
        

Citation for published version:
Chantratita, N, Wuthiekanun, V, Limmathurotsakul, D, Vesaratchavest, M, Thanwisai, A, Amornchai, P, Tumapa,
S, Feil, EJ, Day, NP & Peacock, SJ 2008, 'Genetic Diversity and Microevolution of Burkholderia pseudomallei in
the Environment', PLoS Neglected Tropical Diseases, vol. 2, no. 2, pp. e182.
https://doi.org/10.1371/journal.pntd.0000182

DOI:
10.1371/journal.pntd.0000182

Publication date:
2008

Link to publication

Publisher Rights
CC BY
Citation: Chantratita N, Wuthiekanun V, Limmathurotsakul D, Vesaratchavest M, Thanwisai A, et al. (2008)
Genetic Diversity and Microevolution of Burkholderia pseudomallei  in the Environment. PLoS Negl Trop Dis
2(2): e182. doi:10.1371/journal.pntd.0000182

© 2008 Chantratita et al. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1371/journal.pntd.0000182
https://doi.org/10.1371/journal.pntd.0000182
https://researchportal.bath.ac.uk/en/publications/dceb11ee-691d-4899-94bd-fb9131225586


Genetic Diversity and Microevolution of Burkholderia
pseudomallei in the Environment
Narisara Chantratita1., Vanaporn Wuthiekanun1., Direk Limmathurotsakul1, Mongkol Vesaratchavest1,

Aunchalee Thanwisai1, Premjit Amornchai1, Sarinna Tumapa1, Edward J. Feil2, Nicholas P. Day1,3,

Sharon J. Peacock1,3*

1 Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 2 Department of Biology and Biochemistry,

University of Bath, Bath, United Kingdom, 3 Center for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill

Hospital, Oxford, United Kingdom

Abstract

Background: The soil dwelling Gram-negative pathogen Burkholderia pseudomallei is the cause of melioidosis. The diversity
and population structure of this organism in the environment is poorly defined.

Methods and Findings: We undertook a study of B. pseudomallei in soil sampled from 100 equally spaced points within
237.5 m2 of disused land in northeast Thailand. B. pseudomallei was present on direct culture of 77/100 sampling points.
Genotyping of 200 primary plate colonies from three independent sampling points was performed using a combination of
pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Twelve PFGE types and nine sequence types
(STs) were identified, the majority of which were present at only a single sampling point. Two sampling points contained
four STs and the third point contained three STs. Although the distance between the three sampling points was low (7.6,
7.9, and 13.3 meters, respectively), only two STs were present in more than one sampling point. Each of the three samples
was characterized by the localized expansion of a single B. pseudomallei clone (corresponding to STs 185, 163, and 93).
Comparison of PFGE and MLST results demonstrated that two STs contained strains with variable PFGE banding pattern
types, indicating geographic structuring even within a single MLST-defined clone.

Conclusions: We discuss the implications of this extreme structuring of genotype and genotypic frequency in terms of
micro-evolutionary dynamics and ecology, and how our results may inform future sampling strategies.
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Introduction

The soil dwelling Gram-negative bacterium Burkholderia pseudo-

mallei is the cause of melioidosis. This organism is present in the

environment across much of southeast Asia and Northern

Australia and is increasingly recognised elsewhere, including parts

of South America [1,2]. Infection occurs through bacterial

inoculation and contamination of wounds, and more rarely by

inhalation and ingestion [1,3]. Environmental sampling underpins

efforts to define the global distribution of B. pseudomallei in soil, and

the associated geographic distribution of risk to humans and

livestock. Sampling is also performed during the investigation of

suspected outbreaks, when bacterial genotyping is used to compare

B. pseudomallei obtained from cases of melioidosis with strains from

a specified environment or substance. Environmental sampling

would also be required following the deliberate release of B.

pseudomallei associated with bioterrorist activity. The accuracy of

such studies depends on the detection of all of the B. pseudomallei

genotypes present at a given site with the exception of those

present at an extremely low frequency. Informed sampling

strategies are also a prerequisite for meaningful comparisons

between environmental isolates and those recovered from cases of

disease in humans and animals, which provide an important

means to identify clones with heightened virulence.

