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Abstract

MtDNA-based phylogeography has illuminated the impact of the Pleistocene Ice Age on species distribution dynamics and 

the build-up of genetic divergence. The well-known shortcomings of mtDNA in biogeographical inference can be compen-

sated by integrating multilocus data and species distribution modelling into phylogeography. We re-visit the phylogeography 

of the Italian crested newt (Triturus carnifex), a species distributed in two of Europe’s main glacial refugia, the Balkan and 

Italian Peninsulas. While a new 51 nuclear DNA marker dataset supports the existence of three lineages previously suggested 

by mtDNA (Balkan, northern Italy and southern Italy), the nuclear DNA dataset also provides improved resolution where 

these lineages have obtained secondary contact. We observe geographically restricted admixture at the contact between the 

Balkan and northern Italy gene pools and identify a potential mtDNA ghost lineage here. At the contact between the northern 

and southern Italy gene pools we find admixture over a broader area, as well as asymmetric mtDNA introgression. Our spe-

cies distribution model is in agreement with a distribution restricted to distinct refugia during Pleistocene glacial cycles and 

postglacial expansion with secondary contact. Our study supports: (1) the relevance of the north-western Balkan Peninsula 

as a discrete glacial refugium; (2) the importance of north-eastern Italy and the northern Apennine as suture zones; and (3) 

the applicability of a refugia-within-refugia scenario within the Italian Peninsula.

Keywords Balkan peninsula · Historical biogeography · Ice age · Italian Peninsula · Phylogeography · Triturus carnifex

Introduction

The glacial cycles of the Pleistocene Ice Age greatly influ-

enced species distributions and are recognized as a major 

driver of intraspecific divergence in temperate species 

(Hewitt 2000; Hofreiter and Stewart 2009; Stewart et al. 

2010). Geographical populations of a single species that 

were isolated in allopatric refugia during relatively long gla-

cial periods, could repeatedly expand their ranges and estab-

lish hybrid zones upon secondary contact during relatively 

short interglacial periods (Hewitt 1988; Barton and Hewitt 

1985). Yet, during the following glacial cycle, extinction in 

the interglacially colonized area would cause the ranges of 

the geographical populations to contract and become iso-

lated again (Hewitt 2011a). This raises the question what the 

influence of such a temporary bridge for gene flow was on 

the genetic divergence of geographical populations within 

their respective glacial refugia – would genetic differentia-

tion be negated or could it accumulate over multiple glacial 

cycles (Garrick et al. 2019)?

Phylogeographic surveys have mostly employed mtDNA 

(Riddle 2016; Beheregaray 2008; Avise 2000). Yet, mtDNA 

is generally more susceptible to geographical sub-structuring 

than the rest of the genome (Petit and Excoffier 2009), even 

in the face of uninterrupted gene flow (Irwin 2002), and 

the geographical structuring of mtDNA often deviates from 
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that of nuclear DNA due to differential introgression (Toews 

and Brelsford 2012). While it is widely acknowledged that 

multiple unlinked nuclear markers are required to obtain 

an accurate estimate of the evolutionary independence of 

geographical populations (Edwards 2009), it has only rel-

atively recently become feasible to consult many nuclear 

markers for a large number of individuals for non-model 

organisms (Ekblom and Galindo 2011; Garrick et al. 2015; 

McCormack et al. 2013). Additional insight into distribution 

dynamics can be obtained by the integration of species dis-

tribution modelling in phylogeography (Alvarado-Serrano 

and Knowles 2014; Svenning et al. 2011). This approach 

is regularly applied for the Last Glacial Maximum in par-

ticular, because climatic data layers are publicly available 

(Hijmans et al. 2005). By combining ‘next-generation phy-

logeography’ (Puritz et al. 2012) with species distribution 

modeling, mtDNA-based historical biogeographical hypoth-

eses can be tested, identifying areas that acted as glacial 

refugia, and dissecting patterns of secondary admixture 

between lineages that originated in distinct refugia (e.g. 

