2014a, b). Reduced crown root number and lateral
root branching density can improve drought tolerance in
maize by increasing rooting depth and water acquisition
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from the subsoil (Zhan et al. 2015; Gao and Lynch
2016).

Genetic dissection of drought tolerance in maize

Linkage mapping and genome-wide association studies
(GWAS) are the two major strategies used in plants to

identify QTLs for complex traits. A major objective in
genetic mapping is to identify the causative gene(s)
responsible for the phenotypic variation. Since the re-
lease of the maize B73 reference genome, GWAS and
linkage mapping analyses in maize have substantially
increased, resulting in the dissection of many agricul-
turally important traits. However, to identify the causal
gene or variant is still challenging. To address this

Fig. 1 Effect of drought stress on maize growth and development
and the research strategy for the trait improvement. a An illustra-
tion describing the morphological changes that occur in plants in
response to drought stress. b The physiological and cellular

responses that occur in maize in response water-deficit conditions
and lead to reductions in growth and yield. c Schematic of the
research strategy employed in genetic dissection of maize drought
resistance for trait enhancement
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problem, new approaches, including Mendelian ran-
domization (MR) analysis and transcriptome-wide asso-
ciation studies (TWAS), have been developed to ana-
lyze expression-trait associations and prioritize candi-
date genes associated with a trait based on variations in
gene expression (Gusev et al. 2016; Zhu et al. 2016).
These approaches have been used to conduct more
comprehensive studies and analyses of gene expression
architectures in response to different environmental
conditions.

QTL mapping of drought tolerance in maize

QTL mapping is a major method used to dissect the
genetic basis of complex traits, and also serves as the
basis of marker-assisted selection (MAS). Populations
adopted for linkage mapping are usually derived from a
bi-parental cross with clear ancestry. QTL mapping
allows a researcher to determine if a chromosomal frag-
ment between two specific breakpoints is associated
with a specific phenotype. Molecular markers, such as
restriction fragment length polymorphisms (RFLPs),
random amplified polymorphism DNA (RAPD),
sequence-characterized amplified regions, and simple
sequence repeats (SSRs), have been developed and used
for QTL analysis beginning in the last century (Kim
et al. 2000). Currently, single nucleotide polymor-
phisms (SNPs) have taken the place of DNA fragment
markers, as they encompass the greatest level of varia-
tion present in the genomes of organisms (Rafalski
2002). Genotyping-by-sequencing (GBS) focuses on
the sequencing data obtained from DNA restriction
fragments rather than the whole genome and allows
researchers and breeders to identify genomic variations
among many individuals of organisms with large ge-
nomes (Gore et al. 2009). Several studies have conduct-
ed QTL mapping of drought resistance in maize
(Table 1). Early seedling growth is very important for
maize establishment and grain yield production. Identi-
fication of quantitative trait loci for drought tolerance at
seedling stage will contribute to the profile of drought
tolerance throughout the maize life cycle and help un-
derstand the complex mechanism of this important ag-
ronomic trait. Seven QTLs related to survival rate have
been reported on chromosomes 3, 4, 6, 7, and 9 that
were identified based on of 93 SSR markers using
multiple parents introgression lines (Hao et al. 2009).
Nine QTLs related to leaf temperature have been report-
ed on chromosomes 1, 2, 9, and 10 that were identified

based on of 248 SSR markers using 187 recombinant
inbred lines (RILs) derived from across of Zong3
(drought sensitive) × 87-1 (drought tolerant) genotypes
(Liu et al. 2011).