The objective of most published environmental studies of B.

pseudomallei has been to determine its presence based on culture of

soil and/or water in different geographic regions, particularly in

Southeast Asia and northern Australia [4–17]. Several studies

were conducted prior to the initial recognition [18], and later

description in 1998 of B. thailandensis [19], a putatively non-virulent

but closely related species present in the soil which can cause

confusion because it has very similar colony morphology

characteristics to B. pseudomallei on solid media. Yield of B.

pseudomallei from different soil depths and during different times of

the year have also been examined [8,12], and quantitative culture

of B. pseudomallei has been performed in several countries

[9,14,16,17]. The combined results of these studies indicate that

B. pseudomallei count in soil varies with sampling depth and
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calendar period (and associated weather conditions), and varies in

presence and quantity both within and between countries.

Environmental sampling has also been employed during an

investigation of a suspected outbreak of melioidosis in northern

Australia in which a case cluster was linked to the water supply

through genotyping by pulsed field gel electrophoresis (PFGE)

[20], and as part of an environmental sampling program in the

same region [21]. Two studies have also compared bacterial

genotypes of environmental versus disease-associated strains using

ribotyping or multilocus sequence typing (MLST) [22,23]. The soil

sampling methodology used previously to detect and in some cases

quantify B. pseudomallei using culture methods has varied. The

quantity of soil sampled ranged from 3 g to 100 g, although the

addition of water to the sample, use of the supernatant for culture,

and the ratio of water to soil used are common to many studies. An

exception was the identification of B. pseudomallei following passage

through hamsters inoculated with soil extracts [15].

Despite the importance of environmental sampling for the

presence of B. pseudomallei, the genetic variability of this organism

within a single sample or between adjacent sampling points is not

known, and the strategies necessary to ensure sampling of a

genetically unbiased B. pseudomallei population are undefined. The

aim of this study conducted in northeast Thailand was to address

these issues. We describe the presence of multiple B. pseudomallei

genotypes within a single soil sample, and the presence of different

B. pseudomallei genotypes at independent but nearby sampling

points. The B. pseudomallei genetic population was unevenly

distributed within a given sample, with a predominant genotype

co-existing with several genotypes present as a minority popula-

tion. We discuss the implications of this structuring of genotypic

frequency in terms of micro-evolutionary dynamics and ecology,

and how our results may inform future sampling strategies.

Methods

Study site
Soil samples were collected during September 2005 (the rainy

season) from an area of disused land measuring 237.5 m2

(23.75 m610 m) situated to one side of road 231 in Amphoe

Meung, at a distance of 8 km northeast of Sappasithiprasong

Hospital, Ubon Ratchathani, northeast Thailand. This is a rural

rice-growing region where road traffic is light and cattle range

through the area. The soil type was sandy loam, and was wet

under foot but not flooded. The vegetation was low-lying scrub

and the area showed no signs of cultivation. The site included a

single concrete electricity pole. A brick wall formed one boundary,

running parallel to and distal from the road.

Five people undertook sampling over a 2-day period of

intermittent rain. The site was initially divided into a grid system

using string and wooden stakes, in which 5620 spots were plotted

2.5 m apart on the vertical axis, and 1.25 m apart on the

horizontal axis. The grid was referenced alphabetically (A to E for

horizontal rows as viewed back against the wall, row E lying closest

to road) and numerically (1 to 20, moving across from left to right

on vertical axis). Each point is hereafter termed a ‘sampling point’

and the specific site defined by its grid reference.

Soil sampling
A hole was dug with a clean spade to a depth of approximately

30 centimetres. A clean plastic bag was placed on weighing scales

and a sample of soil (100 grams) was removed from the base of the

hole and placed into the bag. Each soil sample was labelled using

pre-prepared stickers denoting the grid reference number. The bag

was closed and stored out of direct sunlight at ambient temperature

until transported to the laboratory where it was processed on the

same day. The utensils used for sampling were cleaned between each

use by rinsing with bottled water to remove visible debris, followed

by cleaning with 70% ethanol and air drying.