Spinks et al. 2014; Dufresnes et al. 2020).

The range of the Italian crested newt Triturus carnifex 

encompasses two of Europe’s canonical glacial refugia, 

the Italian and the Balkan Peninsula (Wielstra et al. 2014b; 

Fig. 1). A previous mtDNA-based phylogeographic study 

revealed a basal split between the Italian and the Balkan 

populations, dated to the onset of the Pleistocene, and a 

further north-south division within the Italian Peninsula, in 

line with a refugia-within-refugia scenario (Canestrelli et al. 

2012). Early studies consulting allozyme data suffered from 

incomplete sampling and yielded inconsistent results, pre-

venting a proper understanding of the fate of nuclear genetic 

differentiation over multiple glacial-interglacial cycles (Scil-

litani and Picariello 2000; Arntzen 2001). We here collect 

multilocus nuclear DNA sequence data from populations 

across the entire range of T. carnifex, to determine the num-

ber of distinct gene pools present and the degree of gene flow 

between them. Additionally, we conduct species distribution 

modeling to assess glaciation-driven range reduction and 

Fig. 1  Sampling scheme for Triturus carnifex and allocation of indi-

viduals to mtDNA clade and nuclear DNA gene pool. Numbered 

circles are populations, colored according to mtDNA clade (see 

Fig.  2), while the colored background approximates the distribu-

tion of nuclear DNA gene pools (“introgressed” refers to mtDNA 

derived from T. dobrogicus). Bar plots show allocation of individuals 

to mtDNA (mt) clade and nuclear DNA gene pool based on Struc-

ture under k =2 and k = 3 (details in Table S1). Populations 1–3 are 

excluded because they are affected by interspecific gene flow. Popula-

tion numbers correspond to Table S1



19Evolutionary Biology (2021) 48:17–26 

1 3

fragmentation. We compare these independent estimates of 

distribution dynamics with each other and with the mtDNA-

based hypothesis and discuss the impact of the Pleistocene 

climatic cycles on genetic divergence within T. carnifex.

Materials and Methods

Sampling and Sequencing

We sampled 85 individuals from 29 populations (Fig. 1; 

Table S1). Total genomic DNA was extracted using the 

DNeasy Tissue Kit (Qiagen). We obtained mtDNA data, an 

alignment comprising 635 bp of ND2 and 665 bp of ND4, 

from two phylogeographic studies (Canestrelli et al. 2012; 

Wielstra et al. 2013) and newly sequenced newts (13 for 

ND2 and 28 for ND4). We collected multilocus nuclear 

DNA sequence data, using an Ion Torrent next-generation 

sequencing protocol that is described in detail in Wielstra 

et al. (2014a). In brief, we sequenced 51 nuclear markers 

(a 52nd marker was removed as over 20% of individuals 

had less than 20 reads) of c. 140 bp in length (excluding 

primers), positioned in 3’ untranslated regions, in five mul-

tiplex PCRs. We pooled the multiplexes for each individual 

and ligated unique tags to be able to recognize the product 

belonging to each individual. We sequenced the amplicons 

on the Ion Torrent next-generation sequencing platform and 

processed the output with a bioinformatics pipeline that fil-

ters out poor quality reads, identifies alleles and converts 

data to a format directly usable for population genetic anal-

ysis. Mean coverage was 1157.6 reads (range 0–110648) 

per marker-individual combination and 98.0% of marker-

individual combinations were considered successful (mean-

ing they had at least 20 reads available). The range of the 

number of alleles per marker was 2–11 (Table S2). Data 

were phased and converted to a genotypic format that could 

directly be read in and converted with the software CREATE 

(Coombs et al. 2008).