Due to the complex genetic basis of drought toler-
ance and poor heritability of the crop yield trait, indi-
vidual trait components, such as ASI and KNR, are
more frequently identified and characterized due to
their better heritability in replicated experiments
(Monneveux et al. 2008; Xue et al. 2013). Five QTLs
related to grain yield have been reported on chromo-
somes 1, 3, 5, 6, and 8, which explain 50% of the
phenotypic variance (Agrama and Moussa 1996).
Ribaut et al. reported on QTLs associated with
flowering time and ASI in maize under well-watered
conditions and two water-stressed regimes (Ribaut
et al. 1996). Based on 142 RILs derived from across
between B73 (drought tolerant) × H99 (drought sen-
sitive) maize genotypes, genomic segments were
identified to be responsible for the expression of
drought tolerance in yield component traits under
well-watered and water-stressed conditions. Half of
the QTLs were consistently detected in the two water-
stressed regimes (Frova et al. 1999). Sanguineti et al.
identified 17 QTLs controlling bulk-leaf ABA con-
centration (L-ABA) using 80 F4 random families de-
rived from across between Os420 (high L-ABA par-
ent) and IABO78 (low L-ABA parent) genotypes
(Sanguineti et al. 1999). Two QTLs for ear setting
were detected on chromosomes 3 and 6, under well-
watered conditions, explaining approximately 19.9%
of the phenotypic variance (Li et al. 2003). Lu et al.
analyzed the additive and epistatic QTLs associated
with yield and yield components based on 261 SSRs
using 221 RILs as the test material under both well-
watered and water-stressed conditions. Results indi-
cated that many QTLs varied and suggested that this
was most likely due to different levels of genetic
expression exhibited in the two different water-
stressed treatment groups (Lu et al. 2006). By analyz-
ing a RIL population derived from across between
CML444 (drought tolerant) and SC-Malawi (drought
sensitive), 81, 57, 51, and 34 QTLs were uncovered
for six target traits (male flowering, ASI, grain yield,
kernel number, 100-kernel fresh weight, and plant
height) (Messmer et al. 2009). A meta-QTLs
(mQTLs) analysis was performed for grain yield and
ASI across 18 bi-parental maize populations evaluat-
ed under both managed water-stressed and well-
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watered environments. Sixty-eight mQTLs were iden-
tified and each of them averagely explained 6.5%
phenotypic variation (Semagn et al. 2013). Almeida
et al. evaluated three tropical bi-parental populations
under well-watered and water-stressed regimes.
Across the three populations and multiple environ-
ments, seven genomic regions for grain yield and
one for ASI were identified, with six mQTL on

chr.1, 4, 5, and 10 for grain yield being constitutively
expressed under both well-watered and water-stressed
conditions (Almeida et al. 2013).

Root architecture and development has been shown
to be a key component of drought tolerance (Pace et al.
2015). Understanding root development and the molec-
ular mechanisms that influence root architecture is thus
important for increasing yield potential and yield

Table 1 List of QTLs related to drought resistance identified by linkage mapping

Trait category Phenotype Mapping population Sample
size

Marker Locus/QTL Candidate gene References

Seedling stage SR Multiple parents
introgression lines

417 93 SSR 7 QTLs
(umc1351, etc.)

None Hao et al.
2009

LTD, DTI,
SFW, SDW

Zong 3×87-1 187 248 SSR 9 QTLs
(bnlg1556, etc.)

None Liu et al.
2011

Components
of grain
yield

GY, ASI, EAR SD34×SD35 230 70 RFLPs 11 QTLs
(umc76, etc.)

None Agrama
and
Moussa
1996

MFLW, FFLW,
ASI

Ac7643S5
×Ac7729/TZSRWS5

234 142 RFLPs 57 QTLs
(umc119, etc.)

None Ribaut
et al.
1996

EL, EW, KWE,
KN, etc.

B73×H99 142 173 RFLPs 34 QTLs
(m16, etc.)

None Frova et al.
1999

L-ABA
concentration

Os420×IABO78 80 106 SSR 17 QTLs
(umc11, etc.)

None Sanguineti
et al.
1999

GY, ASI, Huangzao 4×Ye 107 184 89 SSR 20 QTLs
(umc1160, etc.)

None Li et al.
2003

EL, KR, WK,
KWP

Zong 3×87-1 221 261 SSR 92 QTLs
(bnlg1014, etc.)

None Lu et al.
2006

MFLW, ASI,
GY, KNO,
etc.