Soil culture and B. pseudomallei identification
Soil samples were batch processed at the end of each collection

day. 100 ml of sterile water was added to each bag, mixed well and

left overnight to sediment. The upper layer of water was then

transferred by plastic pipette to a sterile plastic container. Four

aliquots of 100 ml were spread plated onto each of 4 Ashdown’s

selective agar plates. A further 1 ml of the soil water sample was

added to 9 ml of selective enrichment broth consisting of threonine-

basal salt plus colistin (TBSS-C50 broth). This was incubated at

40uC in air for 48 h, after which 10 ml of surface liquid was plated

onto a second Ashdown’s agar plate which was incubated and

observed as before. Agar plates were incubated at 40uC in air and

visually inspected daily for 4 days. Colonies of B. pseudomallei were

initially identified on the basis of colony morphotype. This included

the characteristic colony morphology (purple, flat, dry and wrinkled)

together with 6 additional colony morphotypes, as described

previously [24]. Colonies suspected to be B. pseudomallei were tested

using the oxidase test, and positive colonies confirmed as B.

pseudomallei using a highly specific latex agglutination test (positive

for B. pseudomallei but negative for B. thailandensis) [25,26].

Genotyping of B. pseudomallei
Genotyping of B. pseudomallei was performed for 3 sampling points

(grid reference A11, D10 and E4). These were selected at random

from sampling points that gave at least 200 B. pseudomallei colonies on

the two primary Ashdown’s agar plates. For each sample, 200

primary colonies were picked to purity and subjected to PFGE using

SpeI, as previously described [27]. Analysis of PFGE banding patterns

for the 200 colonies at each of the three sampling points was

performed using the BioNumerics software version 2.5 (Applied

Maths, Belgium). For the purposes of this study, interpretation was

defined so as to be highly discriminatory. Isolates with identical PFGE

banding patterns were regarded as genotypically indistinguishable,

but isolates with one or more bands different were defined as

putatively different and given a different banding pattern number.

One bacterial representative of each banding pattern type was further

Author Summary

The soil dwelling Gram-negative bacterium Burkholderia
pseudomallei is the cause of melioidosis, a serious human
infection that occurs in Southeast Asia and northern
Australia. The purpose of this study was to evaluate the
population genetic structure of B. pseudomallei in the
environment. To achieve this, we undertook soil sampling
and culture for the presence of B. pseudomallei in 100
equally spaced points within an area of disused land in
northeast Thailand, and undertook detailed genotyping of
primary plate colonies isolated from three independent
sampling points. Our results demonstrated that multiple B.
pseudomallei genotypes were present within a single soil
sample, and that different genotypes were present at
independent but nearby sampling points. The B. pseudo-
mallei genetic population was unevenly distributed within
a given sample, with a predominant genotype co-existing
with several genotypes present as a minority population.
We discuss the implications of this structuring of
genotypic frequency in terms of micro-evolutionary
dynamics and ecology, and how our results may inform
future sampling strategies.
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examined using MLST, as previously described [23]. The alleles at

each of the loci were assigned and sequence type defined using the B.

pseudomallei MLST website (http://bpseudomallei.mlst.net).

Measures of genetic diversity
Genetic diversity of B. pseudomallei within a given sampling point

was defined using Simpson’s index of diversity. This describes the

probability that two randomly selected bacterial cells within a

sampling point will be different genotypes; 0 indicates no diversity

(all cells identical) and 1 indicates maximum diversity (all cells

different). Confidence intervals for Simpson’s index were calcu-

lated as described previously [28]. Further analysis was performed

to examine whether the genetic distance between isolates within a

given sample was significantly different from that expected if all

isolates were randomly distributed between the three sites. The

number of different alleles was determined for all 19,900 pairwise

comparisons of the 200 colonies (strains) at each of the three

sampling points. The results were compared to mean values

calculated from 100 random samples, each of 200 strains, drawn

with replacement from the combined data set of 600 strains (all 3

sampling sites). Statistical significance was gauged by calculating

the 0.01, 0.05 and 0.95 and 0.99 percentiles from the re-sampled

data. Genetic diversity between two sampling points was measured

using the Morisita index of similarity. This ranges from 0 to 1; 0

indicates that no genotypes are shared between the two sampling

points, and 1 indicates complete identity. All analyses were carried

out using Stata 9.0 (College Station, Texas, United States), except

the random resampling procedure which used a PERL script

written by EJF (available on request).