Analysis of mtDNA

We obtained a dated mtDNA phylogeny with BEAST 

2.6 (Bouckaert et al. 2019). As outgroup we used the sis-

ter species T. macedonicus (GenBank accession number 

NC015794). Introgressed mtDNA was excluded. The origin 

of the Adriatic Sea at 5.33 Ma, at the end of the Messin-

ian Salinity Crisis, was interpreted as the vicariant event 

causing the split between T. carnifex and T. macedonicus 

(Arntzen et al. 2007) and appointed a normally distributed 

prior with a small standard deviation (0.001). The most 

appropriate models of sequence evolution were identified 

with jModelTest 2.1.10 (Darriba et al. 2012), based on the 

Bayesian Information Criterion (ND2: TN+I, ND4: TN+G). 

We applied the relaxed lognormal clock model and a Yule 

speciation model, with large uninformative priors for the 

Yule Birth Rate (gamma distribution, α = 0.001, β = 1000) 

and substitution rates (ucld.mean priors: exponential distri-

bution, mean = 10). We conducted two independent runs 

of 150 million generation each, sampling parameters each 

15,000 generations. We confirmed in Tracer 1.7 (Rambaut 

et al. 2018) that runs converged and effective sample sizes 

were at least 200. Trees from a stationary distribution (burn-

in = 25%) were used to calculate an annotated Maximum 

Clade Credibility tree in TreeAnnotator 2.6. We calculated 

p-distances within and among the mtDNA clades identified 

(see Results) using MEGA X (Kumar et al. 2018).

Principal Component Analysis, Isolation by Distance 
and Allelic Richness of Nuclear DNA

We conducted a principal component analysis with the R 

package adegenet 2.1.3 (Jombart and Ahmed 2011), based 

on allele frequencies, and replacing missing data with the 

mean of the total dataset. We excluded those populations 

affected by interspecific gene flow (populations 1–3, see 

Results). We tested for isolation by distance using a Mantel 

test in the R package adegenet 2.1.3 (Jombart and Ahmed 

2011) for the three groups identified in our Structure and 

PCA analyses (see Results). We excluded populations 

affected by interspecific (populations 1–3) or intraspecific 

(populations 8–9 and 14–16, see Results) gene flow. Allelic 

richness was determined using the R package DiveRsity 

1.9.9 (Keenan et al. 2013). Again we excluded populations 

affected by interspecific (populations 1–3) or intraspecific 

(populations 8–9 and 14–16) gene flow, as well as popula-

tion 4, because only a single individual was available.

Bayesian Genetic Clustering of Nuclear DNA

We analyzed multilocus nuclear DNA sequence data with 

Structure 2.3.3 (Pritchard et al. 2000) to assign individuals 

to distinct gene pools probabilistically under the admixture 

model, in combination with the correlated allele frequency 

model, with 100,000 iterations after 50,000 iterations 

of burn-in and ten replicates per run. We took a two-step 

approach in analyzing our dataset. First, considering that 

crested newt species hybridize at their contact zones (Arn-

tzen et al. 2014), we aimed to exclude potentially confound-

ing effects of interspecific gene flow. As T. carnifex is in 

parapatry with T. cristatus and T. dobrogicus, we tested for 

signs of interspecific gene flow with these two species, using 

reference data (three individuals from four populations for 

each species) available from Wielstra et al. (2014a). In a 

preliminary Structure run, we fixed the number of distinct 

gene pools k at 3, as we are dealing with three species. Yet, 

because the program had trouble allocating the T. cristatus 
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and T. dobrogicus individuals to their respective species, 

presumably due to strong population structure within T. 

carnifex (see Results), we increased k to 4, under which T. 

cristatus and T. dobrogicus individuals were correctly allo-

cated to their respective species. We considered T. carnifex 

individuals admixed if they were assigned to T. carnifex with 

an ancestry coefficient < 0.95.

Second, after excluding those populations affected by 

interspecific gene flow (populations 1–3), we explored pop-

ulation structure within T. carnifex. We tested for k over 

a range of 1–26 (with the upper limit determined by the 

total number of T. carnifex populations not affected by inter-

specific gene flow). We used CLUMPAK (Kopelman et al. 

2015) to determine the optimum k value according to the Δ 

k criterion (Evanno et al. 2005). Individuals were assigned 

to a gene pool if the ancestry coefficient was ≥0.95 and oth-

erwise were considered genetically admixed.