CML444×SC-Malawi 236 79 RFLPs
and 81
SSR

57 QTLs
(umc128, etc.)

None Messmer
et al.
2009

GY, ASI 18 bi-parental
populations

3130 from 118 to
202 SNPs

68 mQTLs 5 to 926
candidate
genes in each
mQTL

Semagn
et al.
2013

GY, ASI 3 bi-parental
populations

781 1, 536 SNPs 7 mQTLs 16
(ZmMADS16,
etc.)

Almeida
et al.
2013

Root traits Lax, LLat, ERax,
KLat, etc.

Ac7643
×Ac7729/TZSRW

208 132 RFLPs 13 QTLs
(bin 2.02, etc.)

None Ruta et al.
2010

PRL, SRL,
CRL, SRN,
etc.

DH1M×T877 204 56, 000 SNPs 364 QTLs
(SNP20, etc.)

None Li et al.
2018

Abbreviations: SR survival rate, LTD leaf temperature differences, DTI drought tolerance index, SFW total shoot fresh weight, SDW shoot
dry weight, GY grain yield, ASI anthesis-silking interval, EAR number of ears per plant, MFLW the time of male flowering, FFLW female
flowering, EL ear length, EW ear weight, KWE kernel weight per ear, KN kernel number per ear, KNO the number of kernels per square
meter, Lax axile root length, LLat lateral root length, ERax elongation rates of axile roots,KLat rate constant of lateral root elongation, PRL the
length of primary root, SRL seminal root, CRL crown root, SRN the number of seminal roots
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stability under varying environmental conditions and
soil profiles (Hodge et al. 2009). Thirteen QTLs related
to six root traits have been reported on chromosomes 2,
3, 5, 6, and 7 that were identified based on 208 RILs
derived from across between two inbred lines, Ac7643
(drought tolerant) and Ac7729/TZSRW (drought sensi-
tive) (Ruta et al. 2010). Li et al. evaluated 13 root and
shoot traits and genetic plasticity based on 56,000 SNPs
using a population of 204 recombinant inbred lines
derived from across between two inbred lines, DH1M
(drought tolerant) and T877 (drought sensitive) using
single-seed descent. A total of 48 QTLs were identified,
including 15 QTLs that were associated with 9 traits
with significant QTL-by-Environment interactions (Li
et al. 2018). Although many QTLs have been detected
via linkage mapping, few studies report on the fine
mapping of QTLs that enable the identification of the
precise genetic position and/or the cloning of candidate
gene(s). This is because large secondary populations are
generally required to achieve sufficient map resolution,
which require a high level of resources and are time-
consuming to establish (Dinka et al. 2007). The large
amounts of repetitive sequences in the maize genome
have also hindered progress in QTL fine mapping and
cloning (Jiao et al. 2017).

Association mapping of drought-related QTLs

Maize is an ideal crop for the application of GWAS, and
significant progress has been made in the last decade.
The degree of linkage disequilibrium (LD), however, is
a major factor affecting the resolution achieved by as-
sociation mapping. Three versions of the maize haplo-
type map have been published, and the number of SNP
variants on each of them were 3.3 million for 27 lines
(Gore et al. 2009), 55 million SNPs for 103 lines (Chia
et al. 2012), and up to 83 million for 1218 lines
(Bukowski et al. 2018), respectively. The genome-
wide LD decay (r2 < 0.2) in maize is ~ 5.5 kb in maize
hapmap2 (Chia et al. 2012). Based on the rapid decay of
linkage disequilibrium (LD) in the maize genome deter-
mined with high-quality SNPs, the use of GWAS has
increased our understanding of the genetic architecture
of complex quantitative traits and facilitated the cloning
of genes underlying complex traits (Wang and Qin
2017).