Results

A total of 80 out of the 100 sampling points were culture

positive for B. pseudomallei, of which 77 were positive from both

direct plating onto Ashdown’s agar and selective enrichment

broth, and 3 were positive from selective enrichment broth culture

alone (Figure 1). B. thailandensis was not detected. The genetic

variability of B. pseudomallei was defined and compared within and

between sampling points by genotyping 200 colonies at each of

three positive points (A11, D10 and E4, see Figure 1). PFGE of

600 individual primary colonies revealed 12 PFGE banding

pattern types. MLST of a single random isolate of each of the 12

PFGE types revealed 9 distinct sequence types (STs) (Table 1).

Table 2 shows the breakdown of STs within each of the three

sampling points. D10 and E4 each contained four STs and A11

contained three STs. Although the distance between the 3

sampling points was low (7.6, 7.9 and 13.3 meters for A11-D10,

D10-E4, and A11-E4, respectively), only two STs were present in

more than one sampling point (E4/D10; ST176, and D10/A11;

ST60); no STs were detected in all three points, and no STs were

common to E4 and A11 which were the two sites separated by the

greatest distance. This strong segregation of STs was reflected in

low Morisita index values (Table 2). Furthermore, each site was

characterized by the following predominant genotypes, each of

which was restricted to a single site: ST93 in A11 (87%), ST163 in

D10 (51.5%), and ST185 in E4 (70%). Simpson’s index of diversity

ranged from 0.24–0.65 (Table 2).

The finding of very limited overlap between the sampling points

was further examined by comparing the average pairwise distance

Figure 1. The presence of B. pseudomallei in 100 spaced sampling points within an area of disused land in northeast Thailand.
doi:10.1371/journal.pntd.0000182.g001

Table 1. Relationship between PFGE and MLST analysis of soil
isolates.

PFGE Type
Sequence
Type MLST Profile

ace gltB gmhD lepA lipA narK ndh

1 ST 424 4 12 10 4 8 3 1

2 ST 177 1 1 4 3 1 3 1

3 ST 176 3 1 4 1 1 3 1

4 ST 185 1 4 2 2 1 4 1

5 ST 33 1 4 12 1 1 2 1

6, 11, 12 ST 60 3 1 12 1 1 3 1

7 ST 163 3 2 2 1 1 4 1

8, 10 ST 93 1 1 2 1 1 4 1

9 ST 304 1 1 5 1 1 4 1

doi:10.1371/journal.pntd.0000182.t001

Genetic Diversity of Environmental B. pseudomallei
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(in terms of allelic mismatches) between isolates within each point

to that expected if the three points were combined as a single

population. Figure 2 shows the proportion of all 19,900

((200*199)/2) pairwise comparisons showing 0, 1, 2 … 7 allelic

mismatches for each of the seven MLST loci for 200 colonies

(strains) examined at each of three independent sampling points.

This was compared to randomized data derived from the mean

values for 100 random samples of 200 strains resampled with

replacement from the combined data set of 600 strains from all

three points. All three sampling points showed a significantly

greater proportion of identical pairs (i.e. the same ST) than the

randomized data (P,0.01), which is consistent with localised

clonal expansion. For two of the three sampling sites, no significant

difference was observed in the proportion of related but non-

identical STs (i.e. those differing at a single locus) compared with

the randomized data. The exception was A11 where a significantly

higher number of pairwise comparisons (P,0.01) corresponded to

a single MLST locus difference; ST304 is a single locus variant of

the predominant clone ST93, being variant at gmhD. Comparison

of the two gmhD alleles (allele 2 for ST93 and allele 5 for ST304)

indicated two base differences (CRT position 118, and TRC

position 327). The third genotype noted at A11 is ST60; this differs

at three loci from both ST93 and ST304, thus accounting for the

small peak at three mismatches in the A11 plot.