Nuclear DNA Phylogeny

We used Geneious Prime 2020.2.2 (https ://www.genei ous.

com) to create a concatenated alignment with indels removed 

from the fasta files for the 51 nuclear loci (containing two 

alleles for each marker for each individual) produced by our 

bioinformatics pipeline (Wielstra et al. 2014a). A consensus 

sequence with polymorphic sites encoded by IUPAC codes 

was created for each individual using the SeqinR 3.6.1 pack-

age (Charif and Lobry 2007) in R (R-Development-Core-

Team 2020). This resulted in a 7007 bp alignment. We 

excluded populations that showed signs of admixture with 

other crested newt species (populations 1–3) or among the 

three geographical groups delineated by the Structure and 

principal component analyses (populations 8–9 and 14–16). 

We calculated p-distances within and among the nuDNA 

clusters (see Results) using MEGA X (Kumar et al. 2018). 

We obtained a phylogeny with BEAST 2.6 (Bouckaert et al. 

2019), using T. macedonicus as outgroup (ID 3248 taken 

from Wielstra et al. 2017). We considered heterozygote 

positions (useAmbiguities =”true”). We applied the strict 

clock model and a Yule speciation model. We conducted two 

independent runs of 30 million generations each, sampling 

parameters each 3,000 generations. Results were checked 

and summarized using the same procedure as described for 

the mtDNA phylogenetic analysis.

Species Distribution Modelling

We created a species distribution model with Maxent 3.3.3k 

(Phillips et al. 2006) as this program is developed for pres-

ence-only data, outperforms other algorithms and can be 

used to reliably hindcast to past environments (Elith et al. 

2006; Hijmans and Graham 2006). We restricted the feature 

type to hinge features as this produces a smoother model fit 

that emphasizes trends rather than idiosyncrasies of the data 

(Elith et al. 2010). We used a database of 127 T. carnifex 

localities presented in Wielstra et al. (2014b). For climate 

layers we used bioclimatic variables at 2.5 arcminute resolu-

tion (c. 5 x 5 km) available from the WorldClim database 1.4 

(Hijmans et al. 2005). This resolution is appropriate to detect 

range-wide patterns, while still being biologically meaning-

ful for Triturus newts, which have an estimated dispersal 

rate of 2 km per generation (Arntzen and Wallis 1991). Fol-

lowing Guisan and Thuiller (2005) and Peterson (2011) we 

selected a subset considered to reflect physiological limita-

tions of the study species (in this case seasonality in tem-

perature and precipitation) while showing little multicol-

linearity (a Pearson’s correlation of r < 0.7): bio10 = mean 

temperature of warmest quarter, bio11 = mean temperature 

of coldest quarter, bio15 = precipitation seasonality, bio16 = 

precipitation of wettest quarter, and bio17 = precipitation of 

driest quarter. Because the environmental range covered by 

pseudo-absence data, used by Maxent to discriminate pres-

ence data from the environmental background, should nei-

ther be too narrow nor too broad (Elith et al. 2011), we drew 

a 200 km radius buffer (following VanDerWal et al. 2009) 

around known Triturus localities (Wielstra et al. 2013). To 

determine whether our species distribution model performs 

better than random expectation, we tested its AUC value 

against a null model based on 99 models for random locali-

ties (Raes and ter Steege 2007). Random point data were 

created with ENMTools 1.3 (Warren et al. 2010). For hind-

casting we used bioclimatic variables, available from the 

WorldClim database 1.4, for the Last Glacial Maximum (~ 

21Ka), based on downscaled climate data from simulations 

of two global climate models: CCSM4 (Brady et al. 2013) 

and MIROC-ESM (Sueyoshi et al. 2013).