Drought resistance is a complex polygenic trait, and
its impact on crop production depends on the degree and
duration of the reduced precipitation and soil water

gradients, as well as on plant species and the develop-
mental stage of plants. Association mapping of drought
tolerance in maize seedlings has been reported in several
studies (Liu et al. 2013; Mao et al. 2015; Wang et al.
2016; Zhang et al. 2019) (Table 2). Liu et al. analyzed
all of the functional dehydration-responsive element-
binding (DREB) protein genes in maize and examined
their associations with natural variation in drought tol-
erance among 368 maize varieties collected from trop-
ical and temperate regions. A significant association
between the natural variation in ZmDREB2.7 and
drought tolerance was detected and specifically located
in the gene promoter region which most likely enable
the early induction of the gene expression (Liu et al.
2013). Mao et al. identified a miniature inverted-repeat
transposable element (MITE) inserted in the promoter of
a NAC gene (ZmNAC111) that was significantly associ-
ated with natural variation in maize drought tolerance.
The MITE insertion is correlated with lower
ZmNAC111 expression in maize and suppresses
ZmNAC111 expression via the RNA-directed DNA
methylation and H3K9 dimethylation pathway when it
is expressed in Arabidopsis (Mao et al. 2015). Wang
et al. reported on a GWAS analysis of maize drought
tolerance at the seedling stage and identified 83 genetic
variants that were resolved to 42 candidate genes. The
peak SNP (chr9.S_94178074) overlapped with the pre-
viously reported QTL9.3 (Semagn et al. 2013) and is
directly located in the ZmVPP1, which encodes a
vacuolar-type H+ pyrophosphatase (H+-PPase) (Wang
et al. 2016).

Crop yield becomes especially vulnerable when
drought stress occurs during the reproductive phase of
plant development. Correlated secondary traits, such as
ASI, kernel number, and hundred-kernel weight, are
generally easier to measure and show a higher heritabil-
ity and thus may represent a more suitable target for
improving maize response to water stress (Xue et al.
2013). ASI is commonly used as a selection criterion for
drought-tolerant maize genotypes, as it has been shown
to be highly correlated with grain yield under water-
stressed conditions (Lu et al. 2010; Xue et al. 2013;
Thirunavukkarasu et al. 2014; Farfan et al. 2015)
(Table 2). Lu et al. utilized 2,052 SNPs to screen across
three RIL populations and 305 diverse inbred lines,
under both well-watered and water-stressed conditions.
This study represents a powerful approach for detecting
QTLs, relative to other studies, due to the utilization of
increased population size and allele diversity, as well as
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balanced allele frequencies (Lu et al. 2010). Xue et al.
reported a GWAS of drought tolerance in maize at the
reproductive phase of development and identified 42
a s s o c i a t e d SNP s l o c a t e d i n 3 3 g e n e s .
GRMZM2G125777 was strongly associated with ear
relative position, hundred-kernel weight, and timing of
male and female flowering (Xue et al. 2013).
Thirunavukkarasu et al. analyzed 240 accessions of
subtropical maize under water-stressed conditions using
29,619 SNPs and identified genetic loci and their asso-
ciation with functional mechanisms. Maize gene models
revealed that the SNPs mapped for agronomic traits
were associated with a number of functional traits, in-
cluding stomatal closure, flowering, root development,
detoxif icat ion, and reduced water potent ial
(Thirunavukkarasu et al. 2014). Farfan et al. used a
diversity panel consisting of 346 maize inbred lines
originating from temperate, sub-tropical, and tropical
areas that were test crossed to stiff-stalk line Tx714 to
conduct irrigated and non-irrigated trials for yield, plant
height, ear height, days to anthesis, days to silking, and
other agronomic traits. Three variants significantly ex-
plained 5–10% of the phenotypic variation in grain yield
under both well-watered and water-stressed conditions
(Farfan et al. 2015).

GWAS is also employed to analyze the allelic diver-
sity underlying root characteristics and identify superior
alleles (Table 2). Three hundred eighty-four inbred lines
from the Ames panel were genotyped with 681,257
SNPs, and 22 seedling root architecture traits were
phenotyped (Pace et al. 2015). The GWAS study iden-
t i f i ed 268 s ign i f i c an t ly a s soc i a t ed SNPs .
GRMZM2G153722, located on chromosome 4, con-
tains 9 of the 13 significant SNPs identified for two
traits, root diameter, and surface area (Pace et al.
2015). Zaidi et al. reported a GWAS of maize drought
tolerance at the reproductive stage and identified 50 and
67 SNPs significantly associated with root functional
(transpiration efficiency, flowering period water use)
and structural (rooting depth, root dry weight, root
length, root volume, root surface area, and root length
density) traits, respectively (Zaidi et al. 2016). Guo et al.
evaluated seminal root length (SRL) within an associa-
tion panel consisting of 209 diverse maize accessions
under well-watered and water-stressed conditions. They
identified 7 candidate genes associated with seminal
root development by integrating RNA-seq and GWAS
data (Guo et al. 2020). Notably, transgenic maize with
enhanced ZmVPP1 and ZmTIP1expression exhibit