Comparison of PFGE and MLST results demonstrated that two

STs contained strains with variable PFGE banding pattern types.

ST93 contained strains with two PFGE types (types 8 and 10),

which were 12 bands different. This ST was only found in

sampling point A11, in which the proportion of each banding

pattern was 172/174 (99%) for type 8, and 2/174 (1%) for type 10.

ST60 contained strains with three PFGE types (types 6, 11 and

12). The difference in banding patterns between these three was 6

bands (PFGE type 6 versus 11), 1 band (PFGE type 6 versus 12),

and 2 bands (PFGE type 11 versus 12). All 18 ST60 isolates from

D10 corresponded to type 6, whereas 8/9 ST60 isolates from A11

corresponded to type 11, and 1/9 to type 12. These PFGE data

confirm fine-scale geographic structuring, even within a single

MLST-defined clone. We also note differences between the single

locus variants ST 304 (type 9) and ST93 (types 8 and 10); PFGE

type 9 differed from type 8 by 18 bands, and from type 10 by 10

bands.

Table 2. Genotyping results for 200 colonies of B.
pseudomallei from each of three independent sampling
points.

Sequence Type Sampling Points

E4 D10 A11

ST 424 38 (19%)

ST 177 12 (6%)

ST 176 10 (5%) 29 (14.5%)

ST 185 140 (70%)

ST 33 50 (25%)

ST 60 18 (9%) 9 (4.5%)

ST 163 103 (51.5%)

ST 93 174 (87%)

ST 304 17 (8.5%)

Simpson Index of
diversity (95% CI)

0.47 (0.40–0.54) 0.65 (0.60–0.69) 0.24 (0.16–0.31)

Morisita Index of similarity

- compared to E4 - 0.02 0.00

- compared to D10 - - 0.01

doi:10.1371/journal.pntd.0000182.t002

Figure 2. Graph of the proportion of all pairwise comparisons showing 0, 1, 2 … 7 allelic mismatches for each of 200 primary
colonies (strains) examined at three independent sampling points. The ‘‘trials’’ data represents mean values for 100 random samples of 200
strains drawn from the combined data set of 600 strains from all three sampling points (with replacement). Error bars are based on the 5th and 95th

percentiles of the 100 random samples. No pw comparisons (real or trial data) differ at all seven loci since the locus ndh is monomorphic (invariant).
doi:10.1371/journal.pntd.0000182.g002
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Discussion

This study has demonstrated marked geographic structuring of B.

pseudomallei genotypes in soil. The dramatic differences in genotype

frequency over such small distances are striking, but difficult to

interpret. One explanation is that the numerically dominant ST at

each sampling point represents a strain with superior biological

fitness compared with STs present as a minority of the population.

This could relate to factors such as soil type or pH, or competition

with other microbial species. This would assume that adjacent foci of

soil have variable microenvironments, but it seems unlikely that

nearby sampling points within a confined area of disused land would

differ sufficiently to support multiple, non-overlapping niches. An

alternative possibility is that of local competition between clones of B.

pseudomallei. Flooding or other disturbance mechanisms would

provide the means for a given clone to migrate and become

established within a specific plot. Once the clone has reached a

certain threshold frequency, it could repel invaders either by the

production of microbicides, through phage to which they themselves

are resistant, or via other killing mechanisms. The presence of a

clone as a minority population could represent the ability of this

strain to survive at a lower level, or could represent the boundary of a

point of predominance in an adjacent point or focus.