Results

We identified 43 T. carnifex mtDNA haplotypes (Table S1); 

mtDNA derived from T. dobrogicus was present in the 

two Austrian populations (populations 1–2 in Fig. 1). The 

mtDNA phylogeny strongly supports the presence of a dis-

tinct Balkan, northern Italian and southern Italian clade 

(Fig. 2; Table S3). A new, relatively distinct (Table S3) 

haplotype was identified from a geographically intermedi-

ate region (h09 in population 8; Fig. 1) that clusters with the 

Balkan clade (Fig. 2). The basal split in T. carnifex, dated 

to the late Pliocene (c. 3.2 Ma), is between the Balkan and 

the two Italian lineages. The subsequent split between the 

northern and southern Italian lineages is dated to the early 

Pleistocene (c. 2.3 Ma).

The principal component analysis separated the Balkan 

and Italian populations (populations 4–7 versus 10–29, 

with 8–9 taking an intermediary position) along principal 

https://www.geneious.com
https://www.geneious.com
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component 1 (explaining 26.5 % of the total variation) and 

the northern and southern Italian populations (populations 

10–13 versus 17–29, with 14–16 taking an intermediary 

position) along principal component 2 (12.0%; Fig. 3). We 

found significant support for isolation by distance for the 

southern Italian cluster and not for the northern Italian of 

Balkan clusters. Allelic richness varied from 1.26–1.38, 

1.15–1.39 and 1.11–1.31 for the Balkan, northern Italy and 

southern Italy clusters (Table S4).

Structure identified nuclear admixture with T. cristatus 

in the two Austrian populations (populations 1–2 in Fig. 1; 

Table S1) and with T. dobrogicus in one of the Croatian pop-

ulations (population 3). These populations, closely related 

to the other Balkan T. carnifex populations, were excluded 

from further analyses. The test for intraspecific structur-

ing for T. carnifex in Structure suggested k = 2, separating 

the Balkan and Italian populations (populations 4–7 versus 

10–29, with 8–9 showing admixture), as the optimal parti-

tioning scheme, with k = 3, additionally separating northern 

and southern Italian populations, a close second (dividing 

Italian populations into 10–13 versus 17–29, with admixture 

in 14–16). The allocation of individuals to clusters under 

both k values, and the distribution of gene pools under k 

= 3, is shown in Fig. 1. Details are in Table S1 and results 

for additional k values are available from Dryad (see sec-

tion ‘Data availability’). The BEAST phylogeny supports 

a basal bifurcation between a significantly supported Bal-

kan and Italian clade. Within the latter clade, the northern 

and southern Italian populations do not form reciprocally 

monophyletic groups (Fig. S1). See Table S3 for p-distances 

within and among the nuDNA clusters.

The species distribution model (AUC value = 0.96) sug-

gests that suitable conditions occur throughout the range of 

T. carnifex today (Fig. 4). Hence, the predicted ranges of 

the gene pools as delineated by nuclear and mitochondrial 

DNA are not geographically isolated at present, although 

the band of suitable habitat just west of the zone of admix-

ture between the Balkan and Italian populations is narrow, 

squeezed between the Alps and the Po Delta. When pro-

jected on climate reconstructions for the Last Glacial Maxi-

mum, regardless of the global circulation models used, the 

species distribution model suggests suitable conditions were 

much reduced at the time (Fig. 4). Suitable area was pre-

dicted at the Last Glacial Maximum in the north-western 

Balkan Peninsula and in the Italian Peninsula. Within the 

Italian peninsula the range is predicted to have been highly 

fragmented, with patches of suitable habitat just south of the 

Alps and in the center and south of the Italian Peninsula. A 

pocket of suitable habitat remained in the area of current 

admixture between the Balkan and Italian groups.

Discussion

Genome-enabled approaches to phylogeography allow us 

to test and extend biogeographical hypotheses proposed in 

studies employing mtDNA only (e.g. Spinks et al. 2014; 

Dufresnes et al. 2020). We here take a closer look at the Ital-

ian crested newt T. carnifex, a species whose range spans two 

canonical glacial refugia and for which an mtDNA-based 

phylogeographic study found deep geographical genetic 

structuring between and within these refugia (Canestrelli 

et al. 2012). We obtain a better understanding of the degree 

and extent of genetic admixture between populations derived 

from multiple glacial refugia.