enhanced root biomass and root hair elongation, respec-
tively (Wang et al. 2016; Zhang et al. 2019), which also
suggests that a better-developed root system may con-
tribute to maize drought resistance.

Transcriptome analysis facilitates genetic dissection
for drought tolerance

Regulation of gene expression is fundamental aspect of
stress response and adaptation. Thus, a transcriptomic
approach has been widely used in studies of drought
stress response in maize (Thatcher et al. 2014; Thatcher
et al. 2016; Danilevskaya et al. 2019). A total of 94
RNA-seq libraries from ear, tassel, and leaves of the
B73 public inbred line of maize were constructed at four
developmental stages under both well-watered and
water-stressed conditions to assess the effect of drought
stress on developmentally regulated gene splicing. Re-
sults revealed that alternative splicing is strongly asso-
ciated with tissue type, developmental stage, and stress
condition (Thatcher et al. 2016).More than 200 Illumina
RNA-seq libraries were constructed to identify tran-
scripts in two different genotypes of maize in a variety
of tissues (Thatcher et al. 2014). Many new alternatively
spliced transcripts had the potential to code for entirely
different proteins, which revealed a great diversity of
protein sequences in the maize proteome (Thatcher et al.
2014). Parallel RNA-seq profiling of leaves, ears, and
tassels of the maize B73 inbred line at several develop-
mental stages of plants growing under field conditions
revealed tissue-specific differences in response to
drought stress. Tassel growth was reduced to a lesser
extent than ear growth in response to drought stress.
Genes controlling DNA replication, cell cycle, and cell
division were significantly downregulated in stressed
ears, which was consistent with the inhibition of ear
growth in response to drought (Danilevskaya et al.
2019). Moreover, it is revealed that genetic variation in
the regulatory region of ZmNAC111, ZmVPP1, and
ZmTIP1 affects gene expression in a manner that is
associated with natural variation in drought tolerance
in seedling stage (Mao et al. 2015; Wang et al. 2016;
Zhang et al. 2019). To uncover the associations between
the gene expression alteration with drought tolerance,
TWAS and MR analyses are developed (Gusev et al.
2016; Zhu et al. 2016). A total of 627 RNA-seq analyses
of maize leaf samples at the vegetative 2–3 stage that
were collected from 224 maize accessions under three
different water regimes was conducted to identify the
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regulatory variants controlling gene expression in re-
sponse to drought. A total of 73,573 eQTLs were de-
tected, and 60% of them were resolved to a single
candidate gene. Importantly, 97 genes were prioritized
in relation to their association with drought tolerance
due to their variation in expression, whichwas identified
through the MR analysis (Liu et al. 2020). Importantly,
the natural variation in expression level of abh2
(encoding an Abscisic acid 8′-hydroxylase) was identi-
fied to contribute to the seedling drought tolerance.

Molecular breeding of drought resistance in maize

Drought resistance is a particularly complex quantitative
trait controlled by many loci, each contributing a small
effect. Conventional plant breeding has achieved genet-
ic improved crops by crossing superior plants with other

genotypes and conducting selection over years of field
trials for enhanced yield performance under drought
stress among the descendants (Babu et al. 2003). This
is a tedious and long empirical process. New strategies
and technologies are needed to improve the selection
efficiency (Fig. 1c). Molecular breeding, including
MAS, transgenics, gene editing, and genome-wide se-
lection, is considered a promising approach for crop
breeding to meet the growing demand for stress tolerant,
higher yielding crop varieties (Gao 2014; Voytas and
Gao 2014). The rounds of backcrossing required and
linkage drag could be significantly reduced by marker-
assisted background selection. Marker-assisted back-
cross selection of BC2F3 families (Ac7643 ×
CML247) were crossed with two testers (CML254 and
CML274) and evaluated under different water regimes.
Mean grain yield of the test hybrids was consistently at
least 50% higher than control hybrids under severe