This study also provides evidence for microevolution of B.

pseudomallei in soil. PFGE is a more sensitive marker of very rapid

genetic change than MLST in this species. Alterations in banding

pattern arise due to any kind of genetic event that alters the

presence or absence of restriction sites anywhere in the genome, or

else changes the distance between existing sites. In contrast, MLST

genes are chosen specifically to code for a central housekeeping

role and to be highly conserved. MLST is therefore blind to large-

scale genomic rearrangements that may dramatically alter the

PFGE banding pattern [29]. Two of the nine STs contained

strains with variable PFGE banding pattern types. We postulate

that these changes represent microevolution within our sampling

site rather than importation of several strains with matching ST

but a different banding pattern. This is consistent with the finding

that genomic islands constitute ,6% of the B. pseudomallei K96243

genome [30]. Furthermore, comparison of the whole genome

sequences of B. pseudomallei and B. mallei indicated the capacity for

genomic rearrangement and gene loss by two species that are

highly related by MLST [31]. Our findings are consistent with a

dynamic genome that is evolving through the movement of

genomic islands and rearrangements such as inversions and indels.

The co-existence in a single soil sample of a single locus variant

of ST93 (ST304) can be explained by in situ microevolution or by a

chance association. ST93 and ST304 have both been isolated

previously in northeast Thailand. We recovered ST93 from the

environment in 1990, 1998 and 1999, each from different

sampling sites situated along road 212 which runs northwest from

the town of Ubon Ratchathani. The MLST database (www.mlst.

net) contains a fourth ST93 isolate that was associated with human

disease in Thailand in 1998. We have also recovered ST304 from

two patients with melioidosis presenting to a hospital in northeast

Thailand in 1999. However, an accurate picture of the distribution

and frequency of co-localization in soil of ST93 and ST304 in this

region has not been defined, and it is difficult to speculate on the

probability of a chance association.

A potential pitfall of this study is that the proportion of each ST

was obtained after the soil sample had been prepared by mixing

with water and overnight sedimentation followed by growth using

rich media. Some STs may be more adapted to survival or growth

after the addition of distilled water during sample preparation, or

may move more efficiently into the layer of surface water that is

removed for culture. It is also possible that some STs are more

likely to grow on laboratory media than others, and that some STs

are viable but non-culturable under the conditions used.

Resolution of these issues will require the direct application of

molecular tools to soil samples, and comparison of genotypes with

those obtained using conventional culture and existing soil

preparation methods.

Our findings have several important implications for future

genotyping studies. Soil sampling at a single location will fail to

identify the genotypes present at a distance of even a few meters.

Furthermore, the predominance of a single ST at a given site

requires that extra sampling effort is required to detect any

genotypes present as a minority of the population. We estimate

that the characterization of approximately 50 colonies from any

single site would provide an 85% probability of detecting a

genotype present at the site at a frequency of 2%. This is based on

the exact 95% binomial confidence interval for ST60 at sampling

point A11, which was present in the lowest proportion. The

temporal stability of the genotype distribution described here is not

known, and it is possible that markedly different genotypic

frequencies might be recorded from the same sampling sites if

the study were to be repeated at some point in the future. It is also

unclear whether the degree of genetic diversity described here will

be reproduced within Thailand and in other endemic countries,

although a study by Pearson et al. in which genetic diversity was

demonstrated by variable number tandem repeat (VNTR) analysis

within a small geographic area of Australia [32] suggests that this

will prove to be a reproducible finding. The basis on which PCR is

used in future studies to detect B. pseudomallei in the environment

also requires careful consideration. Amplification may give rise to

mixed products, and DNA from strains present at low copy

number may go undetected. PCR may become an appropriate

technology for the detection of B. pseudomallei, but is not an

appropriate basis for subsequent genotyping unless multiple

independent amplicons are evaluated.

This study has investigated B. pseudomallei in soil taken from an

area of disused land. This is in contrast to many previous studies in

Thailand which were conducted in rice paddies. The basis for our

choice was to examine an environment free of external influences

such as chemical fertilizers and pesticides, together with the effect of

ploughing, planting, burning of rice stubble and the presence of rice

plants. However, most disease is probably acquired in rice paddies;

further studies are underway to compare and contrast the findings

reported here with those from a rice paddy in the same region.
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