Bayesian clustering analysis and principal component 

analysis confirm that, at the highest level of hierarchy, T. car-

nifex comprises two discrete gene pools. These gene pools 

occupy the Italian and the Balkan parts of the range (Figs. 1 

and 3). Similarly, T. carnifex shows a basal split between 
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Fig. 2  Time-calibrated mtDNA phylogeny for Triturus carnifex. The 

outgroup is not shown. The time axis (millions of years ago) is below 

the tree and grey bars represent the 95% highest posterior density 

interval of node ages for nodes with posterior probabilities ≥ 0.95 

(labelled with an asterisk). Colors of mtDNA clades correspond to 

Fig. 1. Haplotype codes and population numbers (between parenthe-

ses) correspond to Table S1
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an Italian and Balkan clade in both the mtDNA and nuclear 

DNA phylogeny (Figs. 2 and S1). The lack of isolation by 

distance in the Balkan and northern Italian (but not southern 

Italian) nuclear gene pools could reflect postglacial popula-

tion expansion. Allelic richness for nuclear DNA shows no 

clear spatial signal. The species distribution model suggests 

that the Italian and Balkan groups were isolated in distinct 

refugia at the Last Glacial Maximum and are currently con-

nected by a narrow band of suitable habitat (Fig. 4). These 

two groups presently meet in north-eastern Italy, in a region 

sandwiched between the Alps in the north and the Adri-

atic Sea in the south (Fig. 1). Here they show geographi-

cally restricted admixture. A comparison of intraspecific 

divergence in the genus Triturus (Table S2 in Wielstra et al. 

2019) reveals that the degree of nuclear genetic divergence 

between the Balkan and Italian groups is unprecedented 

within crested newt species. The two lineages show appar-

ently limited gene flow, despite hybridization upon second-

ary contact, suggesting the existence of two cryptic species 

in T. carnifex. A detailed hybrid zone analysis is required to 

test this hypothesis.

Within the Italian Peninsula, Bayesian clustering and 

principal component analysis suggests further sub-struc-

turing into a northern and southern Italian group (Fig. 1), 

roughly in line with a northern and southern mtDNA clade 

(Fig. 2), whereas populations from northern and southern 

Italy are not reciprocally monophyletic in the nuclear DNA 

phylogeny (Fig. S1). The two Italian nuclear gene pools 

show admixture over a comparatively wide area along the 

northern Apennines. The species distribution model sug-

gests that suitable conditions were much reduced at the 

Last Glacial Maximum, but remained just south of the Alps 

and, much further to the south, in central and southern Italy 

(Fig. 4).

While the phylogeographic signal from mtDNA in T. 

carnifex is generally concordant with nuclear DNA and 

supports the same three main lineages, it breaks down in 

areas of admixture (Figs. 1 and 2). First, we find mtDNA 

of a different crested newt species, T. dobrogicus, in T. car-

nifex populations north of the Alps (Fig.1). As T. dobrogicus 

is an obligatory lowland species (Arntzen et al. 1997), its 

mtDNA is unlikely to be native in this area. Yet, given that 

the same mtDNA haplotype still occurs throughout the range 

of T. dobrogicus (Wielstra et al. 2013), introgression must 
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Fig. 3  Principal component analysis of nuclear DNA data for Triturus 

carnifex. Five clusters of populations have been given a unique color 

and population numbers correspond to Fig. 1

Fig. 4  Species distribution model for Triturus carnifex. The species distribution model is projected on climate layers for the present (a) and for 

the Last Glacial Maximum based on the MIROC (b) and CCSM (C) climate models. Warmer colors refer to a higher predicted suitability
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have occurred recently, upon postglacial secondary con-

tact between the two species. Introgression into T. carnifex 

probably took place in the lowlands near the present day T. 

dobrogicus–T. carnifex hybrid zone and subsequently surfed 

(Klopfstein et al. 2006) beyond the T. dobrogicus range, in 

an expanding T. carnifex population (Mačát et al. 2019). 