Table 2 List of QTLs related to drought resistance identified by association mapping

Trait category Phenotype Mapping
population

Sample
size

Marker numbers
(SNP)

Candidate gene References

Seedling
stage

SR Inbred lines
populations

368 525, 105 ZmDREB2.7 Liu et al. 2013

368 556, 944 ZmNAC111 Mao et al. 2015

367 556, 944 ZmVPP1 Wang et al. 2016

Components of
grain yield

ASI Recombinant
inbred line
populations and
inbred
lines populations

961 2, 052 65
(GRMZM2-
G164325, etc.)

Lu et al. 2010

GY, DTA, DTS,
ASI, etc.

Inbred lines
populations

350 56, 110 33
(GRMZM2-
G125777, etc.)

Xue et al. 2013

GY, ASI, EG, EL,
etc.

Inbred lines
populations

240 29, 619 108
(GRMZM2-
G418217, etc.)

Thirunavukkarasu
et al. 2014

GY, DTA, DTS,
ASI, etc.

Inbred lines
populations

346 60, 000 16
(GRMZM2-
G035688, etc.)

Farfan et al. 2015

Root traits TNR, RDW, CVA,
PRL, etc.

Inbred lines
populations

384 681, 257 GRMZM2G153722 Pace et al. 2015

RDW, RL, RSA,
RV, etc.

Inbred lines
populations

396 955, 690 98
(GRMZM2-
G148106, etc.)

Zaidi et al. 2016

RHL Inbred lines
populations

367 556, 944 ZmTIP1 Zhang et al. 2019

PRL, SRL, SRN. Inbred lines
populations

209 43, 252 7
(GRMZM2-
G136364, etc.)

Guo et al. 2020

Abbreviations: SR survival rate,DTA days to anthesis,DTS days to silking,ASI anthesis-silking interval,GY grain yield, EG ear girth,EL ear
length, TNR total number of roots, RDW root dry weight, CVA convex root area, PRL primary root length, RDW root dry weight, RL root
length, RSA root surface area, RV root volume, RHL root hair length, SRL seminal root length, SRN seminal root number

Mol Breeding (2021) 41: 88 Page 8 of 13



water-stressed conditions (Ribaut and Ragot 2007). The
superior allele of ZmVPP1 from drought-tolerant inbred
lines (CIMBL70 and CIMBL91) was introgressed into a
drought-sensitive inbred line (Shen5003) through four
generations of successive backcrossing of F1 plants
(Shen5003 × CIMBL70 and Shen5003 × CIMBL91).
For each generation, the ZmVPP1-heterozygous plants
were selected and backcrossed with Shen5003. The
homozygous-tolerant plants, NIL-ZmVPP1CIMBL70and
NIL-ZmVPP1CIMBL91, were more tolerant than the
NIL-ZmVPP1Shen5003 siblings (Wang et al. 2016).

Transgenic maize with improved drought resistance
has been developed. Transgenic maize with increased
ZmNF-YB2 expression has been shown to confer
drought tolerance and maintained photosynthetic capac-
ity with improvements in grain yield observed across
several growing seasons in fields under water-stressed
conditions (Nelson et al. 2007). Overexpressing the
ZmASR1 increased in dry leaf weight and total chloro-
phyll content and improved maize kernel yield under
well-watered and water-limited conditions in the field
(Virlouvet et al. 2011). Expressing a gene encoding a
rice trehalose-6-phosphate phosphatase (TPP) in devel-
oping ears increased both kernel set and harvest index
under non-stress or drought conditions (Nuccio et al.
2015). The constitutive expression of two members of a
family of bacterial RNA chaperones, Escherichia coli
CspA and Bacillus subtilis CspB, was shown to confer
abiotic stress tolerance in maize by improving growth,
chlorophyll content, photosynthetic rate, and kernel
numbers (Castiglioni et al. 2008). However, the suitabil-
ity of the transgene, dosage effect, level of tolerance,
yield penalty, and socio-scientific acceptance of trans-
genics in food crops like maize are all determinants that
need to be evaluated when considering transgenic plant
development (Cattivelli et al. 2008). Importantly, gene
editing technology, which involves the use of site-
specific nucleases engineered to modify target genes at
a desirable location in the genome, represents a major
step towards breeding by design (Rinaldo and Ayliffe
2015; Zhang et al. 2018a). Shi et al. employed Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR)-Cas9 technology to generate novel variants
of ARGOS8. As a result of this strategy, ARGOS8 var-
iants exhibited increased grain yield by as much as five
bushels per acre, relative to non-engineered, wild-type
plants under flowering stress conditions and had no
yield loss under well-watered conditions (Shi et al.
2017). Liu et al. obtained three independent

homozygous lines (i1, d2, and d35) using CRISPR-
Cas9 technology. The survival rate of all three mutants
under drought stress was significantly higher than wild-
type plants (Liu et al. 2020). Taking the advantage of
precise-targeting, gene editing technology is more plau-
sive than gene transferring technology which usually
introduces several kilo-base foreign DNA fragment to
the genome. However, this technology relies on the
strong knowledge on the superior allele of the major
gene contributing to the trait. Thus, it emphasizes the
importance of the genetic dissection and gene cloning of
drought tolerance.

With the advent of new genomic tools, genome
wide selection has also emerged as an important
approach for complex trait improvement (Zhao
et al. 2012; Shikha et al. 2017). Zhao et al. evaluated
grain yield of F3 populations in 788 individuals
using 960 SNPs. The prediction accuracy across
populations was higher for grain moisture (0.90)
than for grain yield (0.58) using random regression
best linear unbiased prediction in combination with
five-fold cross-validation (Zhao et al. 2012). Shikha
et al. evaluated the breeding value of 240 subtropi-
cal lines of maize phenotyped for drought resistance
under different environmental conditions using
29,619 SNPs. A total of 77 SNPs were associated
with 10 drought-responsive transcription factors
based on the predicting accuracy of seven genomic
selection models (Shikha et al. 2017). These studies
indicate that the cumulative effects of multiple quan-
titative resistance loci could potentially be exploited
to produce high levels of drought tolerance.

Future prospects

Over the past several decades, researches have shed
light on the complex genetic architectures and regu-
latory mechanisms involved in drought resistance in
maize. Drought-related QTL analyses have identi-
fied genomic regions that can be used for the direct
selection of specific alleles. Meanwhile, GWAS has
been used to identify hundreds of genetic variants in
maize that are associated with drought-related traits.
However, the candidate genes through which the
identified genetic variants exert their effects on traits
are remained largely unknown. Therefore, it is im-
portant to integrate multi-omic studies into linkage
and association mapping to bridge the knowledge
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gap. Metabolomics provides a comprehensive high-
throughput quantification of a broad range of me-
tabolites and has been valuable for both phenotyping
and diagnostic analyses in maize (Fernie and
Schauer 2009; Riedelsheimer et al. 2012; Wen
et al. 2014; Deng et al. 2020). Metabolomic data
are also valuable for tracking evolutionary history
and extending genomic insights into interspecific
differentiation in maize and rice (Deng et al.
2020). Recent proteomics analysis has provided a
functional context for the interpretation of gene ex-
pression variation in modern maize breeding (Jiang
et al. 2019). The joint use of omics-data, specific
genetic designs, and relevant analytical methods will
provide integrative information that increase our
understanding of the balance between stress re-
sponse and grain yield and quality. Understanding
the molecular regulatory mechanisms of drought
response will also provide a useful foundation for
maize breeding. With advances in the research
topics presented in this review, the complex regula-
tory network associated with drought stress response
and the evolution of drought resistance in maize
ecotypes can be the subject of further studies in
the future. Undoubtedly, this acquired knowledge
will help fine-tune the development of new maize
varieties that can adapt to and withstand the chal-
lenges presented by water scarcity.
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