Postglacial northwards expansion of T. carnifex around the 

Alps (from the Balkan population) is in line with our species 

distribution model (Fig. 4).

Second, admixture between the two Italian gene pools is 

relatively wider for the nuclear genome than for mtDNA. 

Also, mtDNA of the northern Italian clade is found to have 

introgressed into the southern Italian gene pool, well over 

a hundred kilometre southwards of the present day zone of 

admixture between the two gene pools (Fig. 1). We propose 

this mtDNA introgression could reflect expansion of the 

southern gene pool, at the expense of the northern one (Cur-

rat et al. 2008; Wielstra 2019) but it could also be explained 

by positive selection dragging the northern mtDNA into the 

southern gene pool (Bonnet et al. 2017).

Third, we identified a relatively distinct mtDNA haplo-

type (h09) of early Pleistocene origin (c. 1.6 Ma; Fig. 2) in 

the present day hybrid zone between the Italian and Balkan 

groups (Fig. 1). Given the geographically restricted distri-

bution of the new mtDNA clade identified in T. carnifex it 

may have evolved in situ. The species distribution modelling 

agrees that suitable conditions remained here at the Last 

Glacial Maximum and presumably during previous glacia-

tions as well (Hewitt 2011b). Under these circumstances, a 

population of T. carnifex could have survived the glaciations 

here, despite recurring secondary contact and admixture of 

the Italian and Balkan groups in north-eastern Italy. The 

origin of a mtDNA ‘ghost lineage’ that does not have prec-

edent in nuclear DNA, could be explained by secondary con-

tact of, and subsequent fusion of, populations that initially 

diverged in allopatry (Hogner et al. 2012; Dufresnes et al. 

2020) or mtDNA capture from a population that has subse-

quently gone extinct (Mao et al. 2013; Zhang et al. 2019; 

Ottenburghs 2020). MtDNA ghost lineages are known from 

several Balkan newt taxa (Pabijan et al. 2015; Recuero et al. 

2014; Wielstra and Arntzen 2020). Denser sampling east 

of the hybrid zone between the Balkan and northern Italian 

gene pool is required to test these hypotheses.

Conclusions

Triturus carnifex survived the Pleistocene Ice Age in three 

discrete glacial refugia, one in the north-western Balkan 

Peninsula (roughly the Istria region), one in the north of the 

Italian Peninsula, and one in the central/south of the Italian 

Peninsula—in line with a previous historical biogeographi-

cal scenario derived from mtDNA. Our study supports: (1) 

the relevance of the north-western Balkan Peninsula as a 

discrete glacial refugium (while traditionally the southern 

Balkans are considered most important; Poulakakis et al. 

2015); (2) the importance of north-eastern Italy and the 

northern Apennine as suture zones (see also e.g. Dufresnes 

et al. 2014; Verardi et al. 2009; Schultze et al. 2020; Can-

estrelli et al. 2006; Canestrelli and Nascetti 2008); and (3) 

the applicability of a refugia-within-refugia scenario within 

the Italian Peninsula (Canestrelli et al. 2014; Canestrelli 

et al. 2010; Salvi et al. 2013; Maura et al. 2014).

While mtDNA overall is informative on the historical bio-

geography of T. carnifex, it does occasionally fall short. The 

deviation between mtDNA and our nuclear DNA dataset can 

be explained by well-understood gene flow upon secondary 

contact, resulting in asymmetric introgression, and ancient 

gene flow followed by genetic swamping might also account 

for the origin of a mtDNA ghost lineage. Here, next-gen-

eration phylogeography and species distribution modelling 

provide a more accurate and intricate picture. The Italian 

crested newt exemplifies how population fragmentation into 

multiple refugia, within the wider network of European gla-

cial refugia, drove intraspecific divergence, despite repeated 

opportunities for merging during interglacial periods.
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